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ABSTRACT
Accurately identifying correct correspondence (inlier) within initial
ones is pivotal for robust feature-based point cloud registration.
Current methods typically rely on one-shot 3D correspondence
classification with a single coherence constraint to obtain inlier.
These approaches are either insufficiently accurate or inefficient,
often requiring more network parameters. To address this issue,
we propose a lightweight network, 3DPCP-Net, for fast and robust
registration. Its core design lies in progressive correspondence prun-
ing through mining deep spatial geometric coherence, which can
effectively learn pairwise 3D spatial distance and angular features
to progressively remove outlier (mismatched correspondence) for
accurate pose estimation. Moreover, we also propose an efficient
feature-based hypothesis proposer that leverages the geometric con-
sistency features to generate reliable model hypotheses for each reli-
able correspondence explicitly. Extensive experiments on 3DMatch,
3DLoMatch, KITTI and Augmented ICL-NUIM demonstrate the
accurate and efficient of our method for outlier removal and pose
estimation tasks. Furthermore, our method is highly versatile and
can be easily integrated into both learning-based and geometry-
based frameworks, enabling them to achieve state-of-the-art results.
The code is provided in the supplementary materials.

CCS CONCEPTS
• Theory of computation→ Computational geometry; • Com-
puting methodologies→Matching.

KEYWORDS
Point Cloud Registration, Progressive Correspondence Pruning,
Deep Spatial Geometric Coherence, Hypothesis Proposer, Light-
weight, Accurate and Efficient

1 INTRODUCTION
Point cloud registration serves as a fundamental component in
numerous 3D computer vision applications, including 3D recon-
struction [7], simultaneous localization and mapping (SLAM) [12],
autonomous driving [27]. Its aims to align two 3D scan fragments
captured from different views. The canonical solution commences
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Figure 1: Experimental results on 3DMatch and lower-overlap
3DLoMatch. Our method outperforms other methods in
terms of registration accuracy while maintaining fast speed
and lightweight.

by establishing feature correspondences leveraging 3D local fea-
tures [32, 39], subsequently estimating the optimal rigid transfor-
mation encompassing both 3D rotation and translation. However,
due to the non-uniform data quality (e.g., noise distribution, repet-
itive structures, domain gaps between different sensors), limited
overlap and limitations of existing 3D descriptors, pose estimation
suffers from numerous outliers in the correspondences leading to
inaccurate or incorrect 3D registration.

3D registration focusing on outlier removal can be divided into
geometry-based and deep learning-based methods. For geometry-
based methods [5, 14, 52], RANSAC [14] leverages an iterative sam-
pling strategy for outlier removal. Its effectiveness deteriorates with
increasing outlier burden, necessitating more iterations to achieve
convergence and leading to higher computational cost. Recently,
SC2-PCR [5] and MAC[52] follow the hypothesis verification con-
cept from RANSAC to obtain acceptable results. SC2-PCR presents
a second order spatial compatibility measure to enhance the robust-
ness against outliers. MAC presents a maximal clique constraint
to mine more local information. They utilize a single consistency
measure (spatial length) to compute the affinity between initial
correspondences and lack contextual information, resulting in de-
creased accuracy and efficiency in lower-overlap scenes as shown in
Fig. 1. Deep learning-based methods [1, 8, 20, 24, 26, 29, 40] typically
define outlier removal as the inlier/outlier classification problem.
They utilize the compatibilitymeasures for putative correspondence
to output the probability of inliers, thereby removing low probabil-
ity outliers. The compatibility measure mostly miss the essential 3D
spatial coherence. Among them, PointDSC [1], a relatively reason-
able method, relies on a non-local network driven by spatial length
consistency to capture long-range context. However, as shown in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Comparison of one-shot 3D matching classification
and progressive 3D correspondence pruning by coherence
mining for pose estimation on 3DLoMatch. The green and
red line represent inliers and outliers, respectively.

Fig. 2, the one-shot correspondence classification manner with sin-
gle coherence still yields limited pose estimation, especially for
scenes with high initial outlier ratios (lower-overlap often > 95%).
Furthermore, as illustrated in Fig. 1, these deep learning-based
methods require a considerable amount of network parameters and
struggle to balance the accuracy and efficiency of registration.

In this paper, to alleviate the above problems, we first propose to
progressively prune the set of correspondences, rather than a one-
shot classification of initial correspondences. Since most outliers
are expected to be filtered out after the progressive pruning, this
strategy allows us to identify reliable inliers among the remaining
entities (as shown in Fig. 2), which leads to accurate pose estimation.
To ensure an accurate pruning strategy, it is essential to differenti-
ate between inliers and outliers as precisely as possible. Instead of
individually distinguishing each correspondence, we propose Deep
Geometric Consistency (DGC) block to integrate long-range con-
textual and pairwise 3D spatial geometric consistency constraints.
Benefiting from the invariance of spatial distance and angle un-
der rigid transformation between inliers and the feature similarity,
DGC can obtain more representative features for each correspon-
dence, facilitating accurate inlier/outlier differentiation. Secondly,
we propose a feature-based hypothesis proposer that leverages the
high-dimensional spatial geometric consistency features extracted
above and spatial geometric consistency searching to efficiently
generate multiple reliable hypotheses. The optimal hypothesis with
the most support from the correspondences is selected as the final
alignment. Explicitly and progressively pruning the initial corre-
spondences, as opposed to purely using deeper networks, does not
result in an increase in network parameters. Meanwhile, explicitly
generating hypotheses instead of implicitly computing the trans-
formation using regression variables [39] contributes to the fast
and accurate estimation of the optimal transformation. Overall, our
have four-fold of contributions:

• We propose a lightweight progressive 3D correspondence
pruning network tomitigate the influence of massive outliers
for accurate and efficient point cloud registration.

• We introduce a DGC learning block to examine the com-
patibility of two correspondences by exploring deep feature
similarity and pairwise spatial distances and angles, thereby
facilitating the correspondence pruning process.

• Comparedwith state-of-the-artmethods, ourmethod achieves
favorable performance on 3DMatch, 3DLoMatch, KITTI and
Augmented ICL-NUIM datasets.

• Our approach can be easily integrated into other deep learning-
based or geometry-based frameworks, such as PointDSC and
SC2-PCR. Through experiments, we demonstrate that com-
bining them with our method produces superior results.

2 RELATEDWORK
2.1 3D Feature Matching
Classic Iterative Closest Point [3] and its variants [4, 47], which rely
on a good initial pose, generate correspondences based on Euclidean
distance in coordinate space. In contrast, some methods establish
correspondences by matching local descriptors with recognizable
information in feature space. Geometry local descriptor methods
involve providing numerical results [10, 13] or representing point
cloud information as histograms [34, 54]. Learning 3D local descrip-
tors has been widely studied. PointNet [30, 31] is the first network
to directly extract features on input point clouds. It solves the prob-
lems of disorder, replacement invariance, and rotational invariance
for point clouds using a multilayer perceptron, symmetric function
(maximal pooling), and transformation network. Recent learning
descriptors can be divided into local patch-based [11, 17, 50] and
convolution-based [9, 32, 42, 51] according to the characteristics
of their feature extraction. These methods have achieved signifi-
cant performance improvements, but they struggle to establish a
completely outlier-free correspondence set. They rely on outlier
removal method to estimate robust rigid transformation.

2.2 Outlier Removal
Geometry-based methods. Geometry methods can be catego-
rized as score-based and label-based. Score-based methods rank
3D correspondences based on consistency score and the top-K cor-
respondences are selected as the inliers. GTM [33] seeks global
consistency constraints among surface points during local oper-
ations. MV [49] introduces a mutual voting approach for sorting
correspondences, achieving reliable correspondences scoring re-
sults. LT-GV [46] develops a loose-tight geometric voting method
that uses both loose and tight geometric constraints in the graph
to score correspondences. CV [48] employs a consistency voting
method that utilizes distance and spatial constraints to rank 3D
correspondences; it scores each correspondence by examining the
consistency with a predefined voting set. The classic RANSAC [14]
and its variants [23, 38] are popular outlier label-based methods
that iteratively randomly sample the smallest subset in the sam-
pling step. They have slow convergence and low accuracy with
relatively high outliers. Graph-cut RANSAC [2] introduces graph-
cut technique for better local optimization. SM [25] establishes a
compatibility graph through length consistency and obtains an
inlier set by identifying the main cluster of the graph. FGR [55] and
TEASER [44] can reject outliers using the Geman-McClure cost
function. Recently, SC2-PCR [5] introduced a second-order spatial
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compatibility measure to quantify the affinity between correspon-
dences. MAC [52] introduced a maximal clique constraint that can
extract more local information in the compatibility graph. These
geometric methods often ignore the spatial angle coherence and
contextual information.

Deep learning-basedmethods. Similar to the 2D featurematches
[53], they attempt to design a unique deep learning classifier. 3DReg-
Net [29] and DGR [8] train an end-to-end neural network using
operators such as sparse convolution and point-by-point MLP [30]
to classify assumed correspondences. PointDSC [1], serving as our
baseline, proposes a non-local inlier classifier guided by length con-
sistency, followed by robust alignment via neural spectral matching.
DHVR [24] utilizes deep Hough voting to establish consensus be-
tween correspondences from the Hough space, thus predicting
the final transformation. DetarNet [6] proposes a decoupling so-
lution for translation and rotation based on 3DRegNet. PG-Net
[40] employs a grouped dense fusion attention feature embedding
module to enhance the representation of inliers and significant
channel–spatial information. VBReg [20] proposes a novel frame-
work based on variational non-local networks to capture long-range
dependencies in geometric context for inlier/outlier distinction. The
learning methods often overlook distance and angle consistency
constraints in the 3D domain. However, they all utilize one-shot cor-
respondence classification and ignore the constraints of spatial geo-
metric consistency (pairwise angles and distances). In contrast, our
network progressively prunes the initial correspondences. This sim-
ple strategy can effectively solve the problem of excessive outliers
in low-overlap scenes without increasing the network parameters.
In addition, our method explicitly integrates the geometric consis-
tency between inliers into the contextual information to accurately
and progressively removal outliers.

3 METHOD
3.1 Problem Formulation
For the partially overlapping source point cloud P𝑠 =

{
p𝑠
𝑖
∈ R𝑁𝑠×3}

and target point cloud P𝑡 =
{
p𝑡
𝑖
∈ R𝑁𝑡×3} to be aligned, we first

extract local features for them using geometric or learned 3D de-
scriptors. Then, for each point in P𝑠 , we find its nearest-neighbor
local feature in P𝑡 to generate an initial correspondence set C =

{c1, c2, ..., c𝑁 } ∈ R𝑁×6, where c𝑖 = (p𝑠
𝑖
, p𝑡

𝑖
). Our aim is to identify

an inlier/outlier label for all c𝑖 (i.e., w𝑖 = 0 or 1) and estimate the
optimal rigid transformation rotation matrix R ∈ R3×3 and trans-
lation vector t ∈ R3 between P𝑠 and P𝑡 using𝒘 = {w1,w2, ...,w𝑁 }
weighted least squares fitting [3],

R, t = argmin
R,t

|C |∑︁
𝑖

𝑤𝑖 ∥ Rp𝑠𝑖 + t − p𝑡𝑖 ∥2 . (1)

Eq. 1 can be solved using SVD [37]. In other words, accurately
predicting the 𝒘 is crucial for aligning P𝑠 and P𝑡 . However, the
presence of excessive outliers in C makes it difficult to accurately
predict𝒘 for all c𝑖 in a one-shot manner. In this paper, we suggest
progressively prune C into a candidate subset C𝑚 ∈ R𝑁𝑚×6 (𝑁𝑚

representing the number of correspondences at this time) to miti-
gate the impact of outliers. More accurate pose estimates R

′
and t

′

can be obtained by the pruned subset C𝑚 .

In
it

ia
l 

C
o
rr

es
p

o
n
d

en
ce

s

Pruning Block #1 Pruning Block #m 

Nm×6

 I
n
li

er
/o

u
tl

ie
r 

la
b

le
s：

w

N×1N×6

Pruned Correspondences

（R1
',t1

'）

（R2
',t2

'）

（RNs
',tNs

'）

（R',t'）k

k

kR
es

N
et

 B
lo

ck
×

3

 D
ee

p
 G

eo
m

et
ri

c 

C
o

h
er

en
ce

 B
lo

ck
×

1

R
es

N
et

 B
lo

ck
×

1

P
re

d
ic

ti
o
n

 l
ay

er
×

1

Hypothesis Proposer

Top-

scored

Identifying

 I
n
li

er
 p

ro
b
ab

il
it

ie
s 

SVD

R,t

SVD

SVD

SVD

Figure 3: The framework of our method. By employing
an progressive pruning strategy, 3DPCP-Net takes 𝑁×6-
dimensional initial correspondences as input and outputs the
optimal rotation transformation (R, t) and 𝑁×1-dimensional
inlier/outlier lables. Deep Geometric Consistency (DGC)
block and feature-based Hypothesis Proposer are two key
components of each pruning block, which respectively per-
form compatibility feature learning and model fitting.

3.2 3DPCP-Net Framework
Our proposed progressive 3D correspondence pruning network
(3DPCP-Net) is illustrated Fig. 3. The crucial innovation of our
framework is the progressive pruning of the initial correspondences
via inlier probabilities to obtain a more reliable subset of corre-
spondences. In this process, we achieve progressive pruning by
sequential "pruning" blocks to filter out some outliers. The core of
3DPCP-Net is m coherence pruning blocks. Each pruning block is
composed of our proposed DGC block, Hypothesis Proposer and
existing structure ResNet blocks [18]. The pruning block is pri-
marily utilized to compute the inlier probability for progressive
pruning. Specifically, each pruning block first extracts an interme-
diate feature representation fi via a series of ResNet blocks [18] for
each correspondence. Then, the proposed DGC block is leveraged
to obtain the high-dimensional geometric consistency features of
each c𝑖 . Subsequently, a ResNet block and MLP layer are employed
to estimate the confidence score 𝑒𝑖 for each c𝑖 , and the top-𝑁𝑆 most
reliable correspondences are selected. Subsequently, our proposed
Hypothesis Proposer is utilized to obtain the optimal transforma-
tion R

′
and t

′
. The final inlier probabilities of each c𝑖 is represented

by the error ∥ R′
p𝑠
𝑖
+ t

′ − p𝑡
𝑖
∥. Ultimately, after passing m pruning

blocks, the inlier/outlier labels w𝑖 = [∥ R
′
p𝑠
𝑖
+ t

′ − p𝑡
𝑖
∥< 𝜀] are

identified from the initial correspondences, and the final R and t
are estimated with reference to Eq. 1. Where 𝜀 denotes an inlie
threshold and [·] represents the Iverson bracket. Below, we will
provide a detailed introduction to the DGC block and Hypothesis
Proposer within the pruning blocks.

3.3 Deep Geometric Coherence
To distinguish the inliers and outliers, it is crucial to mine the geo-
metric consistency information [45] of inliers in the 3D domain. As
shown in Fig. 5(a), an important observation is that the inliers (e.g.,



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

WQ

  

 

 

WK WV

Q K V

d

Softmax

Context (fi)Geometry

WQ

  

 

 

WK WV

Q K

a

Softmax

 

d a

Geometry Context (fi)

SCNonlocal DGC(Ours)

  

dgcifi

V

Figure 4: Illustration of different computation in the SCNon-
local [1] and DGC.

c2 and c3) are geometrically compatible, i.e. the spatial distance
𝑑23 = 𝑑

′
23 and spatial angle 𝛼23 = 𝛼

′
23. And outliers are incompat-

ible with either inliers or outliers (e.g., c1 and c2, c4 and c5 ), i.e.
𝛼12 ≠ 𝛼

′
12 and 𝑑45 ≠ 𝑑

′
45. Additionally, the commonly used context

feature similarity can also be leveraged to distinguish inliers and
outliers. Inspired by these considerations, we propose a deep geo-
metric coherence measure to examine the compatibility between
two correspondences.

We first consider the distance and angle constraints, which are
rotation-invariant compatibility measures under rigid transforma-
tion. Given two correspondences (c𝑖 , c𝑗 ), the distance and angle
constraints are respectively defined as:

𝑑𝑖 𝑗 =
�� ∥ p𝑠𝑖 − p𝑠𝑗 ∥ − ∥ p𝑡𝑖 − p𝑡𝑗 ∥

��, (2)

𝛼𝑖 𝑗 =
��acos(n𝑠𝑖 · n

𝑠
𝑗 )

180
𝜋

− acos(n𝑡𝑖 · n
𝑡
𝑗 )

180
𝜋

��, (3)

where n denotes the local normal (e.g., tangent space) for each
point.

By integrating these two constraint conditions, we define the
geometric coherence measure of (c𝑖 , c𝑗 ) as follows:

𝑔𝑐𝑖 𝑗 = exp(−
𝑑𝑖 𝑗

2

𝜎2
𝑑

−
𝛼𝑖 𝑗

2

𝜎2
𝛼

), (4)

where a clearly ranges within (0,1], coinciding with 1 only when
both distance and angle constraints are fully satisfied. 𝜎𝑑 and 𝜎𝛼
are parameters controlling the sensitivity to differences in distance
and angle, respectively. (c𝑖 , c𝑗 ) is considered incompatible if the
difference in distance 𝑑𝑖 𝑗 exceeds 𝜎𝑑 or the difference in angle
𝛼𝑖 𝑗 exceeds 𝜎𝛼 , resulting in a smaller value of 𝑔𝑐𝑖 𝑗 . When (c𝑖 , c𝑗 )
is geometrically compatible in spatial, 𝑔𝑐𝑖 𝑗 can take on a larger
value. Observing Fig. 5, there is ambiguity when inlier c2/outlier c1
and inlier c3/outlier c4 satisfy just length consistency. The angle
constraint provides a possibility to alleviate the ambiguity issue.
Therefore, these two constraints are complementary to each other.

DGC leverages self-attention to integrate long-range contextual
information and geometric consistency constraints, which is a com-
mon practice [1, 32]. Specifically, as illustrated in Fig. 4 right, we
update the geometric coherence measure for each correspondence
using the following equation:

𝒅𝒈𝒄𝑖 =
|C |∑︁
𝑗

softmaxj (Q ⊗ K ⊙ 𝒈𝒄) ⊙ 𝒈𝒄 ⊗ V, (5)
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Figure 5: (a): Inlier pairs satisfy the geometric coherence.
d and 𝛼 denote spatial distances and angles. n is the local
normal. (b) and (c): The length (distances) and geometric
(distances and angles) consistency compatibility matrix of
(a), respectively.

where Q, K, V are a linear projection for intermediate feature fi.
Q ⊗ K is the feature similarity term. 𝒈𝒄 is the weight matrix of 𝑔𝑐𝑖 𝑗 .

Note that PointDSC propose SCNonlocal [1], as shown in Fig.
4 left, to integrate spatial length consistency with a non-local net-
work for feature encoding. However, the angle consistency clues
inherent in the original geometry are entirely ignored. To this end,
DGC generates geometric constraints 𝑔𝑐𝑖 𝑗 that incorporate angle
consistency. At the local level, 𝑔𝑐𝑖 𝑗 is combined with feature similar-
ity for feature augmentation. On the global level, it is employed to
learn a geometric rotation-invariant representation of long-range
cross-frame context aggregation, which facilitates the precision dis-
crimination between inliers and outliers. The learned features 𝒅𝒈𝒄𝑖
of DGC for each correspondence will be utilized for confidence
score 𝑒𝑖 computation and the subsequent Hypothesis Proposer.

3.4 Hypothesis Proposer
We follow the hypothesize-and-verify pipeline of RANSAC. For 𝑁𝑆

reliable correspondences, we perform the top-𝑘 second order spa-
tial compatibility [5] searching to obtain corresponding consensus
sets C

′
j ⊆ C𝑚 (| C′

j |= 𝑘 , 𝑗 = 1, 2, ..., 𝑁𝑆 ) in the geometric feature
space learned from the DGC block. Then, the least squares fitting is
performed on each consensus set to obtain rotation and translation
transformation sets {(R′

1, t
′
1), (R

′
2, t

′
2), ..., (R

′
N𝑆

, t
′
N𝑆

)}. Finally, the op-
timal (R

′
, t

′
) is selected among 𝑁𝑆 hypothesis transformations.

In specific, we construct a compatibility matrix T for each C
′
j .

Each T𝑖 𝑗 measures the compatibility between correspondences c′𝑖
and c′ 𝑗 defined as:

Tij = [1 − 1
𝜎2
𝑓

∥ ¯𝒅𝒈𝒄𝑖 − ¯𝒅𝒈𝒄 𝑗 ∥2], (6)

where ¯𝒅𝒈𝒄𝑖 and ¯𝒅𝒈𝒄 𝑗 are the L2-normalized feature vectors of 𝒅𝒈𝒄𝑖
and 𝒅𝒈𝒄 𝑗 , 𝜎𝑓 is a parameter that controls the sensitivity to feature
differences form DGC.

Following [25], the dominant cluster of matrix T is formed by the
statistics of inliers, thus naturally interpreting the leading eigen-
vector of T as the inlier probability. The leading eigenvector 𝒗 ∈ R𝑘
is efficiently computed using the power iteration algorithm [28].
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We utilize 𝒗 as weights for the least-squares fitting to estimate the
transformation (R

′
𝑗
, t

′
𝑗
) for each consensus set C

′
j with reference to

Eq. 1.
The last stage of the pruning block selects the best hypothesis (R

′
,

t
′
) among the 𝑁𝑆 rotation transformations (R

′
𝑗
, t

′
𝑗
). The criterion

for selecting the best transformation is based on the number of
initial correspondences Cm satisfied by each transformation,

R
′
, t

′
= argmax

R′
𝑗
,t′
𝑗

|Cm |∑︁
𝑖

[∥ R
′
𝑗p

𝑠
𝑖 + t

′
𝑗 − p𝑡𝑖 ∥< 𝜀], (7)

where 𝜀 denotes an inlie threshold and [·] represents the Iverson
bracket.

3.5 Loss Function
A hybrid loss function is used to optimize our proposed approach:

L = 𝜇L𝑐𝑙𝑎𝑠𝑠 + L𝑚𝑎𝑡𝑐ℎ, (8)

where L𝑐𝑙𝑎𝑠𝑠 represents the binary cross-entropy loss [8, 29] to
individually supervise each correspondence. L𝑚𝑎𝑡𝑐ℎ denotes the
matching loss to supervise pairwise correspondences. 𝜇 is a hyper-
parameter used to balance two losses.

L𝑐𝑙𝑎𝑠𝑠 =
𝑚∑︁
𝑛

BCE(e𝑛,𝒘∗
𝑛), (9)

where𝑚 is the number of pruning blocks. e𝑛 ,𝒘∗
𝑛 ∈ R |C𝑛 | and C𝑛 is

the confidence score, ground-truth inlier/outlier labels and initial
correspondences in 𝑛-th pruning block, respectively. Where

w∗
𝑖 = [∥ R∗p𝑠𝑖 + t∗ − p𝑡𝑖 ∥< 𝜀], (10)

where R∗ and t∗ denote the ground-truth rotation matrix and trans-
lation vector, respectively.

L𝑚𝑎𝑡𝑐ℎ =

𝑚∑︁
𝑛

1
| C𝑛 |2

∑︁
𝑖 𝑗
(𝑇𝑖 𝑗𝑛 −𝑇 ∗

𝑖 𝑗𝑛)
2, (11)

where 𝑇𝑖 𝑗𝑛 and 𝑇 ∗
𝑖 𝑗𝑛

are 𝑇𝑖 𝑗 and 𝑇 ∗
𝑖 𝑗

in 𝑛-th pruning block. 𝑇𝑖 𝑗 is
defined in Eq. 6. 𝑇 ∗

𝑖 𝑗
indicates that both c𝑖 and c𝑗 in 𝑇𝑖 𝑗 are inliers.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. For pairwise registration, we used the indoor dataset
3DMatch [51] and 3DLoMatch [19] and the outdoor dataset KITTI
[15]. Following [8] , for 3DMatch, we selected 2186 pairs of partially
overlapping point cloud fragments for training, with 1623 pairs
used for training from 8 scenes. The performance of the method is
further evaluated using the 3DLoMatch benchmark that contains
1781 pairs of low overlapping point clouds. 3DLoMatch is a subset
of 3DMatch, where the overlap ratio ranges from 10% to 30%, which
is highly challenging. For KITTI, we selected 1358 pairs for training
and 555 pairs for testing from 11 scenes. For multi-way registration,
we utilized the Augmented ICL-NUIM dataset [7], which includes
four indoor environmental scenes: two living room sequences and
two office sequences.

Evaluation Criteria. For pairwise point clouds, we calculate
the rotation error (RE) and translation error (TE) separately. We
report the registration recall (RR) at an error threshold to evaluate

the registration results on the dataset. Following [8], successful
registration is considered when RE ≤ 15° and TE ≤ 30 cm for the
3DMatch and 3DLoMatch dataset, and RE ≤ 5° and TE ≤ 60 cm
for the KITTI dataset. Following [1], we also reported the inlier
precision (IP, %), inlier recall (IR, %), and F1-measure (F1, %) to
evaluate the outlier removal results. For multi-way registration,
following [8], we reported the absolute trajectory error (ATE, cm).

Implementation Details. For 3DMatch/3DLoMatch and KITTI
datasets, we construct voxel grids with resolutions of 5cm and
30cm, respectively, to downsample the point clouds. We randomly
extract 1000 initial correspondences using FPFH [34] and FCGF [9]
descriptors for training. We set the batch size to 16 point cloud
pairs. Additionally, for Augmented ICL-NUIM, we also use a 5cm
voxel grid for downsampling and extract FPFH descriptors. For
each pruning the top 25% correspondences are selected as input
for the next pruning block. When learning the DGC measure, we
make parameter 𝜎𝑑 as 0.1m and 𝜎𝛼 as 15° for indoor scenes, while
for outdoor scenes, we set parameter 𝜎𝑑 as 0.6m and 𝜎𝛼 as 5°. The
number of reliable correspondences (𝑁𝑠) is set to 0.2 ∗ 𝑁 , where
𝑁 is the assumed number of correspondences (𝑁𝑚) at that time.
For each reliable correspondence, we select 40 nearest neighbors
(𝑘 = 40). When estimating rigid transformations, we allow 𝜎𝑓 to
be learned through the network, with parameter 𝜀 set to 0.1cm for
indoor scenes and 0.6cm for outdoor scenes. The hyperparameter 𝜇
is set as 3. We trained the network for 50 epochs using the ADAM
optimizer with an initial learning rate of 0.0001 and an exponential
decay factor of 0.99. Our work is implemented in PyTorch. All
experiments are conducted on an RTX3090 graphics card.

4.2 Results on Indoor Scenes
We first compare our method on 3DMatch dataset with 14 baselines:
FGR [55], SM [25], TEASER [44], GC-RANSAC [2], RANSAC [14]
(1k, 10k and 100k iterations, respectively)), GROR [43], SC2-PCR
[5], MAC [52], 3DRegNet [29], DGR [8], DHVR [24], PointDSC [1],
PG-Net[40], VBReg[20] . The first 8 methods are based on geometry
methods and the last 6 methods are deep learning methods. Note
that for deep learning methods, we test them using the provided
pre-trained models. Results are shown in Table 1.

Combined with FPFH. The putative correspondences gener-
ated using FPFH descriptor have an average inlier ratio of 7.34%.
As shown in the left column of Table 1, our method outperforms
all the other methods in terms of RR, which is the most important
criterion. In addition to achieving the best RR, our method also
attains lower RE and TE, demonstrating the high accuracy of our
alignment. In terms of efficiency, our method also demonstrates
its superiority. While RANSAC-100k can achieve an acceptable RR,
our method is approximately 58 times faster, while achieving a
higher RR and lower errors. Fig. 6 visualizes some scenes, illustrat-
ing that our method achieves smaller alignment errors in specific
scenarios. Furthermore, our method achieves the highest F1 score,
which demonstrates its effectiveness in successfully identifying
more inliers for pose estimation.

Combined with FCGF. To further validate the generalization
performance, we also adopted the learned descriptor FCGF to gen-
erate putative correspondences following [1, 5], and reported the
registration results. The average inlier ratio at initial set is 24.38%,
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Table 1: Quantitative comparison results on 3DMatch dataset.

Method FPFH (geometry descriptor) FCGF (learned descriptor)
IP (%↑) IR (%↑) F1 (%↑) RE (°↓) TE (cm↓) RR (%↑) Time (s) IP (%↑) IR (%↑) F1 (%↑) RE (°↓) TE (cm↓) RR (%↑) Time (s)

FGR[55] - - - 4.96 10.25 40.91 0.40 - - - 2.90 8.41 78.93 0.89
SM[25] 47.96 70.69 50.70 2.94 8.15 55.88 0.03 81.44 38.36 48.21 2.29 7.07 86.57 0.03

TEASER[44] 73.01 62.63 66.93 2.48 7.31 75.48 0.03 82.43 68.08 73.96 2.73 8.66 85.77 0.11
GC-RANSAC[2] 48.55 69.38 56.78 2.33 6.87 67.65 0.62 64.46 93.39 75.69 2.33 7.11 92.05 0.47
RANSAC-1k[14] 51.52 34.31 39.23 5.16 13.65 40.05 0.08 76.86 77.45 76.62 3.16 9.67 86.57 0.08
RANSAC-10k[14] 62.43 54.12 57.07 4.35 11.79 60.63 0.55 78.54 83.72 80.76 2.69 8.25 90.70 0.58
RANSAC-100k[14] 68.18 67.40 67.47 3.55 10.04 73.57 5.24 78.38 85.30 81.43 2.49 7.54 91.50 5.50

GROR [43] 72.54 76.08 74.10 2.22 6.89 80.78 0.46 80.01 86.36 82.80 2.00 6.48 92.67 0.46
SC2-PCR [5] 71.98 77.86 74.80 2.15 6.69 83.67 0.10 79.94 87.15 83.09 2.10 6.48 93.04 0.10
MAC[52] - - - 1.89 6.20 83.65 0.13 - - - 1.86 6.15 93.28 0.13

3DRegNet[29] 28.21 8.90 11.63 3.75 9.60 26.31 0.05 67.34 56.28 58.33 2.74 8.13 77.76 0.05
DGR[8] 28.80 12.42 17.35 3.78 10.80 69.13 2.49 67.47 78.94 72.76 2.40 7.48 91.30 1.36

DHVR[24] 60.19 64.90 62.11 2.78 7.84 67.10 0.46 80.20 78.15 78.98 2.25 7.08 91.93 0.46
PointDSC[1] 68.63 71.63 69.89 2.09 6.59 78.56 0.09 79.07 86.48 82.31 2.05 6.54 93.22 0.09
PG-Net[40] 72.48 77.19 74.59 2.08 6.56 82.62 0.17 79.48 86.88 82.72 2.05 6.53 93.28 0.17
VBReg[20] 72.04 74.44 73.01 2.14 6.77 82.75 0.22 79.68 87.12 83.21 2.05 6.53 93.35 0.22

Ours 75.64 82.27 78.05 2.05 6.50 86.49 0.09 88.88 95.59 90.32 2.01 6.32 94.10 0.09

Table 2: Quantitative comparison results on 3DLoMatch
dataset.

Method FCGF(learned descriptor)
IP↑ IR↑ F1↑ RE↓ TE↓ RR↑ Time(s)

SC2-PCR[5] 44.87 53.69 48.38 3.77 10.46 57.83 0.11
MAC[52] - - - 3.50 9.75 59.85 0.15
DGR[8] 42.22 38.96 39.05 4.17 10.82 43.80 1.48

DHVR[24] 41.96 38.60 39.22 4.14 12.56 54.41 3.55
PointDSC[1] 44.51 52.38 47.57 3.87 10.39 56.09 0.10
PG-Net[40] 45.65 53.38 48.12 3.82 10.42 57.12 0.19
VBReg[20] 45.81 54.08 49.09 3.81 10.69 58.00 0.52

Ours 50.30 66.65 54.54 3.67 10.17 61.85 0.09

Method Predator(learned descriptor)
IP↑ IR↑ F1↑ RE↓ TE↓ RR↑ Time(s)

SC2-PCR[5] 56.98 67.47 61.08 3.46 9.58 69.46 0.11
MAC[52] - - - 3.35 9.50 69.92 0.15
DGR[8] 51.38 54.24 51.62 3.19 10.01 59.46 1.48

DHVR[24] 54.75 54.66 53.70 4.97 12.33 65.41 3.55
PointDSC[1] 56.55 67.52 60.82 3.43 9.60 68.89 0.10
PG-Net[40] 56.67 67.86 60.92 3.52 9.73 69.02 0.19
VBReg[20] 58.63 68.58 62.53 3.37 9.52 69.95 0.33

Ours 66.40 79.77 68.88 3.30 9.42 71.12 0.07

higher than the initial matches obtained by FPFH descriptors. As
shown in the right column of Table 1. The performance of all meth-
ods has been improved. Our RR remains high at 94.10%, still surpass-
ing all other methods. In addition, our method again demonstrates
an acceptable efficiency in terms of the average registration time for
a pair of point clouds. It is noteworthy that our progressive corre-
spondence pruning network achieves a 7.11% higher F1 score than
VBReg, which convincingly demonstrates the ability to accurately
define inliers under different initial inlier ratios.

Under low-overlapping. Furthermore, we report the results on
sparsely overlapping scenes using 3DLoMatch. Following [1, 5], we
utilize FCGF and Predator [19] descriptors to generate correspon-
dences. As shown in Table 2, both FCGF and Predator descriptors
combined with our method achieve the highest RR and F1 scores.
Moreover, our method achieves the optimal efficiency. This indi-
cates the robustness of our method in low-overlap scenes (10%-30%
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Figure 6: Registration results on 3DMatch and 3DLoMatch
datasets. Suggested color zoom.

overlap) as well as its generalization on novel baseline matchers.
Fig. 6 visualizes some scenes, illustrating that our method achieves
better alignment.

4.3 Results on Outdoor Scenes
The results comparison of RANSAC [14] (100k iterations), SC2-
PCR [5], MAC [52], DGR [8], PointDSC [1], PG-Net[40], VBReg[20]
on the KITTI dataset is reported in Table 3. Our method achieves
higher RR compared to both geometry and learning-based methods
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Table 3: Quantitative comparison results on the KITTI
dataset.

Method FPFH (geometry descriptor)
IP↑ IR↑ F1↑ RE↓ TE↓ RR↑ Time(s)

RANSAC-100k[14] 78.50 70.66 74.37 1.22 25.88 89.37 13.7
SC2-PCR [5] 93.63 95.89 94.63 0.32 7.23 99.64 0.31
MAC[52] - - - 0.40 8.46 99.46 0.23
DGR[8] 78.39 54.12 62.15 1.64 33.10 77.12 2.29

PointDSC[1] 89.72 86.33 87.79 0.35 7.16 98.20 0.39
PG-Net[40] 92.32 94.65 93.61 0.32 7.02 99.32 0.75
VBReg[20] 91.43 94.10 93.26 0.32 7.17 98.92 0.51

Ours 93.12 96.65 94.33 0.30 7.14 99.48 0.28

Method FCGF (learned descriptor)
IP↑ IR↑ F1↑ RE↓ TE↓ RR↑ Time(s)

RANSAC-100k[14] 83.62 85.77 84.68 0.38 22.60 98.38 13.4
SC2-PCR [5] 82.01 91.03 85.90 0.33 20.95 98.20 0.31
MAC[52] - - - 0.34 19.34 97.84 0.23
DGR[8] 72.19 78.06 75.13 0.34 21.70 98.20 2.29

PointDSC[1] 81.99 90.69 85.74 0.33 20.90 97.66 0.40
PG-Net[40] 81.99 90.69 85.96 0.32 20.90 98.28 0.74
VBReg[20] 81.33 90.21 85.56 0.35 20.91 98.02 0.54

Ours 90.48 97.81 93.32 0.35 20.59 98.52 0.28

when combined with FCGF. It is noteworthy that SC2-PCR and
MAC, which exhibit superior performance on the FPFH descriptor,
experience a decline in performance when combined with FCGF.
This finding demonstrates the superior generalization capability of
our method across different descriptors. Our method shows more
noticeable performance in outlier removal. It is worth noting that
outdoor point clouds are inherently sparse, and the effectiveness of
different combinations of methods and descriptors tends to saturate.
Fig. 7 visualizes some scenes.

Figure 7: Registration results on KITTI dataset. Suggested
color zoom.

4.4 Multi-way Registration
To further evaluate the performance of our method in multi-way
registration, we utilize the Augmented ICL-NUIM dataset. It is
worth noting that we test the model trained on the 3DMatch dataset

Table 4: ATE(cm, Lower is better.) on Augmented ICL-NUIM

Method Living1 Living2 Office1 Office1 AVG
ElasticFusion[41] 66.61 24.33 13.04 35.02 34.75
InfiniTAM[21] 46.07 73.64 113.8 105.2 85.68
BAD-SLAM[35] fail 40.41 18.53 26.34 -

Multiway + FGR[55] 78.97 24.91 14.96 21.05 34.98
Multiway + RANSAC[14] 110.9 19.33 14.42 17.31 40.49
Multiway + SC2-PCR[5] 18.68 14.31 14.63 11.95 14.90
Multiway + DGR[8] 21.06 21.88 15.76 11.56 17.57

Multiway + PointDSC[1] 20.25 15.58 13.56 11.30 15.18
Multiway + Ours 17.93 15.10 13.20 10.06 14.07

to validate cross-dataset generalization. Following [8] , multi-way
registration first extracts FPFH descriptors for each frame, and
then employs our proposed method to obtain initial poses through
pairwise registration. After that, the poses is globally optimized
using the pose graph optimization [22] implemented in Open3D
[56]. We report the results of SC2-PCR and the baseline methods
proposed in [8], [1]. Absolute trajectory error (ATE) and average
results are reported for each scene. As shown in Table 4, our method
achieves the lowest average ATE among the four tested scenes.

Figure 8: The RR under the different outlier ratio of the
putative correspondences.

4.5 Robustness Test
To verify the robustness of our method at high outlier rate, we
report the RR at different outlier rate. Specifically, we generate
initial correspondences using FPFH descriptors in the 3DMatch
dataset. Based on the outlier rate of each pair of point clouds, the
test set is categorized into six groups: <85%, 85%-90%, 90%-94%, 94%-
96%, 96%-98%, and >98%. The number of point cloud pairs in each
group is 156, 193, 319, 262, 343 and 350, respectively. As shown in
Fig. 8, when the outlier rate is >98%, our method outperforms other
methods, especially DGR and PointSDC which are also learning-
based methods.

4.6 Analysis Experiments
In this section, we perform ablation studies and analyze experi-
ments on 3DMatch and KITTI datasets. The PointDSC using an
SCNonlocal module is utilized as our baseline, shown in the Row 1
and Row 8 of Table 5. We progressively add the method proposed in
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Table 5: Analysis experiments on 3DMatch / KITTI. Baseline:
PointDSC utilizes a SCNonlocal [1] module. DGC: Deep Geo-
metric Coherence. HP: Hypothesis Proposer. 2/3/4-th: The
number of pruning blocks.

Baseline DGC HP(knn) HP 2-th 3-th 4-th RR (%↑) Time(s)FPFH FCGF

3D
M
at
ch

1) ✓ 77.63 92.73 0.05
2) ✓ ✓ 81.63 93.41 0.05
3) ✓ ✓ ✓ 81.89 93.41 0.05
4) ✓ ✓ ✓ 83.88 93.59 0.05
5) ✓ ✓ ✓ ✓ 85.23 93.74 0.07
6) ✓ ✓ ✓ ✓ ✓ 86.49 94.10 0.09
7) ✓ ✓ ✓ ✓ ✓ ✓ 84.67 93.56 0.11

KI
TT

I

8) ✓ 98.02 97.22 0.22
9) ✓ ✓ 98.68 97.76 0.22
10) ✓ ✓ ✓ 98.70 97.78 0.22
11) ✓ ✓ ✓ 98.89 97.98 0.22
12) ✓ ✓ ✓ ✓ 99.20 98.20 0.25
13) ✓ ✓ ✓ ✓ ✓ 99.48 98.52 0.28
14) ✓ ✓ ✓ ✓ ✓ ✓ 99.20 98.10 0.31

Sec. 3 to the baseline and report the results in Table 5. The sampling
ratio for each pruning is illustrated in Table 6. And we insert our
proposed method into the existing learning and geometry methods
as shown in Table 7.

Ablation of backbone. Firstly, we incorporate DGC learning
measure into baseline. By accurately checking the compatibility of
correspondences in the measure space, ours method can accurately
identify and retain inliers, leading to correct alignment. As shown
in Row 1, 2 of Table 5, when incorporating DGC to embed deep
consistency, the RR improves by 4% compared to the baseline with
FPFH. The Row 8, 9 of Table 5 demonstrate the generalization ability
of DGC across datasets. It is easy to understand that DGC, which
combines geometric consistency in 3D domain and captures long-
range dependencies, can accurately understand different 3D scenes
and reduce ambiguity. Secondly, our Hypothesis Proposer can iden-
tify an accurate consensus set for each reliable correspondence
relationship, leading to accurate hypothesis verification results. As
shown in Row 2, 4 and Row 9, 11 of Table 5, the insertion of HP
further enhances the RR. It is worth noting that utilizing k-nearest
neighbor searching in the DGC feature space for each reliable cor-
respondence yields inferior performance compared to second order
spatial compatibility (SC2) searching, as illustrated in Row 3, 4 and
Row 10, 11 of Table 5. SC2 searching effectively employs distance
and angle constraints to precisely identify consistent consensus
sets for each reliable correspondence relationship, leading to more
robust transformation estimation results.

Progressive Pruning.We analyze the effect of the number of
prunings on pose estimation. Each sequential pruning operation
is represented by two pruning blocks. As illustrated in Fig. 2, our
method increased the initial inlier ratio from 3.4% to 98.6% with
increasing sequential pruning iterations, demonstrating that out-
liers in the initial correspondences were effectively filtered out
with continuous sequential pruning. As shown in Row 5, 6, 7 and
Row 12, 13, 14 of Table 5, RR decreases after using 4-th pruning
blocks, corresponding to three sequential pruning. This decline is
attributed to excessive pruning, which may also filter out some
inliers, hindering robust pose estimation. The imbalance between

inliers and outliers in the initial correspondences is alleviated by
progressively removing outliers, facilitating inlier identification.

Table 6: RR at different sampling ratios for each pruning.

Ratio 3DMatch KITTI
FPFH FCGF Time(s) FPFH FCGF Time(s)

100% 83.53 93.35 0.16 98.89 97.98 0.42
75% 84.76 93.41 0.13 98.90 98.20 0.37
50% 85.56 93.59 0.11 99.10 98.10 0.32
25% 86.49 94.10 0.09 99.48 98.52 0.28
10% 85.23 93.28 0.08 99.10 97.98 0.25

Pruning ratio. As shown in Table 5, we sequentially perform
four coherence pruning blocks, using specific sampling ratio to
progressively prune the initial correspondences C into a candidate
subset C𝑚 . The results of different sampling ratios are presented in
Table 6, where the performance and efficiency are deemed accept-
able when the sampling ratio is 25%. This implies that 75% of the
network-identified outliers are filtered out with each pruning.

Table 7: The RR of combining DGC learning measure and
pruning strategy with learned and geometry based methods.

Method 3DMatch KITTI
FPFH FCGF FPFH FCGF

PointDSC[1] 78.56 93.22 98.20 97.66
+ DGC 83.32 93.47 98.76 98.20
+ 3-th 82.86 93.35 98.57 98.10

+ DGC + 3-th 84.56 93.71 99.21 98.32
SC2-PCR[5] 83.67 93.04 99.64 98.20

+ DGC 85.27 93.74 99.64 98.32
+ 3-th 85.12 93.59 99.64 98.30

+ DGC + 3-th 86.76 94.15 99.66 98.54

Combined with learning and geometry methods. We eval-
uate the flexibility of our proposed method by combining it with
deep learning method PointDSC and geometry method SC2-PCR.
The results are shown in Table 7. Ours method significantly im-
proves the RR for all tested methods on the 3DMatch and KITTI
datasets. It is worth noting that SC2-PCR achieves state-of-the-art
RR performance when enhanced by ours method.

5 CONCLUSION
To mitigate the detrimental impact of numerous outliers, we pro-
pose a lightweight progressive 3D correspondence pruning net-
work for accurate and efficient point cloud registration. Our method
achieves excellent performance on public benchmarks. Furthermore,
it can be combined with both learned and geometry registration
methods to boost their performance.

Limitation. A higher initial inlier ratio is associated with su-
perior registration performance. Future work will develop more
robust feature descriptors to enhance inlier ratio. In addition, the
current framework employs a constant sampling rate. Future work
will investigate a adaptive-ratio pruning strategy.
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