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Abstract

Large language models (LLMs) have achieved impressive performance on many1

natural language processing tasks. However, their capabilities on graph-structured2

data remain relatively unexplored. In this paper, we conduct a series of experiments3

benchmarking leading LLMs on diverse graph prediction tasks spanning node,4

edge, and graph levels. We aim to assess whether LLMs can effectively process5

graph data and leverage topological structures to enhance performance, compared6

to specialized graph neural networks. Through varied prompt formatting and7

task/dataset selection, we analyze how well LLMs can interpret and utilize graph8

structures. By comparing LLMs’ performance with specialized graph models,9

we offer insights into the strengths and limitations of employing LLMs for graph10

analytics. Our findings provide insights into LLMs’ capabilities and suggest11

avenues for further exploration in applying them to graph analytics.12

1 Introduction13

In recent years, there have been unprecedented advancements in large language models (LLMs) [28]14

such as Transformers [33], BERT [7], GPT [4], and their variants. LLMs can be treated as foundation15

models that can be readily applied to diverse downstream tasks with little adaptation [4, 16, 19]. These16

models have achieved state-of-the-art results on many natural language processing tasks including17

text classification, machine translation, sentiment analysis, and text summarization [42]. Significantly,18

advancements in architectures and training methodologies have given rise to emergent capabilities,19

setting state-of-the-art models like GPT-3.5 [4], GPT-4 [26], Claude-2 [2], BARD [10], LlaMA [31],20

and LlaMA-2 [32] apart from their predecessors. For instance, in-context learning [22] and zero-shot21

capabilities [16, 35] enable these models to generalize across tasks for which they were not explicitly22

trained. This is confirmed by their excellent performance in complex activities such as mathematical23

reasoning and Question Answering (QA) systems.24

However, most of the tasks that Large Language Models (LLMs) surpassed previous benchmarks25

are Natural Language Processing (NLP) tasks involving sequential data. Graph-structured data26

presents additional complexity beyond sequences as it contains rich topological connections between27

entities that must be modeled along with node, edge, and graph attributes. Graph-structured data is28

ubiquitous across many domains, including social networks [24], knowledge graphs [27], molecular29

structures [37], and transportation networks [3]. While LLMs have shown powerful reasoning30

and generalization capabilities in sequential data, it remains unclear if they can handle structural31

information beyond context when applied to graph-structured data. This raises a compelling research32

question: Can the strengths of LLMs be extended to graph-structured data, enabling them to exhibit33

significant predictive ability? Further, can they compete with state-of-the-art models specialized for34

graph data, such as Graph Neural Networks (GNNs)?35

Submitted to the Workshop on New Frontiers in Graph Learning at NeurIPS 2023. Do not distribute.



To comprehensively study the capabilities of LLMs on graph-structured data, we conduct a series of36

empirical experiments with leading LLMs on diverse graph-based tasks that span node-, edge-, and37

graph-level predictions. By comparing their performance to specialized graph models like GNNs,38

we aim to assess the potential strengths and limitations of LLMs in this domain. Critically, by39

altering the input prompt formats, we aim to evaluate how effectively LLMs can extract and leverage40

the underlying structural information from the graph to enhance their performance in subsequent41

tasks. Additionally, we explore the importance of the structural data across different task dimensions42

spanning node, edge, and graph levels as well as diverse dataset domains such as citation networks,43

social networks, and chemical networks.44

Broadly, this paper focuses on studying the central question of investigating the capabilities of LLMs45

on graph-structured data from three perspectives:46

• Can LLMs effectively process graph analytics tasks even without explicit graph structure?47

Given that LLMs have already shown the capability to leverage contextual information for human-48

like reasoning in many NLP tasks, it becomes intriguing to assess whether they can attain substantial49

predictive performance on graph data tasks, even in the absence of structural information.50

• How well can LLMs interpret graph structures to enhance downstream task performance? It51

is essential to investigate to what extent LLMs can perceive and interpret important graph structures.52

Furthermore, it is imperative to understand whether such recognition can influence and enhance53

performance in subsequent tasks.54

• How do task dimensions and dataset domains affect LLMs’ ability to handle structured data?55

LLMs’ ability in identifying pivotal structural information for predictions can be influenced by56

specific tasks and data domains. For example, node-level tasks may heavily rely on entity attribute57

interpretation, while graph-level tasks may demand comprehensive understanding of intricate58

inter-node interations. Also, the distinct topologies properties to various dataset domains, whether59

derived from intricate social networks or sophisticated molecular structures, further influence the60

proficiency with which LLMs decipher and manage structured data.61

The subsequent sections of this paper are structured as follows: We initiate with an extensive literature62

review, highlighting the recent advancements of LLMs within graph domains. Subsequent to this, we63

present our comprehensive findings on benchmarking LLMs on graph data, aiming to address the64

aforementioned research questions. This is accompanied by a detailed discussion, delving into the65

depth of our discoveries across varied experimental setups. We conclude by summarizing the key66

points and proposing ideas for future explorations.67

2 Related Works68

Large language models for graph-structured data. In recent literature, a few preliminary stud-69

ies [40, 5, 36, 11] have made attempts to uncover the potential of LLMs in handling graph-structured70

data. Unfortunately, a comprehensive examination of LLMs’ capacity to extract and harness crucial71

topological structures across diverse prompt settings, task levels, and datasets remains underexplored.72

Both Chen et al.[5] and Guo et al.[11] proposed to apply LLMs directly on graph data. Their research73

primarily focus on the node classification task, constrained to a selected few datasets within the74

citation network domain, and thereby fails to offer a thorough exploration of LLMs’ ability over75

diverse task levels and datasets. In addition, Ye et al.[40] fine-tuned LLMs on a designated dataset to76

outperform GNN, underscoring a distinct research objective compared to our study which emphasizes77

the intrinsic proficiency of LLMs in understanding and exploiting graph structures. Meanwhile, Wei78

et al.[36] treated LLMs as autonomous agents within graph data, which is less relevant to the core79

focus of our paper.80

Graph neural networks. In recent years, graph neural networks (GNNs) [14, 6, 25, 9, 12, 38, 23,81

41, 18] have emerged as a powerful deep learning approach for graph analysis and learning. GNNs82

operate by propagating information along edges of the graph and aggregating neighborhood repre-83

sentations for each node. The expressive power of GNNs to learn from graph structure makes them84

well-suited for analyzing complex relational data [38, 43, 20]. Unlike standard deep neural networks85

which operate on regular grids, GNNs can leverage the topological structure of graphs and have86

achieved state-of-the-art performance on tasks such as node classification [14], link prediction [17],87

and graph classification [8].88
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3 Experiments89

Datasets. We conducted the experiments on 5 commonly used graph benchmark datasets for90

node-level, edge-level and graph-level tasks: CORA [30], PUBMED [30], OGBN-ARXIV [13],91

WORDNET18 [21] and REDDIT [12]. Brief descriptions of the datasets are shown in Table 1.92

We selected these five datasets for our preliminary experiments due to their rich contextual information93

present in the attributes of nodes, edges, and graphs. Specifically, CORA, PUBMED and OGBN-94

ARXIV are citation network, where each node represents a research paper while an edge between two95

nodes indicates that there is a citation relationship between them. Edge in WORDNET18 links two96

synsets that are regarded as nodes. REDDIT came from Reddit posts, in which each node represents a97

post and two nodes are connected if the same user comments on two posts. The specifics regarding98

their textual features are as follows:99

• CORA: Each node represents a paper in the domain of Artificial Intelligence, containing100

the information about its title and abstract. Each paper belongs to one of the following101

7 categories: [‘Case_Based’, ‘Theory’, ‘Genetic_Algorithms’, ‘Probabilistic_Methods’,102

‘Neural_Networks’, ‘Rule_Learning’, ‘Reinforcement_Learning’]. An edge from one node103

to another indicates the first paper cited the second one.104

• PUBMED: Each node represents a scientific publication from PubMed database pertaining105

to diabetes. The node textual information contains keywords from its abstract and text body.106

Each paper belongs to one of the following 3 categories: [‘Diabetes Mellitus, Experimental’,107

‘Diabetes Mellitus Type 1’, ‘Diabetes Mellitus Type 2’]. An edge from one node to another108

indicates the first paper cited the second one.109

• OGBN-ARXIV: Each node represents a research paper, containing the information about110

its title and abstract. Each paper belongs to one of 40 categories on arxiv.cs such as ‘AI’111

(Artificial Intelligence). An edge leading from one node to another signifies that the first112

paper cites the second one.113

• WORDNET18: Each node represents a synset, containing a description. An edge between114

two nodes indicate their relation such as ‘furniture’, ‘includes’, or ‘bed’. Each edge belongs115

to one of 18 relationships.116

• REDDIT: Each node corresponds to a post made by a user, which contains descriptions or117

discussions about a particular topic. Each graph symbolizes a subreddit (or community),118

with affiliations to one out of 29,651 distinct communities, for instance, ‘math’.119

Choices of LLMs. We opted to utilize OpenAI’s state-of-the-art models, GPT-3.5 (GPT) and120

GPT-4, via their API system, based on a balance between performance and cost considerations. We121

adopted GPT with the latest versions (gpt-3.5-turbo-16k and gpt-4) in experiments.122

Implementation Details. For node classification task, we follow the same train-test split of CORA,123

PUBMED and OGBN-ARXIV as established in semi-supervised GNN methods [14, 38]. For link124

prediction on CORA, PUBMED and WORDNET18, a random 15% of the links from the graph and125

the same number of negative-edge node pairs are packed into the test sets. For graph classification,126

Dataset #Node #Edge #Task Metric
CORA 2,708 5,278 7-class node classifi. &Link Prediction Accuracy
PUBMED 19,717 44,324 3-class node classifi. &Link Prediction Accuracy
OGBN-ARXIV 169,343 1,166,243 40-class node classifi. Accuracy

Dataset #Entity #Relation #Task Metric
WORDNET18 40,943 18 18-class link classifi. Accuracy

Dataset #Node #Subgraph #Task Metric
REDDIT 3,848,330 29,651 70-class subgraph classifi. Accuracy

Table 1: Statistics of the datasets. For REDDIT, it actually contains 29,651 subreddits (classes). Here
we only randomly sampled 70 communities for graph classification task in each run.

3



in each run, we randomly selected 70 communities. Experiments conducted on WORDNET18 and127

the retrieval test for CORA employed few-shot prompts. Conversely, all other experiments leveraged128

zero-shot prompts. We executed each experiment thrice, subsequently averaging the results."129

Comparison GNN Methods. On node-level tasks, we choose the semi-supervised results from130

Graph Neural Network (GNN) [29], Graph Convolutional Network (GCN) [15] and Graph Attention131

Network (GAT) [34] to compare with performance from LLMs. On edge-level tasks, we consider132

Graph Auto-Encoder (GAE) [1], Graph InfoClust (GIC) [39]. It is worth noting this is not an abso-133

lutely fair comparison. Since LLMs operate under zero-shot or few-shot settings, where GNNs require134

a training set for parameter optimization. Additionally, potential data leakage during the LLMs’135

training process remains a concern. However, these studies aim to offer a foundational understanding136

of LLMs’ proficiency in understanding graph data structures and forecasting downstream tasks.137

Model Node-level
CORA PUBMED ARXIV

GCN-64∗ 0.814 0.790 0.731
GAT 0.832 0.790 0.742
GNN 0.829 0.738 0.721
GPT-3.5 0.627 0.673 0.516
GPT-4 0.432 0.821 0.642
GPT-3.5∗ 0.647 0.712 0.509
GPT-4∗ 0.531 0.833 0.673
GPT-3.5⊕ 0.656 0.704 0.445
GPT-4⊕ - 0.814 -
GPT-3.5• 0.054 - -
GPT-4• 0.047 - -

Table 2: Average accuracy on node classifica-
tion tasks. [No structure information] GPT-
3.5 and GPT-3.5∗ mean zero-shot and few-shot
prompt strategy. [With structure information]
GPT-3.5⊕ and GPT-3.5• mean prompts contain
neighbors’ information and retrieval requires, re-
spectively.

Model Edge-level
CORA PUBMED WORDNET

GAE 0.793 0.923 -
GIC 0.812 0.775 -
GNN 0.739 0.528 -
GPT-3.5 0.512 0.116 0.134
GPT-4 0.578 0.132 0.169
GPT-3.5◦ 0.646 0.114 -
GPT-4◦ 0.967 0.143 -

Table 3: Average accuracy on link prediction
tasks. GPT-3.5◦ means adding structural infor-
mation into prompt like Table 6. There are only
triples for entries in WORDNET18, which makes
there is no connected graph structure for it.

138

Model Number of labels
1 5 10 15 20 30 40 50 60 70

GPT-3.5 0.773 0.662 0.618 0.594 0.628 0.604 0.638 0.536 0.618 0.507
GPT-4 0.957 0.886 0.895 0.843 0.795 - - - - -

Table 4: Average performance of GPT-3.5 and GPT-4 on REDDIT when possible labels increase from
1 to 70. Results on GPT-4 with more labels are not available due to input limit of prompt length.

3.1 Node-level task139

Driven by the goal of investigating LLMs’ capabilities in discerning patterns within textual graphs and140

leveraging this for downstream tasks, we crafted three distinct prompts for our node-level prediction141

task experiments: (1) absence of graph topology descriptions; (2) straightforward presentation of142

all neighborhood data to the LLM; and (3) a retrieval-based prompt guiding the LLM to extract143

task-centric structural details. Examples of these prompts can be found in Table 6.144

LLMs’ zero-shot or few-shot ability on node classificaiton tasks is still usually weaker than the145

semi-supervised GNN performance. This may arguably suggests that general LLMs still can not146

surpass the specialized graph models on node classification task. As indicated in Table 2, GPT-4147

outperforms the GNN models in zero-shot and few-shot settings on PUBMED, but this superiority isn’t148

observed on CORA and OGBN-ARXIV. We hypothesize three potential reasons for this discrepancy:149

1. Fewer categories; 2. Less semantic overlap between categories; 3. Questionable groundtruth150

categories. GPT’s ‘wrong’ predictions about citation networks are mostly reasonable. Particularly,151
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Node-level Task Structure? Prompt to GPT

Zero-shot No The title of one paper is <Title> and its abstract is <Abstract>.
(CORA & PUBMED Here are possible categories: <Categories>. Which category
& OGBN-ARXIV) does this paper belong to? You can only output one category.

Yes The title of one paper is <Title> and its abstract is <Abstract>.
This paper cited following papers: <TitleList> and abstracts of
these papers are <AbstractList>. Here are possible categories:
<Categories>. Which category does this paper belong to? You
can only output one category.

Yes The title of one paper is <Title> and its abstract is <Abstract>.
This paper is cited by following papers: <TitleList1>. Each of
these papers belongs to one categories in: <Categories>. You
need to 1.Analyse the papers’ topic based on the give title and
abstract; 2.Analyse the pattern of citation information based on
on their titles, and retrieve the citation information you think is
important to help you determine the category of the first given
paper. Now you need to combine the information from 1 and 2
to predict the category of the first given paper. You should only
output one category.

Few-shot Yes Here is a list of labeled papers: The title and abstract of the first
paper are <Title1> and <Abstract1> respectively, and this pape
r belongs to <Category1>· · · Here is a new paper whose title is
<Title> and its abstract is <Abstract>. Here are possible catego-
ries: <Categories>. Which category does this paper belong to?
You can only output one category.

Table 5: Examples of different prompts used in node classification experiments. For few-shot tasks,
we randomly sampled two papers for each category due to the limit of input length.

papers in OGBN-ARXIV with lable of Computation and Language always are classified into other152

categories like Artificial Intelligence and Machine Learning. These prediction error papers always153

mentioned many machine learning concepts in their abstracts. We also argued weather datasets154

are ‘out of fashion’ compared with the information in the GPT’s corpus. We prompted GPT to use155

pre-2000 categorization criteria on CORA, but this does not lead to improvements. Intriguingly,156

GPT-4 did not consistently surpass GPT-3.5 in terms of predictive accuracy, hinting that the extent of157

pre-trained knowledge could significantly influence predictions in zero-shot scenarios.158

Incorporating structural information can slightly enhance the performance of GPT on node-159

level tasks to a certain degree. As evidenced in Table 2, the inclusion of neighborhood information160

enhances node classification performance in certain instances. However, this improvement lacks161

consistency across different LLM selections and datasets. Such observations could suggest that162

structural information might not be a pivotal factor in node-classification tasks. Additionally, we163

assessed the capability of GPT to retrieve information by incorporating retrieval requirements into164

the prompts for CORA. Regrettably, this led to both GPT-3.5 and GPT-4 struggling significantly,165

rendering them largely unable to provide accurate predictions.166

3.2 Edge-level task167

Contrary to node-level tasks, the structural information of a graph seems to be more crucial for168

edge-level tasks. When only node data, excluding neighborhood information, is presented to GPT, the169

link prediction accuracy on CORA stands at 51.2% for GPT-3.5 and 57.8% for GPT-4. Remarkably,170

these figures signicantly increased to 64.3% and 96.7% respectively when we incorporate the nodes’171

neighbors information. Notably, the zero-shot result of GPT-4 even surpass the performances of all172

trained GNN models. It is worth noting that some wrongly predicted links can be attributed to the173

absence of neighbor information for these nodes in the dataset. Table 6 illustrates the difference174

between prompts used on link prediction tasks. It is also interesting that when we further increase the175

information of neighboring nodes (e.g., the abstract of an article), the prediction accuracy becomes176

worse than only with information of titles. For the link prediction task on WORDNET18, we randomly177

selected 5 entries for each relationship and presented this information to GPT. Unfortunately, both178

GPT-3.5 and GPT-4 struggled to achieve a high predictive accuracy based on the provided data. A179
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Edge-level Task Structure? Prompt to GPT

Zero-shot No There are two papers. Title of the first paper is <Title1> and its
(CORA & PUBMED) abstract is <Abstract1>. Title of the second paper is <Title2>,

and its abstract is <Abstract2>. You need to predict whether the
second paper or not. Answer ’YES’ or ’NO’.

Yes There are two papers. Title of the first paper is <Title1> and its
abstract is <Abstract1>. Title of the second paper is <Title2>,
and its abstract is <Abstract2>. The first paper cited following
papers: <Titles>. You need to predict whether the second paper
or not. Answer ’YES’ or ’NO’.

Few-shot No We define two descriptions should have a relationship, such as
(WORDNET18) furniture <includes> bed. There are some samples: <Entries>.

Here are possible relations: <Relationships>. The first entry is
<Entry1> and the second entry is <Entry2>. You must output
only one relationship between these two entries.

Table 6: Examples of different prompts used in link prediction experiments. Structural information
plays an important role in link prediction task.

plausible explanation for this could be GPT’s heavy reliance on its pre-trained knowledge, especially180

when not fine-tuned for specific tasks.181

3.3 Graph-level task182

For graph-level tasks, we only conducted experiments on REDDIT due to its text richness and semantic183

ambiguity. Only GPT-3.5 was tested since the information of one community is large even we have184

summarized the information from each user. We selected top-k post summaries of the most replied185

users as representative information of a community. As shown in Table 4, when GPT needs to make186

predictions from full 70 communities, the accuracy was 50.7%. The accuracy decreased from 77.3%187

to 50.7% when possible communities in the <SubReddits> list increased from 1 to 70.188

Graph-level Task Structure? Prompt to GPT

Zero-shot Yes There are texts from representative users of one Reddit community:
(REDDIT) <Posts>. There are following communities: <SubReddits>. Which

community does these texts belong to? You should only output one
community from given communities.

Table 7: Example prompt used in graph classification experiments. Structural information is given by
a list of top-k important nodes a graph.

4 Conclusion and Future Works189

This research presented a systematic empirical evaluation of leading LLMs on diverse graph learning190

tasks spanning node, edge, and graph levels. Through careful variation of prompt design and dataset191

selection, we assessed the capabilities of models such as GPT-3.5 and GPT-4 in interpreting and192

leveraging graph structural information to enhance predictive performance. Our results demonstrate193

that while LLMs exhibit reasonable node classification capabilities even without explicit graph data,194

likely by relying on contextual clues, their zero-shot performance continues to lag behind state-of-195

the-art GNNs specialized for this domain. However, incorporating graph topology information can196

significantly boost performance on edge-level link prediction tasks, with GPT-4 even surpassing197

certain GNNs in select cases. On more complex graph classification tasks, limitations emerge198

in handling increased output complexity. In summary, this research provides valuable evidence199

that LLMs have promising capabilities on graph analytics, while also revealing clear areas for200

improvement compared to specialized graph models.201

Our future work should explore more rigorous benchmarking LLMs on graph learning tasks with202

graph specialized models, novel prompt designs to focus on topological structures, evaluating on203

additional graph tasks, and even fine-tuning open-sourced LLMs on graphs. By exploring these204

avenues, the full potential of large language models for advancing graph representation learning and205

analytics can be more promising.206
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