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Abstract—The power system is gradually orienting to large-
scale distributed computing, and the trend of area interconnec-
tion is becoming more and more obvious. It is still a classic prob-
lem to calculate power flow by using distributed optimization.
Compared with traditional centralized power flow calculation,
it has obvious advantages with fast computing speed and less
information between areas. In this paper, we define the boundary
voltage coupling equation with auxiliary variables, to solve the
non-convex subproblem in the iterative process of ADMM, and
match the optimal area partitioning for ADMM by proposing
the optimal spectral clustering (OSC) method. Specifically, the
OSC scheme takes the Jacobian matrix, admittance matrix, and
voltage pivot vector as the the joint adjacency matrix to measure
the similarity of spectral clustering algorithm into consideration,
which is obviously better than the traditional spectral clustering
method considering admittance matrix only. Combining with
ADMM algorithm, IEEE-118 bus system is used as a test example
to perform the distributed calculation after area partitioning, the
experimental results verify the good performance of proposed
spectral clustering method in distributed power grid.

Index Terms—Optimal power flow, spectral clustering, area
partitioning, distributed power grid.

I. INTRODUCTION

In recent years, distributed optimization has received a
lot of attention for solving problems that arise in power
systems operations, as it provides a promising alternative
for solving complex optimization problems associated with
grids that have a large number of distributed generation units.
This technique allows dividing an optimization problem into
subproblems associated with different regions of the grid,
which are solved separately and simultaneously with periodic
information exchanges. One key application considered for
distributed optimization is the Optimal Power Flow (OPF)
problem, which is at the heart of power systems operations
and planning.

Several practical issues arise when implementing distributed
methods on large-scale networks. One critical issue is the sys-
tem partitioning, which has been shown to have considerable
impact on the performance of the distributed algorithm [1].
Spectral Clustering [2] is a widely used clustering algorithm,
originally inspired by Graph Theory. Among them, the idea
of undirected weight graph and cut can be well applied to the
distribution network diagram of power system and the area
partitioning idea for the OPF problem of distributed power
grid.

In the traditional clustering algorithm, K-Means algorithm
has been widely used, but it usually solves the convex problem,

the data is compact, and the initial cluster center is more
sensitive, as shown in Fig. 1(a). Hence, this method does not
address the important question of how to partition a general
large-scale network in a way that is suitable for distributed
optimization. In fact, due to the non-convexity introduced
by the AC power flow equations, OPF is known to be a
difficult problem to solve even in a centralized manner for
large systems [3]. Further difficulties arise in the search for
a distributed solution since optimality or even convergence
cannot be guaranteed for most distributed methods on non-
convex problems.

For non-convex problems, the data has continuity, and
the use of spectral clustering has obvious advantages. When
processing data with continuity in Fig. 1(b), spectral clustering
mainly connected the data (that is, points in the space) through
the idea of the graph, and the edges connected by each node
had different weights, and the edges of its adjacent nodes had
higher weights. The cutting idea is used to achieve the optimal
weight of the subgraph after cutting. That is, the data weight
of the boundary coupling is low, and the internal weight of
the subgraph is high, completing the clustering.
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(b) Spectral clustering algorithm.

Fig. 1. Ablation study on the accuracy of different skip-edge rates.

In this paper, we proposed an area partitioning method
based on optimal spectral clustering that significantly improves
the convergence speed of distributed optimization. This parti-
tioning method takes the Jacobian matrix, admittance matrix,
and voltage pivot vector as the the joint adjacency matrix to
measure the similarity of spectral clustering algorithm into
consideration, which is obviously better than the traditional
spectral clustering method considering admittance matrix only.
Hence, our OSC method can not only capture the coupling
among the areas, but also take the optimality condition of



OPF problem into consideration. Finally, the power system
partitioning problem can be mapped to a graph partitioning
problem. Combining with ADMM algorithm, IEEE-118 bus
system is used as a test example to perform the distributed
calculation after area partitioning, the experimental results
verify the good performance of proposed spectral clustering
method in distributed power grid.

II. SPECTRAL CLUSTERING FOR AREA PARTITIONING

Spectral clustering method is proposed based on the graph
models, which usually considers undirected graphs with
weights. Define a graph G = (V, E), where V = [v1, · · ·, vN ]
denotes the node set in the graph G, and E denotes the edge set.
For each edge, the weight matrix is defined as W = [wnn′ ],
1 ≤ n, n′ ≤ N . W is called the similarity matrix (also called
the adjacency matrix), and the different weight wnn′ represents
the connection relationship between nodes, which can be
measured by defining the distance between nodes. Specially,
when considering the undirected weight graph, wnn′ = wn′n,
as shown in Fig. 2.

Fig. 2. The undirected weight graph.

Due to the different similarity between node pair, the weight
set between each two adjacent nodes is greater than 0, and the
weight between other non-adjacent nodes is equal to 0. The
weight of each edge can be represented by a kernel function,
commonly used can be Gaussian kernel RBF, as follows:

wnn′ =

{
0, (n, n′) /∈ E ,
K(xn, xn′) = exp

(
−∥xn−xn′∥2

2

2σ2

)
, (n, n′) ∈ E .

In order to utilize the idea of spectral clustering method
to do area partitioning for optimal power flow, we need to
partition the graph. Figure 2 defines the weight undirected
graph G = (V, E), we aim to divide it into K subgraphs.
In such K subgraph, the node set in each subgraph are
represented by Ck ∈ [C1, C2, . . . , CK ], that is V = ∪K

k=1Ck,
Ck ∩ Ck′ = ∅. Define the objective as follows:

cut(V) = cut (C1, C2, . . . CK) =

K∑
k=1

W
(
Ck, C̄k

)
(1)

where C̄k denotes the other node sets except Ck.

Obviously, when the objective function minimizes the cut
function V , the minimized weights can be achieved. Due to
the variable number of subgraphs, the minimization cut needs
to be normalized, defined N-cut as follows

N-Cut (C1, C2, . . . , Ck) =

K∑
k=1

W
(
Ck, C̄k

)
∆k

(2)

where ∆k denotes the ‘degree’ of the k-th subgraph. For the
node vn in graph G = (V, E), the degree defines the weight
sum of all the edges adjacent to it, that is dn =

∑N
n=1 wnn′ .

Define the diagonal degree matrix for each node in graph G,
as follows:

D =


d1 · · · · · ·
· · · d2 · · ·
...

...
. . .

. . . . . . dN

 (3)

Further, the optimization objective (1) becomes

N-Cut (C1, C2, . . . CK) =

K∑
k=1

W
(
Ck, C̄k

)∑
n∈Ck

dn
. (4)

Note that solving (4) needs to define the Laplacian matrix
L. For the graph G, the Laplacian matrix is L = D − W .
Define an indicator hn as

hn =

{
0, vn /∈ Ck

1√
∆k

, vn ∈ Ck
(5)

which expresses the ownership relationship between the node
and the area. Specifically, when the node does not belong to
the current region, and hn is equal to zero. Collect all of hn

into the matrix form of the subgraph k as H, and normalize
it H = D−1/2U . Thus, the eigenmatrix U is obtained, and the
optimization objective of spectral clustering is as follows:

argmin
U

tr
(
U⊤D−1/2LD−1/2U

)
subject to U⊤U = I

(6)

where D−1/2LD−1/2 is the normalized Laplacian matrix L,
and ‘tr’ is the trace of the matrix. Cluster the eigenmatrix U
by the K-means algorithm to get the area cluster partitioning.

III. DISTRIBUTED MULTI-AREA OPTIMAL POWER FLOW

The optimal power flow (OPF) problem is a quadratic non-
convex problem, in which the goal is to minimize the cost
of electricity generation, the constraints are the power flow
equation, the power flow inequality, the power limits and the
voltage amplitude limits. Let N = [1, . . . , N ] be the node
set of the large-scale power grid system, (Pn, Qn, Vn) be
the triple of the active power, the reactive power and the
voltage amplitude, and (PD

n , QD
n ) be the tuple of the active and

reactive power load. The system admittance matrix is Ynn′ ,



and the set of bus nodes n is Ωn. The standard problem for
optimal power flow is as follows:

minimize
P,Q,V

f =

N∑
n=1

(
αnP

2
n + γnPn + cn

)
(7)

subject to Pn + jQn − PD
n − jQD

n = Vn

∑
n′∈Ωn

Y ∗
nn′V ∗

n′

Pmin
n ≤ Pn ≤ Pmax

n

Qmin
n ≤ Qn ≤ Qmax

n

V min
n ≤ |Vn| ≤ V max

n

To implement the OPF problem (7) in a distributed manner,
we need to partition the power system into smaller subareas
and formulate a local OPF problem in each area. Then, the
distributed OPF problem after decomposition is solved by
an online iterative algorithm. Recall that K denotes the total
number of areas, and for k = 1, . . . ,K, Rk denotes the set of
nodes assigned to the subarea k. The set Vk is introduced to
denote the joint node set including both the nodes in Rk and
the nodes in adjacent regions directly connected to nodes in
Rk, that is, Rk ⊂ Vk.

The distributed OPF problem is usually decoupled by repli-
cating the voltage of the boundary bus in the adjacent areas.
Constraints are then added so that the replicated voltages
remain equal to each other, as shown in Fig. 3, where the
connection line nn′ is the coupling branch connecting node n
and node n′. At the same time, the voltages on node n and
node n′ are equal. In order to establish the equality constraints,
copy the voltages on the nodes and assign copies to the area A,
represented by Vn,A and Vn′,A. Similarly, the voltage copies
assigned by the region B are represented by Vn,B and Vn′,B . In
order to ensure the equivalence with the original OPF problem,
we add the constraints Vn,A = Vn,B and Vn′,A = Vn′,B to the
original optimization model.

Fig. 3. The boundary coupling relationship between area A and area B and
the replication constraint of voltage variables.

After replicating the voltage of the boundary bus in adjacent
areas, we can cut the connection lines between adjacent areas,
separating the adjacent area into separate subsystems, while

maintaining the original structure of the power grid by adding
extra constraints. The constraints added are equivalent to

Vn,A − Vn′,A = Vn,B − Vn′,B

Vn,A + Vn′,A = Vn,B + Vn′,B .
(8)

For the branch nn′ satisfying n ∈ RA, n′ ∈ VA\RA, we
regard nn′ as the coupling branch of area A. Further, introduce
two auxiliary variable znn′,A and z′nn′,A in area A as the
auxiliary constraints

znn′,A = η (Vn,A − Vn′,A)

z′nn′,A = η′ (Vn,A + Vn′,A)
(9)

where η and η′ are scale factors relating closely to the current
density through the coupling branch nn′. It is important to
point out that the voltage difference between the branches is
the explicit constraint for line coupling, hence η should set
greater than η′ to guarantee higher weight to Vn,A − Vn′,A.
Similarly, we also introduce two auxiliary variable znn′,B and
z′nn′,B into the area B. Thus, the feasible domain of all z
associated with the coupled branch in the area B are defined
as

znn′,B = η (Vn,B − Vn′,B)

z′nn′,B = η′ (Vn,B + Vn′,B)
(10)

Let xk = {(Vn, Pn, Qn) | n ∈ Vk} and zk = {(zn,n′ , z′n,n′)
| n∈Rk, n

′ ∈Vk\Rk} denote all the primitive and auxiliary
variables associated with bus nodes in the k-th area, respec-
tively. Then the OPF problem (7) can be represented by the
variables assigned to different areas, as follows:

minimize
x,z

∑K
k=1 fk (xk)

subject to Akxk = zk, ∀k
xk ∈ Xk, ∀k
zk ∈ Zk, ∀k

(11)

where the set Z = {(z−, z+) |z−n,n′ = −z−n,n′ , z
+
n,n′ = z+n,n′ ,

∀(n, n′) ∈ E} is determined by the equality constraint (8)
expressing via (10) and (9), and E denotes the branch set. In
(11), fk (xk) is the power generation costs of the k-th area,
namely the objective function. By defining xk and zk, the
equation constraint of the problem and the feasible domain of
variable xk are obtained, that is, the constraints of the variable
xk for ∀n ∈ Rk and the constraints of the variable zk for
∀n ∈ Vk. It is worth noting that for the OPF model (11), if
zk is fixed which mean that the partition plan and further the
information about boundary coupling branches are determined,
then (11) can be decomposed into several sub-problems, each
of which contains only the local variable xk. Obviously, this
problem can be solved using the distributed ADMM-based
algorithms.

IV. AREA PARTITIONING BASED ON OPF

The OPF problem of the large-scale power grids is very
complicated and difficult to be solved directly, while the power
system optimization problem is usually regional. Therefore,
dividing the whole power grids into several sub-areas and



decomposing the OPF problem into several sub-problems can
reduce the difficulty of solving the centralized OPF problem.

In this section, we simply partition the power grids based
on a spectral clustering method proposed under optimal con-
ditions to provide a distributed ADMM solution for power
systems. Spectral clustering is a graph partitioning method
that takes into account the similarity between any two nodes
in the target graph, while in the OPF problem corresponds
to the computational coupling between any two bus nodes.
Specifically, the coupling relationship is reflected in the Jaco-
bian matrix H and the admittance matrix Y and the voltage
pivot vector Π. Finally, clustering is implemented by K-means
algorithm to avoid the inaccuracy of clustering in non-convex
areas. Let K denote the number of sub-areas, and then find the
optimal cluster that divides the system into these K sub-areas.
The entire procedure is as follows:

(1). Construct the Laplace matrix L including the Jaco-
bian matrix H and the admittance matrix Y . For the
admittance matrix Y , the non-diagonal incidence is
represented by the negative modulus of the correspond-
ing complex admittance, and the diagonal incidence
is represented by the sum of the complex admittance
coefficients, i.e.,

Ynn′ =


∑

n′∈Ωn
|ynn′ |, n = n′

−|ynn′ |, n ̸= n′, (n, n′) ∈ E

0, n ̸= n′, (n, n′) /∈ E

(2). Find the K largest eigenvalues of L, stack the corre-
sponding eigenvectors u1, · · · , uK by columns and form
the matrix U ∈ RN×K .

(3). Denote the n-th row vector of U by vn ∈ RK , n =
1, · · ·, N , and cluster the point {vn}Nn=1 into the groups
C1, · · · , CK by K-means algorithm.

(4). If the n-th row vector vn of U has been assigned to the
cluster Ck, then the corresponding node n will also be
assigned to cluster Ck.

Finally, we discusses two issues when implementing the
area partitioning method. First, H need be evaluated at the
optimal position for a certain operating point, but if there
is no drastic change in the power of the transmission line,
using H evaluated by one of operating points are also suitable
for solving OPF problems under the case of many operating
points. For the robustness change to the system parameters
such as generator cost coefficient after partitioning, if the
change of parameters in the area is small, the partitioning
plan is still applicable. On the other hand, if a significant
or permanent change in the point of operation or system
configuration occurs, the partitioning plan needs to readjust.
Secondly, the bus in the same area obtained by the area
partitioning method may not be connected physically to each
other. Of course, only a small part of the actual distribution
network (about 2%) is not connected. Moreover, even if the
area is not completely connected, the subproblem can still be
solved according to the definition.

V. EXPERIMENTS

This section discusses the performance of the proposed area
partitioning method for the OPF problem based on the classical
ADMM algorithm [4]–[6], which is tested on the standard
IEEE-118 bus system of MATLAB. The test is carried out on
the basis of MATPOWER, using the Cplex package developed
by IBM to solve the non-convex problem of local variables
for the local OPF solution in the ADMM iteration. The initial
Lagrange multiplier is set to 0, the initial penalty factor ρ =
10−2, and other initial parameters η, η′ and r are set to 0.5,
2, and 0.9, respectively. The stop condition for the iteration
is that the maximum original residual is less than 10−4, i.e.,
ADMM relatively converges.

A. Area Partitioning Performance

The conventional partitioning scheme can be done according
to the electrical characteristics of the grid system, considering
the relationship of line impedance between the generator
and the load in the power grid. Previous research results
[7], [8] show that the spectral clustering method has greater
advantages than conventional partitioning schemes, so that
won’t be covered again here.

As one of the main differences, the classical spectral cluster
based area partitioning scheme considers only the admittance
matrix Yn,n′ as the benchmark adjacency matrix, denoted by
SC(K). The optimal spectral clustering scheme proposed in
this paper utilizes the joint adjacency matrix composed of the
Jacobian Hn,n′ , the admittance matrix Yn,n′ and the voltage
pivot vector Π, denoted by OSC(K). The total number of areas
is denoted by K, and we take K = 3 in this experiment, and
the partitioning results of two schemes are shown in Table I.

Table I
COUPLING PARAMETER AND AREA NODES FOR IEEE-118 BUS SYSTEM

Method
Coupling

Area Nodes
Parameter

OSC(3) 0.7948 1-32,113-115,117;33-73,116;74-112,118
1-7,11-15,33-37,39-64,117;

SC(3) 0.9107 8-10,16-32,38,65-82,96-99,113-116,118;
83-95,100-112;

From Table I, the coupling parameter of OSC(3) is obvi-
ously smaller than that of SC(3), that is, OSC(3) has achieved
good results in terms of coupling parameters. Further one can
conclude that the smaller the coupling parameter, the better
the adaptability to distributed computing. In order to show the
partitioning effect more intuitively, the experiment converts the
data from the node diagram of the system into coordinate data,
and calculates the cluster center according to the classification
results, as shown in Fig. 4.

Table II analyzes the effect of two area partitioning methods
on the number of iterations, running time, and the accuracy
error between calculation result and optimal value. Obviously,
the iteration number and running time of OSC will be smaller
than that of SC, and the accuracy error obtained in limited time
is higher. Although the conventional SC scheme measures the
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Fig. 4. Area node partitioning for IEEE-118 bus system when K = 3.

Table II
COMPUTING PERFORMANCE RESULT FOR IEEE-118 BUS SYSTEM

Method Iteration Time (s) Accuracy (%)
OSC(3) 423 251.6 0.0503
SC(3) 675 326.8 1.130

line impedance among buses and the electrical distance be-
tween the motors through the admittance matrix, but the high
imbalances phenomenon can still occur due to the complexity
of the power grid. For example, there are several areas in
SC(3) that contain loaded generators in the vicinity, which
tend to be exacerbated on larger power grids. However, the
OSC scheme not only ensures the balance of the optimal area
partitioning, but also captures the Jacobian matrix H of the
optimal conditions in the power grid, the admittance matrix Y
with electrical characteristics and the voltage pivot vector, and
comprehensively defines the adjacency matrix of the weights,
so that it has more obvious advantages in large-scale power
grids.

B. Semi-supervised Node Classification

ADMM is the simplest and most effective distributed solu-
tion so far. Based on the advantages of spectral clustering, the
convergence performance of ADMM is further evaluated in
this subsection. As an iterative algorithm, ADMM’s residual
precision can well represent the performance of the algorithm.
To this end, the original residuals and dual residuals of 3 areas
on IEEE-118 bus system are compared respectively, and the
OSC scheme is further compared with the conventional SC
scheme.

This subsection further tests the ADMM convergence per-
formance on IEEE-118 bus system, considering the primitive
and dual residuals. As the topology complexity of the sys-
tem increases, the iteration number of ADMM will increase
significantly, which means that the performance gap between
OSC and SC on ADMM may be further enlarged. Fig. 5
shows the convergence of primitive and dual residuals, where
the running time of OSC(3) is 286.260920 seconds, and the
running time of SC(3) is 359.307797 seconds. It is easy
to see that the ADMM algorithm has a longer oscillation
period, and the effect of initial convergence is not obvious.
However, in each subproblems for the corresponding area, the
OSC scheme shows obvious advantages, and the oscillation
amplitude is much smaller than that of conventional SC
scheme. In addition, the OSC scheme is significantly better
than the SC scheme in terms of the algorithm stop time.

The conventional SC scheme only considers the admittance
matrix Y on the line, which is difficult to take into account
the electrical characteristics and minimize coupling parameter.
Therefore, the OSC scheme proposed in this paper can often
screen out the optimal partitioning method after balancing the
optimal conditions.

VI. CONCLUSION

The spectral clustering algorithm is essentially a graph-
based clustering method, which has a good clustering effect on
continuous non-convex datasets. The connection mode of the
power system satisfies the characteristics of undirected graph,
and there are different admittance weights on each branch.
At the same time, as one of the best solutions to large-scale
distributed problems, ADMM also has a lot of applications
and research for multi-area interconnected power systems.
By defining the combination of Jacobian matrix, admittance
matrix and voltage pivot vector as similarity measure, not
only the electrical characteristics of the system but also the
optimality condition of OPF problem solving are considered,
and the adaptation of region division to ADMM algorithm
is strengthened. Using voltage as the decomposition equation
between regions, the non-convex problems in the subproblems
are eliminated, and the experimental simulation is carried out
by IEEE-118 bus system. The results show that the spectral
clustering algorithm based on optimality conditions and the
distributed solution of ADMM are effective, and they are more
significant in large-scale power grids.
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Fig. 5. Convergence of original and dual residuals for IEEE-118 bus system.
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