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Abstract
The incredible success of transformers on se-
quence modeling tasks can be largely attributed
to the self-attention mechanism, which allows
information to be transferred between different
parts of a sequence. Self-attention allows trans-
formers to encode causal structure which makes
them particularly suitable for sequence model-
ing. However, the process by which transform-
ers learn such causal structure via gradient-based
training algorithms remains poorly understood.
To better understand this process, we introduce
an in-context learning task that requires learning
latent causal structure. We prove that gradient de-
scent on a simplified two-layer transformer learns
to solve this task by encoding the latent causal
graph in the first attention layer. The key insight
of our proof is that the gradient of the attention
matrix encodes the mutual information between
tokens. As a consequence of the data process-
ing inequality, the largest entries of this gradient
correspond to edges in the latent causal graph.
As a special case, when the sequences are gen-
erated from in-context Markov chains, we prove
that transformers learn an induction head (Olsson
et al., 2022). We confirm our theoretical findings
by showing that transformers trained on our in-
context learning task are able to recover a wide
variety of causal structures.

1. Introduction
The transformer architecture (Vaswani et al., 2017) has rev-
olutionized the field of deep learning, and has led to state-
of-the art performance on tasks spanning language mod-
eling (Brown et al., 2020), computer vision (Dosovitskiy
et al., 2020), reinforcement learning (Chen et al., 2021),
and the sciences (Jumper et al., 2021). The basic primitive
of a transformer is a self-attention head, a sequence-to-
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sequence mapping in which each token in the output is a
weighted linear combination of, i.e “attends to,” the other
tokens in the sequence. Prior work (Elhage et al., 2021) has
sought to understand which specific computational opera-
tions, or “circuits,” are implemented by self-attention layers
in trained transformers. However, the process by which such
circuits arise when transformers are trained from scratch via
gradient-based algorithms is still unknown.

One hallmark capability of transformers is in-context learn-
ing (Brown et al., 2020), which is the ability to learn from
information present in the input context without needing
to update the model parameters. For example, given a
prompt of input-output pairs, in-context learning is the
ability to predict the output corresponding to a new in-
put. Prior work has shown that this in-context learning
ability relies on the existence of specific circuits called in-
duction heads (Olsson et al., 2022). Given a prompt of
the form [· · · , A,B, · · · , A], an induction head copies the
token which follows the previous occurrence of A, in this
case being B. This can be implemented using two attention
layers: the first performs the operation of “copying” the pre-
vious token, while the second compares this previous token
to the last token of the context. By copying the previous
token, the first attention layer thus implicitly encodes the
causal structure of a Markov chain.

As another example, consider the setting of learning a func-
tion class in-context, introduced by Garg et al. (2022).
Each prompt sequence is formed by sampling a new
function f from some function class F , and generating
the prompt [x1, f(x1), x2, f(x2), . . . , xn, f(xn), xtest] for
i.i.d inputs x1, . . . , xn, xtest. The model must learn to es-
timate f(xtest) from the (xi, f(xi)) pairs given in-context.
This setting has proved a useful testbed to understand which
in-context learning algorithms can be implemented by trans-
formers; see Section 1.2 for additional discussion. Such
prompts also possess special causal structure. Conditioned
on f , the 2k-th token in the prompt only depends on the
(2k − 1)-th token, and is independent of the rest of the se-
quence. The model must thus learn to associate each f(xk),
at position 2k, with its corresponding xk, at position 2k− 1.
We view this instance as a problem with both a global causal
structure, which comes from pairing xk with f(xk), and an
in-context transition which comes from the specific f ∈ F
sampled for the sequence.
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Transformers are clearly able to model causal structure,
yet despite the necessity of doing so for performing in-
context learning tasks, we still do not understand how such
structures are learned by gradient descent when training
from scratch. We thus ask the following question:

How do transformers learn causal structure with
gradient descent?

1.1. Our Contributions

In this work, we analyze the gradient descent dynamics of
an autoregressive two-layer attention-only transformer, and
prove that it recovers latent causal structure. Our specific
contributions are as follows:

• We introduce a novel family of in-context learning
problems, which we call random sequences with causal
structure (Task 2.4). The task fixes a latent causal struc-
ture, unknown to the transformer, and samples each
sequence from a different distribution which respects
the causal structure.

• When the latent causal graph is a tree, we prove that
gradient descent on a simplified two-layer transformer
solves this task by encoding the causal graph in the
first attention layer in order to perform in-context es-
timation of the transition distribution (Theorem 4.4).
As a special case of Theorem 4.4, we show that when
the sequences are generated from in-context Markov
chains, the transformer learns an induction head.

• The proof of Theorem 4.4 relies on showing that the
gradient of the first attention layer automatically com-
putes the χ2-mutual information between pairs of to-
kens. As a result of the data processing inequality, the
largest entries of this gradient correspond to edges in
the latent causal graph, and hence the first attention
layer converges to the adjacency matrix of this graph.

• When the causal graph is not a tree, we explicitly con-
struct a multi-head transformer which solves this task
by distributing the latent causal graph across many
heads. We show empirically that transformers trained
by gradient descent on this task learn our construction.

1.2. Related Work

In-Context Learning. Brown et al. (2020) demonstrated
that GPT-3 can perform in-context learning, which has led
to much subsequent work on understanding how such in-
context learning ability arises. Xie et al. (2021) presents a
Bayesian perspective on in-context learning by looking at
the log-likelihood of out-of-distribution prompt sequences.
Olsson et al. (2022) posits that in-context learning relies on
the emergence of induction heads.

Garg et al. (2022) formalizes the setting of learning a
function class in-context, and shows that transformers
can be trained to in-context learn various simple function
classes such as (sparse) linear models or shallow neural net-
works. This bears similarity to transformer neural processes
(Nguyen & Grover, 2022), which recasts uncertainty-aware
meta learning as an in-context learning task. Many recent
works have sought to understand which in-context learning
algorithms can be efficiently expressed by a transformer.
Akyürek et al. (2023); Bai et al. (2023); Von Oswald et al.
(2023) show that transformers can implement gradient de-
scent to solve in-context linear regression, while Fu et al.
(2023) constructs transformers which implement higher-
order learning algorithms such as Newton’s method. Gian-
nou et al. (2023) constructs a transformer that can express
general-purpose computational operations. However, these
works are solely concerned with the representational capa-
bilities of transformers, and do not answer the question of
whether gradient descent indeed learns such constructions.

Training dynamics of transformers. Prior works have
primarily studied the optimization dynamics of a single at-
tention layer. Lu et al. (2021); Li et al. (2023) show that
a single attention layer trained via gradient descent learns
to encode topic structure. Snell et al. (2021) studies the
dynamics of a simplified attention layer on sequence-to-
sequence translation tasks. Tarzanagh et al. (2023b;a) show
an equivalence between the optimization dynamics of a sin-
gle attention layer and a certain SVM problem. Ahn et al.
(2023) shows that the global optimum of a single linear
attention layer trained on in-context linear regression im-
plements a single step of preconditioned gradient descent.
Mahankali et al. (2023); Zhang et al. (2023) study the op-
timization dynamics of a single linear attention layer for
performing in-context linear regression. Huang et al. (2023)
shows that gradient descent on a single softmax attention
layer learns to solve linear regression in-context when the
input data are orthogonal. Jelassi et al. (2022) analyzes the
gradient descent dynamics of the position-position block
of a single layer vision transformer, and shows that it con-
verges to a solution encoding spacial structure. Tian et al.
(2023a) studies the optimization dynamics of a single at-
tention layer for a specific toy dataset, while Tian et al.
(2023b) shows that jointly training a self-attention and MLP
layer corresponds to the optimization dynamics of a certain
modified MLP module. Boix-Adsera et al. (2023) shows
that transformers with diagonal attention matrices display
incremental learning behavior.

Bietti et al. (2023) studies a synthetic ICL task, and shows
that an induction head is formed during training. They
demonstrate heuristically that a few gradient steps on a
modifed transformer architecture approximately learns the
induction head. Our synthetic task handles more general
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causal structure, and requires attending to all prior instances
of the final token rather than the most recent one. Further-
more, Bietti et al. (2023) requires the alphabet size S to be
significantly larger than the context length T ; we, however,
assume that T ≫ S, and our main theorem (Theorem 4.4)
is an end-to-end guarantee on learning the causal structure
and obtaining vanishing population loss.

Concurrent Work. A number of concurrent works also
study the ability of transformers to solve synthetic in-context
learning tasks. Reddy (2023) shows empirically that an in-
duction head suddenly emerges during the training of a two-
attention layer transformer on a specific in-context learning
task. Akyürek et al. (2024) demonstrates that transformers
can learn regular languages in-context, where each prompt
consists of strings generated from a prompt-dependent for-
mal language. This is due to the ability of transformers
to compute in-context n-gram counts, via a generalization
of the induction head mechanism using multiple attention
layers. In Section 6, we show that a two-layer transformer
with n heads can also compute such n-gram counts.

Edelman et al. (2024) study the formation of induction heads
on the task of learning Markov chains in context, which is
equivalent to our Task 2.4 when the latent causal graph is
the chain graph. Their theoretical analysis focuses on two
steps of gradient descent on a simplified linear transformer
model, for Markov chains over two states. An interesting
empirical observation of theirs is that transformers trained
to learn n-grams in-context undergo a sequential learning
procedure, by first predicting using the unigram counts, then
the bigram counts, and so on.

2. Setup
2.1. Transformer Architecture

Let [S] be a finite alphabet. Transformers are models map-
ping sequences s1:T := (s1, . . . , sT ) ∈ [S]T of length
T to a length T sequence of vectors z1, . . . , zT ∈ Rdout .
A transformer first embeds the sequence s1:T as a matrix
X=

[
x1, x2, . . . , xT

]⊤ ∈ RT×d, where d is the embedding
dimension. This is parameterized by the token embeddings
E ∈ Rd×S and positional embeddings P ∈ Rd×T :

embed(s1:T ; (E,P ))i := Eesi + Pei for i = 1, . . . , T.

Transformers consist of two types of layers: attention layers
and MLP layers. Throughout, we focus on decoder-based,
attention-only transformers. These are models in which
every layer is a causal self-attention layer, defined below:

Definition 2.1 (Causal self-attention head). For a vector
v ∈ Rk, define the softmax function S : Rk → Rk by
S(v)i := exp(vi)∑k

j=1 exp(vj)
. For a matrix A ∈ Rd×d, define the

operator attn(·;A) : RT×d → RT×d by

attn(h;A) := S
(
MASK(hAh⊤)

)
h ∈ RT×d, (1)

where MASK(M)i,j is Mi,j when i ≥ j and −∞ other-
wise, and the softmax function S is applied row-wise.

In Definition 2.1, the masking operator ensures tokens only
attend to previous tokens in the sequence, and the softmax
normalizes the output so that each row sums to 1. The
amount that token i attends to token j, for j ≤ i, is thus
S
(
MASK(XAX⊤)

)
i,j

= S
(
X≤iA

⊤xi

)
j
, where X≤i ∈

Ri×d is the submatrix formed by the first i rows of X .

A single attention head is parameterized by the tuple of d×d
matrices (Q,K, V ), referred to as the query, key, and value
matrices, and maps X to the sequence attn(X;QK⊤)V ⊤.

A decoder-based transformer aggregates multiple causal
self-attention heads over many layers:
Definition 2.2 (Decoder-based transformer). Let L be the
depth, {mℓ}ℓ∈[L] be the number of heads per layer, and
d be the embedding dimension. For ℓ ∈ [L], i ∈ [mℓ],
let (Q(ℓ)

i ,K
(ℓ)
i , V

(ℓ)
i ) be the query, key, and value matrices

for the ith head in the ℓth layer. Let WO ∈ Rdout×d be
the output layer and let E ∈ Rd×S and P ∈ Rd×T be the
token and positional embeddings respectively. Define the
parameter vector θ := {(Q(ℓ)

i ,K
(ℓ)
i , V

(ℓ)
i )}ℓ∈[L],i∈[mℓ] ∪

{E,P,WO}. A decoder-based transformer TFθ : [S]T →
RT×dout operates on s1:T by

h(0) = embed(s1:T ; (E,P ))

h(ℓ) = h(ℓ−1) +

mℓ∑

i=1

attn

(
h(ℓ−1);Q

(ℓ)
i K

(ℓ)
i

⊤
)
V

(ℓ)
i

⊤

(2)

TFθ(s1:T ) = h(L)W⊤
O .

We remark that h(ℓ) ∈ RT×d for ℓ = 0, . . . , L.

Disentangled Transformer. Prior works on mechanistic
interpretability have introduced the residual stream view-
point to understand the behavior of trained transformers (El-
hage et al., 2021). The residual stream exists as a memory
and communication channel that various attention heads
read and write to. Information in the residual stream is
stored in low-dimensional subspaces of intermediate lay-
ers h(ℓ). For a single attention layer attn(·;QK⊤)V ⊤, the
query and key matrices “read” information from the rele-
vant subspace, and the value matrix “writes” the output to a
new subspace of the residual stream. The weight matrices
thus act as associative memories (Bietti et al., 2023), storing
various embeddings within the residual stream.

While this residual stream viewpoint provides intuition for
the flow of information through the forward pass of a trans-
former, from an interpretability perspective it is difficult

3



How Transformers Learn Causal Structure with Gradient Descent

to know which subspaces contain which information. The
outputs of each attention layer are added together and thus
their informations may overlap with each other, leading to a
memory bottleneck (Elhage et al., 2021; Bietti et al., 2023).
Friedman et al. (2023) thus consider a transformer model in
which the residual stream is disentangled, and the outputs
of each attention layer are appended to the residual stream.
The dimension of the residual stream thus grows with the
depth. We formalize this as a disentangled transformer,
defined below:

Definition 2.3 (Disentangled Transformer). Let L be the
depth, and {mℓ}ℓ∈[L] be the number of heads per layer.
Define the set of dimensions d0, . . . , dL by d0 = S + T
and dℓ = (1 +mℓ)dℓ−1. Let {Ãℓ

i} be the attention matri-
ces with Ã

(ℓ)
i ∈ Rdℓ−1×dℓ−1 , let W̃O ∈ Rdout×dL be the

output matrix, and let θ̃ = {Ã(ℓ)
i }ℓ∈[L],i∈[mℓ] ∪ {W̃O}. A

disentangled transformer T̃Fθ̃ acts on a sequence s1:T by:

h(0) = X̃ = [x̃1, . . . , x̃T ]
⊤ where x̃t = [est , et] ∈ Rd0

h(ℓ)=
[
h(ℓ−1), attn(h(ℓ−1); Ã

(ℓ)
1 ), . . ., attn(h(ℓ−1); Ã(ℓ)

mℓ
)
]

T̃Fθ̃(s1:T ) = h(L)W̃⊤
O .

We remark that h(ℓ) ∈ RT×dℓ for ℓ = 0, . . . , L.

In addition to disentangling the residual stream, Defini-
tion 2.3 replaces the query and key matrices with a single
attention matrix Ã := QK⊤ and absorbs the value matri-
ces into W̃O. By allowing dℓ to grow with the depth, this
disentangled transformer is actually equivalent to a decoder-
based attention-only transformer (see Theorem A.1 for the
formal statement). Given this equivalence, throughout the
rest of the paper we study the disentangled transformer.

When the target is a vector in Rdout rather than a sequence
in RT×dout , it is customary to use the embedding of the last
token, i.e. TFθ(s1:T ) = WOh

(L)
T and similarly for T̃Fθ̃.

2.2. Problem Setup: Random Sequences with Causal
Structure

Let G = ([T ], E) be a directed acyclic graph on [T ] =
{1, . . . , T} with edge set E , which represents the latent
causal structure. We assume that (j → i) ∈ E only if
j < i, i.e. each token can only point to future tokens. For
a position i ∈ [T ], we let p(i) denote the set of parents of
i, i.e. p(i) := {j : (j → i) ∈ E}. We let R denote the
set of root nodes, i.e R = {i : p(i) = ∅}. For most of
the paper, we assume that each position has at most one
parent, i.e. |p(i)| ≤ 1 for all i ∈ [T ]. See Section 6 for the
generalization to multiple parents. When |p(i)| = 1, we
overload notation and use p(i) ∈ [T ] to denote the unique
parent of i.

We will also assume there exists a prior Pπ over irreducible

and aperiodic Markov chains π on [S] = {1, . . . , S}. For
each π, we will use µπ to denote the unique stationary mea-
sure of π. Then each sequence [s1, . . . , sT ] and its corre-
sponding target y are generated by the following procedure:

Task 2.4 (Random Sequence with Causal Structure).

1. First, draw π ∼ Pπ .
2. For i = 1, . . . , T − 1, sample si ∼ µπ if p(i) = ∅.

Otherwise sample si ∼ π(·|sp(i)).
3. Draw sT ∼ Unif([S]) and sT+1 ∼ π(·|sT )
4. Return the input x = s1:T and the target y = sT+1.

Because sT ∼ Unif([S]), T is a root node of G, i.e. T ∈ R.

2.3. Examples

Markov Chains and Induction Heads. First, consider
the case where p(i) = i− 1. The sequence s1, . . . , sT−1 is
a Markov chain conditioned on π, with transition matrix π.
Task 2.4 reduces to the problem of estimating the Markov
chain π in-context. This can be solved via an induction
head (Olsson et al., 2022) which, when presented with a
prompt P = [· · ·, A,B, · · ·, A,C, · · ·, A], averages over the
tokens following the previous occurrences of A, (in this case
B and C). Explicitly, the output of an induction head on the
sequence s1:T will be the empirical estimate for π(· | sT ):

TFθ(s1:T )s′ =
|{i : (si−1, si) = (sT , s

′)}|
|{i : si−1 = sT }|

.

In the limit as T →∞, this converges to π(· | sT ).

In-Context Learning. Consider the in-context learning
setup from Garg et al. (2022). This corresponds to the causal
graph where p(2k−1) = ∅ and p(2k) = 2k−1. Sequences
are generated by sampling f : [S]→ [S] from F and using
the transition matrix π(s′|s) = 1(s′ = f(s)). To learn
this function class in-context, the transformer must learn to
associate the (x, y) pairs in positions 2k − 1 and 2k.

3. What does the Transformer Learn?
3.1. Experiments

We train a series of two-layer disentangled transformers with
one head per layer on Task 2.4, for varying latent graphs
G. The prior Pπ is chosen so that each row of π is sampled
i.i.d from the Dirichlet distribution with parameter α, i.e
π(· | s) ∼ Dir(α · 1S), for varying values of α. We train
using gradient descent on the cross entropy loss with initial
learning rate 1 and cosine decay over 217 steps.

We observe that the weights of the trained disentangled
transformers exhibit consistent structure. First, all of the en-
tries of Ã(1) remain small except the position-position block
(red box under Ã(1) in Figure 2(a)), which converges to the
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s1 s2 s3 s4 s5 s6

Figure 1. Random Sequence with Causal Structure: The causal structure is defined by the graph G, denoted by the arrows. In this
figure, p(1) = ∅, p(2) = {1}, p(3) = {1}, p(4) = {2} and p(5) = {3}. Sequences are generated by sampling π ∼ Pπ , s1 ∼ µπ ,
s2 ∼ π(·|s1), s3 ∼ π(·|s1), s4 ∼ π(·|s2), s5 ∼ π(·|s3), and finally s6 ∼ Unif([S]). The target y for this sequence is drawn from
π(·|s6).

adjacency matrix of the graph G. Next, all of the entries
of Ã(2) are small, except the token/token block comparing
the h(0) component of the residual stream of token i to the
attn(h(0), Ã(1)) component of the residual stream of token
j for j ≤ i (red box under Ã(2) in Figure 2(a)). Finally, all
of the entries of the output matrix WO are small except the
token/token block which returns the value of the first com-
ponent of the output of the second attention attn(h(1), A(2))
(red box under WO in Figure 2(a)). In Figure 4, we observe
that this weight pattern persists for different latent graphs G.

In the following section, we explicitly define this construc-
tion and describe the corresponding dynamics of the forward
pass in Figure 2(b).

3.2. Construction

In Figure 2(a) we observe that the attention weights
Ã(1), Ã(2) and output weight W̃O are of the form

Ã(1) =

[
0S×S 0S×T

0T×S A(1)

]

Ã(2) =




0S×S 0S×T A(2) 0S×T

0T×S 0T×T 0T×S 0T×T

0S×S 0S×T 0S×S 0S×T

0T×S 0T×T 0T×S 0T×T


 (3)

W̃O =
[
0S×d 0S×d IS 0S×T 0S×d

]

for matrices A(1) ∈ RT×T and A(2) ∈ RS×S . We now
explicitly construct the A(1) and A(2) from Figure 2(a) that
solve Task 2.4. Indeed, we show that this construction solves
the task by estimating the empirical transition matrix π̂s1:T :

π̂s1:T (s
′ | s) := |{(j → i) ∈ E : (sj , si) = (s, s′)}|

|{(j → i) ∈ E : sj = s}| .

(4)

Construction 3.1. There exists a two-layer disentangled
transformer fθ̃ = T̃Fθ̃ such that

fθ̃(s1:T )s′ ≈ π̂s1:T (s
′ | sT ). (5)

Proof. Set A(1) to be the (scaled) adjacency matrix of G, i.e
A

(1)
i,j = β11(j = p(i)), and A(2) = β2IS , where β1, β2 →
∞. We will now show that the output of the disentangled
transformer approximates π̂s1:T (· | sT ).

First Attention. Note that by the construction of Ã(1),
X̃Ã(1)X̃⊤ = A(1), which is the scaled adjacency matrix of
G. If i is not a root node (i.e. i ∈ R, p(i) ̸= ∅), then

S(X̃Ã(1)X̃⊤)i,j = 1(j = p(i)) (6)

so i attends to its parent p(i). Therefore, the output
of the first attention is the token at position p(i), i.e.
attn(X̃; Ã(1))i = x̃p(i). The transformer then appends
x̃p(i) to the residual stream of token i.

When i is a root node (i.e. i ∈ R, p(i) = ∅), then for all
j, (X̃Ã(1)X̃⊤)ij = 0. Therefore after the softmax, i will
attend equally to all previous tokens:

S(X̃Ã(1)X̃⊤)i,j =
1
i for all j ≤ i. (7)

Thus the first attention layer averages all of the tokens in the
sequence: attn(X̃; Ã(1))i =

1
i

∑
j≤i x̃j . It then copies this

average into the residual stream.

Second Attention. We next show that the T th token at-
tends to all prior tokens whose parents are equal to sT . It
then averages them and copies them into the residual stream.

After the first attention layer, the residual stream is h(1)
j =

[x̃j , attn(X̃; Ã(1))j ]
⊤. The second attention layer com-

pares the T th token of the original sequence x̃T to the output
of the first attention at all other positions. Explicitly, the
attention pattern is equal to:

h
(1)
T

⊤
Ã(2)h

(1)
j = β2 · x̃⊤

T

[
A(2) 0S×T

0T×S 0T×T

]
attn(X̃; Ã(1))j

= β2 ·
{
1(sp(i) = sT ) i ∈ R
1
i

∑
j≤i 1(sj = sT ) i ∈ R.

As β2 → ∞, the softmax converges to a hard max, and
so the T th token attends equally to all tokens i such that
sp(i) = sT . The attention then averages all of these tokens,
so the T th token in the residual stream is equal to h

(2)
T =[

x̃T ,
1
T

∑
j≤T x̃j , Z, x̃T

]
where

Z :=

∑
sp(i)=sT

x̃i

|{i : sp(i)=sT }| (8)

is the average of the tokens whose parent is equal to sT .
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(a) The Weights of a Trained Transformer

Causal Graph

h(0) =
[ ]

a b a c b a

First Attention

h(1) =

[ ]
a b a c b a

∅ a a b a ∅
Second Attention

h(2) =







a b a c b a

∅ a a b a ∅
∅ ∅ a+b

2 ∅ c a+2b
3

∅ ∅ a ∅ b a

Network Output

T̃Fθ = {P[y = a] = 1
3 ,P[y = b] = 2

3}

(b) Understanding the Forward Pass

Figure 2. We visualize the weights and depict the forward pass of trained transformers on tasks with two different causal graphs. (a) The
Weights of a Trained Transformer: We plot the weights of a two layer disentangled transformer trained on Task 2.4 with S = 10 and
T = 20 when the causal graph is the in-context learning graph where p(2i) = 2i− 1 for all i > 0. All entries of A(1), A(2),WO remain
small except the three blocks highlighted in red. The highlighted block in A(1) converges to the adjacency matrix of the causal graph G,
and the highlighted blocks in A(2),WO converge to the identity matrix IS . (b) Understanding the Forward Pass: The solid arrows
represent the causal graph G defined in Figure 1 and h(0) denotes the unmodified input sequence. The first attention reverses this causal
pattern, as every token attends to its parent (solid arrows). It then appends this parent token to the residual stream (dashed arrows). In the
second attention layer, each token i attends to all previous tokens j whose parent token p(j) has the same value, i.e. si = sp(j) (solid
arrows), and appends the average of these tokens into the residual stream (dashed arrows). Finally, the transformer returns the third entry
in the last column (red box), which is the average of all of the tokens whose parent token has the same value as the last token.

Output Layer. WO reads from the third block in this
stream, which we denoted by Z in (8) above. It then returns
the token embedding of Z which is equal to:

fθ̃(s1:T ) =

∑
sp(i)=sT

esi

|{i : sp(i)=sT }| = π̂s1:T (·|sT ). (9)

See Figure 2(b) for a breakdown of this forward pass through
the transformer for a specific sequence.

3.3. The Reduced Model

Motivated by the sparsity pattern in Figure 2(a) and Equa-
tion (3), we consider training a simplified two-layer trans-
former architecture where the sparsity in Equation (3) is
fixed, and only A(1) and A(2) are trained. The transformer
T̃Fθ̃ can be rewritten as the following reduced model:

Lemma 3.2. Let θ = (A(1), A(2)), and let θ̃ =

(Ã(1), Ã(2), W̃O) be defined in Equation (3). Let fθ = T̃Fθ̃
be a two-layer disentangled transformer parameterized by
θ. Then if X = [x1, . . . , xT ]

T where xi = esi ,

fθ(s1:T ) = X
⊤S
(
S(MASK(A(1)))XA(2)⊤xT

)
. (10)

Due to the masking, we restrict A(1) to be lower diagonal.

Our goal is to analyze the gradient descent dynamics of fθ
under the cross entropy loss. However, if the token s′ does
not appear in s1:T , then fθ(s1:T )s′ is 0 and the cross entropy
loss is infinite. As such, we perturb the predictions by some
small ϵ > 0. The perturbed population loss is thus:

L(θ)=− E
π,s1:T


 ∑

s′∈[S]

π(s′|sT ) log (fθ(s1:T )s′+ϵ)


 (11)

In the following sections, we will study the gradient descent
dynamics of the reduced model (10) on the loss (11).

4. Main Results
4.1. Training Algorithm

Our training algorithm is stage-wise gradient descent on
the population loss (11) using the reduced model (10). The
model is initialized at A(1) = 0T×T , A

(2) = β0IS×S for
small initialization scale β0. The first stage is gradient
descent on A(1) with learning rate η1 for τ1 timesteps. The
second stage is gradient descent on A(2) with learning rate
η2 for τ2 timesteps. Pseudocode is given in Algorithm 1.
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Algorithm 1 Training Algorithm
Input: init size β0; learning rates η1, η2; times τ1, τ2

Initialize A(1)(0) = 0T×T , A
(2)(0) = β0 · IS×S

for t = 1, . . . , τ1 do
A(1)(t)← A(1)(t−1)−η1∇A(1)L(θ(t−1)) {Stage 1}
θ(t) = (A(1)(t), A(2)(0))

end for
for t = τ1, . . . , τ1 + τ2 do
A(2)(t)← A(2)(t−1)−η2∇A(2)L(θ(t−1)) {Stage 2}
θ(t) = (A(1)(τ1), A

(2)(t))
end for
θ̂ ← θ(τ1+τ2)

Output: θ̂.

We require the following assumptions on the prior Pπ:
Assumption 4.1 (Assumptions on prior Pπ.). There exists
γ > 0 such that almost surely over the draw of π:

• (Transition lower bounded): mins,s′ π(s
′ | s) > γ/S.

• (Non-degeneracy of chain): The chain does not imme-
diately mix to the stationary measure µπ in one step:

∑
s ∥π(· | s)− µπ(·)∥22 ≥ γ2/S

• (Symmetry): For any permutation σ on [S], σ−1πσ
d
=π.

• (Constant mean): Eπ[π] =
1
S 1S1

⊤
S .

The final two assumptions imply that the marginal distri-
butions of π(s′ | s) are equal for any s′ ̸= s, and likewise
for π(s | s), and that these distributions have mean 1/S.
We remark that Assumption 4.1 is satisfied with probability
0.99 for some γ = Θ(1) when each row of π is sampled
i.i.d from a Dirichlet distribution with parameter α = Θ(1).

Additionally, we assume that a non-vanishing fraction of
nodes have a parent.
Assumption 4.2. Let r := |R|/T . Then r ≤ 1− γ.

Throughout the proof, we let Cγ,S denote an absolute
constant that depends polynomially on γ−1 and S. If
A ≤ Cγ,SB, then we write A = Oγ,S(B) or A ≲γ,S B.
For convenience, we also drop the dependence on γ, S, and
write O(·) or ≲.

4.2. Main Theorem

The minimum possible value for the (unperturbed) loss is
the mean entropy of π, averaged over the prior Pπ:

L∗ := −Eπ

[
1
S

∑
s,s′ π(s

′ | s) log π(s′ | s)
]
. (12)

We also define the effective sequence length as follows:
Definition 4.3 (Effective Sequence Length). Decompose
G =

⋃k
i=1 Ti where Ti are disjoint trees. Let Li denote the

number of leaves of tree Ti. Then, Teff :=
T

maxk
i=1 Li

.

The effective sequence length roughly captures the number
of independent samples present in the sequence s1:T , and
is related to the mixing time of the process on G. For both
the Markov chain and in-context learning examples, we see
that Li = 1 and thus Teff = T .

Our main theorem is the following:

Theorem 4.4 (Guarantee for Algorithm 1). Assume that
the effective sequence length satisfies Teff ≥ poly(γ−1, S).
There exist ϵ, η1, η2, τ1, τ2 such that the output of Algo-
rithm 1, θ̂ = (Â(1), Â(2)), satisfies

L(θ̂)− L∗ ≲
log T

T cγ
eff

and S(Â(1))i,p(i) ≥ 1−O

(
1

T

)
.

for i ∈ R, for some constant c > 0 (independent of γ, S).

Algorithm 1 thus approximately minimizes the loss by
encoding the adjacency matrix of G in the first attention
layer Â(1). Furthermore, we show that the trained model θ̂
achieves good prediction on transitions π which are out of
distribution:

Theorem 4.5 (OOD Generalization). Let π̃ have transition
lower bounded as mins,s′ π̃(s

′ | s) ≥ γ/S and let θ̂ be the
trained model from Theorem 4.4. Let s1:T be generated by
steps 2-4 of Task 2.4. Then with probability at least 0.99
over the draw of s1:T ,

sup
s′

∣∣fθ̂(s1:T )s′ − π̃(s′ | sT )
∣∣ ≲ log T

T cγ
eff

. (13)

We remark that the only assumption needed on π̃ is the
lower bound on the transition; it does not need to be close
to typical draw from the prior Pπ .

5. Proof Sketch
5.1. Stage 1: Learning the Causal Graph

The first step of the proof is to show that during the first
stage of training, the first attention layer A(1) learns the
latent causal graph G.

5.1.1. THE ORACLE ALGORITHM

We begin by describing an efficient algorithm for learning
the graph G. The goal is to recover the parent node p(i)
for each i. The key idea is that as a result of the data gen-
erating process, sp(i) is the node which maximizes mutual
information with si.

We briefly recall the definition of an f -divergence.

Definition 5.1. Let f be a convex function with f(1) =
0. The f -divergence between two probability distributions
P,Q on state space X is defined as

7
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Df (P ||Q) :=
∑

x∈X Q(x)f
(

P (x)
Q(x)

)
. (14)

The f mutual information between two random variables
Y,Z, denoted by If (Y ;Z), is

If (Y ;Z) := Df (PY,Z ||PY ⊗ PZ). (15)

Given a latent variable C, the conditional mutual informa-
tion If (Y ;Z | C) is defined as

If (Y ;Z | C) := EC

[
Df (P(Y,Z)|C ||PY |C ⊗ PZ|C)

]
.

Information measures admit a data processing inequality:

Lemma 5.2 (Data Processing Inequality). Let If be an
information measure, and let W → Y → Z be a Markov
chain. Then If (W ;Z) ≤ If (Y ;Z).

The data processing inequality suggests an efficient al-
gorithm for recovering G. For non-root nodes i ∈ R,
sj → sp(i) → si form a Markov chain conditioned on
π. Therefore by the data processing inequality, p(i) ∈
argmaxj<i If (si; sj | π). Otherwise, if i ∈ R, sj and
si are independent given π, and thus If (si; sj | π) = 0.
To recover the graph G, one can compute the conditional
mutual informations If (si; sj | π). If If (si; sj | π) = 0
for all j < i, then i is a root node. Otherwise, p(i) =
argmaxj<i If (si; sj | π). Pseudocode for this oracle algo-
rithm is given in Algorithm 2.

Algorithm 2 Oracle Algorithm
E ← ∅
for i = 1, . . . , T − 1: do

if maxj<i If (si; sj | π) > 0 then
p(i)← argmaxj<i If (si, sj | π).
E ← E ∪ {(p(i)→ i)}.

end if
end for

We remark that Algorithm 2 is a special case of the cele-
brated Chow-Liu algorithm (Chow & Liu, 1968), when
a topological ordering of the tree is known a priori:
the tree consisting of edges (p(i) → i) where p(i) =
argmaxj<i If (si; sj | π) is indeed the max-weight span-
ning forest when the edge weights are the conditional mutual
informations.

5.1.2. THE GRADIENT DESCENT DYNAMICS

We next compute the gradient with respect to A(1). Let
A

(1)
i ∈ Ri denote the ith row of A(1) (restricted to the first

i entries, since A(1) is lower triangular). Define J : Rk →
Rk×k by J(v) = diag(v) − vv⊤; J is the Jacobian of the
softmax function S, in that∇uS(u) = J(S(u)).
The following lemma computes the gradient with respect to
A(1); a heuristic derivation is deferred to Appendix D.3.

si

sp(i)

sj

 is Markov 
chain conditioned on 

sj → sp(i) → si
π

Iχ2(si; sj ∣ π) < Iχ2(si; sp(i) ∣ π)

−∇A(1)
i,j L(θ) < − ∇A(1)

i,p(i)L(θ)

Figure 3. By the data processing inequality, A(1)

i,p(i) grows faster

than A
(1)
i,j .

Lemma 5.3.

∇
A

(1)
i
L(θ) = − β0

ST J
(
S(A(1)

i )
)(

gi +O(T
−1/2
eff )

)
, (16)

where the jth entry of gi, gi,j , is

gi,j := Eπ


∑

s,s′

π(s′ | s)
µπ(s′)

PX [sj = s, xi = s′]


− 1.

For non-root nodes i ∈ R, (si, sp(i)) has joint distribution
P[si = s′, sp(i) = s] = µπ(s)π(s

′|s), and thus gi,p(i) is

gi,p(i) = Eπ


∑

s,s′

π(s′ | s)2µπ(s)
2

µπ(s′)µπ(s)
− 1


. (17)

It turns out that this expression is exactly equal to the χ2-
mutual information, Iχ2 , between si and sp(i) conditioned
on π. The χ2-divergence is the f -divergence obtained by
setting f(z) = (z − 1)2. Therefore

gi,p(i) = Iχ2(si; sp(i) | π). (18)

By Cauchy-Schwarz, we can also upper bound gi,j by the
sum of two χ2-mutual informations:

gi,j ≤
1

2
Iχ2(si; sp(i) | π) +

1

2
Iχ2(si; sj | π). (19)

Applying the data processing inequality1, we obtain that for
j ̸= p(i)

gi,j < Iχ2(si; sp(i) | π) = gi,p(i). (20)

Therefore gi,j is maximized at j = p(i), and the gradient is
aligned with the adjacency matrix of the causal graph G. In
fact, the gradient descent dynamics mimic Algorithm 2!

1By the assumptions on the prior Pπ (Assumption 4.1), the
data processing inequality is indeed strict.
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Maintaining the inductive hypothesis that argmaxj A
(1)
i,j =

p(i), we see by the gradient formula in Lemma 5.3 that
argmax

[
−∇

A
(1)
i
L(θ)j

]
= p(i). Thus A(1)

i,p(i) continues to
grow faster than the other entries throughout stage 1. This
growth continues until S(A(1))i,p(i) ≈ 1.

For root nodes i ∈ R, i is independent of j. Since both si
and sj have the marginal µπ , one has

gi,j = Eπ


∑

s,s′

π(s′ | s)
µπ(s′)

µπ(s
′)µπ(s)


− 1 = 0 (21)

and thus ∇
A

(1)
i
L(θ) ≈ 0. Therefore at the end of stage 1,

S(A(1))i,j ≈ 1
i for all j < i.

Altogether, at the end of stage 1, A(1) satisfies

S(A(1))i,j ≈
{
1(j = p(i)) i ∈ R
1
i i ∈ R . (22)

The precise quantitative bound is given in Corollary D.6,
and requires controlling the various error terms throughout
multiple steps of gradient descent.

5.2. Stage 2: Decreasing the Loss

We next show that during the second stage, A(2) grows large
in the direction IS− 1

S 1S1
⊤
S . By a symmetry argument, one

can show that ∇A(2)L(θ) is proportional to IS − 1
S 1S1

⊤
S .

Writing A(2) = βIS + β−β0

S 1S1
⊤
S , it suffices to show that

∇βL(θ) < 0.

In Lemma D.8, we show that −∇βL(θ) can be approx-
imated by a quantity which is an f -mutual information
for some convex f defined in terms of β. We show that
this quantity is strictly positive (Lemma D.9) until β =
Θ(log Teff). Thus at the end of stage 2, β = Θ(log Teff).

To conclude the proof of Theorem 4.4, we must show that
fθ̂(X; s)s′ ≈ π(s′ | s). Indeed, Lemma H.8 shows that

∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣ ≤ exp(−Θ(β)) = T

−Θ(1)
eff , (23)

which implies the desired bound on the loss.

6. Causal Graphs with Multiple Parents
We next consider a generalization of Task 2.4. Let G be a
directed acyclic graph over the vertex set [T + 1]. For each
node i ∈ [T + 1], we assume that the set of parent nodes
p(i) ⊂ [i − 1] satisfy the property that either p(i) = ∅ or
|p(i)| = k. If p(i) ̸= ∅, we write p(i) = {p(i)1, . . . , p(i)k},
where p(i)1 < · · · < p(i)k. As before, let R = {i ∈
[T + 1] : p(i) = ∅} be the root nodes. We additionally
assume that T + 1 ̸∈ R.

We now consider k-parent transition tensors π: For any
a1, . . . , ak ∈ [S], π(·|a1, . . . , ak) is a probability distribu-
tion over [S]. Let P k

π be a prior over such π. Each sequence
is now generated as follows:

Task 6.1 (Graphs with Multiple Parents).

1. Draw π ∼ P k
π .

2. For i = 1, . . . , T + 1, if p(i) = ∅, sam-
ple si ∼ Unif([S]). Otherwise, sample si ∼
π(·|sp(i)1 , . . . , sp(i)k)

3. Return the input x = s1:T and the target y = sT+1.

Example. One example of Task 6.1 is learning in-context
n-grams. In an n-gram model, each token only depends
on the prior n − 1 tokens in the sequence. This n-gram
model can be obtained by setting k = n− 1, letting the root
nodes beR = [n− 1], and choosing the parent sets p(i) =
{i−n+1, i−n+2, . . . , i− 1} for i ≥ n. The conditional
density P(sk+n | sk+1:k+n−1) is then just the transition
π(sk+n | sk+1, . . . , sk+n−1); the goal is to estimate this
transition in-context, by first learning that all sequences
share the same n-gram causal structure.

Given a sequence s1:T , a good estimate for the transition π
is the empirical transition π̂s1:T (s

′ | a1, . . . , ak), defined as
∣∣{i : si = s′, sp(i)1 = a1, . . . , sp(i)k = ak}

∣∣
∣∣{i : sp(i)1 = a1, . . . , sp(i)k = ak}

∣∣ (24)

We explicitly construct a two-layer transformer with k heads
in the first layer that approximately expresses this empirical
transition.

Construction 6.2. There exists a two attention layer trans-
former fθ̃ with k heads such that

fθ̃(s1:T )s′ ≈ π̂s1:T (s
′ | sp(T+1)1 , . . . , sp(T+1)k) (25)

Construction 6.2 is deferred to Appendix B. At a high level,
the ℓth head in the first layer copies p(i)ℓ to the residual
stream of i, and copies p(T+1)ℓ to the residual stream of T ;
the second attention head compares these tuples of parents,
and thus attends to tokens i where sp(i)ℓ = sp(T+1)ℓ for all
ℓ ∈ [k].

In Figures 5 and 6, we show empirically that transformers
trained on Task 6.1 for varying latent graphs G indeed con-
verge to such a construction. The challenge, however, in
analyzing the gradient descent dynamics is that there are
multiple attention heads each of which attends to a differ-
ent parent. The dynamics must thus break the symmetry
between the multiple heads. Analyzing the optimization
dynamics of a multi-head transformer for solving Task 6.1
is thus a very interesting direction for future work.
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A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Li, Y., Li, Y., and Risteski, A. How do transformers learn
topic structure: Towards a mechanistic understanding.
In International Conference on Machine Learning, pp.
19689–19729. PMLR, 2023.

Lu, H., Mao, Y., and Nayak, A. On the dynamics of
training attention models. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=1OCTOShAmqB.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Nguyen, T. and Grover, A. Transformer neural processes:
Uncertainty-aware meta learning via sequence modeling.
In International Conference on Machine Learning, pp.
16569–16594. PMLR, 2022.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Reddy, G. The mechanistic basis of data dependence and
abrupt learning in an in-context classification task. arXiv
preprint arXiv:2312.03002, 2023.

Snell, C., Zhong, R., Klein, D., and Steinhardt, J. Approxi-
mating how single head attention learns. arXiv preprint
arXiv:2103.07601, 2021.

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak, S.
Transformers as support vector machines. arXiv preprint
arXiv:2308.16898, 2023a.

Tarzanagh, D. A., Li, Y., Zhang, X., and Oymak, S. Max-
margin token selection in attention mechanism. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023b.

Tian, Y., Wang, Y., Chen, B., and Du, S. Scan and snap:
Understanding training dynamics and token composition
in 1-layer transformer. arXiv preprint arXiv:2305.16380,
2023a.

Tian, Y., Wang, Y., Zhang, Z., Chen, B., and Du, S. Joma:
Demystifying multilayer transformers via joint dynamics
of mlp and attention. arXiv preprint arXiv:2310.00535,
2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

11

https://openreview.net/forum?id=1OCTOShAmqB
https://openreview.net/forum?id=1OCTOShAmqB


How Transformers Learn Causal Structure with Gradient Descent

A. Disentangled Transformer Equivalence

Theorem A.1. For any transformer TFθ with any hidden dimension d, there exists a disentangled transformer T̃Fθ̃ with the
same depth and number of heads such that TFθ(s1:T ) = T̃Fθ̃(s1:T ) for any input sequence s1:T ∈ [S]T . Likewise, for any
disentangled transformer T̃Fθ̃, there exists a transformer TFθ with the same depth and number of heads and with hidden
dimension d(L) such that TFθ(s1:T ) = T̃Fθ̃(s1:T ) for any s1:T ∈ [S]T .

Proof. Let

θ = {(Q(ℓ)
i ,K

(ℓ)
i , V

(ℓ)
i )ℓ∈[L],i∈[mℓ]} ∪ {E,P,WO} and θ̃ = {A(ℓ)

i }ℓ∈[L],i∈[mℓ] ∪ {W̃O}.

Note that the reverse direction is clear as any disentangled transformer is also a transformer with hidden dimension dL:

E =

[
IS

0(dL−S)×S

]
∈ RdL×S P =




0S×T

IT
0(dL−d)×T


 ∈ RdL×T WO = W̃O

Q
(ℓ)
i =

[
A

(ℓ)
i 0
0 0

]
∈ RdL,dL K

(ℓ)
i =

[
Idℓ

0
0 0

]
∈ RdL,dL V

(ℓ)
i =




0i·dℓ×dℓ

Idℓ
0dL×(dL−dℓ)

0(dL−(i+1)·dℓ)×dℓ


 .

We will prove that every transformer θ can be represented by a disentangled transformer θ̃. We will begin by defining a
sequence of matrices Z(ℓ) ∈ Rd×dℓ for ℓ ∈ {0, . . . , L}. Let Z(0) := [E,P ] ∈ Rd×d0 , and for ℓ > 1 let

Z(ℓ) :=
[
Z(ℓ−1) V

(ℓ)
1 Z(ℓ−1) · · · V

(ℓ)
mℓ Z

(ℓ−1)
]
∈ Rd×dℓ .

Then we define

A
(ℓ)
i := (Z(ℓ−1))⊤Q

(ℓ)
i (V

(ℓ)
i )⊤Z(ℓ−1) ∈ Rdℓ−1×dℓ−1 and W̃O = WOZ

(L).

We will prove by induction that for any sequence s1:T , h(ℓ) = h̃(ℓ)(Z(ℓ))⊤ for ℓ = 0, . . . , L where {h(ℓ)} is the residual
stream of TFθ and {h̃(ℓ)} is the residual stream of T̃Fθ̃. First, when ℓ = 0 we have that

h
(0)
i = Eesi + Pei =

[
E P

] [esi
ei

]
= Z(0)h̃

(0)
i .

Next, assume the result for ℓ− 1 ≥ 0. Then

h(ℓ) = h(ℓ−1) +

mℓ∑

i=1

attn

(
h(ℓ−1);Q

(ℓ)
i K

(ℓ)
i

⊤
)
V

(ℓ)
i

⊤

= h̃(ℓ−1)(Z(ℓ−1))⊤ +

mℓ∑

i=1

attn
(
h̃(ℓ−1)(Z(ℓ−1))⊤;Q

(ℓ)
i (K

(ℓ)
i )⊤

)
(V

(ℓ)
i )⊤

= h̃(ℓ−1)(Z(ℓ−1))⊤ +

mℓ∑

i=1

attn
(
h̃(ℓ−1); (Z(ℓ−1))⊤Q

(ℓ)
i (K

(ℓ)
i )⊤Z(ℓ−1)

)
(Z(ℓ−1))⊤(V

(ℓ)
i )⊤

= h̃(ℓ−1)(Z(ℓ−1))⊤ +

mℓ∑

i=1

attn
(
h̃(ℓ−1);A

(ℓ)
i

)
(V

(ℓ)
i Z(ℓ−1))⊤

= h̃(ℓ)(Z(ℓ))⊤

which completes the induction. Therefore,

TFθ(s1:T ) = h(L)W⊤
O = h̃(L)(Z(ℓ))⊤W⊤

O = h(L)(WOZ
(ℓ))⊤ = h(L)W̃⊤

O = T̃Fθ(s1:T )

which completes the proof.
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Example: Single Head Transformer. As an example, let us walk through the construction for a single-head transformer. A
single layer attention-only transformer with only one head can be written as

h(0) = embed(s1:T ; (E,P ))

TFθ(s1:T ) =
(
h(0) + attn

(
h(0);QK⊤

)
V ⊤
)
W⊤

O .

Recall that the input to the disentangled transformer is

X̃ =
[
x̃1, . . . , x̃T

]⊤
,

where x̃t =
[
est , et

]
∈ Rd0 = RS+T . The input to the regular transformer, h(0), can then be written as

h(0) = X̃

[
E⊤

P⊤

]
.

Define Z =
[
E P

]
, so that h(0) = X̃Z⊤. Set the weights Ã, W̃O of the disentangled transformer as

Ã = Z⊤QK⊤Z and W̃O = WO

[
Z V Z

]
.

The output of the disentangled transformer is then

T̃Fθ̃(s1:T ) =
[
X̃, attn(X̃; Ã)

]
W̃⊤

O

=
[
X̃, attn(X̃;Z⊤QK⊤Z)

]
W̃⊤

O

=
[
X̃, S

(
MASK

(
X̃Z⊤QK⊤ZX̃⊤

))
X̃
] [ Z⊤

Z⊤V ⊤

]
W⊤

O

=
[
X̃Z⊤, S

(
MASK

(
X̃Z⊤QK⊤ZX̃⊤

))
X̃Z⊤

] [ Id
V ⊤

]
W⊤

O

=
[
h(0), attn(h(0);QK⊤)

] [ Id
V ⊤

]
W⊤

O

=
(
h(0) + attn(h(0);QK⊤)V ⊤

)
W⊤

O

= TFθ(s1:T ),

as desired.

B. Multiple Parents Construction
We now present Construction 6.2.

Proof. Let X̃ ∈ RT×d be the embedding of the sequence. Recall that the ℓth attention block is of the form

attn(X̃; Ã
(1)
ℓ ) := S(X̃Ã

(1)
ℓ X̃⊤)X̃ ∈ RT×d,

and

h
(1)
i =




xi

attn(X̃; Ã
(1)
1 )i

...
attn(X̃; Ã

(1)
k )i.


 ∈ R(k+1)d.

The ℓth attention head performs two roles. For i < T , it copies p(i)ℓ to the residual stream of i. Additionally, it copies
p(T + 1)ℓ to the residual stream of T .
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Formally, let Ã(1)
ℓ follow the same sparsity pattern as the construction in Construction 3.1, where only the position-position

block A
(1)
ℓ is nonzero, and on this block let

(A
(1)
ℓ )ij = β1 ·

{
1(j = p(i)ℓ) i < T

1(j = p(T + 1)ℓ) i = T
.

Taking β1 →∞, the output of this attention block is

attn(X̃; Ã
(1)
ℓ )i =

{
x̃p(i)ℓ i ∈ R \ {T}
x̃p(T+1)ℓ i = T

.

We let Ã(2) ∈ R(k+1)d×(k+1)d be the block diagonal matrix which compares the attn(X̃; Ã
(1)
ℓ )i components of the residual

streams of h(1)
i to each other via their token embeddings.

Formally, we let

Ã(2) =




0d×d 0d×d 0d×d · · · 0d×d

0d×d A
(2)
1 0d×d · · · 0d×d

0d×d 0d×d A
(2)
2 · · · 0d×d

...
...

...
. . .

...
0d×d 0d×d 0d×d · · · A

(2)
k




where each A
(2)
k ∈ Rd×d is

A
(2)
k = β2

[
IS×S 0S×T

0T×S 0T×T

]
.

We thus have, for i ∈ R \ {T}.

h
(1)
i

⊤
Ã(2)h

(1)
T = β2

k∑

ℓ=1

(
attn(X̃; Ã

(1)
ℓ )i

)⊤
A

(2)
k attn(X̃; Ã

(1)
ℓ )T

= β2 ·
k∑

ℓ=1

1(sp(i)ℓ = sp(T+1)ℓ)

Taking β2 →∞, the softmax converges to a uniform distribution over tokens where h(1)
i

⊤
A(2)h

(1)
T is maximized. These are

the tokens i in which sp(i)ℓ = sp(T+1)ℓ for all ℓ, along with the token T 2. Thus

S
(
h(1)Ã(2)h

(1)
T

)
i
≈ 1i=T + 1

(
sp(i)1 = sp(T+1)1 , · · · , sp(i)k = sp(T+1)k

)

1 +
∑

j<T 1
(
sp(j)1 = sp(T+1)1 , · · · , sp(j)k = sp(T+1)k

) .

Finally, choose WO to output the token embedding of the xi block of h(1)(X)i, so that h(1)(X)WO = esi . We then have
that

fθ̂(s1:T )s′ =
∑

i

1(si = s′) · S
(
h(1)Ã(2)h

(1)
T

)
i

≈ 1(sT = s′) +
∑

i<T 1
(
si = s′, sp(i)1 = sp(T+1)1 , · · · , sp(i)k = sp(T+1)k

)

1 +
∑

j<T 1
(
sp(j)1 = sp(T+1)1 , · · · , sp(j)k = sp(T+1)k

)

≈
∑

i 1
(
si = s′, sp(i)1 = sp(T+1)1 , · · · , sp(i)k = sp(T+1)k

)
∑

j 1
(
sp(j)1 = sp(T+1)1 , · · · , sp(j)k = sp(T+1)k

)

= π̂s1:T

(
s′ | sp(T+1)1 , . . . , sp(T+1)k

)
,

as desired.
2It is possible for certain root nodes at the beginning of the sequence to be included, but this will be a vanishing fraction of tokens for

typical sequences

14



How Transformers Learn Causal Structure with Gradient Descent

C. Additional Experiments and Details
Single Parent Experiments: All single-parent experiments were run with a vocabulary size of S = 10, a sequence length
of T = 20, a batch size of 1024, α = 0.1, and learning rate η = 0.3. We initialize Ã(1) = 0, Ã(2) = 0, and WO = 0.

In Figure 4, we repeat Figure 2(a) for the in-context learning graph in Figure 4(b), in addition to versions when the graph G
comes from a Markov chain (Figure 4(a)) and when it is random graph (Figure 4(c)).

Multiple Parent Experiments: For experiment with multiple parents (Figure 6), we used α = 1 and Adam (Kingma &
Ba, 2017) with η = 0.01 but we initialized Ã

(1)
ij , Ã

(2)
ij ∼ N(0, σ2) for σ = 0.01. This was necessary to break the symmetry

between the heads.

Experiments with standard transformer architecture: We trained a two attention layer, decoder-based transformer of
the form (2) on Task 2.4. We consider fixed position and token embeddings P ∈ Rd×T and E ∈ Rd×S , with each column
of P,E drawn i.i.d fromN (0, 1

dId). Additionally, between each attention layer, we add a one-hidden layer ReLU MLP with
hidden width d. The model has one head per layer.

In Figure 7, we plot the average attention pattern of the first layer, averaged over a batch of 1024 sequences. We pick
S = 10, T = 20, d = 30. The first layer attention pattern on a single sequence with embedding h(0) is given by

S(MASK(h(0)A(1)h(0)⊤)) ∈ RT×T .

We observe that this average attention pattern is also approximately equal to the adjacency matrix of the graph G.

Quantitative Comparison: We repeat Figure 4 for a set of 20 randomly generated causal graphs on T = 20 vertices and
vocab size of S = 3. In each graph, each node i is a root node with probability 1/2, and otherwise has its parent p(i) drawn
uniformly at random from the set {1, . . . , i− 1}. For each graph, one can compute the average first-layer attention weight
from i to its parent p(i), given by

avgattn :=
1∣∣R
∣∣
∑

i∈R

S
(
MASK

(
A(1)

))
i,p(i)

.

Over all 20 random graphs, avgattn has a mean of 0.837 and a standard deviation of 0.054. In Figure 8, we plot the average
value of S

(
MASK

(
A(1)

))
i,p(i)

for each position i in the sequence. We observe that this attention weight is large across all
positions in the sequence.

Experimental Details: Code for all the experiments can be found at https://github.com/eshnich/
transformers-learn-causal-structure. All code was written in JAX (Bradbury et al., 2018), and run on a
cluster of 10 NVIDIA RTX A6000 GPUs.
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(a) Markov Chain

(b) In-Context Learning

(c) Random Causal Graph

Figure 4. Ã(1) encodes the graph structure, for different latent graphs.
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(a) 3-gram where each position i attends to i− 1, i− 2. (b) Each position i attends to i− 1 and ⌊ i−1
2

⌋

(c) 4-gram where each position i attends to i− 1, i− 2, i− 3.

Figure 5. Multiple Parents: We show three examples of trained transformers on Task 6.1 with k = 2, 2, 3 respectively. The left column
shows the adjacency matrix of the causal graphs G. To their right, we plot the attention patterns S(A(1)

i ) for each head i where A(1)
i is the

position-position component of Ã(1)
i . We see that each attention head learns a single set of parents in the causal graph G, which agrees

with Construction 6.2. See Figure 6 for plots of the full matrices Ã(1)
i .
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(a) 3-gram where each position i attends to i− 1, i− 2.

(b) Each position i attends to i− 1 and ⌊ i−1
2

⌋

(c) 4-gram where each position i attends to i− 1, i− 2, i− 3

Figure 6. Multiple Parents: On the left, we plot the causal graph in the setting of Section 6 with k = 2, 2, 3 respectively. The first row
corresponds to the 3-gram task in which each token depends on the previous 2. In the second row, each token at position i depends on
the previous token and the token at position ⌊ i−1

2
⌋. The third row corresponds to 4-gram in which each token depends on the previous

3 tokens. We train two-layer disentangled transformers on these tasks with k heads in each layer. On the right, we plot the first layer
attention matrices, i.e. {Ã(1)

i }i. We see that each attention head learns a single set of parents in the causal graph G, which agrees with our
Construction 6.2.
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(a) Markov Chain.

(b) In-Context Learning

(c) Random Causal Graph

Figure 7. Decoder-Based Transformer with MLPs: In a two attention-layer, decoder-based transformer with MLPs, we observe that the
average attention pattern on a sequence is approximately equal to the adjacency matrix of the causal graph G. We remark that the random
causal graph has the peculiar behavior that nodes with no parent seem to attend to the first token in the sequence.

Figure 8. Quantitative Comparison: We plot the mean value of S(A(1))i,p(i) over all 20 graphs, as a function of the position i in the
sequence. The shaded bars indicate one standard deviation. We observe that this average value is large (close to 1).
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D. Analyzing the Dynamics
In this section we prove Theorem 4.4.

D.1. Proof of Lemma 3.2

Proof. The output of the first attention layer is

attn(X̃; Ã(1)) = S(MASK(X̃Ã(1)X̃⊤)X̃ = S(MASK(A(1)))X̃.

Next, we have that

h
(1)
T

⊤
Ã(2)h(1)⊤ = x̃⊤

T

[
A(2) 0S×T

0T×S 0T×T

]
attn(X̃; Ã(1))⊤

= x̃⊤
T

[
A(2) 0S×T

0T×S 0T×T

]
X̃⊤S(MASK(A(1)))⊤

= x⊤
TA

(2)X
⊤S(MASK(A(1)))⊤.

Thus the output of the second attention layer is

attn(h(1); Ã(2))T = h(1)⊤S
(
h(1)

(
Ã(2)

)⊤
h(T )

)

= h(1)⊤S
(
S(MASK(A(1)))XA(2)⊤xT

)

Finally, the output is

T̃Fθ̃(s1:T ) = W̃⊤
O h

(2)
T

=
[
IS 0S×T | 0S×d

]
attn(h(1); Ã(2))T

=
[
IS 0S×T | 0S×d

]
h(1)⊤S

(
S(MASK(A(1)))XA(2)⊤xT

)

= X
⊤S
(
S(MASK(A(1)))XA(2)⊤xT

)
,

as desired.

D.2. Notation

We briefly introduce notation which will be used throughout the rest of the appendix. We let X ∈ RT×S be the token
embedding of the sequence s1:T . Additionally, for a lower triangular matrix A ∈ RT×T , let Ai ∈ Ri denote the first i
coordinates of the ith row of A. We overload notation so that S(A) ∈ RT×T is the lower triangular matrix satisfying
S(A)i = S(Ai); i.e, the softmax operation is applied row-wise to the first i coordinates of row i. Finally, we reparameterize
A(2)⊤ with A(2).

We can thus rewrite the reduced model fθ as

fθ(s1:T ) = X⊤S
(
S(A(1))XA(2)xT

)
.

We let fθ(X; s) denote prediction of a transformer with embedding X ∈ RT×S conditioned on sT = s, i.e

fθ(X; s) := X⊤S
(
S(A(1))XA(2)es

)
.

It is easy to see that the perturbed loss (11) can be written as

L(θ) = − 1

S
Eπ,X


 ∑

s,s′∈[S]

π(s′ | s) log (fθ(X; s)s′ + ϵ)


,
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where we use EX and Es1:T interchangeably to represent expectation over the sequence s1:T . We set the perturbation as
ϵ = T

−1/2
eff .

For notational convenience, we define

vθ(X; s) := S(S(A(1))XA(2)es),

so that fθ(X; s) = X⊤vθ(X; s).

Let δs(X) ∈ RT be the vector where δs(X)i = xi,s, and let µ̂X(s) := 1
T

∑T
i=1 xi,s be the empirical estimate of the

frequency of s over the sequence X . We let X≤i ∈ Ri×S be the embedding of the first i tokens in the sequence, and let
δs(X≤i) ∈ Ri be the indicator of s on these first i tokens.

Given a vector v ∈ Rk, the operator Jk : Rk → Rk×k is given by Jk(v) = diag(v) − vv⊤. Jk is the Jacobian of S:
∇uS(u) = Jk(S(u)). We drop the subscript k when it is clear from context.

D.3. Heuristic Derivation of Lemma 5.3

During stage 1, the model can be rewritten as

fθ(X; s)s′ = e⊤s′X
⊤S
(
β0S(A(1))Xes

)
= δs′(X)⊤S

(
β0S(A(1))δs(X)

)
.

When β0 ≈ 0, we can linearize the outer softmax as

S(β0z) ≈
1

T
1T + β0 ·

(
1

T
IT −

1

T 2
1T 1

⊤
T

)
z,

and get that

fθ(X; s)s′ ≈
1

T
δs′(X)⊤1T +

β0

T
δs′(X)⊤S(A(1))δs(X)− β0

T 2
δs′(X)⊤1T · 1⊤T S(A(1))δs(X)

= µ̂X(s′) +
β0

T

(
δs′(X)⊤S(A(1))δs(X)− µ̂X(s′) · 1⊤T S(A(1))δs(X)

)
. (26)

First, observe that since β0 ≈ 0,

fθ(X; s)s′ ≈ µ̂X(s′)

Next, taking the gradient of the approximation (26) with respect to A
(1)
i yields

∇
A

(1)
i
fθ(X; s)s′ ≈

β0

T
J
(
S(A(1)

i )
)
δs(X≤i) · (xi,s′ − µ̂X(s′)).

Therefore by the chain rule, the population gradient is given by

∇
A

(1)
i
L(θ) ≈ − 1

S
Eπ,X


∑

s,s′

π(s′ | s)
fθ(X; s)s′ + ϵ

∇
A

(1)
i
fθ(X; s)s′


.

≈ − β0

ST
J
(
S(A(1)

i )
)
· Eπ,X


∑

s,s′

π(s′ | s)
µ̂X(s′)

(xi,s′ − µ̂X(s′))δs(X≤i)


.

Letting ĝi denote the term after the preconditioner, i.e ĝi := Eπ,X

[∑
s,s′

π(s′|s)
µ̂X(s′) (xi,s′ − µ̂X(s′))δs(X≤i)

]
, we get that the
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jth entry of ĝi, ĝi,j , is

ĝi,j = Eπ,X


∑

s,s′

π(s′ | s)
µ̂X(s′)

(xi,s′ − µ̂X(s′))xj,s




= Eπ,X


∑

s,s′

π(s′ | s)
µ̂X(s′)

xi,s′xj,s −
∑

s,s′

π(s′ | s)xj,s




= Eπ,X


∑

s,s′

π(s′ | s)
µ̂X(s′)

xi,s′xj,s


− 1.

Conditioned on π, as the effective length of the sequence X grows large, due to our assumptions on Pπ the sequence
x1, . . . , xT mixes, and thus µ̂X(s′)→ µπ(s). As such,

ĝi,j ≈ Eπ


∑

s,s′

π(s′ | s)
µπ(s′)

EX [xi,s′xj,s]


− 1

= Eπ


∑

s,s′

π(s′ | s)
µπ(s′)

PX [sj = s, si = s′]


− 1

= gi,j .

D.4. Gradient Computations

Recall that A(1)
i ∈ Ri is the ith row of A(1). Define the population gradients as

G(1)(A(1), A(2))i := ∇A
(1)
i
L(θ)

∣∣
θ=(A(1),A(2))

G(2)(A(1), A(2)) := ∇A(2)L(θ)
∣∣
θ=(A(1),A(2))

.

The following lemma computes the population gradients:

Lemma D.1 (Population gradients).

G(1)(A(1), A(2))i = −
1

S
J(S(A(1)

i ))
∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei ·X≤iA

(2)es

]

G(2)(A(1), A(2)) = − 1

S

∑

s,s′

E
[

π(s′ | s)
fθ(X; s)s′ + ϵ

·X⊤S(A(1))⊤J(vθ(X; s))δs′(X)e⊤s

]

Proof. The model gradient with respect to A
(1)
i is

∇
A

(1)
i
fθ(X; s) = X⊤J(vθ(X; s))ei ⊗ J(S(A(1)

i ))X≤iA
(2)es

Therefore the loss gradient is given by

G(1)(A(1), A(2))i = −
1

S

∑

s,s′

E
[

π(s′ | s)
fθ(X; s)s′ + ϵ

∇fθ(X; s)s′

]

= − 1

S
J(S(A(1)

i ))
∑

s,s′

E
[

π(s′ | s)
fθ(X; s)s′ + ϵ

δs′(X)⊤J(vθ(X; s))ei ·X≤iA
(2)es

]
.

Next, the model gradient of A(2) is

∇A(2)fθ(X; s)s′ = X⊤S(A(1))⊤J(vθ(X; s))δs′(X)e⊤s .
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Thus

G(2)(A(1), A(2)) = − 1

S

∑

s,s′

E
[

π(s′ | s)
fθ(X; s)s′ + ϵ

·X⊤S(A(1))⊤J(vθ(X; s))δs′(X)e⊤s

]

D.5. Gradient of A(1) (Stage 1)

We show that during the first stage of training, A(1) converges to the adjacency matrix of the graph G.

The first step is to show that a quantity called the “idealized gradient” approximately aligns with the adjacency matrix of G.
For a transition matrix π, define

gi,j(π) :=
∑

s,s′

π(s′ | s)
µπ(s′)

· PX [si = s′, sj = s]− 1,

and let gi,j := Eπ[gi,j(π)].

The following lemma shows that this idealized gradient is maximized at j = p(i). The proof relies on the data processing
inequality argument, and is deferred to Appendix G.1.
Lemma D.2 (Idealized gradient is aligned with G). If p(i) ̸= ∅, then

gi,p(i) ≥ gi,j +
γ3

2S

for all j ∈ [i] \ p(i). Otherwise gi,j = 0.

Next, we show that the true gradient with respect to A(1) can indeed be approximated by this idealized gradient, and hence
the adjacency matrix of G.
Lemma D.3 (True gradient of A(1) is aligned with G (Stage 1)). Let A(2) = β0I . There exist constants cγ,S , Cγ,S such that,
if β0 ≤ cγ,ST

−3/2
eff ,

• If p(i) = ∅,

G(1)(A(1), A(2))i = J(S(A(1)
i ))v

for v with ∥v∥∞ ≤ Cγ,S
β0

T
√

Teff
.

• If p(i) ̸= ∅, then for any j ̸= p(i),

G(1)(A(1), A(2))i,p(i) ≤ G(1)(A(1), A(2))i,j − S(A(1)
i )p(i)

(
1− S(A(1)

i )p(i)

)
· Cγ,Sβ0

T
.

Proof. First, see that

X≤iA
(2)es = β0X≤ies = β0δs(X≤i).

Thus

G(1)(A(1), A(2))i = −β0J(S(A(1)
i )) · 1

S

∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei · δs(X≤i)

]
.

Let θ̂ := (A(1), 0), and define the quantities g∗i , ĝi by

g∗i := T
∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei · δs(X≤i)

]
,

ĝi := T
∑

s,s′

Eπ,X

[
π(s′ | s)

fθ̂(X; s)s′ + ϵ
δs′(X)⊤J(vθ̂(X; s))ei · δs(X≤i)

]
.
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We remark that

G(1)(A(1), A(2))i = −
β0

ST
J(S(A(1)

i ))g∗i . (27)

Since β0 ≤ cγ,S
1

T
3/2
eff

≤ 1, by Lemma G.1 we have

∥ĝi − g∗i ∥∞ ≤ 6S2ϵ−2β0 ≤ Cγ,S
1√
Teff

.

It thus suffices to analyze ĝi. Note that vθ̂(X; s) = 1
T 1T . Therefore

fθ̂(X; s)s′ =
1

T
1⊤T δs′(X) = µ̂X(s′).

and

δs′(X)⊤J(vθ̂(X; s))ei = δs′(X)⊤
(
1

T
IT −

1

T 2
1T 1

⊤
T

)
ei =

1

T
(xi,s′ − µ̂X(s′)).

The jth entry of ĝi, ĝi,j , is thus equal to

ĝi,j =
∑

s,s′

Eπ,X

[
π(s′ | s)

µ̂X(s′) + ϵ
(xi,s′ − µ̂X(s′))xj,s

]
.

By Lemma G.2, this is approximately equal to the idealized gradient gi,j :

|ĝi,j − gi,j | ≤ Cγ,S
1√
Teff

.

We are now ready to prove the theorem. First, consider the case where p(i) = ∅. By Lemma D.2, gi,j = 0, and thus

∣∣g∗i,j
∣∣ ≲ 1√

Teff

Since G(1)(A(1), A(2))i = − β0

ST J(S(A
(1)
i ))g∗i , the claim follows.

Otherwise if p(i) ̸= ∅, Lemma D.2 tells us that, for all j ̸= p(i),

g∗i,j − g∗i,p(i) ≤ gi,j − gi,p(i) +
∣∣gi,j − g∗i,j

∣∣+
∣∣∣gi,p(i) − g∗i,p(i)

∣∣∣ ≤ − γ3

2S
+ Cγ,S

1√
Teff
≤ − γ3

4S
.

Next, see that

G(1)(A(1), A(2))i,j = −
β0

ST

(
S(A(1)

i )jg
∗
i,j − S(A(1)

i )⊤g∗i S(A(1)
i )j

)
.

Therefore for any j ̸= p(i), we can bound

G(1)(A(1), A(2))i,j −G(1)(A(1), A(2))i,p(i)

=
β0

ST

[(
S(A(1)

i )p(i) − S(A(1)
i )j

)(
g∗i,p(i) − S(A

(1)
i )⊤g∗i

)
+ S(A(1)

i )j(g
∗
i,p(i) − g∗i,j)

]

≥ β0

ST

[(
S(A(1)

i )p(i) − S(A(1)
i )j

)(
1− S(A(1)

i )p(i)

) γ3

4S
+ S(A(1)

i )j
γ3

4S

]

≥ S(A(1)
i )p(i)

(
1− S(A(1)

i )p(i)

)
· β0γ

3

4S2T
,

as desired.
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We can now analyze the gradient descent dynamics over multiple timesteps. First, we show that for most root nodes i ∈ R,
A

(1)
i moves very little.

Lemma D.4. Let i ∈ R. Then
∣∣∣∣S(A

(1)
i (τ))j −

1

i

∣∣∣∣ ≲
τη1β0

T
√

Teff · i2

for all j ≤ i.

Proof. Let r(A(1)
i ) = maxj A

(1)
i,j −minj A

(1)
i,j . We have that (where v is the vector from Lemma D.3),

∥∥∥G(1)(A(1), A(2))i

∥∥∥
∞
≤ max

j
S(A(1)

i )j · ∥v∥∞,

and thus

r(A
(1)
i (t+ 1)) ≤ r(A

(1)
i (t)) + 2η1 max

j
S(A(1)

i (t))j · ∥v∥∞.

Fix ω ≤ 1. Assume there exists some t ≤ τ such that r(A(1)
i (t)) > log(1 + ω), and let t∗ be the first such time t. We can

always bound

max
j
S(A(1)

i (t))j ≤
exp
(
r(A

(1)
i (t))

)

(i− 1) + exp
(
r(A

(1)
i (t))

) ,

and thus for t < t∗, maxj S(A(1)
i (t))j ≤ 1+ω

i+ω ≤ 1+ω
i . Therefore

log(1 + ω) < r(A
(1)
i (t∗)) ≤ 2τη1∥v∥∞i−1 · (1 + ω),

Bounding log(1 + ω) ≥ ω/2 and 1 + ω ≤ 2, we get that

ω ≤ 8τη1∥v∥∞i−1 ≲
τη1β0

T
√
Teff · i

.

Additionally, when r(A
(1)
i (t)) ≤ log(1 + ω), we have the bound

1

i
(1− ω) ≤ 1

1 + (1 + ω)(i− 1)
≤ S(A(1)

i (t))j ≤
1

i
(1 + ω).

Therefore
∣∣∣∣S(A

(1)
i (τ))j −

1

i

∣∣∣∣ ≤
ω

i
≲

τη1β0

T
√
Teff · i2

,

as desired.

Next, we bound the time it takes until S
(
A(1)(t)

)
i,p(i)

≈ 1.

Lemma D.5. Let A(2)(0) = β0IS , where β0 ≤ cγ,S
1

T
3/2
eff

. There exists τ1 ≲ η−1
1 β−1

0 (T 2 + Tα−1) log(T/α) such that, for

any t ≥ τ1,

S
(
A(1)(t)

)
i,p(i)

≥ 1− α.

for all i with p(i) ̸= ∅.
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Proof. By induction, one has that A(1)(t)i,p(i) ≥ A(1)(t)i,j throughout training. Thus S
(
A(1)(t)

)
i,p(i)

≥ 1
T . Additionally,

by Lemma D.3, one has that S
(
A(1)(t)

)
i,p(i)

is increasing in t.

Fix i. Define ∆(t) = A(1)(t)i,p(i) −maxj ̸=p(i) A
(1)(t)i,j . One sees that

S
(
A(1)(t)

)
i,p(i)

≥ exp(∆(t))

T + exp(∆(t))
.

Let τ+(1/2) be the first time t at which S
(
A(1)(t)

)
i,p(i)

> 1
2 . For t < τ+(1/2) we have 1 − S

(
A(1)(t)

)
i,p(i)

≥ 1
2 , and

thus by Lemma D.3,

∆(t+ 1) ≥ ∆(t) +
Cγ,Sβ0

T 2
η1.

Therefore ∆(τ+(1/2)) ≳ β0η1

T 2 τ+(1/2). Assume that ∆(τ+(1/2)) ≥ log(2T ). Then

S
(
A(1)(τ+(1/2))

)
i,p(i)

≥ exp(log(2T ))

T + exp(log(2T ))
=

2

3
,

a contradiction. Thus ∆(τ+(1/2)) ≤ log(2T ), so τ+(1/2) ≲ T 2η−1
1 β−1

0 log(2T ).

Let τ+(α) be the first time at which S(A(1)(τ+(α))i,p(i) < 1− α. For τ+(1/2) ≤ t < τ+(α), we then have

∆(t+ 1) ≥ ∆(t) +
Cγ,Sβ0α

T
η1,

and thus if τ+(α)− τ+(1/2) ≳ Tα−1β−1
0 log(T/α),

∆(τ+(α)) ≥ Cγ,Sβ0α

T
η2(τ

+(α)− τ+(1/2)) ≥ log

(
T

α

)

Then

S
(
A(1)(τ+(α))i,p(i)

)
≥ exp(log(T/α))

T + exp(log(T/α))
=

1
α

1 + 1
α

≥ 1− α,

a contradiction. Thus τ+(α) − τ+(1/2) ≲ Tα−1β−1
0 log(T/α), and so τ+(α) ≲ T 2η−1

1 β−1
0 log(2T ) +

Tα−1β−1
0 log(T/α) ≲ η−1

1 β−1
0 (T 2 + Tα−1) log(T/α), as desired.

Combining the previous two lemmas, the following corollary tells us the value of A(1) after stage 1 of the algorithm.

Corollary D.6 (Ouptut of stage 1). Let β0 ≤ cγ,S
1

T
3/2
eff

, and set τ1 = Cγ,Sη
−1
1 β−1

0 T 2 log(T ) for appropriately chosen

constants cγ,S , Cγ,S . Then:

• If i ∈ R,

1− S
(
A(1)(τ1)

)
i,p(i)

≲ T−1,

• If i ∈ R,

sup
j∈[i]

∣∣∣∣S(A
(1)
i (τ1))j −

1

i

∣∣∣∣ ≲ min

(
1,

T log T√
Teff · i2

)
.

Proof. This follows directly from plugging in τ = τ1 into Lemma D.4 and selecting α = Θ(T−1) in Lemma D.5.
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D.6. Gradient of A(2) (Stage 2)

First, we observe that the population dynamics of A(2) possess a certain symmetry:

Lemma D.7. For all time, A(2) = β0IS + β(IS − 1
S 1S1

⊤
S ) for some scalar β.

Proof. If A(2) = β1IS + β21S1
⊤
S (all diagonals are equal and all off-diagonals are equal), then by symmetry the gradient is

also of this form. Additionally, see that

1⊤SG
(2)(A(1), A(2)) = − 1

S

∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
· 1⊤SX⊤S(A(1))⊤J(vθ(X; s))δs′(X)e⊤s

]

= − 1

S

∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
· 1⊤T S(A(1))⊤J(vθ(X; s))δs′(X)e⊤s

]

= − 1

S

∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
· 1⊤T J(vθ(X; s))δs′(X)e⊤s

]

= 0,

since J(vθ(X; s))1T = 0. Therefore G(2)(A(1), A(2)) = β ·
(
IS − 1

S 1S1
⊤
S

)
for some scalar β. Since we initialize

A(2) = β0I , throughout training A(2) is of the form A(2) = β0IS + β(IS − 1
S 1S1

⊤
S ).

Throughout the rest of the proof, we let β(t) be the scalar such that

A(2)(t) = β(t)IS − (β(t)− β0)
1

S
1S1

⊤
S .

The goal of this section is to show that when A(1) approximates the adjacency matrix of G, β(t) will grow large. Since the
gradient descent update for A(2) is

A(2)(t+ 1) = A(2)(t)− η2G
(2)(A(1)(t), A(2)(t)),

the update for β(t) is

β(t+ 1) = β(t)− η2 ·
1

S − 1
Tr
(
G(2)(A(1)(t), A(2)(t))

)
.

As such, we define the quantity ∆β(θ) by

∆β(θ) :=
1

S − 1
Tr
(
G(2)(A(1), A(2))

)
.

Finally, for notational convenience, let A(1)
∗ be the T × T matrix such that

S
(
A

(1)
∗

)
ij
=

{
1(j = p(i)) if i ∈ R
S(A(1)(τ1))i,j if i ∈ R .

A
(1)
∗ encodes the adjacency matrix of G on nodes i where p(i) ̸= ∅.

Lemma D.8 (Stage 2). Let θ = (A(1), A(2)), where A(1) = A(1)(τ1) is the output of stage 1, and A(2) = βIS − (β −
β0)

1
S 1S1

⊤
S for β ≥ 0. If β satisfies

exp(β) ≤ exp(β∗) := Cγ,ST
1/12
eff log−1/6 T,

then

1 ≥ −∆β(θ) ≥
1

4
γ8S−6e−2β > 0.
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Proof. Note that XA(2)es = βXes − (β − β0)
1
S 1T . Since the row sums of S(A(1)) are 1,

S(A(1))XA(2)es = βS(A(1))Xes −
β − β0

S
1T ,

and thus

vθ(X; s) = S(βS(A(1))Xes).

Define zθ(X; s) = S(A(1))Xes. We have that

−∆β(θ) = −
1

S − 1
Tr
[
G(2)(A(1), A(2))

]

=
1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))S(A(1))Xes

]

=
1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(S(βzθ(X; s)))zθ(X; s)

]

=
1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s)

δs′(X)⊤S(βzθ(X; s)) + ϵ
δs′(X)⊤J(S(βzθ(X; s)))zθ(X; s)

]

We first show the upper bound. We can write

δs′(X)⊤J(S(βzθ(X; s)))zθ(X; s) ≤
∑

i

δs′(X)iS(βzθ(X; s))izθ(X; s)i

≤
∑

i

δs′(X)iS(βzθ(X; s))i

= δs′(X)⊤S(βzθ(X; s)),

since 0 ≤ zθ(X; s)i ≤ 1. Therefore

−∆β(θ) ≤
1

S(S − 1)

∑

s,s′

Eπ,X [π(s′ | s)] = 1

S − 1
≤ 1.

We next move to the lower bound. Define z̃(X; s) := S(A(1)
∗ )Xes. We have that

z̃(X; s)i =

{
xp(i),s if i ̸∈ R
zθ(X; s)i if i ∈ R . (28)

First, we will aim to replace zθ(X; s) with z̃(X; s). Indeed, when p(i) ̸= ∅,

|z̃(X; s)i − zθ(X; s)i| =
∣∣∣∣
(
S(A(1))i − S(A(1)

∗ )i

)⊤
δs(X)

∣∣∣∣ ≤
∥∥∥S(A(1))i − S(A(1)

∗ )i

∥∥∥
1
≲ T−1,

by Corollary D.6. Thus ∥z̃(X; s)− zθ(X; s)∥∞ ≲ T−1.

Define

qs′(z) :=
δs′(X)⊤J(S(βz))z
δs′(X)⊤S(βz) + ϵ

,

so that

−∆β(θ) =
1

S(S − 1)

∑

s,s′

Eπ,X [π(s′ | s)qs′(zθ(X; s))].
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By Lemma H.1, we have that

|qs′(zθ(X; s))− qs′(z̃(X; s))| ≲ (1 + β)∥zθ(X; s)− z̃(X; s)∥∞ ≲ (1 + β)T−1,

and thus ∣∣∣∣∣∣
−∆β(θ)−

1

S(S − 1)

∑

s,s′

Eπ,X [π(s′ | s)qs′(z̃(X; s))]

∣∣∣∣∣∣
≲ (1 + β)T−1.

Next, plugging in the definition of qs′ , we get

1

S(S − 1)

∑

s,s′

Eπ,X [π(s′ | s)qs′(z̃(X; s))]

=
1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s)δs

′(X)⊤
(
diag(S(βz̃(X; s)))− S(βz̃(X; s))S(βz̃(X; s))⊤

)
z̃(X; s)

δs′(X)⊤S(βz̃(X; s)) + ϵ

]

≥ 1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s) ·

(∑
i xi,s′S(βz̃(X; s))iz̃(X; s)i
ϵ+

∑
i xi,s′S(βz̃(X; s))i

−
∑

i

S(βz̃(X; s))iz̃(X; s)i

)]
. (29)

Our next goal is to replace the term in the parentheses in (29) with something independent of X , where the concentration
holds as Teff grows large. Indeed, define the quantities E(1)

s,s′(X), E
(2)
s,s′(X), E

(3)
s (X) by

E
(1)
s,s′(X) :=

∑

i

xi,s′S(βz̃(X; s))iz̃(X; s)i (30)

E
(2)
s,s′(X) :=

∑

i

xi,s′S(βz̃(X; s))i (31)

E(3)
s (X) :=

∑

i

S(βz̃(X; s))iz̃(X; s)i, (32)

so that

1

S(S − 1)

∑

s,s′

Eπ,X [π(s′ | s)qs′(z̃(X; s))] ≥ 1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s) ·

(
E

(1)
s,s′(X)

ϵ+ E
(2)
s,s′(X)

− E(3)
s (X)

)]
.

Let r = |R|
T . One can make the approximation

E
(1)
s,s′(X)

ϵ+ E
(2)
s,s′(X)

≈ (1− r)eβµπ(s)π(s
′ | s) + reβµπ(s)µπ(s)µπ(s

′)

(1− r)(eβ − 1)µπ(s)π(s′ | s) + (1− r)µπ(s′) + reβµπ(s)µπ(s′)
(33)

E(3)
s (X) ≈ (1− r)eβµπ(s) + reβµπ(s)µπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)
. (34)

This motivates defining the following idealized gradient:

ĝ(β) :=
1

S(S − 1)

∑

s

Eπ

[
µπ(s) ·

(∑

s′

(1− r)eβπ(s′ | s)2 + reβµπ(s)µπ(s
′)π(s′ | s)

(1− r)(eβ − 1)µπ(s)π(s′ | s) + (1− r)µπ(s′) + reβµπ(s)µπ(s′)

− (1− r)eβ + reβµπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

)]

Indeed, the approximations in (33) and (34) can be made rigorous: by Lemma H.6 and Lemma H.7, we have that
∣∣∣∣∣∣

1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s) ·

(
E

(1)
s,s′(X)

ϵ+ E
(2)
s,s′(X)

− E(3)
s (X)

)]
− ĝ(β)

∣∣∣∣∣∣
≲ (1 + β) · log

1/2 T

T
1/4
eff

≲ eβ
log1/2 T

T
1/4
eff

.
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Finally, it suffices to show that ĝ(β) ≥ 0. Define the function hs : R→ R by

hs(z) =
(1− r)eβz2 + reβµπ(s)z

(1− r)(eβ − 1)µπ(s)z + (1− r) + reβµπ(s)
− (1− r)eβ + reβµπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)
.

Simplifying the formula for ĝ(β), we see that it can be written in terms of this hs:

ĝ(β) =
1

S(S − 1)

∑

s

Eπ

[
µπ(s) ·

(∑

s′

µπ(s
′)hs

(
π(s′ | s)
µπ(s′)

))]
.

Furthermore, hs is convex, and so ĝ(β) is actually a linear combination of hs-divergences and is hence nonnegative. The
following lemma relates the hs-divergence to the χ2-divergence in order to get a quantitative lower bound on ĝ(β) away
from 0. The proof is deferred to Appendix G.1.

Lemma D.9. ĝ(β) ≥ 1
2γ

8S−6e−2β > 0.

To conclude, when β ≤ β∗,
∣∣∣∣∣∣
−∆β(θ)−

1

S(S − 1)

∑

s,s′

E[π(s′ | s)q(z̃(X; s))]

∣∣∣∣∣∣
≲ eβT−1 ≤ 1

8
γ8S−6e−2β

∣∣∣∣∣∣
1

S(S − 1)

∑

s,s′

Eπ,X

[
π(s′ | s) ·

(
E

(1)
s,s′(X)

ϵ+ E
(2)
s,s′(X)

− E(3)
s (X)

)]
− ĝ(β)

∣∣∣∣∣∣
≲ eβ

log1/2 T

T
1/4
eff

≤ 1

8
γ8S−6e−2β ,

and thus

−∆β(θ) ≥
1

4
γ8S−6e−2β ,

as desired.

Lemma D.10 (Dynamics of A(2)). Let A(1)(τ1) be the output of stage 1 of Algorithm 1, and let η2 ≤ 1. There exists
τ2 ≲γ,S e2β

∗
β∗η−1

2 such that
1 + β∗ ≥ β(τ1 + τ2) ≥ β∗.

Proof. If β(t) ≤ β∗, then by Lemma D.8

β(t+ 1) ≥ β(t) + η2 ·
1

4
γ8S−6e−2β(t) ≥ β(t) + η2 ·

1

4
γ8S−6e−2β∗

.

Assume that β(τ1 + t) < β∗ for all t ≤ T := 4S6γ−8e2β
∗
β∗η−1

2 . Then

β(τ1 + T ) ≥
1

4
γ8S−6e−2β∗T η2 = β∗,

a contradiction. Therefore β(τ1 + τ2) ≥ β∗ for some τ2 ≤ T ≲ e2β
∗
β∗η−1

2 . Finally, by Lemma D.8, β(t+ 1) ≤ β(t) + 1,
and thus letting τ2 be the smallest such time we have 1 + β∗ ≥ β(τ1 + τ2) ≥ β∗.

D.7. Proof of Theorem 4.4

Proof of Theorem 4.4. Pick β0 ≤ cγ,S
1

T
3/2
eff

, and set τ1 = Cγ,Sη
−1
1 β−1

0 T 2 log(T ) for constants cγ,S , Cγ,S chosen appropri-

ately. By Corollary D.6, the output of stage 1 satisfies

1− S
(
A(1)(τ1)

)
i,p(i)

≲ T−1.

for i ∈ R.
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Next, by Lemma D.10 there exists τ2 = Õ
(
T

1/6
eff η−1

2

)
such that β(τ1 + τ2) ≥ β∗.

It now suffices to bound the loss of the predictor θ̂. We have

∣∣∣L(θ̂)− L∗
∣∣∣ ≤ Eπ,X


 1

S

∑

s,s′

π(s′ | s) ·
∣∣log

(
fθ̂(X; s)s′ + ϵ

)
− log π(s′ | s)

∣∣



= Eπ


 1

S

∑

s,s′

π(s′ | s)EX

[∣∣log
(
fθ̂(X; s)s′ + ϵ

)
− log π(s′ | s)

∣∣]



For A,B > 0, one has the bound

|logA− logB| ≤ |A−B|
min(A,B)

.

Therefore
∣∣log

(
fθ̂(X; s)s′ + ϵ

)
− log π(s′ | s)

∣∣

≤
(∣∣fθ̂(X; s)s′ − π(s′ | s)

∣∣+ ϵ
)
· 1

min(fθ̂(X; s)s′ + ϵ, π(s′ | s))
≲
(∣∣fθ̂(X; s)s′ − π(s′ | s)

∣∣+ ϵ
)(

1
fθ̂(X;s)s′≥

γ3

4S

+ ϵ−11
fθ̂(X;s)s′<

γ3

4S

)
,

and thus by Cauchy

EX

∣∣log
(
fθ̂(X; s)s′ + ϵ

)
− log π(s′ | s)

∣∣

≲

((
EX

∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣2
)1/2

+ ϵ

)(
1 + ϵ−1PX

(
fθ̂(X; s)s′ <

γ3

4S

))

≲

((
EX

∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣2
)1/2

+ ϵ

)(
1 + ϵ−1T−1

eff

)

≲
(
EX

∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣2
)1/2

+ ϵ,

where the bound PX

(
fθ̂(X; s)s′ <

γ3

4S

)
≲ T−1

eff follows from Lemma H.8. Altogether, applying Lemma H.8 again, we get

∣∣∣L(θ̂)− L∗
∣∣∣ ≲

(
EX

∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣2
)1/2

+ ϵ

≤ eβ
∗
log1/2 T

T
1/4
eff

+ e−β∗γ/2 + ϵ

≲
log1/3 T

T
1/6
eff

+

(
log1/6 T

T
1/12
eff

)γ/2

≲

(
log2 T

Teff

)γ/24

.

E. Markov Chain Preliminaries
Given a Markov chain π with stationary measure µπ , we define the normalized and centered transition matrix Bπ ∈ RS×S

by:

(Bπ)s,s′ :=

√
µπ(s)

µπ(s′)
[π(s′|s)− µπ(s

′)].
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An immediate consequence is that

(Bk
π)s,s′ :=

√
µπ(s)

µπ(s′)
[πk(s′|s)− µπ(s

′)]

which allows for the decomposition

πk(s′|s) = µπ(s
′) + (Bk

π)s,s′

√
µπ(s′)

µπ(s)
.

We also observe that

∥Bπ∥2F =
∑

s,s′

(
µπ(s)π(s

′ | s)2
µπ(s′)

− µπ(s
′)µπ(s)

)
=
∑

s,s′

µπ(s)π(s
′ | s)2

µπ(s′)
− 1. (35)

Definition E.1 (Spectral Gap). We say that a Markov chain π with stationary measure µπ has a spectral gap of 1− λ(π)
where λ(π) := ∥Bπ∥2.
Lemma E.2. Let mins,s′ π(s | s′) ≥ γ/S. Then λ(π) ≤ 1− γ/S.

Proof. By Lemma E.3, we can write

π =
γ

S
1µ⊤

π + (1− γ)Q

for another stochastic matrix Q. One then sees that π⊤Q = π. Therefore

π − 1µ⊤
π = (1− γ/S)(π − 1µ⊤

π ),

so

∥π − 1µ⊤
π ∥µπ

= (1− γ/S)∥Q− 1µ⊤
π ∥µπ

≤ 1− γ/S.

Therefore λ(π) ≤ 1− γ/S.

Lemma E.3. Let mins,s′ π(s | s′) ≥ γ/S. Then mins µπ(s) ≥ γ/S.

Proof. Since µπ(s) is stationary,

µπ(s
′) =

∑

s

π(s′ | s)µπ(s)

≥
∑

s

γ/S · µπ(s)

= γ/S,

as desired.

Lemma E.4. Let mins,s′ π(s | s′) ≥ γ/S. Then

min
j ̸=k

TV(π(· | j), π(· | k)) ≤ 1− γ.

Proof. Write

TV(π(· | j), π(· | k)) = 1

2

∑

s

|π(s | j)− π(s | k)|

=
1

2

∑

s

(π(s | j) + π(s | k)− 2min{π(s | j), π(s | k)})

≤ 1− γ.
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Lemma E.5. ∥Bπ∥2F ≥ γ2/S

Proof. By definition

∥Bπ∥2F =
∑

s,s′

π(s′ | s)2µπ(s)

µπ(s′)
− 1,

and thus

∥Bπ∥2F =
∑

s′

1

µπ(s′)

(∑

s

π(s′ | s)2µπ(s)− µπ(s
′)2

)

≥
∑

s,s′

µπ(s)(π(s
′ | s)− µπ(s

′))
2

≥ γ2

S

∑

s

µπ(s)

=
γ2

S
.

Lemma E.6 ((Cohen et al., 1993), Theorem 3.1). Let π be a stochastic matrix such that maxs π(s
′ | s) > 0 for all s′. Then,

for any f -divergence Df and probability vectors x, y,

Df (π ◦ x||π ◦ y) ≤ α(π)Df (x||y),
where the contraction coefficient α(π) is defined as

α(π) := max
j ̸=k

TV(π(· | j), π(· | k)) = 1

2
max
j ̸=k
∥π(· | j)− π(· | k)∥1.

F. Concentration
Definition F.1 (Graph Distance). Let G be the directed acyclic graph in Section 2.2. Let G denote the undirected version of
G. Then we define d(i, j) to be length of the shortest path between i, j in G. If i, j are not connected in G then d(i, j) :=∞.
Definition F.2 (Effective Sequence Length). For λ ∈ (0, 1), we define the effective sequence length Teff(λ) by:

Teff(λ) :=
T 2

∑T
i,j=1 λ

d(i,j)
.

This formula for Teff(λ) is closely related to the definition of Teff (Definition 4.3):

Lemma F.3. Decompose G =
⋃k

i=1 Ti where Ti are disjoint trees. Let Li denote the number of leaves of tree Ti for
i = 1, . . . , k. Then,

Teff(λ) ≥
T (1− λ)

maxki=1 Li
=: (1− λ)Teff

Proof. Note that Teff(λ)
−1 naturally decomposes to a sum within each tree as d(i, j) :=∞ when i and j are not connected:

1

Teff(λ)
=

1

T 2

k∑

l=1

∑

i,j∈Tl

λd(i,j)

=
1

T 2

k∑

l=1

∑

i,j∈Tl

λd(i,j)

=
1

T 2

k∑

l=1

∑

i∈Tl

∑

k≥0

#{j ∈ Tl : d(i, j) = k}λk.
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Now note that for a fixed node i, each path from i to j with d(i, j) = k can be lengthened to a path that reaches a leaf.
Furthermore, for each leaf there can be only one such j. Therefore, #{j ∈ Tl : d(i, j) = k} ≤ Ll. Plugging this in gives:

1

Teff(λ)
≤ 1

T 2

k∑

l=1

|Tl|Ll

∑

k≥0

λk

=

∑k
l=1 |Tl|Ll

T 2(1− λ)

≤ maxl Tl

T (1− λ)

which completes the proof.

Throughout the remainder of this section, the only assumption we place on π is that minπ(s′ | s) ≥ γ/S. Defining
λ := 1− γ/S, we have that λ ≥ λ(π) by Lemma E.2, and thus Teff(λ)

−1 ≲ T−1
eff .

Lemma F.4. For any π and any i, j < T ,

|PX [xj = s, xi = s′]− µπ(s)µπ(s
′)| ≤

√
µπ(s)µπ(s′)λ(π)

d(i,j).

Proof. Let k be the closest common parent of i, j so that d(k, i) + d(k, j) = d(i, j) and there exist directed paths from k to
i and k to j in G. Then,

P[sj = s, si = s′]− µπ(s)µπ(s
′)

= Cov[xj,sxi,s′ ]

= E[(xj,s − µπ(s))(xi,s′ − µπ(s
′))]

=
∑

sk∈[S]

µπ(sk)(π
d(k,j)(s′|sk)− µπ(s

′))(πd(k,i)(s|sk)− µπ(s))

=
∑

sk∈[S]

µπ(sk)

(
(Bd(k,j)

π )sk,s

√
µπ(s)

µπ(sk)

)(
(Bd(k,i)

π )sk,s′

√
µπ(s′)

µπ(sk)

)

=
√
µπ(s)µπ(s′)

∑

sk∈[S]

(Bd(k,j)
π )sk,s(B

d(k,i)
π )sk,s′

=
√
µπ(s)µπ(s′)[(B

d(k,j)
π )⊤(Bd(k,i)

π )]s,s′ .

Therefore taking absolute values gives:

|P[sj = s, si = s′]− µπ(s)µπ(s
′)| ≤

√
µπ(s)µπ(s′)∥Bπ∥d(k,j)+d(k,i)

≤
√
µπ(s)µπ(s′)λ(π)

d(i,j).

Lemma F.5. For any subset I ⊂ [T − 1], define

µ̂XI
(s) :=

1

|I|
∑

i∈I

xi,s.

Then,

EX [µ̂XI
(s)] = µπ(s) and EX [(µ̂XI

(s)− µπ(s))
2] ≤ µπ(s)T

2

Teff(λ)|I|2
.

Note that Lemma F.5 is excluding the token xT as it is resampled from Unif([S]).
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Proof. The first claim follows from the fact that E[xi,s] = µπ(s) as the sequence X is initialized from µπ . Then,

EX [(µ̂XI
(s)− µπ(s))

2] =
1

|I|2
∑

i,j∈I

EX [xi,sxj,s − µπ(s)
2]

≤ µπ(s)

|I|2
∑

i,j∈I

λd(i,j)

≤ µπ(s)

|I|2
T−1∑

i,j=1

λd(i,j)

=
µπ(s)(T − 1)2

Teff(λ)|I|2

which completes the proof.

Corollary F.6.

EX [(µ̂X(s)− µπ(s))
2] ≲

1

Teff(λ)
.

Proof. One can write

µ̂X(s) =
T − 1

T
µ̂X[T−1]

(s) +
1

T
xT,s.

Thus

EX [(µ̂X(s)− µπ(s))
2] ≤

(
T − 1

T

)2

EX

[(
µ̂X[T−1]

(s)− µπ(s)
)2]

+
1

T 2
≲

1

Teff(λ)
.

Lemma F.7. For any subset I ⊂ [T − 1] such that p(i) ̸= ∅ for all i ∈ I , define

ĉXI
(s, s′) :=

1

|I|
∑

i∈I

xp(i),sxi,s.

Then,

EX [ĉXI
(s, s′)] = µπ(s)π(s

′|s) and EX [(µ̂XI
(s)− µπ(s)π(s

′|s))2] ≲ T 2

Teff(λ)|I|2
.

Proof. The first result follows from linearity of expectation and the fact that the Markov process is stationary. Then,

EX [(µ̂XI
(s)− µπ(s)π(s

′|s))2]

=
1

|I|2
∑

i,j∈I

E[xp(i),sxi,s′xp(j),sxj,s′ ]− µπ(s)
2π(s′|s)2.

There are three possibilities for the dependency graph of i, j. First, if i = j the expression in the sum is equal to
µπ(s)π(s

′|s)(1− µπ(s)π(s
′|s)). Next, if i, j are independent conditioned on p(i), p(j), we get

E[xp(i),sxi,s′xp(j),sxj,s′ ]− µπ(s)
2π(s′|s)2

= π(s′|s)2(E[xp(i),sxp(j),s]− µπ(s)
2)

≤ µπ(s)π(s
′|s)2λd(p(i),p(j)).
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Finally, if i, j are dependent conditioned on p(i), p(j) it means that either there is a directed path from i to p(j) or a direct
path from j to p(i) in the directed graph G. Without loss of generality, we can assume that there is a directed path from j to
p(i). Then we have:

µπ(s)π(s
′|s)πd(j,p(i))(s|s′)π(s′|s)− µπ(s)

2π(s′|s)2

= µπ(s)π(s
′|s)2

[
πd(j,p(i))(s|s′)− µπ(s)

]

≤
√
µπ(s)µπ(s′)π(s

′|s)2λd(j,p(i)).

Therefore,

EX [(µ̂XI
(s)− µπ(s)π(s

′|s))2]

≲
1

|I|2
∑

i,j∈I

λd(i,j)

≲
T 2

Teff(λ)|I|2
.

Lemma F.8. For any subset I ⊂ [T − 1] such that p(i) ̸= ∅ for all i ∈ I ,

EX



(

1

|I|
∑

i∈I

xp(i),s − µπ(s)

)2

 ≲

T 2

Teff(λ)|I|2
.

Proof. As above, we will directly compute the second moment:

1

|I|2
∑

i,j∈I

xp(i),sxp(j),s − µπ(s)
2 ≤ µπ(s)

|I|2
∑

i,j∈I

λd(p(i),p(j))

≤ µπ(s)

|I|2
∑

i,j∈I

λd(i,j)−2

≤ µπ(s)

λ2|I|2
∑

i,j∈T

λd(i,j)

≤ T 2µπ(s)

Teff(λ)λ2|I|2 .

G. Lemmas for Stage 1
G.1. Strong Data Processing Inequality

We briefly recall the definition of the χ2 divergence between two probability distributions on state space X :

χ2(P ||Q) :=
∑

x∈X

P (x)2

Q(x)
− 1,

along with the χ2 mutual information between two random variables Y, Z

Iχ2(Y ;Z) =
∑

y,z∈X

P (Y = y, Z = z)2

P (Y = y)P (Z = z)
− 1
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Proof of Lemma D.2. First we consider the case where i and j are in separate trees. If i ̸= T , then PX [si = s′, sj = s] =
µπ(s)µπ(s

′), and thus

gi,j(π) =
∑

s,s′

π(s′ | s)µπ(s)− 1 = 0.

We note that this subsumes the case where i is a root note, since that necessarily implies that j is in a different tree. Otherwise
when i = T ,

gi,j(π) =
1

S

∑

s,s′

π(s′ | s)µπ(s)

µπ(s′)
− 1 =

1

S

∑

s′

µπ(s
′)

µπ(s′)
− 1 = 0.

Next, assume that i and j are in the same tree. When j = p(i), we have

gi,p(i)(π) =
∑

s,s′

π(s′ | s)
µπ(s′)

· PX [si = s′, sj = s]− 1

=
∑

s,s′

π(s′ | s)2µπ(s)

µπ(s′)
− 1

= ∥Bπ∥2F ,

where the last equality is (35).

If j ̸= p(i) and j ̸= i, then by AM-GM:

gi,j(π) =
∑

s,s′

π(s′ | s)
µπ(s′)

· PX [si = s′, sj = s]− 1

≤ 1

2

∑

s,s′

µπ(s)π(s
′ | s)2

µπ(s′)
+

1

2

∑

s,s′

PX [si = s′, sj = s]2

µπ(s)µπ(s′)
− 1

=
1

2
∥Bπ∥2F +

1

2
Iχ2(si; sj | π).

We see that the χ2-mutual information can be rewritten as

Iχ2(si; sj | π) =
∑

s′

µπ(s
′) · χ2(PX [sj = · | si = s′] || µπ).

Let p(i, j) be the least common ancestor of i and j. Let x be the probability distribution defined by x =
PX

[
sp(i,j) = · | si = s′

]
. The distribution πd(j,p(i,j)) ◦ x is

(πd(j,p(i,j)) ◦ x)(s) =
∑

s∗

πd(j,p(i,j))(s | s∗) · x(s∗)

=
∑

s∗

PX [sj = s | sp(i,j) = s∗] · PX

[
sp(i,j) = s∗ | si = s′

]

= PX [sj = s | si = s′],

where the last line uses the fact that si and sj are conditionally independent given p(i, j).

Applying Lemma E.6, we thus have

χ2(PX [sj = · | si = s′] || µπ) ≤ α(π)d(j,p(i,j)) · χ2
(
PX

[
sp(i,j) = · | si = s′

]
|| µπ

)
.
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Therefore

Iχ2(si; sj | π) ≤ α(π)d(j,p(i,j))
∑

s′

µπ(s
′) · χ2

(
PX

[
sp(i,j) = · | si = s′

]
|| µ
)

= α(π)d(j,p(i,j)) · Iχ2(sp(i,j); si | π)
= α(π)d(j,p(i,j))

∑

s

µπ(s) · χ2
(
PX

[
si = · | sp(i,j) = s

]
|| µ
)

= α(π)d(j,p(i,j))
∑

s

µπ(s) · χ2
(
πd(i,p(i,j))(· | s)|| µ

)
.

Since i > j, d(i, p(i, j)) ≥ 1, and thus we can apply Lemma E.6 to get

χ2
(
πd(i,p(i,j))(· | s)|| µ

)
≤ α(π)d(i,p(i,j))−1 · χ2(π(· | s)|| µ).

Altogether,

Iχ2(si; sj | π) ≤ α(π)d(j,p(i,j))+d(i,p(i,j))−1
∑

s

µπ(s) · χ2(π(· | s)|| µ)

= α(π)d(i,j)−1 ·


∑

s,s′

π(s′ | s)2µπ(s)

µπ(s′)
− 1




= α(π)d(i,j)−1∥Bπ∥2F .
For j ̸= p(i), d(i, j) ≥ 2, so

gi,j(π) ≤
1

2

(
α(π)d(i,j)−1 + 1

)
∥Bπ∥2F

≤ 1

2
(α(π) + 1)∥Bπ∥2F .

and thus

gi,p(i)(π)− gi,j(π) ≥
1− α(π)

2
· ∥Bπ∥2F .

By Assumption 4.1 and Lemma E.4, we have 1− α(π) ≥ γ and ∥Bπ∥2F ≥ γ2/S. Therefore

gi,p(i)(π)− gi,j(π) ≥
γ3

2S
.

Finally, when j = i, we have

gi,i(π) =
∑

s

π(s | s)− 1.

Therefore

gi,i =
∑

s

E[π(s | s)]− 1 = 0.

Therefore gi,p(i) − gi,i ≥ γ2/S ≥ γ3

2S .

G.2. Auxiliary Dynamics Lemmas

Lemma G.1. Let θ = (A(1), β0IS), θ̂ = (A(1), 0), for β0 ≤ 1. Define g∗i , ĝi ∈ Ri by

g∗i := T
∑

s,s′

E
[

π(s′ | s)
fθ(X; s)s′ + ϵ

δs′(X)⊤J(vθ(X; s))ei · δs(X≤i)

]
,

ĝi := T
∑

s,s′

E
[

π(s′ | s)
fθ̂(X; s)s′ + ϵ

δs′(X)⊤J(vθ̂(X; s))ei · δs(X≤i)

]
.

Then ∥g∗i − ĝi∥∞ ≤ 3S2ϵ−2(eβ0 − 1)
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Proof. We can bound
∣∣∣∣

1

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei −

1

fθ̂(X; s)s′ + ϵ
δs′(X)⊤J(vθ̂(X; s))ei

∣∣∣∣

≤
∣∣∣∣

1

fθ(X; s)s′ + ϵ
− 1

fθ̂(X; s)s′ + ϵ

∣∣∣∣
∣∣δs′(X)⊤J(vθ̂(X; s))ei

∣∣

+
1

fθ̂(X; s)s′ + ϵ

∣∣δs′(X)⊤
(
J(vθ(X; s))− J(vθ̂(X; s))

)
ei
∣∣.

First, see that
∣∣fθ(X; s)s′ − fθ̂(X; s)s′

∣∣ =
∣∣δs′(X)⊤

(
vθ(X; s)− vθ̂(X; s)

)∣∣
≤
∥∥vθ(X; s)− vθ̂(X; s)

∥∥
1
,

since ∥δs′(X)∥∞ ≤ 1. Next, we have

vθ(X; s) = S
(
β0 · S(A(1))X⊤ISes

)
) = S

(
β0 · S(A(1))δs(X)

)
).

Since S(A(1))δs(X) has entries in [0, 1], we can bound each entry of vθ(X; s) as

1

(T − 1)eβ0 + 1
≤ vθ(X; s)i ≤

eβ0

eβ0 + (T − 1)
,

and thus
∣∣vθ(X; s)i − vθ̂(X; s)i

∣∣ =
∣∣∣∣vθ(X; s)i −

1

T

∣∣∣∣ ≤
eβ0

eβ0 + (T − 1)
− 1

T
≤ eβ0 − 1

T
.

Thus
∣∣fθ(X; s)s′ − fθ̂(X; s)s′

∣∣ ≤ eβ0 − 1. (36)

Next, see that

δs′(X)⊤J(vθ(X; s))ei = vθ(X; s)i[xi,s′ − fθ(X; s)s′ ],

and thus
∣∣δs′(X)⊤

(
J(vθ(X; s))− J(vθ̂(X; s))

)
ei
∣∣

≤
∣∣vθ(X; s)i − vθ̂(X; s)i

∣∣|xi,s′ − fθ(X; s)s′ |+ vθ̂(X; s)i
∣∣fθ(X; s)s′ − fθ̂(X; s)s′

∣∣

≤ 2(eβ0 − 1)

T
.

Altogether, we have the bound
∣∣∣∣

1

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei −

1

fθ̂(X; s)s′ + ϵ
δs′(X)⊤J(vθ̂(X; s))ei

∣∣∣∣ ≤
3(eβ0 − 1)

ϵ2T
.

Therefore

∥g∗i − ĝi∥

≤ T
∑

s,s′

Eπ,X

[
π(s′ | s)

∣∣∣∣
1

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei −

1

fθ̂(X; s)s′ + ϵ
δs′(X)⊤J(vθ̂(X; s))ei

∣∣∣∣
]

≤ T
∑

s,s′

Eπ,X

[
π(s′ | s) · 3(e

β0 − 1)

ϵ2T

]

≤ 3Sϵ−2(eβ0 − 1)

≤ 6Sϵ−2β0,

since ez − 1 ≤ 2z for z ∈ [0, 1].
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G.3. Concentration

Lemma G.2. For any s, s′ ∈ S and any π with spectral gap 1 − λ(π) ≥ 1 − λ (see Definition E.1) and µπ(s
′) ≥ γ/S,

there exists a sufficiently large constant Cγ,S such that if ϵ ≥ Cγ,ST
−1/2
eff and i ≥ j,

∣∣∣∣EX

[
(xi,s′ − µ̂X(s′))xj,s

µ̂X(s′) + ϵ

]
−
(
PX [si = s′, sj = s]

µπ(s′)
− PX [sj = s]

)∣∣∣∣ ≲
1√
Teff

.

Proof.

Eπ(s, s
′) := EX

[
(xi,s′ − µ̂X(s′))xj,s

µ̂X(s′) + ϵ

]
− PX [si = s′, sj = s]

µπ(s′)
+ PX [sj = s]

= EX

[
xi,s′xj,s

µ̂X(s′) + ϵ

]
− PX [si = s′, sj = s]

µπ(s′)
− EX

[
µ̂X(s′)

µ̂X(s′) + ϵ
xj,s

]
+ PX [sj = s].

Eπ(s, s
′) can be rewritten as:

Eπ(s, s
′) = EX

[
xi,s′xj,s

µ̂X(s′) + ϵ
− xi,s′xj,s

µπ(s′)
− µ̂X(s′)

µ̂X(s′) + ϵ
xj,s + xj,s

]

= EX

[
xi,s′xj,s

µ̂X(s′) + ϵ
− xi,s′xj,s

µπ(s′)
+

ϵxj,s

µ̂X(s′) + ϵ

]

= EX

[
xi,s′xj,s[µπ(s

′)− µ̂X(s′)− ϵ] + ϵxj,sµπ(s
′)

(µ̂X(s′) + ϵ)µπ(s′)

]

Note that the inside of the expectation is upper bounded by O(ϵ−1). Therefore by the triangle inequality we have

|Eπ(s, s
′)| ≤ EX

[
xi,s′xj,s|µ̂X(s′)− µπ(s

′)|+ ϵ[xi,s′xj,s + µπ(s
′)xj,s]

(µ̂X(s′) + ϵ)µπ(s′)

]

= EX

[
xi,s′xj,s|µ̂X(s′)− µπ(s

′)|+ ϵ[xi,s′xj,s + µπ(s
′)xj,s]

(µ̂X(s′) + ϵ)µπ(s′)
1
µ̂X(s′)>

µπ(s′)
2

]

+ EX

[
xi,s′xj,s|µ̂X(s′)− µπ(s

′)|+ ϵ[xi,s′xj,s + µπ(s
′)xj,s]

(µ̂X(s′) + ϵ)µπ(s′)
1
µ̂X(s′)≤µπ(s′)

2

]

≲ EX

[
xi,s′xj,s|µ̂X(s′)− µπ(s

′)|+ ϵ[xi,s′xj,s + µπ(s
′)xj,s]

µπ(s′)2

]

+ ϵ−1 PX

[
µ̂X(s′) ≤ µπ(s

′)

2

]

≲
√

E[(µ̂X(s′)− µπ(s′))2] + ϵ+
1

ϵTeff

≲
1√
Teff

+ ϵ,

where the last inequality follows from Corollary F.6.

H. Lemmas for Stage 2
H.1. Idealized Gradient

Proof of Lemma D.9. Recall

hs(z) =
(1− r)eβz2 + reβµπ(s)z

(1− r)(eβ − 1)µπ(s)z + (1− r) + reβµπ(s)
− (1− r)eβ + reβµπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)
.

and

ĝ(β) =
1

S(S − 1)

∑

s

Eπ

[
µπ(s) ·

(∑

s′

µπ(s
′)hs

(
π(s′ | s)
µπ(s′)

))]
.
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For a function h(z) = Az2+Bz
Cz+D , one has

h′′(z) =
2D(AD −BC)

(Cz +D)3
.

Thus for z ∈ [0, Sγ−1],

h′′
s (z) =

2
(
1− r + reβµπ(s)

)
· (1− r) ·

(
eβ(1− r) + reβµπ(s)+β − r(eβ − 1)µπ(s)e

βµπ(s)
)

(
(1− r)(eβ − 1)µπ(s)z + (1− r) + reβµπ(s)

)3

≥ 2(1− r)2eβ
(
(1− r)(eβ − 1)µπ(s)Sγ−1 + (1− r) + reβµπ(s)

)3

≥ 2(1− r)2eβ

(Sγ−1eβ)
3

≥ 2γ5S−3e−2β .

Therefore for z ∈ [0, Sγ−1],

hs(z) ≥ h′
s(1)(z − 1) + γ5S−3e−2β · (z − 1)2.

Note that π(s′|s)
µπ(s′)

≤ S
γ . Therefore

hs

(
π(s′ | s)
µπ(s′)

)
≥ h′

s(1)

(
π(s′ | s)
µπ(s′)

− 1

)
+ γ5S−3e−2β ·

(
π(s′ | s)
µπ(s′)

− 1

)2

and thus
(∑

s′

µπ(s
′)hs

(
π(s′ | s)
µπ(s′)

))
≥ γ5S−3e−2β

∑

s′

µπ(s
′)

(
π(s′ | s)
µπ(s′)

− 1

)2

= γ5S−3e−2βχ2(π(· | s)||µπ).

Altogether,

ĝ(β) =
1

S(S − 1)

∑

s

Eπ

[
µπ(s) ·

(∑

s′

µπ(s
′)hs

(
π(s′ | s)
µπ(s′)

))]

≥ γ5S−5e−2βEπ

[∑

s

µπ(s)χ
2((π(· | s)||µ)

]

= γ5S−5e−2βEπ

[
∥Bπ∥2F

]

=
1

2
γ8S−6e−2β .

H.2. Auxiliary Dynamics Lemmas

Lemma H.1. Define

qs′(z) =
δs′(X)⊤J(S(βz))z
δs′(X)⊤S(βz) + ϵ

,

Then supz∈[0,1]T ∥∇qs′(z)∥1 ≤ 10(1 + β).
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Proof. We have that

∇zqs′(z) =
J(βz)δs′(X) + β∇J(S(βz))(δs′(X), z)

δs′(X)⊤S(βz) + ϵ
− δs′(X)⊤J(βz)z · βJ(βz)δs′(X)

(δs′(X)⊤S(βz) + ϵ)2
.

First, by Lemma H.2,

∥J(βz)δs′(X)∥1 ≤ 2δs′(X)⊤S(βz).

Next, by Lemma H.3,

∥∇J(S(βz))(δs′(X), z)∥1 ≤ 2S(βz)⊤(δs′(X)⊙ z) + 4S(βz)⊤δs′(X)S(βz)⊤z ≤ 6S(βz)⊤δs′(X),

where the last inequality uses the fact that z has entries in [0, 1]. Finally,

∣∣δs′(X)⊤J(βz)z · J(βz)δs′(X)
∣∣ ≤ ∥J(βz)δs′(X)∥1 · ∥J(βz)δs′(X)∥1 · ∥z∥∞ ≤ 4(δs′(X)⊤S(βz))2.

Altogether,

∥∇zqs′(z)∥1 ≤
(2 + 6β)δs′(X)⊤S(βz)
δs′(X)⊤S(βz) + ϵ

+
4β(δs′(X)⊤S(βz))2
(δs′(X)⊤S(βz) + ϵ)2

≤ 2 + 10β.

Lemma H.2. Let u be a vector with nonnegative entries. Then ∥J(S(v))u∥1 ≤ 2S(v)⊤u

Proof.

∥J(S(v))u∥1 =
∑

i

∣∣S(v)i(ui − S(v)⊤u)
∣∣ ≤

∑

i

S(v)iui + S(v)⊤u ·
∑

i

S(v)i = 2S(v)⊤u.

Lemma H.3. Recall that J(s) = diag(s)− ss⊤. Then ∇vJ(S(v)) ∈ Rd×d×d satisfies

∥∇J(S(v))(u,w)∥1 ≤ 2S(v)⊤(u⊙ w) + 4S(v)⊤uS(v)⊤w.

for nonnegative vectors u,w.

Proof. See that

J(S(v))(u,w) = u⊤diag(S(v))w − S(v)⊤uS(v)⊤w = S(v)⊤(u⊙ w)− S(v)⊤uS(v)⊤w.

Taking the gradient, and noting that∇vS(v) = J(v), we get

∇J(S(v))(u,w) = J(S(v))(u⊙ w)− S(v)⊤w · J(S(v))u− S(v)⊤u · J(S(v))w.

Since u⊙ w is also a nonnegative vector, we get that

∥∇J(S(v))(u,w)∥1 ≤ 2S(v)⊤(u⊙ w) + 4S(v)⊤uS(v)⊤w.
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H.3. Concentration

Lemma H.4. For any nonzero scalars A1, A2, B1, B2,
∣∣∣∣
A1

B1
− A2

B2

∣∣∣∣ ≤
1

|B2|

(∣∣∣∣
A1

B1

∣∣∣∣ · |B1 −B2|+ |A1 −A2|
)
.

Proof.
∣∣∣∣
A1

B1
− A2

B2

∣∣∣∣ ≤
∣∣∣∣
A1

B1
− A1

B2

∣∣∣∣+
∣∣∣∣
A1

B2
− A2

B2

∣∣∣∣

= |A1|
∣∣∣∣
1

B1
− 1

B2

∣∣∣∣+
1

|B2|
|A1 −A2|

=
|A1||B1 −B2|
|B1B2|

+
|A1 −A2|
|B2|

=
1

|B2|

(∣∣∣∣
A1

B1

∣∣∣∣ · |B1 −B2|+ |A1 −A2|
)
.

For the following lemmas, let θ̂ = (Â(1), Â(2)) be the output of Algorithm 1. Define

S
(
A

(1)
∗

)
ij
=

{
1(j = p(i)) p(i) ̸= ∅
Â

(1)
i,j p(i) = ∅

.

and let z̃(X; s) := S(A(1)
∗ )Xes.

Lemma H.5. For i ∈ R,

EX

[∣∣z̃(X; s)i − µ̂X≤i
(s)
∣∣2
]
≲ min

(
1,

T 2 log2 T

Teff · i2
)
.

Proof. By Corollary D.6
∣∣∣∣S(A

(1)
∗ )i,j −

1

i

∣∣∣∣ ≲
T log T

T
1/2
eff i2

.

Therefore

∣∣z̃(X; s)i − µ̂X≤i
(s)
∣∣ =

∣∣∣∣
(
S(A(1)

∗ )i −
1

i
1i

)
· δs(X≤i)

∣∣∣∣

≤
∥∥∥∥S(A

(1)
∗ )i −

1

i
1i

∥∥∥∥
1

≲
T log T

T
1/2
eff i

.

Finally,

EX

[∣∣µ̂X≤i
(s)− µπ(s)

∣∣2
]
≲

µπ(s)T
2

Teff(λ)i2
.

Altogether,

EX

[∣∣z̃(X; s)i − µ̂X≤i
(s)
∣∣2
]
≲

T 2 log2 T

Teff · i2
,

and the conclusion follows as z̃(X; s)i, µ̂X≤i
(s) ∈ [0, 1].
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Lemma H.6. Define

E(3)
s (X) :=

∑

i

S(βz̃(X; s))iz̃(X; s)i

Then

EX

[∣∣∣∣E(3)
s (X)− (1− r)eβµπ(s) + reβµπ(s)µπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

∣∣∣∣
2
]
≲ (1 + β2) · log T

T
1/2
eff

.

Proof. Plugging in the formula for z̃(X; s) (28), we get that

E(3)
s (X) =

∑
i exp (βz̃(X; s)i)z̃(X; s)i∑

i exp (βz̃(X; s)i)

=
eβ
∑

i∈R xp(i),s +
∑

i∈R eβz̃(X;s)i z̃(X; s)i

(eβ − 1)
∑

i∈R xp(i),s +
∣∣R
∣∣+∑i∈R eβz̃(X;s)i

We define the error terms

E1(X) :=
1

T

∑

i∈R

xp(i),s − (1− r)µπ(s)

E2(X) :=
1

T

∑

i∈R
eβz̃(X;s)i z̃(X; s)i − reβµπ(s)µπ(s)

E3(X) :=
1

T

∑

i∈R
eβz̃(X;s)i − reβµπ(s).

Then

E(3)
s (X) =

(1− r)eβµπ(s) + reβµπ(s)µπ(s) + eβE1(X) + E2(X)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s) + (eβ − 1)E1(X) + E3(X)

Thus applying Lemma H.4, we get that

∣∣∣∣E(3)
s (X)− (1− r)eβµπ(s) + reβµπ(s)µπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

∣∣∣∣

≤
∣∣∣E(3)

s (X)
∣∣∣ ·
(∣∣eβE1(X)

∣∣+ E3(X)
)
+
(∣∣eβE1(X)

∣∣+ E2(X)
)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

≲ (1− r)−1 ·
(
|E1(X)|+ e−β |E2(X)|+ e−β |E3(X)|

)
,

since
∣∣∣E(3)

s (X)
∣∣∣ ≤ 1 and (1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s) ≥ (1− r)eβγ.

First, by Lemma F.8, we have

E
[
E1(X)2

]
≲

1

Teff
.

Next, we bound E2:

|E2(X)| ≤ 1

T

∑

i∈R

∣∣∣eβz̃(X;s)z̃(X; s)− eβµπ(s)µπ(s)
∣∣∣ ≤ 1

T

∑

i∈R
(1 + β)eβ |z̃(X; s)i − µπ(s)|,
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and thus by Lemma H.5

EX

[
E2(X)2

]
≤ (1 + β)2e2β

T

∑

i∈R
E|z̃(X; s)i − µπ(s)|2

≲
(1 + β)2e2β

T

∑

i

min

(
1,

T 2 log2 T

Teff · i2
)

=
(1 + β)2e2β

T



T log T

T
1/2
eff

+
∑

i>T log T

T
1/2
eff

T 2 log2 T

Teff · i2




≲
(1 + β)2e2β log T

T
1/2
eff

.

Next, we bound E3.

|E3(X)| ≤ 1

T

∑

i∈R

∣∣∣eβz̃(X;s)i − eβµπ(s)
∣∣∣ ≤ 1

T

∑

i∈R
βeβ |z̃(X; s)i − µπ(s)|,

so by an identical calculation to as for E2,

EX

[
E3(X)2

]
≲

β2e2β log T

T
1/2
eff

.

Altogether,

E

[∣∣∣∣E(3)
s (X)− (1− r)eβµπ(s) + reβµπ(s)µπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

∣∣∣∣
2
]

≲ (1− r)−2
(
E
[
E1(X)2

]
+ e−2βE

[
E2(X)2

]
+ e−2βE

[
E3(X)2

])

≲ (1 + β2) · log T
T

1/2
eff

,

where the last inequality also relies on Assumption 4.2.

Lemma H.7. Define

E
(1)
s,s′(X) :=

∑

i

xi,s′S(βz̃(X; s))iz̃(X; s)i

E
(2)
s,s′(X) :=

∑

i

xi,s′S(βz̃(X; s))i,

Then

E



∣∣∣∣∣

E
(1)
s,s′(X)

E
(2)
s,s′(X) + ϵ

− (1− r)eβµπ(s)π(s
′ | s) + reβµπ(s)µπ(s

′)µπ(s)

(1− r)(eβ − 1)µπ(s)π(s′ | s) + (1− r)µπ(s′) + reβµπ(s)µπ(s′)

∣∣∣∣∣

2



≲ (1 + β2) · log T
T

1/2
eff

.

Proof. Plugging in the formula for z̃(X; s) (28), we have that

E
(1)
s,s′(X)

E
(2)
s,s′(X) + ϵ

=
eβ
∑

i∈R xi,s′xp(i),s +
∑

i∈R eβz̃(X;s)i z̃(X; s)ixi,s′

(eβ − 1)
∑

i∈R xi,s′xp(i),s +
∑

i∈R xi,s′ +
∑

i∈R eβz̃(X;s)ixi,s′ + ϵ
∑

i e
βz̃(X;s)i
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We define the error terms

E4(X) :=
1

T

∑

i∈R

xp(i),sxi,s′ − (1− r)µπ(s)π(s
′ | s)

E5(X) :=
1

T

∑

i∈R

xi,s′ − (1− r)µπ(s
′)

E6(X) :=
1

T

∑

i∈R

(
eβz̃(X;s)i z̃(X; s)ixi,s′ − eβµπ(s)µπ(s)µπ(s

′)
)

E7(X) =
1

T

∑

i∈R

(
eβz̃(X;s)ixi,s′ − eβµπ(s)µπ(s

′)
)
.

Then

E
(1)
s,s′(X)

E
(2)
s,s′(X) + ϵ

=

(1− r)eβµπ(s)π(s
′ | s) + reβµπ(s)µπ(s)µπ(s

′) + eβE4(X) + E6(X)

(1− r)[(eβ − 1)µπ(s)π(s′ | s) + µπ(s′)] + reβµπ(s)µπ(s′) + (eβ − 1)E4(X) + E5(X) + E7(X) + ϵ
T

∑
i e

βz̃(X;s)i
.

Therefore by Lemma H.4,
∣∣∣∣∣

E
(1)
s,s′(X)

E
(2)
s,s′(X) + ϵ

− (1− r)eβµπ(s)π(s
′ | s) + reβµπ(s)µπ(s

′)µπ(s)

(1− r)(eβ − 1)µπ(s)π(s′ | s) + (1− r)µπ(s′) + reβµπ(s)µπ(s′)

∣∣∣∣∣

≤
∣∣∣∣∣

E
(1)
s,s′(X)

E
(2)
s,s′(X) + ϵ

∣∣∣∣∣ ·
(
eβ |E4(X)|+ |E5(X)|+ |E7(X)|+ eβϵ

)
+ eβ |E4(x)|+ |E6(X)|

(1− r)(eβ − 1)µπ(s)π(s′ | s) + (1− r)µπ(s′) + reβµπ(s)µπ(s′)

≲ |E4(X)|+ e−β |E5(X)|+ e−β |E6(X)|+ e−β |E7(X)|+ ϵ,

where the last step uses (1 − r)(eβ − 1)µπ(s)π(s
′ | s) + (1 − r)µπ(s

′) + reβµπ(s)µπ(s
′) ≥ (1 − r)eβγ2 along with

Assumption 4.2 and the convention that ≲ subsumes γ−1 terms, and also that
∣∣∣∣

E
(1)

s,s′ (X)

E
(2)

s,s′ (X)+ϵ

∣∣∣∣ ≤ 1.

We can use Lemma F.7 to bound E4:

E[E4(X)2] =

∣∣R
∣∣2

T 2
E[(ĉXR

(s, s′)− µπ(s)π(s
′ | s)2]

≲

∣∣R
∣∣2

T 2
· µπ(s

′)T 2

Teff(λ)
∣∣R
∣∣2

≲
1

Teff(λ)
.

Next, we use Lemma F.5 to bound E5:

E[E5(X)2] =

∣∣R
∣∣2

T 2
E[(µ̂XR

(s′)− µπ(s
′))2]

≲

∣∣R
∣∣2

T 2
· µπ(s

′)T 2

Teff(λ)
∣∣R
∣∣2

≲
1

Teff(λ)
.
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Next, we bound E6:

|E6(X)| ≤ 1

T

∑

i∈R

∣∣∣xi,s′

(
eβz̃(X;s)z̃(X; s)− eβµπ(s)µπ(s)

)∣∣∣+ 1

T

∣∣∣∣∣e
βµπ(s)µπ(s)

∑

i∈R
(xi,s′ − µπ(s

′))

∣∣∣∣∣

≤ 1

T

∑

i∈R
(1 + β)eβ |z̃(X; s)− µπ(s)|+

1

T
eβ

∣∣∣∣∣
∑

i∈R
(xi,s′ − µπ(s

′))

∣∣∣∣∣.

The first term can be bounded equivalently as to was done for E2, and thus

E



(

1

T

∑

i∈R
(1 + β)eβ |z̃(X; s)− µπ(s)|

)2

 ≲

(1 + β)2e2β log T

T
1/2
eff

.

In the second term, since xi,s′ − µπ(s
′) are independent and mean 0 for all i ̸= T ,

E



(

1

T
eβ

∣∣∣∣∣
∑

i∈R
(xi,s′ − µπ(s

′))

∣∣∣∣∣

)2

 =

e2β

T 2

∑

i∈R
E
[
(xi,s′ − µπ(s

′))
2
]

≲
e2β

T
.

Altogether

E[|E6(X)|2] ≲ (1 + β)2e2β log T

T
1/2
eff

.

Finally, we bound E7:

|E7(X)| ≤ 1

T

∑

i∈R

∣∣∣xi,s′

(
eβz̃(X;s) − eβµπ(s)

)∣∣∣+ 1

T

∣∣∣∣∣e
βµπ(s)

∑

i∈R
(xi,s′ − µπ(s

′))

∣∣∣∣∣

≤ 1

T

∑

i∈R
βeβ |z̃(X; s)− µπ(s)|+

1

T
eβ

∣∣∣∣∣
∑

i∈R
(xi,s′ − µπ(s

′))

∣∣∣∣∣.

Thus via an identical calculation as E6,

E[|E7(X)|2] ≲ (1 + β)2e2β log T

T
1/2
eff

.

Altogether,

E



∣∣∣∣∣

E
(1)
s,s′(X)

E
(2)
s,s′(X) + ϵ

− (1− r)eβµπ(s)π(s
′ | s) + reβµπ(s)µπ(s

′)µπ(s)

(1− r)(eβ − 1)µπ(s)π(s′ | s) + (1− r)µπ(s′) + reβµπ(s)µπ(s′)

∣∣∣∣∣

2



≲ (1 + β2) · log T
T

1/2
eff

.

Lemma H.8. Let θ̂ =
(
Â(1), Â(2)

)
be the output of Algorithm 1, where Â(2) = (β0 + β(τ1 + τ2))IS − β(τ1+τ2)

S 1S1
⊤
S .

Then

EX

[∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣2
]
≲ (1 + β∗2) · log T

T
1/2
eff

+ e−β∗γ .

and

P
[
fθ̂(X; s)s′ ≤

γ3

4S2

]
≲

1

Teff
.
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Proof. First, by Lemma D.10, 1 + β∗ ≥ β(τ1 + τ2) ≥ β∗. For notational convenience, let β = β(τ1 + τ2) Recall the
definitions

S
(
A

(1)
∗

)
ij
=

{
1(j = p(i)) p(i) ̸= ∅
Â

(1)
i,j p(i) = ∅

.

and

z̃(X; s) = S(A(1)
∗ )δs(X) =

{
xp(i),s if i ̸∈ R
zθ̂(X; s)i if i ∈ R .

By Corollary D.6 ∥zθ̂(X; s)− z̃(X; s)∥∞ ≲ T−1. Letting f(z) = δ⊤S(βz), we see that ∥∇zf(z)∥1 = β∥J(S(βz))δ∥1 ≤
2β, and thus ∣∣fθ̂(X; s)s′ − δs′(X)⊤S(βz̃(X; s))

∣∣ ≲ βT−1.

Next, we have that

δs′(X)⊤S(βz̃(X; s)) =

∑
i xi,s′ exp(βz̃(X; s)i)∑

i exp(βz̃(X; s)i)
,

and thus

δs′(X)⊤S(βz̃(X; s))

=
(eβ − 1)

∑
i∈R xp(i),sxi,s′ +

∑
i∈R xi,s′ +

∑
i∈R xi,s′e

βz̃(X;s)i

(eβ − 1)
∑

i∈R xp(i),s +
∣∣R
∣∣+∑i∈R eβz̃(X;s)i

=
(1− r)(eβ − 1)µπ(s)π(s

′ | s) + (1− r)µπ(s
′) + rµπ(s

′)eβµπ(s) + (eβ − 1)E4(X) + E5(X) + E7(X)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s) + (eβ − 1)E1(X) + E3(X)

Therefore by Lemma H.4,
∣∣∣∣δs′(X)⊤S(βz̃(X; s))− (1− r)(eβ − 1)µπ(s)π(s

′ | s) + (1− r)µπ(s
′) + rµπ(s

′)eβµπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

∣∣∣∣

≤
∣∣δs′(X)⊤S(βz̃(X; s))

∣∣ ·
(
eβ |E4(X)|+ |E5(X)|+ |E7(X)|

)
+ eβ |E1(x)|+ |E3(X)|

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

≲ |E1(x)|+ e−β |E3(X)|+ |E4(X)|+ e−β |E5(X)|+ e−β |E7(X)|,

where the last inequality uses Assumption 4.2. Next, see that
∣∣∣∣
(1− r)(eβ − 1)µπ(s)π(s

′ | s) + (1− r)µπ(s
′) + rµπ(s

′)eβµπ(s)

(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)
− π(s′ | s)

∣∣∣∣

≤
∣∣(1− r)µπ(s

′) + rµπ(s
′)eβµπ(s) + (1− r)π(s′ | s) + reβµπ(s)π(s′ | s)

∣∣
(1− r)(eβ − 1)µπ(s) + (1− r) + reβµπ(s)

≲
eβµπ(s)

(1− r)eβγ

≲ eβ(µπ(s)−1)

≲ e−β
γ(S−1)

S

≲ e−βγ/2

Altogether, we get

∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣ ≲ β

T
+ |E4(X)|+ |E1(x)|+ e−β |E3(X)|+ e−β |E5(X)|+ e−β |E7(X)|+ e−βγ/2,

48



How Transformers Learn Causal Structure with Gradient Descent

and thus

EX

[∣∣fθ̂(X; s)s′ − π(s′ | s)
∣∣2
]
≲ (1 + β2) · log T

T
1/2
eff

+ e−βγ ≲ (1 + β∗2) · log T
T

1/2
eff

+ e−β∗γ

Next, we need to bound PX

[
fθ̂(X; s)s′ ≤ γ3

4S2

]
. We start by bounding the probability δs′(X)⊤S(βz̃(X; s)) is small. We

have the naive bound

δs′(X)⊤S(βz̃(X; s)) =

∑
i xi,s′ exp(βz̃(X; s)i)∑

i exp(βz̃(X; s)i)

≥ eβ
∑

i∈R xp(i),sxi,s′

eβ · T
=

1

T

∑

i∈R

xp(i),sxi,s′

= (1− r)ĉXR
(s, s′).

By Markov’s inequality and Lemma F.7,

PX

[
ĉXR

(s, s′) ≤ γ2

2S2

]
≤ PX

[∣∣ĉXR
(s, s′)− µπ(s)π(s

′ | s)
∣∣ ≥ γ2

2S2

]

≤ 2S2

γ2
EX

[∣∣cXR
(s, s′)− µπ(s)π(s

′ | s)
∣∣2
]

≲
T 2

∣∣R
∣∣2Teff

≲
1

Teff
.

Therefore

PX

[
δs′(X)⊤S(βz̃(X; s)) ≤ γ3

2S2

]
≤ PX

[
δs′(X)⊤S(βz̃(X; s)) ≤ (1− r)

γ2

2S2

]
≲

1

Teff
.

To conclude, on the event that δs′(X)⊤S(βz̃(X; s)) > γ3

2S2 , we have

fθ̂(X; s)s′ >
γ3

2S2
−
∣∣fθ̂(X; s)s′ − δs′(X)⊤S(βz̃(X; s))

∣∣

≥ γ3

2S2
−O

(
βT−1

)

≥ γ3

4S2
,

since β ≤ 1 + β∗ ≲ T . Altogether,

PX

[
fθ̂(X; s)s′ ≤

γ3

4S2

]
≲

1

Teff
.

H.4. Proof of Theorem 4.5

Proof. By Lemma H.8, we get that

EX

[
(f(X; s)s′ − π(s′ | s))2

]
≲γ,S

log T

T
Θγ(1)
eff
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Therefore by Markov’s inequality,

PX

[
(f(X; s)s′ − π(s′ | s))2 ≥ 100S2 · EX

[
(f(X; s)s′ − π(s′ | s))2

]]
≤ 1

100S2
.

Union bounding, with probability 0.99 we have

sup
s,s′
|f(X; s)s′ − π(s′ | s)| ≤ 100S2 · EX

[
(f(X; s)s′ − π(s′ | s))2

]
≲γ,S

log T

T
Θγ(1)
eff

,

as desired.

I. Finite Sample Analysis
Our theory focuses on the case of gradient descent on the population loss (11). It is relatively straightforward to extend our
analysis to the finite sample setting. In this case, we are given a dataset of N prompts of length T :

D = {s(n)1:T }n∈[N ].

Each sequence s
(n)
1:T is generated via the procedure in Task 2.4, with transition matrix π(i) ∼ Pπ . Let X(n) ∈ RT×S be the

embedding of s(n)1:T .

We now consider running gradient descent on the finite sample loss L̂:

L̂(θ) = − 1

N

N∑

n=1

∑

s′∈[S]

π(n)(s′ | s(n)T ) log
(
fθ(s

(n)
1:T ) + ϵ

)
. (37)

Below, we present a sketch of the extension of the analysis of our main theorem to this finite sample setting.

I.1. Stage 1

The crux of Stage 1 is Lemma D.3, where in (27) we show that

∇
A

(1)
i
L(θ) = − β0

ST
J
(
S
(
A

(1)
i

))
g∗i ,

where the vector g∗i ∈ R is defined by

g∗i := T
∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei · δs(X≤i)

]
.

In particular, we show that g∗i satisfies the property that

g∗i,j − g∗i,p(i) ≤ −
γ3

4S

for i ∈ R and
∣∣g∗i,j

∣∣ ≲ T
−1/2
eff for i ∈ R. As a step towards proving this, we let θ̂ = (A(1), 0), define the quantity ĝi by

ĝi := T
∑

s,s′

Eπ,X

[
π(s′ | s)

fθ(X; s)s′ + ϵ
δs′(X)⊤J(vθ(X; s))ei · δs(X≤i)

]
,

and show that

ĝi,j − ĝi,p(i) ≤ −
γ3

4S
for i ∈ R

|ĝi,j | ≲ T
−1/2
eff for i ∈ R.
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The empirical gradient can be written as

∇
A

(1)
i
L̂(θ) = − β0

ST
J
(
S
(
A

(1)
i

))
gemp
i ,

where

gemp
i =

ST

N

N∑

n=1

∑

s′

π(n)(s′ | s(n)T )

fθ(X(n); s
(n)
T )s′ + ϵ

δs′(X
(n))⊤J(vθ(X

(n); s
(n)
T ))ei · δs(n)

T

(X
(n)
≤i ).

As in the population setting, we define ĝemp
i to be

ĝemp
i =

ST

N

N∑

n=1

∑

s′

π(n)(s′ | s(n)T )

fθ̂(X
(n); s

(n)
T )s′ + ϵ

δs′(X
(n))⊤J(vθ̂(X

(n); s
(n)
T ))ei · δs(n)

T

(X
(n)
≤i ).

By Lemma G.1, we get that ∥gemp
i − ĝemp

i ∥∞ ≤ Cγ,S√
Teff

. It thus suffices to show that ∥ĝemp
i − ĝi∥∞ is small, which is given

by the following lemma:

Lemma I.1. For any δ > 0

∥ĝemp
i − ĝi∥∞ ≤

Cγ,S log
(
T
δ

)
√
N

with probability 1− δ.

Proof. First, see that ĝemp
i,j can be written as

ĝemp
i,j =

1

N

N∑

n=1

S
∑

s′

π(n)(s′ | s(n)T )

µ̂X(n)(s′) + ϵ
(x

(n)
i,s′ − µ̂X(n)(s′))x

(n)

j,s
(n)
T

︸ ︷︷ ︸
=:Z(n)

.

Define the event A(n) as

A(n) =
⋃

s′∈[S]

{µ̂X(n)(s′) ≤ 1

2
µπ(n)(s′)}.

By a union bound, P(A(n)) ≤ S/Teff. We can naively bound
∣∣Z(n)

∣∣ ≤ ϵ−1S, and on the complement of A(n) (denoted by
A(n)) we can bound

∣∣Z(n)
∣∣ ≲ Sγ−1. Therefore we can concentrate 1

N

∑
n Z

(n) as:
∣∣∣∣∣
1

N

∑

n

Z(n) − E[Z]

∣∣∣∣∣ ≤
∣∣∣∣∣
1

N

∑

n

Z(n)1(A(n))− E[Z(n)1(A(n))]

∣∣∣∣∣+
∣∣∣∣∣
1

N

∑

n

Z(n)1(A(n))− E[Z(n)1(A(n))]

∣∣∣∣∣

≲
Sγ−1 log(T/δ)√

N
+ ϵ−1 · 1

N

∑

n

1(A(n)) + ϵ−1P(A(n)),

with probability 1− δ
2T 2 by Hoeffding’s inequality on the Z(n)1(A(n)). Next, we see that the 1(A(n)) are Bernoulli random

variables with mean P(A(n)) ≤ S/Teff and standard deviation at most
√
P(A(n))/N . Therefore with probability 1− δ

T 2 ,
one has

∣∣∣∣∣
1

N

∑

n

Z(n) − E[Z]

∣∣∣∣∣ ≲
Sγ−1 + ϵ−1

√
S/Teff√

N
log(T/δ)

=
Cγ,S log(T/δ)√

N
,

since ϵ = Θ(T
−1/2
eff ). Union bounding over i, j ∈ [T ] yields the desired result
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Combining everything together, we get that for N ≳ Cγ,STeff log T , the quantities gemp
i satisfy

gemp
i,j − gemp

i,p(i) ≤ −
γ3

4S
for i ∈ R

∣∣gemp
i,j

∣∣ ≲ T
−1/2
eff for i ∈ R.

with high probability, and thus Stage 1 succeeds on the empirical loss with high probability.

I.2. Stage 2

One challenge in directly using the population analysis for stage 2 is that the finite-sample update no longer preserves
symmetry, and hence we do not have that A(2) = β0IS + β(IS − 1

S 1S1
⊤
S ) throughout the entirety of stage 2. Instead, we

will consider taking only a single large gradient step with learning rate η2, on an independent dataset of N prompts.

During the first step of stage 2, the population gradient is

∇A(2)L(θ) = −βpop ·
(
IS −

1

S
1S1

⊤
S

)
,

where, by Lemma D.8,

1 ≥ βpop ≥ C−1
γ,S > 0.

The following lemma concentrates the population gradient to the empirical gradient at θ(τ1):

Lemma I.2.
∥∥∥∇A(2)L̂(θ)−∇A(2)L(θ)

∥∥∥
∞

≲
Cγ,S√
N

.

Proof. The finite sample gradient can be written as

∇A(2)L̂(θ) = − 1

N

N∑

n=1

∑

s′

π(n)(s′ | s(n)T )

fθ(X(n); s
(n)
T )s′ + ϵ

·X(n)⊤S(A(1))⊤J(vθ(X
(n); s

(n)
T ))δs′(X

(n))e⊤
s
(n)
T

︸ ︷︷ ︸
M(n)

.

Let θ̂ = (A(1)(τ1), 0). By (36), we have
∣∣∣fθ(X(n); s

(n)
T )s′ − fθ̂(X

(n); s
(n)
T )s′

∣∣∣ ≲ eβ0−1 ≲ T
−1/2
eff .

Additionally, fθ̂(X
(n); s

(n)
T )s′ = µ̂X(n)(s′). We next see that we can bound

∣∣∣e⊤s X(n)⊤S(A(1))⊤J(vθ(X
(n); s

(n)
T ))δs′(X

(n))
∣∣∣

≤ 2
∥∥∥S(A(1))X(n)es

∥∥∥
∞

∥∥∥δs′(X(n))
∥∥∥
∞

≤ 2.

Therefore on A(n), each entry of M (n) can be bounded in absolute value by 2ϵ−1, and on A(n) each entry can be bounded
by some Cγ,S . Therefore by an identical concentration argument as in Lemma I.1, with high probability we get that

∥∥∥∇A(2)L̂(θ)−∇A(2)L(θ)
∥∥∥
∞

≲
Cγ,S√
N

.
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After one gradient step with learning rate η2, A(2)(τ1 + 1) is equal to

A(2)(τ1 + 1) = β0IS + η2β
pop ·

(
IS −

1

S
1S1

⊤
S

)
+R,

where the error matrix R satisfies ∥R∥∞ ≲ η2√
N

.

Next, define the parameter vector θpop as θpop = (A(1)(τ1), A
(2)
pop), where A

(2)
pop = β0IS + η2β

pop ·
(
IS − 1

S 1S1
⊤
S

)
is the

result of the population update. We can bound the error between the finite-sample predictor and population predictor as

∣∣fθ(τ1+1)(X; s)s′ − fθpop(X; s)s′
∣∣ =

∣∣∣δ⊤s′
(
S(S(A(1))XA(2)(τ1 + 1)es)− S(S(A(1))XA(2)

popes)
)∣∣∣

≤ ∥S(S(A(1))XA(2)(τ1 + 1)es)− S(S(A(1))XA(2)
popes)∥∞

≤ ∥S(A(1))XA(2)(τ1 + 1)es − S(A(1))XA(2)
popes∥∞

≤ ∥A(2)(τ1 + 1)−A(2)
pop∥∞

≲
η2√
N

.

Now if we choose η2 so that η2βpop = β∗ = Θ(log Teff), then by Lemma H.8, we get that θpop satisfies

EX

[
|fθpop(X; s)s′ − π(s′ | s)|2

]
≲ T−cγ

eff .

Therefore

EX

[∣∣fθ(τ1+1)(X; s)s′ − π(s′ | s)
∣∣2
]
≲ T cγ

eff +
η22
N

≲ T−cγ
eff +

log2 Teff

N

≲ T−cγ
eff ,

as long as N ≳ T cγ
eff . Therefore the output of running gradient descent on the finite sample loss, fθ(τ1+1), achieves small

population loss.

Altogether, both Stage 1 and Stage 2 succeed on the finite-sample loss as long as N ≳ Teff log T .
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