Amortized Active Generation of Pareto Sets

Daniel M. Steinberg'* Asiri Wijesinghe'! Rafael Oliveira'
Piotr Koniusz!'>®  Cheng Soon Ong!:> Edwin V. Bonilla*
LCSIRO’s Data61  2University of New South Wales  ®Australian National University

Abstract

We introduce active generation of Pareto sets (A-GPS), a new framework for
online discrete black-box multi-objective optimization (MOO). A-GPS learns a
generative model of the Pareto set that supports a-posteriori conditioning on user
preferences. The method employs a class probability estimator (CPE) to pre-
dict non-dominance relations and to condition the generative model toward high-
performing regions of the search space. We also show that this non-dominance CPE
implicitly estimates the probability of hypervolume improvement (PHVI). To in-
corporate subjective trade-offs, A-GPS introduces preference direction vectors that
encode user-specified preferences in objective space. At each iteration, the model
is updated using both Pareto membership and alignment with these preference
directions, producing an amortized generative model capable of sampling across
the Pareto front without retraining. The result is a simple yet powerful approach
that achieves high-quality Pareto set approximations, avoids explicit hypervolume
computation, and flexibly captures user preferences. Empirical results on synthetic
benchmarks and protein design tasks demonstrate strong sample efficiency and
effective preference incorporation.

1 Introduction

In many scientific and engineering domains, practitioners face the challenge of optimizing complex,
high-dimensional, discrete objects under expensive black-box evaluation processes. Examples
include designing protein sequences for enhanced stability and activity, synthesizing small molecules
with tailored pharmacokinetics, and engineering DNA constructs for precise gene regulation. In
these settings, each candidate design must be evaluated via computationally intensive simulations
or laboratory assays, making efficient search strategies essential. Furthermore, these applications
frequently involve multiple, often conflicting objectives. For instance, in protein engineering one may
wish to maximize thermal stability, catalytic turnover rate, and expression yield, yet improvements in
one property can degrade another. The set of non-dominated trade-off designs (where no objective
can be improved without sacrificing performance in at least one other objective) is known as the
Pareto set. Accurately approximating this Pareto set is critical for enabling informed decision-making
in downstream experimental workflows.

Traditional Bayesian optimization (BO) methods for black-box multi-objective optimization (MOO)
problems, often referred to as multi-objective Bayesian optimization (MOBO), rely on acquisition
functions such as expected hypervolume improvement (EHVI) [38, 7, 1] or their quasi-MonteCarlo
extensions [8, 1], which involve complex numerical integration and/or scale poorly with the number
of objectives. Alternatively they may rely on random scalarizations [24, 28, 10] offering simplicity
and scalability but rely on sufficient sampling density to capture complex Pareto front geometries.

In this work we propose a fundamentally different approach, in the spirit of multi-objective generation
(MOG) [40, 39], that directly estimates a generative model of the Pareto set in an online sequential,
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black-box optimization setting. To this end, we build upon the recently proposed variational search
distributions (VSD) framework for single-objective optimization [35]. VSD formulates optimization
as active learning of a generative model of high-performing designs (active generation). Thus, VSD
alternates between fitting a class probability estimator (CPE) to discriminate favorable designs and
updating a conditional generative model to propose new candidates directly. Hence, instead of using a
fitness-threshold probability of improvement (PI)-CPE, we propose a Pareto-set CPE, which enables
the generative model to focus exclusively on non-dominated designs. This approach bypasses explicit
hypervolume computations and scalarizations and leads to a scalable online algorithm for Pareto set
approximation that is different from other recent MOG methods [40, 39]. Furthermore, we show that
such a non-dominance CPE is implicitly estimating probability of hypervolume improvement (PHVI).
Additionally, practical decision-making often requires incorporating user or stakeholder preferences
over the trade-offs among objectives. We introduce a novel mechanism for embedding subjective
preference conditioning into the generative model, allowing practitioners to sample candidates
that align with specified trade-off directions. By using amortized variational inference (VI) with
preference direction vectors, our method supports a-posteriori preference specification without
retraining, offering flexibility in downstream design exploration.

We show that our method, active generation of Pareto sets (A-GPS), performs well against competing
approaches on a suite of challenging synthetic and real multi-objective optimization benchmarks.

2 Preliminaries

2.1 Active generation

Active generation as implemented by [35] reframes online black-box optimization as sequential
learning of a conditional generative model, guided by a CPE. At eachround, t € {1,...,T} we: (1)
fit a CPE (using some proper loss, Lcpg),

™5 (x) ~ p(z = 1[x), (1

parameterized by 6 and where z = 1[x € S] indicates membership in some desired set, S. For
example, designs fitter than some incumbent, x*, under some black box function, f. : X — R;
S:={x e X: fi(x) > fi(x*)}. Then (2) update the generative model ¢;(x), e.g. by minimizing
the reverse Kullback-Leibler (KL) divergence to the ideal conditional, p(x|z = 1), or equivalently
maximizing the evidence lower bound (ELBO),

Lo (¢, 0) = Eq,, (x)[log 75 (x)] — Dk1.[g4(%)[|p(x[Do)] , 2

where p(x|Dy) is a prior over the design space. Formally, using data D% = {(xn, 2,)}2_;, active
generation optimizes,

9;; < arg;nin L:CPE(oa D}Z\/) (,ZSZ < argqrﬁnax EELBO(QZ); 9:)7 (3)

then samples from ¢,: (x) are used to propose new candidates for evaluation. New labels are acquired
for these candidates, the dataset is augmented, and the process is repeated until convergence. This
solution to active generation is referred to as VSD [35]. Under certain assumptions on the form of
the models, this procedure has proven convergence rates to the ideal p(x|z = 1).



2.2 Optimizing over multiple objectives

In this work we are concerned with generating discrete or mixed discrete-continuous designs, for
example sequences x € X = VM where V is the sequence vocabulary and M is the sequence
length, that have particular measurable properties y € RY. We assume the ‘black-box’ relationship
y = f.(x) + € where f.(x) = [f}(x),..., £(x),..., fE(x)] and E,(e)[€] = 0. The black-box
function f.(-) could be a noisy empirical observation, or an expensive physics/chemistry simulation
(where € = 0), etc. In MOO we would like to find the global optimum,

max f.(x). @
There are a number of issues that present themselves here though. Firstly, we cannot use gradient
based optimization methods directly since we cannot access Vx f.l (x) as f.l are black-boxes and x is
(partially) discrete. But more importantly, max is not uniquely defined for the vector valued f. as
the individual objectives can be in conflict with one (or more formally, there is no total ordering).
Instead, we are interested in finding the set of designs for which we cannot increase one objective
without compromising others. This is known as the Pareto set S5, C X,

Spareto 1= 1x 1 X' ¥ x, VX' € X}, 3)

where x’ > x refers to x’ dominating x, i.e., all of the objective function values for x’ are greater
than or equal to those of x, and at least one is greater,

x' = xiff f1(x") > fl(x) Vie{1,...,L}and 3l € {1,..., L} such that £./(x') > f/(x). (6)

The Pareto set also induces the Pareto front, 7, .., := {f«(X) : VX € S} e10}» Which is the image
of the Pareto set outcomes in RL. For data Dy = {(yn,x,)})_; at round ¢ we define the current
observable Pareto set,

Stareto i= {Xi 1 Xj ¥ x5, Vi€ {1,...,N}, Vj € {1,...,N}\i}, @)
where x; > x; iffyé- >yt vie{l,...,LYand I € {1,...,L} suchthatyé >yl

We define a Pareto set membership (or non-dominance) label z,, := 1[x,, € Sfyero)s Where 1[] :
{True, False} — {1, 0}, which we will use for training the CPE in active generation. This definition
can be extended to the whole domain X’ as a labeling function z(x) := 1[x € Pareto(Spye0 U {X})]s
where Pareto(S) denotes the Pareto subset of an arbitrary set S C X'. Note that the definition
remains unchanged for observed points already in the dataset, i.e., (X, ) = z,. As it turns out, this
non-dominance CPE is also estimating the probability of hypervolume improvement (PHVI) for new
query points as the following theorem and corollary show. We fully define hypervolume improvement
(HVI) in Sec. B.1, as its definition is a little involved.

Theorem 1 (Equivalence of Indicators). For every x ¢ S},,..,» the HVI indicator is equivalent to a
non-dominance indicator,
1[HVI(x) > 0] = z(x). (8)

Corollary 1 (Non-Dominance CPE estimates PHVI). Following straightforwardly from Theorem 1,
P(z(x) = 1|x) = P(HVI(x) > 0/x) := PHVI(x), VX ¢ Shireros )
as the events are equivalent. Thus, a CPE trained on z, using a proper loss, is predicting PHVI. [

See Sec. B.1 for the proof and assumptions under which this is true. We note that, for existing
X € St e10» WE have a discrepancy, as z(x) = 1, whereas HVI(x) = 0. Yet, due to observation noise,
it is beneficial to allow sampling at x again for noise reduction (e.g. averaging), as the true f.(x) may
be dominated even if a single observation y at x suggests otherwise. In addition, if required, the CPE
can be forced to zero at observed points by external mechanisms.

3 Incorporating User Preferences

In multi-objective optimization (MOO), practitioners invoke subjective preferences to single out
a subset of designs to meet application-specific requirements. Ideally, we would like not only to
incorporate these subjective preferences but also to avoid retraining our active generation framework
every time a new preference is given.



A standard approach to incorporating subjective preferences is scalarization: e.g. for convex scalar-
ization we specify a weight vector A € R” with ||A||; = 1 and maximize

argmax sy (x), where sx,(x) = AT (fu(x) — 1) (10)

where r € RL is a reference point [24, 41, 41, 28]. While scalarization blends objectives according
to explicit trade-off weights, it is not optimal when learning a conditional generative model of the
Pareto set via a CPE on labels z, = 1[sx r(x,) > 7] for some threshold 7 € R, as in [10], since
each new A would require retraining. Furthermore, thresholding weighted objectives can blur the
non-dominance boundary compared to directly labeling it.

3.1 Preference direction vectors and alignment indicators

As we will see in section 4, our solution to incorporating user preferences for active generation is
based on amortization. In other words, instead of estimating a model g4 (x) as in VSD, we will
learn a conditional model of the form q¢(x|u). Consequently, instead of scalarization, we introduce
preference direction vectors u € U where Y = {u € RL : ||u|| = 1}, defined from observed or
desired (subjective) user specified outcomes. In our experiments, we train our method using

_ Yn—T
lyn — 12

u, = g(yn) 1D
These unit vectors capture the relative emphasis among objectives in a single geometric object. Given
a trained model, a user can specify their own preferences via u, = ¢(y+) and our approach will
generate solutions from g, (x|u, ). Importantly, our generative model needs to enforce that generated
samples respect a user’s desired trade-off. Therefore, we define an alignment indicator, a € {0, 1},
that labels each (x, u) pair as ‘aligned’ if it achieves correct projection onto the preference direction.
We will make clear the need for this indicator variable in the next section.

Preference directions generalize (convex) scalarization weights to a (non-convex) generative setting:
any X can be mapped to a unit-norm vector u = A/||A||2, and conversely each u induces a unique
normalized weight. By conditioning on (u, a) rather than A alone, our generative Pareto-set model
becomes both more flexible (no retraining for new trade-offs) and more faithful to non-dominance
structure. We visualize these preference direction vectors in Figure 1.

4 Amortized Active Generation of Pareto Sets

We now have all the components to describe our amortized active generation framework that learns
to generate (approximate) solutions in the Pareto set, conditioned on user preferences. We call our
method active generation of Pareto sets (A-GPS), and it begins by generalizing the active generation
objective in [35]. That is, for each round, ¢, we minimize the reverse KL divergence between the
generative model ¢, (x|u) and an underlying (unobserved) true model p(x|u, z, a),

¢; = arg;nin Dx1[gg (x[u)p(ul2)|[p(x|u, 2, a)p(u|z)]

= argmin (Dt fgs (<} p(x]u. 2 )] (12)

Here we are actually conditioning on z = 1 and @ = 1, however we leave this implicit henceforth to
avoid notational clutter. The inclusion of p(u|z) rewards learning an amortized generative model,
¢4 (x|u), over the distribution of the relevant preference directions. Naturally we cannot evaluate
p(x|u, z, a) directly, and so we appeal to Bayes’ rule,

p(xlu, z,0) = —p(=}x, wp(abe, wp(x/u). (13)
Here we have assumed conditional independence between z and a given x and u, and since Z =
p(z, alu) is a constant w.r.t. x, we will omit it from our objective. We make a further simplifying
assumption that a-priori p(x|u) = p(x|Dy), and then we rely on the likelihood guidance terms,
p(z]x,u)p(alx, u), to capture the joint relationship between (x, u) in the variational posterior. We
justify this decision by noting that the alignment relationship, x|u, may be difficult to reason about



a-priori, and requiring such a prior would then preclude the use of pre-trained models for p(x|Dy).
Putting this all together results in the following equivalent amortized ELBO objective,

¢; = argmax Lagpo(¢) where, (14)
[

Larso(¢) = Epu)z) [LeLBo(D)] 5
= Ep(u\z) [Eq¢(x\u)[10gp(z‘x7 u) + 10gp(a|x, ll) _ﬁDKL[q¢(X|u) ||p(X|DO)H] . (15)
—— —_—— ———
Direction dist. Pareto CPE Align. CPE

The 5 coefficient appears here to control the objective’s exploration-exploitation tradeoff, and where
B = 1 results in the exact minimization of Equation 12. We will now discuss how we estimate each
of these components in turn, leading to the A-GPS algorithm presented in Algorithm 1.

4.1 Estimating A-GPS’s component distributions

Preference direction distribution, p(u|z). Since we observe u,,, we can approximate empirically
pulz) =~ (N, 2,) ! 25:1 zp 1[u = u,]. Alternatively, we can use maximum likelihood to

n=1
learn a parameterized estimator g, (u) ~ p(u|z), with data D%, = {(xn, Un, 2,) }2_4,
. 1 N
v; = argmin Lpes(y, D), where Lpet(y,D%) = —ZNi Zn_l zn log gy (uy).  (16)
v n=17%n N

We find this occasionally aids exploration. Examples of appropriate parametric forms are von Mises-
Fisher distributions, power spherical distributions [1 1] or normalizing flows [32]. We find Normal
distributions, or mixtures, normalized to the unit sphere are more numerically stable than some of
the specialized spherical distributions, see Sec. C.1 for more detail. We also find that fitting an
unconditional ¢, (u) ~ p(u) for just the initial round can aid exploration of the Pareto front.

Pareto CPE, p(z|x,u). As per the original VSD, we define a CPE to directly discriminate over the
solution set, S. Sometimes we find setting S = S}, leads to overly exploitative behavior. Instead,
we anneal the set using the Pareto ranking method described in [12], and define the labels based on
a thresholded rank, k: z, = 1[x, € {Uk Sparem,k Vk < 7¢}]. Here k = 1 indicates the Pareto set,
k = 2 the next non-dominated set once S, .,.1 is removed, etc. Weuse 74 = f-({y : y € Dn}, 1)
as presented in [35], ensuring 77 labels just Sf,.,- The annealed method (Equation 20) applied to
quantiles of —k is particularly effective. So, with this label, we use the log-loss to train a CPE,

‘CCPE(G DN NZ Zn IOgﬂ-O Xn>un) + (1 _zn> log(l _ﬂ-g(xnaun»’ (17)
where 75 (x, u) is a discriminative model parameterized by 6, e.g. a neural network.

Preference alignment CPE, p(a|x,u). Since we do not wish to rely on a strong prior, p(x|u),
for our sole-source of preference alignment information, we instead explicitly reward alignment
in our conditional generative model by using a CPE guide. We create contrastive data for training
this guide, DY = {(an =1, %0, wn) }_; UUI_ {(2=0,%, 0y, ()}, Where the second set are
purposefully misaligned by permutations pi - N = N. This results in the log-loss,

P N

a a 1 § : 2 :E :
‘CCPE(wa,DN) N+PN IOgﬂ—w Xnaun + 10g ]-_ﬂ—w(xnaup( ))) ) (18)

i=1n=1

where 77, (x,u) is our CPE parameterlzed by ¥. We make use of two permutation methods for
creating the contrastive data. The first is to just use random permutation without allowing any random
alignments. The second is to use the top-k nearest neighbors, based on u,, cosine distance, for &k
replicates. The random permutation contrastive data covers the space of misalignment, while the
top-k permutations improves the angular precision of the alignment scoring CPE. For all experiments
we use 7 random permutation replicates, and 2 top-2 replicates, for a total of P = 9.

4.2 Learning A-GPS’s variational distribution

To learn g, (x|u), we can now re-write our amortized ELBO, Equation 15, in terms of these estimated
quantities,

Lagpo(9,0,¢,7) = Eq () [Eq, (xfu) [log 75 (%, u) + log 7 (x,u) | — ﬂDKL[Q¢(X|U)||P(X|D<E%}9])~



Algorithm 1 A-GPS optimization loop. See Figure 5 for a visual representation.

Require: Initial dataset D, black-box f., prior p(x|Do), CPEs 7j (x, u) and 7y (x, u), variational families
g~(u) and g4 (x|u), threshold function f, and ¢, budget 7" and B.

1: function FITMODELS(Dn, 7)

Di + {(2n, Xn, Un) }h1, Where 2, = 1[xn € {Uy Sharetok 1 Vb < 7}, un = (yn —1)/||yn — 1|
% {(an=1,%,,u,)})_1 U Uil{(an =0, Xp, upiw))}ﬁ;l

7"« argmin, Leer(y, DX)

0" < argmin, L& (0, D%)

¢* < argmin,, Lé(¢, Dy)

¢" + argmaxy Larso(9, 0%, %", 7")

return ¢*, 0% " "

: forroundt € {1,...,7} do

10: Tt fr{y:y € Dn},0)

11: o1, 0%, i, v < FITMODELS(Dn, 7¢)

12: {upt )£ + sample ¢4y (u) or use u,

13: {xp:}2_, < sample qey (X|upe) VO € {1,..., B}

14 {ybedizy  {fu(xue) + €ne}is

15: Dy %DNU{(th,ybt)}le

16: return Dy, o7, 07, V7, V1

A A S

Nel

We find that using ‘on-policy’ gradient estimation methods such as REINFORCE [37, 27] are very
slow when we have complex variational distribution forms, g4 (x|u), e.g. causal transformers. This is
because we have to set a low learning rate to avoid the variance of this estimator inducing exploding
gradients for long sequences. Also, new samples have to be drawn from the variational distribution
every iteration of stochastic gradient descent (SGD), which can be computationally expensive. So
instead we use an ‘off-policy’ gradient estimator with importance weights to emulate the on-policy
estimator,

Vo Larso(,0,1,7)
o(Xu)

q
=E, , xlwe (u |wx,u) - log7;(x,u) + log7d(x,u) — flog ———= | V4 lo x|u)|.
q(p<|>qw<>{( )(g 5(x,u) +log 7y (x,u) — gp(xmo)) ¢ log gy (x| )]
(20)

Here w(x, u) = ¢4(x|u)/qq (x|u) are the importance weights [31, 6]. Now we use S samples from

x(5) ~ g’ (x[u®)), to approximate the expectation in Equation 20. If we choose ¢’ = ¢ we recover
on-policy gradients, however we typically only update ¢’ every 100 iterations of optimising A-ELBO,
or if the effective sample size drops below a predetermined threshold (0.5.5). Whenever we update ¢’
we also resample S samples. We use these estimated gradients with an appropriate SGD algorithm,
such as Adam [22], to optimize for ¢;.

4.3 Generating Pareto set candidates for evaluation

To recommend candidates for black-box evaluation in round ¢, we sample a set of B designs from
our search distribution,

B
{xpe by ~ [ ] ao; (x|up), where g7 = arg;nax La-preo(9, 07,17, 71) - 21D
b=1

We are free to choose uy; based on preferences (u,); or if we do not have specific preferences to
incorporate into the query, we sample {uy; }2_; ~ HbB:1 ¢+ (u) for broad Pareto front exploration.

5 Related Work

Our work sits at the intersection of online black-box optimization, generative modeling, and user-
guided multi-objective search. We organize existing methods along three dimensions: whether they
operate online or offline, whether they directly optimize acquisition functions or learn conditional
generative models for optimization, if they use inference-time guidance or learning for generation.



Table 1: Comparison of recent MOG and related techniques. ‘v’ means the method has the feature, ‘X’ the
method lacks the feature and ‘—’ the method can be easily extended to incorporate the feature. ‘Modular’ refers
to the non-specific nature of the variational distribution used by conditioning by adaptive sampling (CbAS),
VSD and A-GPS, i.e., it can be chosen based on the task.
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Method 0°9% W he© $°“ O‘SQ 6 e Guide
LaMBO [34] v v X v v X Masked LM nEHVI
LaMBO-2 [18] 4 v X v v X Diffusion nEHVI
Pareto Set Learning (PSL) [25] v v v v X X Deterministic MLP Scalarization
GFlowNets [21] v v v v v X GFlowNets Scalarization
ParetoFlow [40] v X X X v - Diffusion Scalarization
PROUD [39] v X X v - X Diffusion Multiple grad. desc.
Preference Guided Diffusion [2] v X X v X X Diffusion Preference CPE
CbAS [5] - - X v v X Modular Dominance CPE
VSD [35] - v X v v X Modular Dominance CPE
A-GPS (ours) v v v v v v Modular Dominance CPE

Online vs. offline. Traditional MOBO methods, such as hypervolume-based acquisition (EHVI,
noisy expected hypervolume improvement (nEHVI), and their variants), entropy search [38, 7, 8, 19]
and scalarization methods [24, 41, 28, 10], operate online by sequentially querying the black-box
using acquisition rules that balance exploration and exploitation. In contrast, offline MOG approaches
like ParetoFlow and guided diffusion frameworks [40, 39, 2] train generative models from a fixed
dataset of evaluated designs, without further oracle queries. While these offline methods can leverage
rich generative priors, they have not been designed to adapt to new information.

Generative models vs. acquisition optimization. Recent advances in “active generation” recast
black-box optimization as fitting conditional generative models to high-value regions, guided by
predictors and/or acquisition functions. Methods like VSD, GFlowNets, and diffusion-based solvers
[35, 21, 14, 18] show that generative search can match or exceed traditional direct acquisition function
optimization, particularly in large search spaces. However, existing generative frameworks often
need re-training to integrate subjective preferences. Similarly, all direct acquisition optimization
methods require additional optimization runs to incorporate new preferences. An exception is Pareto

set learning [25], which learns a neural-net, that maps from scalarization weights to designs.

Guidance vs. learning. Or inference-time vs. re-training/fine-tuning based search. Guided gen-
eration methods, such as those based on guided diffusion and flow matching [18, 39, 40, 2] use a
pre-trained generative model, from which samples are then guided at inference time such that they
are generated from a conditional generative model, leaving the original generative model unchanged.
It has been noted in [23] that guided methods, though computationally efficient, may be prone to
co-variate shift preventing them being guided too far from the support of the pretrained model. Con-
versely, learning-based methods such as [35, 36] explicitly re-train or fine-tune the generative model
to condition it, thereby circumventing these co-variate shift issues at the cost of more computation,
but allowing for less constrained exploration in online scenarios.

Our A-GPS approach unifies these dimensions: it learns an amortized conditional generative model
online, bypasses explicit acquisition optimization, and uses sequential learning to avoid co-variate
shift. Table | compares key features across representative MOG methods.

6 Experiments

We now evaluate A-GPS on a number of benchmarks and compare it to some popular baselines.
Firstly we apply A-GPS to a number of well known continuous synthetic MOO test functions as
a proof-of-concept. Then we apply it to three high-dimensional sequence design challenges — A-
GPS’s intended application — that emulate real protein engineering tasks. Our primary measure of
performance is Pareto front relative HVI [42, 16] using the implementation in [3]. For all experiments
we set 5 = 0.5 as the full KL regularization in Equation 15 can hamper exploitation in later rounds
on some tasks. We refer the reader to Appendix D for full experimental details.



BraninCurrin DTLZ7 ZDT3

me

olus

X m = 3 m = =X
2 P

15

Relative Hyper.
X

Relative Hyper-volume
X
!
i

3 5 ) ) H H s 5 10 3
Round Round Round

BraninCurrin DTLZ7 ZDT3
& Reterence point 08| W Reference point

X u=(. 001 X u=[001-002-002-001-001 1. ] X u

031 + u=(09:

= - u=il u= 5032
4=10.99011) 061 © u=[006-003022-011-02 095] 02 u=1033094]

+
¥
1 N oel &
& - o 927

+ s
g -06 i
¢ * o0 ey M
. x \
X 021 "< X?‘Z;X -
x
. # *
1o
0
: % % n B T * ED En N En R o

1350 20 %0 300 o 0 EN E
fi f

(a) Negative Branin-Currin (b) DTLZ7 (c) ZDT3

Figure 2: Experimental results on three test functions commonly used in the MOBO literature. The top row
reports HVI per round, the bottom row demonstrates amortized preference conditioning by generating Pareto
front samples (DTLZ7 is a PCA projection of the front).

6.1 Synthetic test functions

As a proof-of-concept, we demonstrate A-GPS on some classical continuous paramterized MOO
problems (x € RP”) commonly used for MOBO [41, 4, 3]. Even though A-GPS has not been
designed for purely continuous problems, they none-the-less allow us to demonstrate some appealing
properties of A-GPS. We present three here; negative Branin-Currin (D = 2, L = 2), DTLZ7
(D =17, L =6),and ZDT3 (D = 4, L = 2), see [13, 41, 4]. More detailed descriptions of
these functions, additional experimental detail and on additional test functions are presented in
Sec. D.1. We apply A-GPS to these continuous domains using a conditional Gaussian generative
model, g4(x|u) = NV (x|p(u),o%(u)), with mean and variance parameterized by a neural network
(NN). The top row of Figure 2 reports mean relative hypervolume versus optimization round. The
bands indicating £1 std. from 10 runs with random parameter initialisation. We compare to three
Gaussian process (GP)-based baselines, qNEHVI [8], gEHVI and qNParEGO [7]. All methods use
64 training points, and then recommend B = 5 candidates for 7" = 10 rounds, and A-GPS has 7y set
using the p = 0.25 percentile of Pareto ranks. On Branin-Currin, A-GPS (purple) rapidly outpaces
the scalarization based qNParEGO, but is dominated by the methods that explicitly estimate EHVI.
However, these methods do not scale to the higher dimensional DTLZ7 problem, where A-GPS still
outperforms qNParEGO. While A-GPS can model the complex Pareto front of ZDT3, the direct
optimization methods outperform it, we suspect a stronger generative backbone for continuous data
would help here. The bottom row of Figure 2 illustrates preference conditioning: each panel plots the
sampled Pareto front (dots) from g4 (x|u,) colored by three representative preference directions u,.
These u, were chosen by,

Y € {[Q]:t’l (09)7 Q]—‘Ifa*jw(o‘l)]? [AV(]:IE;HO)’Av(flgﬁeto)]’ [Q]—'t’l (0'1)7 Q]—}fa’jw(o‘g)]}’ (22)

Pareto Pareto

where () is an empirical quantile function and Av denotes the set mean of each dimension, [, of the

observed Pareto front, ]-';;iem. We then use Equation 11 to convert these into u, with an automatically
inferred reference point r. We project the higher dimensional DTLZ7 outcomes into two dimensions
using principal component analysis (PCA) for this visualisation. Overall, these results show that A-

GPS supports flexible, a-posteriori preference conditioning across a variety of continuous landscapes.

6.2 Ehrlich vs. naturalness

We now evaluate A-GPS on a challenging two-objective synthetic ‘peptide’ design task that couples
the Ehrlich synthetic landscape [33] with a ProtBert [15] ‘naturalness’ score. The Ehrlich function
has been designed to emulate key aspects of protein fitness; it maps each discrete sequence to a scalar
by embedding combinatorial motif interactions in a highly rugged, multi-modal, but artificial terrain.
In stark contrast, ProtBert’s loss reflects genuine amino-acid patterns learned from 217 million real
proteins. We use protein sequences X = VM where |V| = 20 and M € {15,32,64}. The two
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objectives are,
f1(x) = Ehrlich(x),  f.2(x) = e~ Cromen(x), (23)

Here we convert ProtBert’s log-10ss, Lproert(X) into a likelihood ( f.2 € [0, 1]), making it output in

a comparable range to the Ehrlich function (f£." € {—1} U [0, 1]). We compare against a baseline
that randomly mutates the set of best candidates, CbAS [5] and VSD [35], which use the same
2-layer CNN Pareto CPE as A-GPS, and against the guided diffusion based LaMBO-2 [18], which is
formulated for discrete MOBO tasks using EHVI guidance. A-GPS uses the same CNN architecture
for its alignment CPE. CbAS and VSD use a causal transformer architecture for their g4(x). A-GPS
uses the same backbone transformer, but embeds u for its prefix token and uses FiILM [29] on
the transformer embeddings for conditioning the transformer on preferences, g4 (x|u). The same
(unconditional) architectures are used as priors by CbAS, VSD and A-GPS, which are trained on the
initial sequences using maximum likelihood. Unlike in [35, 5], we allow CbAS to resample g, (x)
between rounds (once every 100 iterations) — this drastically improves its performance. Results are
reported in Figure 3 for T = 40 rounds from random starting conditions (bands indicating +1 std).
All methods are given 128 training samples, and then recommend batches of size B = 32 per round,
and 79 is set as p = 0.25 percentile of Pareto ranks. We use the poli and poli-baselines libraries
for running the benchmarks and LaMBO-2 baseline [17]. Additional experimental details and timing
results are in Sec. D.2. A-GPS performs similarly to VSD, CbAS tends to be overly exploitative, and
LaMBO-2’s guided masked-diffusion model tends to under-perform on this task.

6.3 Bi-grams

For this experiment we use the bi-grams optimization task from [34] where the aim is to maximize
the occurance of three bi-grams (‘AV’, ‘VC’ and ‘CA’) in an M = 32 length sequence. We start
with 512 random sequences that have no more than three of these bi-grams present. We then have
T = 64 rounds of B = 16 to optimize the bi-gram occurances. The initial Pareto front is sparse
so Ty is the p = 0.5 percentile of Pareto ranks. The same models as the previous experiment are
used along with a masked-transformer model (mTFM) backbone for CbAS, VSD and A-GPS. This
allows control over the number of mutations to apply to an existing sequence, rather than generating
a complete sequence from scratch — see Appendix C for details. LaMBO-2’s masked diffusion
backbone also has this ability, and following [34] we use a 1-mutation budget for these models.
Relative hypervolume improvement results are presented in Figure 4 (a) and (b), sequence diversity
is computed as the average pair-wise edit distance between all sequences. We can see the causal
transformer backbone A-GPS and VSD models perform best, followed by LaMBO-2. CbAS overfits
early as we can see from the diversity plot, and the mTFM models perform similarly to the random
baseline and take many rounds to show any improvement on this task.

6.4 Stability vs. SASA

Our final experiment uses the simulation-based protein stability vs. solvent accessible surface area
(SASA) task from [34]. The aim is to optimize six base red fluorescent proteins with M > 200
for stability (—AG) and SASA. We use the FoldX black-box implementation in poli [17], with
512 training samples, T' = 64, B = 16, and a budget of one mutation per round. We have a rich
starting Pareto front so 7y is set from p = 0.1. We only use the mTFM backbone for CbAS, VSD and
A-GPS as FoldX is best modelling only small differences to the original sequences. The results are
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Figure 4: Bi-grams and Stability vs. SASA results for relative hypervolume (HV) improvement and diversity.

summarised in Figure 4 (c) and (d). LaMBO-2 initially performs well, but is overcome by A-GPS as
the sequence diversity diminishes. See Sec. D.4 for additional plots of the estimated Pareto front.

7 Limitations and Discussion

We have considered the problem of active multi-objective generation, which frames discrete black-box
multi-objective optimization as an online sequential generative learning task. Our proposed solution
leverages recent advances in generative models to estimate a distribution, g, (x|u), of the Pareto set
directly, conditioned on user preferences u, which we call active generation of Pareto sets (A-GPS).

Limitations. A limitation with A-GPS, and one that it shares with many MOBO and MOG methods,
is that it can be hard to specify algorithm hyper-parameters a-priori — before new data has been
acquired — and the settings of these hyper-parameters can effect real-world performance. We are
mindful of this in our implementation and design of A-GPS, and as such it comprises components
that can be independently trained and validated meaningfully on the initial training data at hand. In
particular, we find A-GPS, VSD and CbAS are sensitive to the prior model used, p(x|Dy). To aid
practitioners use these methods, we outline a general procedure we find works well in Sec. B.2 for
prior choice and initialization. Another limitation with A-GPS as presented in this work is the choice
of the generative model for the continuous synthetic test functions. The MLP used does not appear
to scale well to higher-dimensional problems, and we expect using flow-matching [26] or diffusion
[20] backbones would remedy this issue, and incorporating these models into the VSD and A-GPS
frameworks is a future research direction.

In contrast to other approaches that are dependent on diffusion models, our choice of generative
model is flexible and modular. Our empirical experiments demonstrate that our method performs
well on high dimensional sequence design tasks. We hope that our modular framework will result in
many future extensions to different architectures for generative models, resulting in further practical
algorithms for active generation in large search spaces. For code implementing A-GPS, VSD and all
of the experimental results, please see github.com/csiro-funml/variationalsearch.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The title describes our proposed method, and the abstract and introduction
identifies the problem that our method solves and places it in the context of other machine
learning problems.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in the “Related Work™ and “Discussion’ sections,
and illustrated in our empirical results.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided careful derivations of our proposed model, and also a proof
of equivalence of indicators in the main text. We provide all assumptions and derivations of
this proof in the appendix.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed method is presented in detail in Algorithm 1, and how it is
derived from first principles is described in Section 4. Details of experimental settings are
provided in the main text and supplement, along with supporting additional experiments.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data reported in this paper are from existing publicly available benchmarks,
described in Section 6. Our open source code is provided at a linked github repository.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of the algorithm, including the estimation of gradients and the opti-
mizer are described in Section 4. Specific settings corresponding to the three experimental
sub-sections in Section 6 are provided in Appendix D

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experimental results in Section 6 are with appropriate uncertainty
intervals.
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10.

11.

12.

13.

14.

15.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of our computing resource, as well as required compute time is provided
in Appendix D.5, in the Supplement.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is an algorithmic contribution to multi-objective optimization (which has
been studied for decades), and the application is to existing benchmark datasets, so no new
ethical questions arise.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper proposes an algorithmic advance, hence there are no new direct
impacts. However, a further discussion of societal impacts of multi-objective generation is
discussed in Appendix A in the Supplement.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any large models, nor does it reveal any new
datasets.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Data for benchmarks are from previous publications (appropriately cited). Our
code builds on Apache 2.0 open source licensed code.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The software implementing the algorithmic implementation is well docu-
mented, and the documentation is provided in the software package in the linked repository.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nor any research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

15


https://neurips.cc/public/EthicsGuidelines

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing nor any research with human subjects.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The core method development in this research does not involve large language
models.
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A Broader Impacts

This work is motivated by applications that aim to improve societal sustainability, for example, through
the engineering of enzymes to help control harmful waste. However, as with many technologies, it
carries the risk of misuse by malicious actors. We, the authors, explicitly disavow and do not condone
such uses.

B Additional Methodology Details
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Figure 5: A visual depiction of Algorithm 1 — A-GPS learns all the distributions involved by optimizing
different components of a reverse KL loss. At time ¢, the optimized variational distribution g, (x|u) with
parameters ¢; is used to generate new designs that can incorporate new user’s preferences u*. We iterate until a
convergence/user criterion is satisfied.

B.1 A Non-dominance CPE is estimating probability of hypervolume improvement

Using a CPE trained on Pareto non-dominance labels, z, is equivalent to estimating the PHVI under
some general conditions. The proof is based on the current observed Pareto set and front, St
Flaretor T€SPeCtively, and relies on the box-decomposition definition of hypervolume. We use y as
a shorthand for y(x) = f.(x) + €, and y’ for y(x’) = f.(x’) + €, etc., where the context is clear.
Firstly, our proof relies on the following assumptions,

Assumption 1 (Reference Point). The reference point, v € R is strictly dominated by every feasible
objective vector,
Vy € Y ¢ R, y > r. (24)

This avoids negative-volume boxes when computing hypervolume, i.e. boxes must have positive or
no contribution to hypervolume.
We define a box of hypervolume for any y € ) under Assumption | as,

B(Y) = [r7y] = [T17y1] X [r2ay2] Ko X [TLayL]' (25)

Then let A7, denote an L-dimensional Lebesgue measure, so the (dominated) hypervolume of a finite
set, A C RE is,

HV(A) = )\L< U B(y)). (26)
yeA
With this we can define hypervolume improvement (HVI),
HVI(x) := HV (Fpyeio U {Y (%)}) = HV(Fpyreco)- 27)
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In addition, for any S C X, let Pareto(S) denote the Pareto subset of S, i.e.,
Pareto(S) := {x € S : x' # x,Vx' € S\x}. (28)

Note that Pareto(S U {x}) = Pareto(S) for any x € X that is dominated by an element of S. With
these simple definitions and assumptions, and noting that:

z(x) = 1[x € Pareto(Sf,o U {x})], (29)

we have the following result.

Theorem 1 (Equivalence of Indicators). For every x & S},,..,» the HVI indicator is equivalent to a
non-dominance indicator,

1[HVI(x) > 0] = 2(x). ®)

Proof. This is straightforward to see if we consider the dominated and non-dominated cases.

Case 1: x is dominated. Having z(x) = 0 implies that the condition x" # x,Vx € Sf .. 18
not satisfied and the Pareto set remains unchanged, i.e., Pareto(Sh o U {X}) = Shyero» SO that
HV (Fi oo U {y}) = HV (Ffye)- Hence, there is no hypervolume improvement,

Pareto

z(x)=0 = 1[HVI(x)>0]=0. (30)

Case 2: x is non-dominated. If x’ % x for all X' € 8}, there is no 'y’ € Ff,.o such that
B(y) € B(y’). For HVI(x) to be positive, we need to show that HV (F,ei0) < HV (Fheo U {¥ ),
i.e., whatever remains of the difference between B(y) and the previous union | J B(y’) must

y/efl;/ﬂfelﬂ
be a set of positive Lebesgue measure. Indeed, letting v := minyesy Mmaxjeq,.,0}¥i — Yl
which is positive due to dominance, and setting § := min{~y/2, min;egy, . ry(y; —73)/2} > 0 (by
Assumption 1), we have that the 6-box B; := HiL=1 [y; — 6,y:] C B(y) is not covered by the union
Uy ere  B(y"). It then follows that HVI(x) = HV (Ffyei U {¥}) — HV (Ffyeo) = AL(Bs) > 0,

confirming that
z(x)=1 = 1[HVI(x)>0]=1. (31)

Thus, for any choice x ¢ Sf,..., We have z(x) = 1[HVI(x') > 0]. O

Corollary 1 (Non-Dominance CPE estimates PHVI). Following straightforwardly from Theorem I,
P(2(x) = 1|x) = P(HVI(x) > 0[x) := PHVI(x), VX € Spyerrs ©)

as the events are equivalent. Thus, a CPE trained on z, using a proper loss, is predicting PHVI. [

B.2 Fitting the prior

We found that A-GPS, VSD and CbAS, which share generative backbones, were all very sensitive to
the choice of prior. For complex problems, the best results were obtained in general when the prior is
chosen to be of the same form (or an unconditional variant) as the variational distribution, and fit
to the 7" = 0 training data. However, for flexible backbone models like transformers, it can be easy
to overfit to this training data. We found that adding dropout in conjunction with an early stopping
training procedure on the initial training dataset reliably led to good performance for all methods.
The exact procedure used is listed as follows,

1. Set prior dropout p

2. Train prior with 10% validation set, make note of number of iterations when validation loss
begins to increase

3. Train prior with all data for the number of iterations noted in the previous step

4. If appropriate, copy weights to variational distribution (without dropout).

When the prior and variational models were compatible, we initialized the variational model with
these learned prior weights. We run an ablation of this procedure in Sec. E.3.
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C Architectural Details

C.1 Preference direction distributions

In all the experiments we use a mixture of isotropic Normal distributions where the samples have
been constrained to the unit norm,

K
q’y(u) = ZwkM\uH(u|p’kaai)a (32)

k=1

and v = {(p,01)} . Typically, we find K = 5 is sufficient. We learn this via maximum

likelihood as per Equation 16, but we add an extra regularisation term: — 4 Zszl(Huk | —1)%so
the magnitude of the mixture means is controlled (and does not decrease to 0 or increase to +00). We
have compared this to von Mises distributions, and find it more numerically stable, we also find no
tangible benefit using more complex spherical normalizing flow representations [32]. Furthermore,
we find that the performance is similar to, if not slightly superior to, the empirical approximation,

1 N
q (11) = =N Zn ]l[u = un}a (33)
i ng:l “n 7;1

where v = {u,, : 2, = 1}_,. Though on occasions when only a few observations define the Pareto

front, we find that using this representation can lead to an overly exploitative strategy.

C.2 Sequence variational distributions

In this section we summarize the main variational distribution architectures considered for A-GPS
VSD and CbAS.

Causal Transformer. For some of the sequence experiments we implemented an auto-regressive
(causal) transformer of the form,

M
g4 (x) = Categ(z1|softmax(¢1)) H Gy (Tm|T1:m—1), where
m=2
461, (Tm|T1:m—1) = Categ(z, |softmax(DTransformery (21:m—1)))- (34)

For details on the decoder-transformer with a causal mask see [30, Algorithm 10 & Algorithm 14]
for maximum likelihood training and sampling implementation details respectively.

Masked Transformer. We also implemented a masked transformer model (mTFM) that learns

to mutate an initial sequence, x’, at a set of positions, 0 = [0y, ..., 0] Where o, € {0,1} and
Zn]\le om = O for a mutation budget, O € {1, ..., M}. The complete generative model is,
qs(x, olx') = d¢. (x[x'[o Tmask] ) Qb (o]x). (35)

Where the notation x’[0 <— Zmask] means we apply a masking token to the original sequence at the
positions indicated by o. The mask generation model is,

46,. (0|x") = Multinomial(o|NN (ETransformer, (x))), (36)

Here ETransformer is an encoder-transformer, see [30, Algorithm 9] for details, and NN, is a
NN decoder, with a convolutional residual layer for capturing additional local structure. The token
generation model is,

0. (X|X'[0 ¢ Tmask]) = ﬁ {]l[xm = ] if or, = 0; where
fwe mask et Categ(m|pm) if o =1,
[P0, - - ., pm] = ETransformer s (x'[0 — Zmask])-

The same encoder-transformer is shared between the mask and token heads, and only the masked
positions are allowed to sample new tokens. For our experiments we bias the categorical distribution
so that the original token is not resampled. The choice of the set of seed sequences, {x}} ‘]-]:1, can
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drastically impact performance of A-GPS, VSD and CbAS. A simple heuristic that we find works
well in practice is to uniformly sample with replacement from the current active Pareto set, Sfy e, SO
X ~ U(Shyeto)- This is similar to the strategy used in LaMBO-2, though since they use EHVI, they
can maintain only the top-B sequences per round ranked by EHVI, where B is batch size.

Finally, if we use this model as a prior, we drop the conditional mask model, g4, (o|x’), and draw
mask-positions independently with a Bernoulli distribution, Bern(o,, |pmask = 0.15). Then we use
[30, Algorithm 12] for training.

We list the configurations of the transformer variational distributions in Table 2. We use additive
positional encoding for all of these models. When using these models for priors or initialization of
variational distributions, we find that over-fitting can be an issue. To circumvent this, we use dropout
and early stopping, see Sec. B.2 for details.

Conditioning. As mentioned in the text, for the conditional generative models, g, (x|u), for A-GPS,
we use the same architectures already discussed, but also learn a sequence prefix embedding from
u, as well as a simple 1-hidden layer MLPs for implementing FilM [29] adaptation of the sequence
token embeddings,

em =em_10(1+ fo(u)) + fg(u), where eg= fprenx(u). (37)

Here o indicates element-wise product, and f, and fg are the FILM MLPs, and fyrix is the prefix
embedding MLP (often we find just a linear projection is adequate), and e,,, are the transformer
embeddings. We initialize the transformer weights in these models from their non-conditional
counterparts when they are used as priors.

Table 2: Transformer network configuration for the sequence experiments.

Ehrlich vs. Nat | Bi-grams | Stability vs. SASA
| Property / M — 15 32 64 32 > 200 (variable)

Layers 2 2 2 2 2

Network Size | 128 128 128 128 256
Attention heads 4 4 4 4 4
Embedding size | 64 64 64 64 64

FiLM hidden size | 128 128 128 128 128
Prior dropoutp | 0.5 04 0.2 0.2 0.1
Mutation budget O - - - 1 1

C.3 Class probability estimator architectures

For all of our experiments we share the same architecture for both 75 (x, u) and 7 (x, u). On the
continuous synthetic test functions we use the MLP in Figure 6 (a), where we simply concatenate the
inputs x and u. Here Skip is a skip connection which implements a residual layer, and MaxAndAvg
means a scalar weighted sum of max and average pooling.

For the sequence experiments we use the convolutional architecture given in Figure 6 (b). For VSD
and CbAS we simply add on another LayerNorm and LeakyReLU and then an output linear layer.
For A-GPS we concatenate u to output of this CNN, and then pass this concatenation into the MLP
in Figure 6 (c). All architectural properties are listed in Table 3.

Table 3: CPE configurations for A-GPS, VSD and CbAS.

Ehrlich vs. Nat | Bi-grams | Stability vs. SASA | Synthetic Fns.
| Property / M — | 15 32 64 32 > 200 (variable) -
E| 16 16 16 16 16 -
c| 64 64 64 64 96 -
Kc 5 5 5 5 7 -
Kx 3 3 3 3 5 -
Sx 2 2 2 2 4 -
H | 128 128 128 128 192 min{16D, 128}
hidden_layers - - - - - 2
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Sequential (

Linear (
in_features=D + L,
out_features=H
),
LayerNorm() ,
LeakyReLU (),
Dropout (p=0.1),
*[Skip (

Linear (
in_features=H,
out_features=H

),

LayerNorm (),

LeakyReLU(),

Dropout (p=0.1),

Sequential (

Embedding_And_Positional(
num_embeddings=A,
embedding_dim=E

),

Dropout (p=0.2),

Convid (
in_channels=E,
out_channels=C
kernel_size=Kc

),

GroupNorm (),

LeakyReLU(),

Dropout (p=0.1),

MaxAndAvgPool1d (
kernel_size=Kx,

) for _ in range(hidden_layers)], stride=8x,
Linear ( ),
in_features=H, Skip (
out_features=1 Convid(
), in_channels=C,
) out_channels=C,
kernel_size=Kc,
(a) Continuous MLP architecture ),
GroupNorm (),
Sequential ( LeakyReLUQ),
Linear ( )
in_features=H + L, AdaptiveMaxAndAvgPool1d (),
out_features=H Linear (
), out_features=H
LeakyReLU (), ),
LayerNorm (), )
Skip (
Linear ( (b) Sequence CNN architecture

in_features=H,
out_features=H
),
LeakyReLU(),
),
Linear (
in_features=H,
out_features=1

),

(c) Sequence-preference concatenation MLP
architecture

Figure 6: CPE architectures used for the experiments in PyTorch-like syntax. A = |V|, L = L corresponding to
y € RY and D = D corresponding to x € RP for the continuous experiments. LaMBO-2 uses the same kernel
size as our CNNs. See Table 3 for specific property settings.

D Experimental Details

D.1 Synthetic test functions

We tested A-GPS on a number of popular MOO synthetic test functions against strong GP-based
baselines. All the test functions are summarised as follows, with additional results presented in
Figure 7.

Branin-Currin (D = 2, L = 2): We optimize the negative Branin-Currin convex pair. We found the
negative function has a more interesting Pareto front while remaining a challenging MOBO task.

DTLZ7 (D = 7, L = 6): A higher-dimensional constraint surface, made of L segments. The
outcome dimension is too high for methods that directly estimate the improvement to hypervolume.

ZDT3 (D =4, L = 2): A complex, non-convex front comprised of several disconnected segments,
which stresses an optimizer’s capacity for both exploration and front-segment coverage.

DTLZ2 (D = 3, L = 2): A smooth, spherical front in the negative orthant, which tests an algorithm’s
ability to approximate non-convex curved manifolds in higher dimensions.

DTLZ2 (D = 5,L = 4): A higher dimensional instantiation of the DTLZ2 function for testing
performance with higher dimensional inputs and objectives.

21



GMM (D = 2, L = 2): Here each objective is implemented as a Gaussian mixture model, and so is
highly multimodal [9]. This is run without observation noise.

DTLZ2 DTLZ2-4

e

wwwwwww

ume

ol

o
¥l

Relative Hyper-volume

Relative Hyper.

() DTLZ2 L = 2 (b)DTLZ2 L = 4 (c) GMM

Figure 7: Experimental results on an additional three test functions commonly used in the MOBO literature. The
top row reports HVI per round, the bottom row demonstrates amortized preference conditioning by generating
Pareto front samples (DTLZ2 with L = 4 is a PCA projection of the front).

A detailed description of these functions and/or their Pareto-front geometries can be found in
[13,41,4]. We use BoTorch [3] for the implementations of all the synthetic test functions and the
baseline MOBO methods. All experiments were initialized using Latin hyper-cube sampling. The
original design space is X = [0, 1] for all problems, and we optimize directly in this space with
all methods. The GP based methods use an optimizer that respects these bounds directly, and we
clamp A-GPS’s generative model to these bounds. We found transforming the space (e.g. using
logit-sigmoid transforms) generally led to worse performance.

Table 4: Synthetic test functions experimental settings.

Setting Value
Ni—o 64
T 10
Replicates 10
B 5
S 256
r | inferred using BoTorch’s infer_reference_point ()
Base BoTorch model SingleTaskGP
Optimizer | Adam for A-GPS (Ir = 10~°) and L-BEGS for the GPs
Max optimization iter. for A-GPS 3000
GP restarts 10
Bounds [0,1]"
GP kernel Matern v = 2.5 ARD (standardized inputs)
GP hyperparameters LogNormal priors on ¢ and [

For A-GPS we use the mixture model in Equation 32 for the preference direction distribution, and for
the conditional generative model we use a simple MLP,

go(x|u) = N(x|u(u),a’2(u)) )

Here p(u), o?(u) are MLPs with 2 or 4 hidden layers (if D > 3) of size of min(16D, 256) with
skip-connections and layer normalization, making them residual networks. We otherwise use the
same experimental settings for the rest of the experiments, which are given in Table 4.

(38)

D.2 Ehrlich vs. Naturalness

The Ehrlich vs. naturalness score benchmark was implemented using the poli benchmarking library
[17], where we implemented our own ProtGPT2-based naturalness black box, and used the inbuilt
Ehrlich function [33] (not the holo version). For A-GPS we use the aforementioned generative and
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discriminative models, otherwise the settings are given in Table 6. We use a modified version of
the LaMBO-2 algorithm [18] from poli-baselines [17]. We use the following Ehrlich function
configurations:

M = 15: motif length = 3, no. motifs = 2, quantization = 3
M = 32: motif length = 4, no. motifs = 3, quantization = 4

M = 64: motif length = 4, no. motifs = 4, quantization = 4

Additional experimental settings are given in Table 6, and runtimes in Table 5.

Table 5: Ehrlich vs. Naturalness times (mins).

M =15 M = 32 M =64
Method | mean min max mean min max mean min max
A-GPS-TFM | 18.10 17.79 1838 | 19.40 1894 19.78 | 21.43 2099 21.75
VSD-TFM | 1243 1226 12.61 | 13.62 13.10 1434 | 15.85 1524 17.26
CbAS-TFM | 9.18 8.91 9.51 9.73 9.40 9.98 11.78 1143 12.11
LaMBO-2 | 14.15 13.50 14.74 | 16.17 1574 1641 | 17.96 17.68 18.75
Random (greedy) | 0.53 0.51 0.54 0.91 0.91 0.92 2.35 2.35 2.36

Table 6: Sequence experimental settings.

Ehrlich vs. Nat. Bi-grams | Stability vs. SASA
J Setting / M — 15 32 64 32 > 200 (variable)
Ni—o 128 128 128 512 512
T 40 40 40 64 64
Replicates 5 5 5 5 5
B 32 32 32 16 16
S 256 256 256 256 256
r | [-1,0] [-1,0]1 [-1,0] [0, 0, 0] auto
Threshold 7o percentile | 0.25 0.25 0.25 0.5 0.1

D.3 Bi-grams

For the bi-grams experiment we implemented our own black-box for the poli library based on the
experiment in [34]. All architectural details are presented in Appendix C, with additional experimental
settings in Table 6. We also report runtimes in Table 7.

Table 7: Bigrams times (mins).
Method | mean min max
A-GPS-TEM | 30.99 30.04 31.89
A-GPS-mTFM | 40.32 38.78 42.19
VSD-TFM | 21.23 20.10 22.14
VSD-mTFM | 28.13 2793 28.44
CbAS-TFM | 14.63 1441 14.84
CbAS-mTFM | 2424 23.11 26.40
LaMBO-2 | 42.03 40.63 43.04
Random (greedy) | 0.47 0.47 0.48

D.4 Stability vs. SASA

For the stability vs. SASA experiment we used bi-objective black-box from the poli library, and the
seed sequences and settings from the experiment in [34]. All architectural details are presented in
Appendix C, with additional experimental settings in Table 6. We also report runtimes in Table 7,
and show some samples from the A-GPS generative model, as well as the empirical Pareto front in
Figure 8.
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Table 8: Stability vs. SASA times (mins).
Method | mean min max
A-GPS-mTFM | 120.75 118.52 122.67
VSD-mTFM | 108.93 107.57 109.92
CbAS-mTFM | 97.48 96.11 99.16
LaMBO-2 | 59.33 57.55 61.18
Random (greedy) 11.38 10.87 12.20
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(a) Samples from the final A-GPS generative (b) FoldX black-box evaluations of sequences generated by
model conditioned on preference direction vec- A-GPS, colored by evaluation round.
tors.

Figure 8: Additional A-GPS sample visualisations from the stability vs. SASA experiment in section 6.

D.5 Computational resources

All experiments were run on a Dell PowerEdge XE9640 rack server cluster with NVIDIA H100
GPUs and 4th generation Intel Xeon CPUs. All of our models could easily fit on one GPU, and
typically took less than 2 hours to complete the experiments.

E Ablation Studies

In this section we test some of the architectural decisions we have made when designing A-GPS.

E.1 On-policy vs. off-policy gradients

We introduce a new gradient estimator in Equation 20 based on off-policy importance weighting
approximations to the on-policy gradient estimator used by [35]. To test its efficacy, we re-run the
Ehrlich vs. naturalness score experiments with this new estimator and the original on-policy variant.
We report performance and runtimes in Table 9 for M = 32. There does not seem to be a consistent
difference between the two gradient estimators in terms of hypervolume performance, but runtime
is significantly lower for the off-policy estimator, being almost an order of magnitude less for the
off-policy variant.

E.2 Off-policy gradient estimator samples

We test the effect on performance of the number of samples, S, used for estimating the gradients
of the off-policy estimator, Equation 20, used for A-GPS and VSD in Table 10. We also do the
same for the CbAS estimator. We generally find that more samples lead to more performance for all
methods, however this effect plateaus for A-GPS and VSD starting at S = 256, whereas CbAS still
sees improvement beyond S = 512. This is also something noted by the original authors in [5].
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Table 9: Ehrlich function vs. naturalness score ablation for M/ = 32. Run time and performance comparison for
the on-policy gradient estimators (‘-reinf.”) vs. the importance weighted off-policy estimators for the A-GPS and
VSD methods. All times are in minutes.

Time (min)
Method mean min max T = 40 relative HV improvement
A-GPS-TEM 19.40 18.94 19.78 6.264 (1.159)
VSD-TFM 13.62 13.10 14.34 6.711 (0.952)
CbAS-TFM 9.73 9.40 9.98 4.398 (0.652)
LaMBO-2 16.17 15.74 16.41 3.074 (1.950)
Random (greedy) 0.91 0.91 0.92 1.260 (0.169)
A-GPS-TFM-reinf. | 105.09 | 100.20 | 109.52 6.656 (0.920)
VSD-TFM-reinf. 97.95 90.74 | 115.81 6.257 (1.338)

Table 10: Round 7" = 40 relative hypervolume improvement results for the varying the number of samples used

to estimate the gradients with the off-policy gradient estimator, Equation 20, and the CbAS gradient estimator.

M  Method S =64 S =128 S = 256 S =512

32 A-GPS-TEM | 5.663 (1.357) | 6.212(0.905) | 6.264 (1.159) | 6.245 (1.398)
VSD-TFM 5.665 (0.918) | 6.218 (1.041) | 6.711 (0.952) | 6.964 (0.899)
CbAS-TFM 4.048 (1.249) | 4.167 (0.707) | 4.398 (0.652) | 5.531(1.347)

64  A-GPS-TEM | 5.655 (1.646) | 5.522 (1.188) | 6.021 (1.052) | 6.269 (1.808)
VSD-TFM 5.435(0.844) | 5.198 (1.240) | 5.738 (1.305) | 4.633 (0.817)
CbAS-TFM 4.168 (1.352) | 3.803 (0.741) | 3.929 (0.564) | 5.092 (0.972)

E.3 Prior regularization

We found that A-GPS, VSD and CbAS, which share generative backbones, were all very sensitive to
the choice of prior. For complex problems best results were obtained in general when the prior is fit
to the 7' = 0 training data, however for flexible backbone models like transformers, it can be easy to
overfit. Adding dropout only to the prior generative model is an effective means of controlling this
overfitting when used with a validation set to infer the number of learning iterations, as in the process
outlined in Sec. B.2.

To demonstrate the effect of over- and under-fitting on performance, we change the transformer
dropout probability while holding all else constant, e.g. fitting iterations, on the Ehrlich vs. naturalness
experiment for M = 32 in Table 1 1. The training iterations were tuned while setting p = 0.4, and
so we would expect other values of dropout to be suboptimal, and we can indeed see this is so. All
methods severely under-perform with and overfit prior p € {0.2,0.3}. A-GPS and VSD perform
slightly worse with an under-fit prior, whereas CbAS’s performance actually improves. This is a
trend we have noticed in all experiments; prior overfitting leads to poor performance, and under-
fitting is less consequential. CbAS tends to favour exploitation, which explains why a broader prior,
encouraging exploration, helps the method.

Table 11: Round T" = 40 relative hypervolume improvement results for the varying the prior dropout probability
of the transformer backbone. We only present results for M = 32, and the training regime was originally
optimized for p = 0.4.

Method p=02 | p=03 p=04 | p=05

A-GPS-TFM | 3.786 (0.925) | 5.525(1.224) | 6.264 (1.159) | 5.743 (0.849)
VSD-TFM 3.585(0.894) | 4.455(0.433) | 6.711(0.952) | 6.496 (1.246)
CbAS-TFM 2.543 (0.589) | 4.099 (0.678) | 4.398 (0.652) | 5.838 (1.090)

E.4 Empirical vs. parameterized preference direction distribution

For all of our experiments we use the constrained mixture of Normal distributions (K = 5), Equa-
tion 32, as our parameterized preference directions distribution, g, (u). We now wish to validate this
choice by comparing it to two simpler alternatives: a single constrained Normal distribution (K = 1),
and the empirical distribution in Equation 33.

We make these comparisons on the synthetic test functions, as their Pareto fronts are well sampled and
diverse in their shapes. As can be seen in the results in Figure 9, there is not a consistent leader among
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the different preference distribution parameterizations across all of these functions. Perhaps the
empirical preference distribution strikes the optimal blend of simplicity and performance — however
we do occasionally find that it under-performs compared to the parameterized distributions in cases
where the Pareto front is sparsely sampled, which happens in some sequence experiments.
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Figure 9: A-GPS preference distribution ablation experimental results on the synthetic test functions used for

Sec. 6.1.
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