Published as a conference paper at ICLR 2024

ASID: ACTIVE EXPLORATION FOR SYSTEM IDENTIFI-
CATION IN ROBOTIC MANIPULATION

Marius Memmel, Andrew Wagenmaker, Chuning Zhu, Dieter Fox, Abhishek Gupta
Paul G. Allen School of Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

{memmelma, ajwagen, zchuning, fox, abhgupta}l@cs.washington.edu

ABSTRACT

Model-free control strategies such as reinforcement learning have shown the abil-
ity to learn control strategies without requiring an accurate model or simulator of
the world. While this is appealing due to the lack of modeling requirements, such
methods can be sample inefficient, making them impractical in many real-world
domains. On the other hand, model-based control techniques leveraging accurate
simulators can circumvent these challenges and use a large amount of cheap sim-
ulation data to learn controllers that can effectively transfer to the real world. The
challenge with such model-based techniques is the requirement for an extremely
accurate simulation, requiring both the specification of appropriate simulation as-
sets and physical parameters. This requires considerable human effort to design
for every environment being considered. In this work, we propose a learning sys-
tem that can leverage a small amount of real-world data to autonomously refine a
simulation model and then plan an accurate control strategy that can be deployed
in the real world. Our approach critically relies on utilizing an initial (possibly
inaccurate) simulator to design effective exploration policies that, when deployed
in the real world, collect high-quality data. We demonstrate the efficacy of this
paradigm in identifying articulation, mass, and other physical parameters in sev-
eral challenging robotic manipulation tasks, and illustrate that only a small amount
of real-world data can allow for effective sim-to-real transfer. Project website at

https://weirdlabuw.github.io/asid

1 INTRODUCTION

Controlling robots to perform dynamic,
goal-directed behavior in the real world is
challenging. Reinforcement Learning (RL)
has emerged as a promising technique to
learn such behaviors without requiring known
models of the environment, instead relying on
data sampled directly from the environment
(Schulman et al', 20174} [Haarnoja et al, 2018).
In principle, these techniques can be deployed
in new environments with a minimal amount
of human effort, and allow for continual
improvement of behavior. Such techniques
have been shown to successfully learn complex
behaviors in a variety of scenarios, ranging
from table-top manipulation (Yu et al 2020)
to locomotion (Hwangbo et al., |2019) and even

dexterous manipulation (Zhu et al., 2019).

Learn to Explore
in Randomized Sim

Randomized
Puck Mass & Pose

System Identification

Learn to Solve the
Task in Accurate Sim

"Shoot the puck to 0
blue zone"

Figure 1: ASID: A depiction of our proposed process
of active exploration for system identification, from
learning exploration policies to real-world deployment.

However, these capabilities come at a cost, requiring full access to the environment in order to de-
sign reset mechanisms and reward functions. Such requirements necessitate training these methods
in carefully controlled and often curated environments, limiting their applicability. Moreover, de-


https://weirdlabuw.github.io/asid

Published as a conference paper at ICLR 2024

ploying tabula-rasa reinforcement learning methods in the real world often requires a prohibitively
large number of samples, which may be impractical to collect.

One approach to circumvent these challenges is to rely on simulators to cheaply generate large
amounts of data and use RL to train a policy. However, directly deploying policies trained in sim-
ulation in the real world is often ineffective due to the discrepancy between the simulation and the
real world, the so-called sim2real gap. For example, the physical properties and parameters of the
simulation might diverge from the real world, rendering a simulation-trained policy useless in reality.

Taking inspiration from system identification, we argue that the key to effective sim2real transfer is
an initial round of exploration in the real world to learn an effective simulator. We propose a generic
pipeline for sim2real transfer, Active Exploration for System IDentification (ASID), which decou-
ples exploration and exploitation: (1) exploration in real to collect informative data of unknown
parameters, (2) refinement of the simulation parameters using data collected in real, (3) policy train-
ing on the updated simulator to accomplish the goal tasks. Our exploration procedure is motivated
by work in theoretical statistics and seeks to induce trajectories corresponding to large Fisher in-
formation, thereby providing maximally informative observations. By using our initial round of
exploration to obtain accurate estimates of the parameters in the real world, we show that in many
cases, the policies trained in step (3) successfully transfer to real in a zero-shot fashion, even in
settings where training a policy in sim without additional knowledge of real would fail.

A key insight in our approach is that, while a policy trained in sim to accomplish the goal task may
not effectively transfer, strategies that explore effectively in sim often also explore effectively in
real. As an example, say our goal task is to hit a ball to a particular location with a robotic arm and
assume the mass of the ball is unknown. If we train a policy in sim to hit the ball without knowledge
of the mass, when deployed in real it will almost certainly fail, as the force at which it should strike
the ball depends critically on the (unknown) mass. To learn the mass, however, essentially any
contact between the ball and the arm suffices. Achieving some contact between the ball and the arm
requires a significantly less precise motion, and indeed, does not require any prior knowledge of the
mass. We can therefore train a policy in sim that learns to effectively explore—hit the ball in any
direction—and deploy this in real to collect information on the true parameters, ultimately allowing
us to obtain a higher-fidelity simulator that does allow sim2real transfer on the goal task.

We are particularly interested in the application of our pipeline to modern robotic settings and eval-
uate ASID on four tasks: sphere manipulation, laptop articulation, rod balancing, and shuffleboard.
We show that in all settings, our approach is able to effectively identify unknown parameters of the
real environment (e.g. geometry, articulation, center of mass, and physical parameters like mass,
friction, or stiffness), and using this knowledge, learn a policy in sim for the goal task that success-
fully transfers to real. In all cases, by deploying effective exploration policies trained in simulation,
we require only a very small amount of data from real—typically a single episode of data suffices.

2 RELATED WORK

System Identification: Our work is closely related to the field of system identification (Astrom &
Eykhoffl], |1971} |Soderstrom & Stoica, [1989; [Ljungl |1998}; Schon et al., 2011; Menda et al., [2020),
which studies how to learn a model of the system dynamics efficiently. A large body of work,
stretching back decades, has explored how inputs to a system should be chosen to most effectively
learn the system’s parameters (Mehral [1974; 1976} (Goodwin & Paynel [1977; Hjalmarsson et al.,
1996 [Lindqvist & Hjalmarsson, |2001; |Gerencsér & Hjalmarsson) 2005; |Rojas et al.l 2007; |Gevers
et al., 2009; |Gerencsér et al., 2009; Manchester, |2010; [Rojas et al., [2011}; [Bombois et al.l 2011}
Hagg et al.| 2013} /Wagenmaker & Jamieson) [2020; [Wagenmaker et al.l 2021; [Mania et al., 2022;
Wagenmaker et al., 2023)) or how to deal with partial observability (Schon et al.l|2011;Menda et al.|
2020). Similar to our exploration strategy, many of these works choose their inputs to maximize
some function of the Fisher information matrix. A primary novelty of our approach is to use a simu-
lator to learn effective exploration policies, and to apply our method to modern, real-world robotics
tasks—indeed, our work can be seen as bridging the gap between classical work on system identifi-
cation and modern sim2real techniques. While the aforementioned works are primarily theoretical,
recent work has studied the application of such methods to a variety of real-world settings like active
identification of physics parameters (Xu et al.,|2019; |Kumar et al., | 2019; Mavrakis et al.,[2020; |Gao
et al., 2020; 2022) or kinematic structure (Mo et al., 2021; [Wang et al., [2022} |Nie et al., 2022} [Hsu



Published as a conference paper at ICLR 2024

et al.,|2023)) through object-centric primitives. Another line of recent work aims to learn the parame-
ters of the simulator to ultimately train a downstream policy on the learned parameters, and therefore
apply task-specific policies for data collection (Zhu et al.,|2018; (Chebotar et al., 2019; Huang et al.,
2023} |Ren et al., 2023) or exploration policies that minimize its regret (Liang et al., 2020). The ma-
jority of these works, however, do not consider running an exploration policy that targets learning
the unknown parameters, do not address solving downstream tasks, or rely on techniques that do not
scale effectively to more complex tasks.

Simulation-to-Reality Transfer: Transferring learned policies from sim2real has shown to be suc-
cessful in challenging tasks like dexterous manipulation (OpenAl et al., 2018} [Handa et al., 2022}
Chen et al., [2022), locomotion (Rudin et al.l 2022)), agile drone flight (Sadeghi & Levine, [2016)
or contact rich assembly tasks [Tang et al.| (2023), yet challenges remain due to the sim2real gap.
To deal with the gap, Domain Randomization (DR) (Tobin et al., 2017) trains policies over a dis-
tribution of environments in simulation, hoping for the real world to be represented among them.
Subsequent works adaptively change the environment distribution (Muratore et al., [2019; Mehta
et al.| 2020) and incorporate real data (Chebotar et al.,[2019; Ramos et al.,[2019; [Duan et al.| 2023
Chen et al.} 2023} Ma et al.,|2023}; |Torne et al.,|2024). While similar to our approach, these methods
do not perform targeted exploration in real to update the simulator parameters. Other approaches
seek to infer and adapt to simulation parameters during deployment (Kumar et al.| 2021} |Qi et al.,
2023} [Margolis et al.,[2023)), leverage offline data (Richards et al., 2021} Bose et al.l 2024)), or adapt
online (Sinha et al.,2022); in contrast, we do not learn such an online adaptation strategy, but rather
a better simulator. Finally, a commonly applied strategy is to train a policy in sim and then fine-tune
in the real environment (Julian et al., 2021} Smith et al.l 2022} Nakamoto et al., |2023)); in contrast,
we are interested in the (more challenging) regime where a direct transfer is not likely to give any
learning signal to fine-tune from.

Model-Based RL: Model-based RL (MBRL) aims to solve the RL problem by learning a model of
the dynamics, and using this model to either plan or solve a policy optimization problem (Deisen-
roth & Rasmussen, 2011} Williams et al.l [2017; Nagabandi et al., 2018; |Chua et al., 2018} Janner
et al., [2019; |[Hafner et al., 2019; 2020; Janner et al., [2022} [Zhu et al., 2023). While our approach
is model-based in some sense, the majority of work in MBRL focuses on fully learned dynamic
models; in contrast, our “model” is our simulator, and we aim to learn only a very small number of
parameters, which can be much more sample-efficient. Furthermore, MBRL methods typically do
not perform explicit exploration, while a key piece of our approach is a targeted exploration proce-
dure. The MBRL works we are aware of which do rely on targeted exploration (Shyam et al., 2019
Pathak et al.| |2019) typically rely on fully learned dynamic models and apply somewhat different
exploration strategies, which we show in Appendix [A.3.2]can perform significantly worse.

3 PRELIMINARIES

We formulate our decision-making setting as Markov Decision Processes (MDPs). An MDP is
defined as a tuple M* = (S, A, {P;HL, Py, {rn}L,), where S is the set of states, A the set
of actions, P, : S x A — /g the transition kernel, Py € Ag the initial state distribution, and
rp © 8§ X A — R the reward function. We consider the episodic setting. At the beginning of an
episode, the environment samples a state s; ~ Fy. The agent observes this state, plays some action
ay € A, and transitions to state so ~ Py (- | s1, a1), receiving reward r1(s1, a1). After H steps, the
environment resets and the process repeats. Our primary goal is to learn a policy m—a mapping from
states to actions—that maximizes reward in the true environment. We denote the value of a policy by
Vi =E M*,w[ZhH:1 rn(sn, an)], where the expectation is over trajectories induced playing policy
m on MDP M*. We think of the reward r as encoding our downstream task, and our end goal is to
find a policy that solves our task, maximizing V;*. We denote such policies as Tgagk-

In the sim2real setting considered in this work, we assume that the reward is known, but that the
dynamics of the real environment, P* = {P,:},?Zl, are initially unknown. However, we assume
that they belong to some known parametric family P := {Pp : 6 € ©}, so that there exists
some 0* € O such that P* = Py«. Here we take 6 to be some unknown parameter (for example,
mass, friction, etc.), and Py the dynamics under parameter 8 (which we might know from physics,
first principles, etc.). For any € and policy m, the dynamics Py induce a distribution over state-
action trajectories, T = (s1,a1, $2,-..,8H,axH), which we denote by pg(- | 7). We can think of



Published as a conference paper at ICLR 2024

System . ©as
Identification Train s in Sim

Identify center of mass ® ﬁ

g and pose
Collect real-world . = Task:

interaction data Update simulation "Balance the rod"

Train gy in Sim

Randomize
center of mass ®
and pose

Solve the task
zero-shot!

Figure 2: Overview of ASID: (1) Train an exploration policy Texp that maximizes the Fisher information,
leveraging the vast amount of cheap simulation data. (2) Roll out mexp, in real to collect informative data that
can be used to (3) run system identification to identify physics parameters and reconstruct, e.g., geometric,
collision, and kinematic properties. (4) Train a task-specific policy m¢ask in the updated simulator and (5) zero-
shot transfer 7.5k to the real world.

our simulator as instantiating pg(- | 7)—we assume our simulator is able to accurately mimic the
dynamics of an MDP with parameter 6 under policy 7, generating samples T ~ pg(- | 7).

In addition, we also assume that samples from our simulator are effectively “free”—for any 8 and
policy m, we can generate as many trajectories T ~ pg(- | ) as we wish. Given this, it is possible to
find the optimal policy under € by simply running any standard RL algorithm in simulation. With
knowledge of the true parameters 8*, we can then easily find the optimal policy in real by sampling
trajectories from the simulated environment with parameter 8*. It follows that, if we can identify
the true parameter 8* in real, we can solve the goal task.

We consider the following learning protocol:

1. Learner chooses exploration policy ey, and plays it in real for a single episode, generating
trajectory Treal ~ P+ (* | Texp)-

2. Using T.e,1 and the simulator in any way they wish, the learner obtains some policy m¢ask.

3. Learner deploys 7. in real and suffers loss max, V& — Vimesx.

The goal of the learner is then to learn as much useful information as possible about the real en-

vironment from a single episode of interaction and use this information to obtain a policy that can
solve the task in real as effectively as possible.

Parameter Estimation and Fisher Information: The Fisher information matrix plays a key role
in the choice of our exploration policy, meyp. Recall that, for a distribution pg, satisfying certain
regularity conditions, the Fisher information matrix is defined as:

Z(8) = Exnp, [Vologpe(T) - Vologpe(T)'].

Assume that we have access to data ® = (t;)7_;, where T; ~ pg- fort = 1,..., T, and let 5(@)
denote some unbiased estimator of 8*. Then the Cramer-Rao lower bound (see e.g.

) states that, under certain regularity conditions, the covariance of 0 (D) satisfies:
Eonp,. [(0(D) ~ 07)(6(D) —67)T] = T Z(0") ",
From this it follows that the Fisher information serves as a lower bound on the mean-squared error:
Eope: [10(D) = 0*[[3] = tr(Ennp,. [(B(D) — 0%)(B(D) —6%)T]) = T - tx(Z(0%) 7). (1)

This is in general tight—for example, the maximum likelihood estimator satisfies (I) with equality
as T — oo (Van der Vaart,[2000). The Fisher information thus serves as a fundamental lower bound
on parameter estimation error, a key motivation for our exploration procedure.

4 ASID: TARGETED EXPLORATION FOR TEST-TIME SIMULATION
CONSTRUCTION, IDENTIFICATION, AND POLICY OPTIMIZATION

In this section, we present our proposed approach, ASID, a three-stage pipeline illustrated in Fig-
ure 2] We describe each component of ASID in the following.



Published as a conference paper at ICLR 2024

4.1 EXPLORATION VIA FISHER INFORMATION MAXIMIZATION

As motivated in Section |3} to learn a policy effectively accomplishing our task, it suffices to accu-
rately identify 0*. In the exploration phase, step 1 in our learning protocol, our goal is to then play an
exploration policy mexp, Which generates a trajectory on the real environment that provides as much
information on @* as possible. Following Section[3] the Fisher information gives a quantification of
the usefulness of the data collected, which motivates our approach.

In our setting, the distribution over trajectories generated during exploration in real, T,ea1 ~ po= (- |
Texp)» depends on the exploration policy, Texp, being played. As the Fisher information depends on
the data distribution, it too scales with the choice of exploration policy:

I(e*vﬂ—exp) = ]ETNpg*("ﬂ'exp) [VG 10gp9* (T | Wexp) . V@ Inge* (T | 7Texp)—r] .

Following , if we collect trajectories by playing 7y, and set 6 to any unbiased estimator of 8*

on these trajectories, the mean-squared error of 6 will be lower bounded by tr(Z (6, 7exp) ). The
optimal exploration policy—the exploration policy which allows for the smallest estimation error—
is, therefore, the policy which solve

argmin_tr(Z(6*,7)71). )

As an intuitive justification for this choice of exploration policy, note that the Fisher information is
defined in terms of the gradient of the log-likelihood with respect to the unknown parameter. Thus,
if playing some 7y, makes the Fisher information “large”, making tr(Z(0*, mex,) ') small, this
suggests Ty, induces trajectories that are very sensitive to the unknown parameters, i.e., trajectory
that are significantly more likely under one set of parameters than another. By exploring to maxi-
mize the Fisher information, we, therefore, will collect trajectories that are maximally informative
about the unknown parameters, since we will observe trajectories much more likely under one set
of parameters than another. Motivated by this, we therefore seek to play a policy during exploration
that solves (2).

Implementing Fisher Information Maximization: In practice, several issues arise in solving
(2), which we address here. First, the form of Z(0, 7) can be quite complicated, depending on the
structure of pg(- | ), and it may not be possible to efficiently obtain a solution to . To address
this, we make a simplifying assumption on the dynamics, that our next state, s, evolves as:

shy1 = fo(sn,an) + wn, 3)

where s, and aj, are the current state and action, wy, ~ N(0, ai - I) is Gaussian process noise, and
fo are the nominal dynamics. Under these dynamics, the Fisher information matrix reduces to

Z(0,7) = 03> - Epy (1) [Zf:l Vo fo(sn,an) - Vefe(Shvah)T} :

We argue that solving (2) with this form of Z(8, 7) is a very intuitive objective, even in cases when
the dynamics may not follow exactly. Indeed, this suggests that during exploration, we should
aim to reach states for which the dynamics fg have a large gradient with respect to &—states for
which the next state predicted by the dynamics is very sensitive to 6. In such states, observing the
next state gives us a significant amount of information on 8, allowing us to accurately identify 8*.

A second challenge in solving is that we do not know the true parameter 8*, which the opti-
mization @) depends on. To circumvent this, we rely on domain randomization in choosing our
exploration policy, solving instead:

Texp = argmin_ Eg.q, [tr(Z(0, )7 4)

for some distribution over parameters go. While this is only an approximation of (2)), in practice
we find that this approximation yields effective exploration policies since, as described in Section|[T}
in many cases exploration policies require only a coarse model of the dynamics, and can therefore
often be learned without precise knowledge of the unknown parameters.

A final challenge is that, in general, we may not have access to a differentiable simulator, and
our dynamics themselves may not be differentiable. In such cases, Vg fo(sn,ar) is unknown or

'In the experiment design literature, this is known as an A-optimal experiment design (Pukelsheim, [2006).



Published as a conference paper at ICLR 2024

undefined, and the above approach cannot be applied. As a simple solution to this, we rely on a finite-
differences approximation to the gradient, which still provides an effective measure of how sensitive
the next state is to the unknown parameter. In practice, to solve (@) and obtain an exploration policy,
we rely on standard policy optimization algorithms, such as PPO (Schulman et al.} 2017b).

4.2 SYSTEM IDENTIFICATION

ASID runs the exploration policy 7y, (Section in the real environment to generate a single
trajectory Treal ~ Do (- | Texp). In the system identification phase, ASID then updates the simulator
parameters using the collected trajectory. The goal is to find a distribution over simulator parameters
that yield trajectories that match T..,; as closely as possible. In particular, we wish to find some
distribution over simulation parameters, gg, which minimizes:

Eonqg [Ertyim~pe (| A(Tren) || Treal = Tsim ||§H

where pg(- | A(Trea1)) denotes the distribution over trajectories generated by the simulator with
parameter 8, and playing the same sequence of actions as were played in T,e,. In practice, we
apply REPS (Peters et al., [2010) for the simulation and Cross Entropy Method (CEM) for the real-
world experiments. We stress that the ASID framework is generic, and other black-box optimization
algorithms could be used instead.

4.3 SOLVING THE DOWNSTREAM TASK

After exploration and identification, the simulator can include information about the kinematic tree,
position, orientation, or size of the object of interest, and the physical parameters of the real en-
vironment. With such a high-fidelity simulator, we aim to solve the downstream tasks entirely in
simulation and transfer the learned policies 7,5k to the real world in a zero-shot fashion. As with the
system identification stage, ASID does not assume a particular method for solving the downstream
task and any policy optimization algorithm can be used.

5 EXPERIMENTAL EVALUATION

In our experimental evaluation, we aim to answer the following questions:

1. Does ASID’s exploration strategy yield sufficient information to identify unknown parameters?
2. Are downstream task policies learned via ASID successful when using the identified parameters?

3. Does the paradigm suggested by ASID transfer to performing tasks in the real world?

We conduct our experimental evaluation in two scenarios. First, we conduct empirical experiments
entirely in simulation (Todorov et al., 2012) to validate the behavior of the exploration, system
identification, and downstream task modules of ASID. This involves treating a true simulation en-
vironment as the real-world environment and then a reconstruction of this simulation environment
as the approximate constructed simulation. Policies learned in this approximate simulation can then
be evaluated back in the original simulation environment to judge efficacy. Second, we apply this
to two real-world manipulation tasks that are inherently dependent on accurate parameter identifica-
tion, showing the ability of ASID to function in the real world, using real-world data.

5.1 ABLATIONS AND BASELINE COMPARISONS

We compare ASID with several baselines and ablations for various portions of the pipeline.

Exploration: To understand the importance of targeted exploration via Fisher information max-
imization we compare with two baselines. First, we compare with the naive approach of using
data from a random policy for system identification that is not performing any targeted exploration.
Secondly, we compare with Kumar et al.| (2019), which aims to generate exploration trajectories
that maximize mutual information with the parameters of interest. This method essentially learns a
parameter inference network and then rewards exploration policies for minimizing its error.



Published as a conference paper at ICLR 2024

(a) Rod balancing (b) Sphere manipulation (c) Multi-friction (d) Articulation

Figure 3: Depiction of environments in simulation

System Identification: To evaluate the impact of system identification methods in this pipeline,
we compare the effectiveness of using optimization-based system identification, e.g.,
2010; Memmel et al., [2022), with an end-to-end learned module (Kumar et al.,[2019). This compar-
ison shows the stability and extrapolation benefits of ASID over completely data-driven modeling
techniques. In particular, we evaluate ASID with the optimization-based system identification re-
placed by the learned estimation module from [Kumar et al.| (2019) (ASID + estimator).

Downstream Policy Learning: Since the eventual goal is to solve the downstream task, we finally
compare how effective it is to learn downstream policies in simulation as opposed to an uninformed
Domain Randomization (DR) over the parameters, in contrast to the targeted and identified param-
eters that stem from the ASID pipeline.

5.2 SIMULATED TASK DESCRIPTIONS

Sphere Manipulation: We consider two sphere manipulation tasks where physical parameters like
rolling friction, object stiffness, and tangential surface friction are unknown and make a significant
impact on policy performance: 1) striking a golf ball to reach a goal with unknown system friction
(Figure [3b), 2) striking a golf ball in an environment with multiple patches that experience different
surface friction (Figure[3c). In each scenario, the position of objects and the physical parameters are
varied across evaluations. In this setting, we train downstream tasks with PPO.

Rod Balancing: Balancing, or dynamic stacking of objects critically depends on an accurate esti-
mate of the inertia parameters. We construct a rod balancing task where the agent can interact with
a rod object (Figure [3a) to identify its physical parameters, in this case varying the distribution of
mass along the rod. Once the parameters are identified, the rod must be balanced by placing it on a
ledge (Figure [5 (left)). The error is measured by the tilting angle of the rod after placement, a task
that requires accurate estimation of system parameters. In this case, we use the CEM to optimize
downstream policies.

Articulation: To stress generality, we consider environments that don’t simply identify physical
parameters like mass or friction but also the structure of the kinematic tree such as articulation and
joint positioning. We consider an environment involving an articulated laptop model with a binary
environment parameter representing whether articulation is present or not (Figure 3d).

5.3 DOES ASID LEARN EFFECTIVE EXPLORATION BEHAVIOR?

To evaluate the exploration behavior quantitatively, we consider the case of multiple unknown pa-
rameters, where learning each parameter requires exploration in a different region. In particular,
we compare the exploration policy learned by our method with the exploration method of
(2019), on the multi-friction sphere manipulation environment illustrated in Figure i where
the surface exhibits three different friction parameters (indicated by the grass, sand, and gravel tex-
tures). We initialize the golf ball in the leftmost region (grass)—to explore, the arm must strike the
ball to other regions to identify their friction parameters. We plot a heat map of the regions visited
by the ball during exploration in Figure ] As can be seen, our approach achieves roughly uniform
coverage over the entire space, learning to strike the ball into each region, and illustrating that our
method is able to effectively handle complex exploration tasks that involve exciting multiple pa-
rameters. In contrast, the approach of [Kumar et al.| (2019)) does not effectively move the sphere to
regions different from the starting region.




Published as a conference paper at ICLR 2024

Table 1: Downstream task results in simulation: Random exploration fails in tasks where directed explo-
ration is required, e.g., striking a sphere or finding the inertia of a rod. When placing the rod with a single
action, domain randomization (DR) cannot solve the task without knowing the physical parameters. Learned
system identification (Kumar et al.|(2019) and ASID + estimator) doesn’t generalize to unseen trajectories and
becomes far less effective than optimization-based system identification (cf. ASID + SysID).

Task Rod Balancing Sphere Striking
Metric Tilt angle in degree® | Success Rate in % 1
Parameter Inertia (left)  Inertia (middle) Inertia (right) Friction ~ [1.1,1.5]
Random exploration  12.44 £+ 19.6 4.20+6.5 15.34 £15.9 10.62 +4.3
Kumar et al.|(2019) 13.70 £ 9.3 2.82 + 2.7 15.26 9.8 9.50+24

DR 26.69 £ 7.0 13.06 £ 7.3 1.13£1.3 8.75+1.5
ASID + estimator 17.73 +£13.1 4.65£5.1 9.99 +6.8 11.00 £ 5.2
ASID + SysID (ours) 0.00 & 0.0 0.72+1.0 0.00 + 0.0 28.00 + 9.7

We further analyze the exploration behavior in the articulation en-
vironment (Figure 3d). Here our exploration policy interacts with
the laptop 80% of the time as opposed to 20% for naive baselines.
Appendix [A.2.2] shows that models trained to predict articulation
from interaction data, e.g., Ditto (Jiang et al.| 2022}, can infer joint
and part-level geometry from the collected data.

5.4 HoOW DOES ASID PERFORM
QUANTITATIVELY IN SIMULATION ON DOWNSTREAM TASKS?

To quantitatively assess the benefits of ASID over baselines and ab-
lations, we evaluate the performance of ASID with respect to the
baselines in simulation on downstream evaluation for the rod bal-
ancing (Figure [3a) and sphere manipulation (Figure task. Re-
sults are given in Table [T} Observing the performance on the rod
environment, it becomes clear that previous methods struggle with
one-shot tasks. When the inertia is not properly identified, CEM
predicts the wrong action with high certainty, causing it to pick and
place the rod at the wrong location. Domain randomization (DR)
on the other hand tries to learn a policy over all possible mass dis-
tributions which in this case leads to a policy that always grasps
the object at the center of the reference frame. The success here

0.52 0.35 0.30 0.29 0.35 0.33 0.43 0.40 10
0.61 0.58 0.25 0.26 0.44 0.46 0.57 0.42
0.46 0.26 0.26 0.40 0.38 0.45 0.44

0.33 0.31 0.36 0.60 0.54 0.43 0.43 0.6
0.37 0.32 0.44 0.50 0.66 0.53 0.59
0.32 0.44 (0,64 0.51 0.58 0.64 0.65 04
0.32 0.28 [0.57 0.42 0.63 0.58 0.55 0.57

0.2
0.37 0.50 073 0.45 0.38
0.52

0.57 0.54 0.39 0.56 0.42 0.0

(a) ASID

0.27 0.17 0.09 0.09 0.07 0.08 0.06 0.07 0.04
0.21 0.08 0.05 0.05 0.04 0.02 0.04
0.25 0.08 0.07 0.02 0.04 0.06 0.08
0.19 0.09 0.08 0.06 0.08 0.08 0.07
0.16 0.08 0.11 0.09 0.04 0.06 0.05
0.18 0.17 0.12 0.08 0.06 0.09 0.11

0.20 0.27 0.24 0.18 0.13 0.12 0.08 0.04 0.06
0.21 0.29 0.20 0.19 0.15 0.10 0.11 0.15 0.10
0.17 0.27 0.15 0.13 0.16 0.19 0.10 0.10 0.11

(b) | Kumar et al.|(2019)

Figure 4: Visitation frequency
of the sphere when explored by
different exploration policies on
multi-friction (Figure 3d). ASID
activates the sphere over a much
larger area, thereby identifying
parameters more accurately

depends on “getting lucky” and sampling the correct action for the true inertia parameter.

In the sphere environment, the distance rolled and bounce of the sphere are critically dependent on
parameters such as friction and stiffness, and misidentifying these parameters can lead to signifi-
cantly different trajectories and unsuccessful downstream behavior. This is reflected in the signifi-
cantly higher success rate of ASID as compared to baselines that are uninformed of parameters and
simply optimize for robust policies (DR), those that try to use learned estimators for exploration
(Kumar et al.,2019) or using random exploration.

5.5 DOES ASID ALLOW FOR REAL-WORLD CONTROLLER SYNTHESIS USING MINIMAL
REAL-WORLD DATA?

We further evaluate ASID on real-world tasks, replicating the rod balancing task from simulation
(Figure [5) and introducing a novel shuffleboard task (Figure[6). As in simulation, we use a Franka
Emika Panda robot for exploration and task performance in the real world. We compute the object’s
position and orientation by color-threshold the pointclouds from two calibrated Intel RealSense
D455 cameras—this approach could easily be replaced by a more sophisticated pose estimation
system if desired.

Rod Balancing: The goal of this task is to properly balance a rod with an unknown mass distri-
bution by informatively exploring the environment in the real world and using the resulting data
to identify the appropriate physics parameters in simulation. The optimized controller in simula-
tion is then deployed to perform the task in the real world. In this case, the downstream task is
picking the rod at a certain point along its axis and balancing it on a perch (Figure [T} Figure [3).



Published as a conference paper at ICLR 2024

The policy executes the downstream task by
a pick and place primitive parameterized by
the exact pick point. We deploy ASID fully
autonomously, executing exploration, system
identification, downstream task training, and
execution in an end-to-end fashion.

The mass distribution in the rod is varied and
both the inertia and the environment friction
must be inferred. While ASID correctly iden-
tifies the inertia of the rod most of the time, we
find that a center of mass close to the middle of
the rod causes ambiguities that hurt our system
identification process causing the simulation to
not be accurate enough for zero-shot transfer.
Overall, ASID solves the rod-balancing task 6/9

Figure 5: Real-world Rod Balancing: Simulation
setup for training exploration and downstream task poli-
cies (left). Successful execution of autonomous real-
world rod balancing with skewed mass (right).

Table 2: Downstream task results in real: ASID suc-
cessfully balances the rod while domain randomization
(DR) fails catastrophically.

times across varying mass distribution and pose

. . o . : Task Rod Balancing
whﬂe a domaln-yandomlza.non pthy trglned Inertia left middle right
without any environment interaction fails to
solve it at all (Table[2). DR 0/3 0/3 0/3

ASID (ours) 2/3 1/3 3/3

Shuffleboard: This task is a scaled-down ver-
sion of the popular bar game tabletop shuffle-
board where a puck must be shot to a target area on a slippery board. We closely follow the original
game and pour wax (sand) on the board to decrease the surface friction. This modification makes
the task especially difficult as the surface friction on the board changes slightly after each shot since
the puck displaces the wax. The goal is to strike the puck to one of the target regions—one closer
(yellow) and one further (blue) away from the robot (Figure 2] Figure[6)). After exploring the scene,
ASID estimates the sliding and torsional friction of the puck to account for the changing surface
friction of the board. For executing the downstream task, a primitive positions the endeffector at a
fixed distance to the puck and a policy predicts a force value that parameterizes a shot attempt.

Due to the changing surface friction, the do-
main randomization baseline struggles to shoot
the puck to the desired zone. While it succeeds
3/10 times—probably because the surface fric-
tion was part of its training distribution—the
other attempts fall short or overshoot the tar-
get. With its dedicated exploration phase, ASID
can accurately adapt the simulation to the cur-
rent conditions and lands the puck in the desired
zone 7/10 times (Table 3).

Figure 6: Real-world Shuffleboard:
setup for training exploration and downstream task poli-
cies (left). Successful strike to the yellow zone (right).

Simulation

6 DISCUSSION

In this work, we introduced a novel pipeline
for performing real-world control by au-
tonomously exploring the environment, using
the collected data for system identification, and

Table 3: Downstream task results in real: ASID out-
performs domain randomization (DR) on shooting the
puck to the desired zones.

the resulting identified system for downstream Task Shuffleboard
policy optimization. In essence, this sim-to- Target zone  yellow (close)  blue (far)
real-to-sim-to-real pipeline allows for targeted DR 2/5 1/5
test-time construction of simulation environ- ASID (ours) 4/5 3/5

ments in a way that enables the performance
of downstream tasks. We demonstrate how this
type of identification requires autonomous and carefully directed exploration, and introduce a novel
algorithm based on Fisher information maximization that is able to accomplish this directed explo-
ration. The autonomously collected trajectories can then be paired with downstream optimization-
based system identification and reconstruction algorithms for accurate simulation construction and
downstream policy learning. We show the efficacy of this paradigm on multiple environments in
simulation, as well as on rod balancing and shuffleboard, two challenging real-world tasks.



Published as a conference paper at ICLR 2024

REFERENCES
Karl Johan Astrém and Peter Eykhoff. System identification—a survey. Automatica, 1971.

Xavier Bombois, Michel Gevers, Roland Hildebrand, and Gabriel Solari. Optimal experiment design
for open and closed-loop system identification. Communications in Information and Systems, 11
(3):197-224, 2011.

Avinandan Bose, Simon Shaolei Du, and Maryam Fazel. Offline multi-task transfer rl with repre-
sentational penalization. arXiv preprint arXiv:2402.12570, 2024.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff,
and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In ICRA, 2019.

Qiuyu Chen, Marius Memmel, Alex Fang, Aaron Walsman, Dieter Fox, and Abhishek Gupta. Urd-
former: Constructing interactive realistic scenes from real images via simulation and generative

modeling. In Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition@
CoRL2023, 2023.

Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and Pulkit Agrawal. Visual
dexterity: In-hand dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465-472,2011.

Jiafei Duan, Yi Ru Wang, Mohit Shridhar, Dieter Fox, and Ranjay Krishna. Ar2-d2: Training a
robot without a robot. In 7th Annual Conference on Robot Learning, 2023.

Ziyan Gao, Armagan Elibol, and Nak Young Chong. A 2-stage framework for learning to push
unknown objects. In Joint IEEE 10th International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), 2020.

Ziyan Gao, Armagan Elibol, and Nak Young Chong. Estimating the center of mass of an unknown
object for nonprehensile manipulation. In IEEE International Conference on Mechatronics and
Automation (ICMA), 2022.

L4szl6 Gerencsér and Hakan Hjalmarsson. Adaptive input design in system identification. In Pro-
ceedings of the 44th IEEE Conference on Decision and Control, pp. 4988-4993. IEEE, 2005.

Laszl6 Gerencsér, Hakan Hjalmarsson, and Jonas Martensson. Identification of arx systems with
non-stationary inputs—asymptotic analysis with application to adaptive input design. Automatica,
45(3):623-633, 2009.

Michel Gevers, Alexandre S Bazanella, Xavier Bombois, and Ljubisa Miskovic. Identification and
the information matrix: how to get just sufficiently rich? IEEE Transactions on Automatic Con-
trol, 54(ARTICLE):2828-2840, 2009.

Graham Clifford Goodwin and Robert L Payne. Dynamic system identification: experiment design
and data analysis. Academic press, 1977.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

10



Published as a conference paper at ICLR 2024

Per Hégg, Christian A Larsson, and Hakan Hjalmarsson. Robust and adaptive excitation signal gen-
eration for input and output constrained systems. In 2013 European Control Conference (ECC),
pp. 1416-1421. IEEE, 2013.

Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. arXiv preprint
arXiv:2210.13702, 2022.

Hakan Hjalmarsson, Michel Gevers, and Franky De Bruyne. For model-based control design,
closed-loop identification gives better performance. Automatica, 32(12):1659-1673, 1996.

Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto in the house: Building articulation models of
indoor scenes through interactive perception. In ICRA, 2023.

Peide Huang, Xilun Zhang, Ziang Cao, Shiqi Liu, Mengdi Xu, Wenhao Ding, Jonathan Francis,
Bingqing Chen, and Ding Zhao. What went wrong? closing the sim-to-real gap via differentiable
causal discovery. In Conference on Robot Learning, pp. 734-760. PMLR, 2023.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto: Building digital twins of articulated objects
from interaction. In CVPR, 2022.

Ryan Julian, Benjamin Swanson, Gaurav Sukhatme, Sergey Levine, Chelsea Finn, and Karol Haus-
man. Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning. In
CoRL, 2021.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

K Niranjan Kumar, Irfan Essa, Sehoon Ha, and C Karen Liu. Estimating mass distribution of artic-
ulated objects using non-prehensile manipulation. arXiv preprint arXiv:1907.03964, 2019.

Jacky Liang, Saumya Saxena, and Oliver Kroemer. Learning active task-oriented exploration poli-
cies for bridging the sim-to-real gap. Robotics science and systems, 2020.

Kristian Lindqvist and Hakan Hjalmarsson. Identification for control: Adaptive input design using
convex optimization. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat.
No. 01CH37228), volume 5, pp. 4326-4331. IEEE, 2001.

Lennart Ljung. System identification. Springer, 1998.

Ligian Ma, Jiaojiao Meng, Shuntao Liu, Weihang Chen, Jing Xu, and Rui Chen. Sim2real?: Actively
building explicit physics model for precise articulated object manipulation. In /ICRA, 2023.

Ian R Manchester. Input design for system identification via convex relaxation. In 49th IEEE
Conference on Decision and Control (CDC), pp. 2041-2046. IEEE, 2010.

Horia Mania, Michael I Jordan, and Benjamin Recht. Active learning for nonlinear system identifi-
cation with guarantees. J. Mach. Learn. Res., 23:32—1, 2022.

Gabriel B Margolis, Xiang Fu, Yandong Ji, and Pulkit Agrawal. Learning physically grounded robot
vision with active sensing motor policies. In CoRL, 2023.

Nikos Mavrakis, Rustam Stolkin, et al. Estimating an object’s inertial parameters by robotic pushing:
a data-driven approach. In IROS, 2020.

11



Published as a conference paper at ICLR 2024

Raman Mehra. Optimal input signals for parameter estimation in dynamic systems—survey and new
results. IEEE Transactions on Automatic Control, 19(6):753-768, 1974.

Raman K Mehra. Synthesis of optimal inputs for multiinput-multioutput (mimo) systems with pro-
cess noise part i: Frequenc y-domain synthesis part ii: Time-domain synthesis. In Mathematics
in Science and Engineering, volume 126, pp. 211-249. Elsevier, 1976.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In CoRL, 2020.

Marius Memmel, Puze Liu, Davide Tateo, and Jan Peters. Dimensionality reduction and prioritized
exploration for policy search. In International Conference on Artificial Intelligence and Statistics,
2022.

Kunal Menda, Jean De Becdelievre, Jayesh Gupta, Ilan Kroo, Mykel Kochenderfer, and Zachary
Manchester. Scalable identification of partially observed systems with certainty-equivalent em.
In ICML. PMLR, 2020.

Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani.
Where2act: From pixels to actions for articulated 3d objects. In CVPR, 2021.

Fabio Muratore, Michael Gienger, and Jan Peters. Assessing transferability from simulation to real-
ity for reinforcement learning. IEEE transactions on pattern analysis and machine intelligence,
2019.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 7559-7566. IEEE, 2018.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Yi Ma, Chelsea Finn, Aviral Kumar, and
Sergey Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-tuning. In
Workshop on Reincarnating Reinforcement Learning at ICLR, 2023.

Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Structure from action: Learning
interactions for articulated object 3d structure discovery. arXiv preprint arXiv:2207.08997, 2022.

Marcin Andrychowicz OpenAl, Bowen Baker, Maciek Chociej, Rafal J6zefowicz, Bob McGrew,
Jakub W Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, et al. Learn-
ing dexterous in-hand manipulation. arXiv preprint arXiv:1808.00177, 2018.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062-5071. PMLR, 2019.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In AAAI, 2010.

Luc Pronzato and Andrej Pdzman. Design of experiments in nonlinear models. Lecture notes in
statistics, 212(1), 2013.

Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-hand object rotation
via rapid motor adaptation. In CoRL, 2023.

Fabio Ramos, Rafael Carvalhaes Possas, and Dieter Fox. Bayessim: adaptive domain randomization
via probabilistic inference for robotics simulators. arXiv preprint arXiv:1906.01728, 2019.

Allen Z Ren, Hongkai Dai, Benjamin Burchfiel, and Anirudha Majumdar. Adaptsim: Task-driven
simulation adaptation for sim-to-real transfer. arXiv preprint arXiv:2302.04903, 2023.

SM Richards, N Azizan, J-JE Slotine, and M Pavone. Adaptive-control-oriented meta-learning for
nonlinear systems. In Robotics science and systems, 2021.

Cristian R Rojas, James S Welsh, Graham C Goodwin, and Arie Feuer. Robust optimal experiment
design for system identification. Automatica, 43(6):993—-1008, 2007.

12



Published as a conference paper at ICLR 2024

Cristian R Rojas, Juan-Carlos Aguero, James S Welsh, Graham C Goodwin, and Arie Feuer. Ro-
bustness in experiment design. IEEE Transactions on Automatic Control, 57(4):860-874, 2011.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In CoRL, 2022.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

Thomas B Schon, Adrian Wills, and Brett Ninness. System identification of nonlinear state-space
models. Automatica, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017a. URL http://arxiv.org/abs/
1707.06347.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Pranav Shyam, Wojciech Jaskowski, and Faustino Gomez. Model-based active exploration. In
ICML, 2019.

Rohan Sinha, James Harrison, Spencer M Richards, and Marco Pavone. Adaptive robust model pre-
dictive control with matched and unmatched uncertainty. In 2022 American Control Conference
(ACC), 2022.

Laura Smith, J Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey Levine. Legged robots
that keep on learning: Fine-tuning locomotion policies in the real world. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 1593-1599. IEEE, 2022.

Torsten Soderstrom and Petre Stoica. System identification. Prentice-Hall International, 1989.

Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur Handa, Gaurav S Sukhatme, Fabio Ramos,
Dieter Fox, and Yashraj Narang. Industreal: Transferring contact-rich assembly tasks from simu-
lation to reality. arXiv preprint arXiv:2305.17110, 2023.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
IROS, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, 2012.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. Arxiv, 2024.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Andrew Wagenmaker and Kevin Jamieson. Active learning for identification of linear dynamical
systems. In Conference on Learning Theory, pp. 3487-3582. PMLR, 2020.

Andrew Wagenmaker, Guanya Shi, and Kevin Jamieson. Optimal exploration for model-based 1l in
nonlinear systems. arXiv preprint arXiv:2306.09210, 2023.

Andrew J Wagenmaker, Max Simchowitz, and Kevin Jamieson. Task-optimal exploration in linear
dynamical systems. In International Conference on Machine Learning, pp. 10641-10652. PMLR,
2021.

Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan Fan, Leonidas J Guibas, and Hao Dong.

Adaafford: Learning to adapt manipulation affordance for 3d articulated objects via few-shot
interactions. In ECCV, 2022.

13


http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Published as a conference paper at ICLR 2024

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pp. 1714-1721. IEEE,
2017.

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. Densephysnet: Learn-
ing dense physical object representations via multi-step dynamic interactions. In RSS, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094-1100. PMLR, 2020.

Chuning Zhu, Max Simchowitz, Siri Gadipudi, and Abhishek Gupta. Repo: Resilient model-based
reinforcement learning by regularizing posterior predictability. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
1d=0IJ3VXDy6sl

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous
manipulation with deep reinforcement learning: Efficient, general, and low-cost. In 2019 Inter-
national Conference on Robotics and Automation (ICRA), pp. 3651-3657. IEEE, 2019.

Shaojun Zhu, Andrew Kimmel, Kostas Bekris, and Abdeslam Boularias. Fast model identification
via physics engines for data-efficient policy search. In IJCAI, 2018.

14


https://openreview.net/forum?id=OIJ3VXDy6s
https://openreview.net/forum?id=OIJ3VXDy6s

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 TASK DETAILS
A.1.1 SPHERE MANIPULATION

In the sphere manipulation tasks, the observation space consists of endeffector position, sphere
position, and robot joint angles. During the training of the exploration policy, we randomize the
location of a sphere with » = 0.03 to be between x € [0.430.65],y € [—0.2,0.23] for training
and z € [0.55,0.65],y € [—0.2,0.23] for evaluation. Parameter ranges for training are 1) friction
6 € [le — 3,5e — 3] and 2) patch friction 6y, 61, 6 € [le — 5, le — 3] and set fixed sphere and goal
locations as well as parameters for the downstream task. For 1) we attach a paddle and limit the
endeffector position such that the robot has to strike the sphere to the goal.

A.1.2 ARTICULATION

In the case of the articulation environment, the parameter is binary and indicates whether articulation
is present or not. During evaluation, articulation is always turned on and success is indicated by § 5 >
le — 2. The initial laptop state is randomized over position = € [0.45,0.65],y € [—0.1,0.1], yaw €
[0.00,3.14] and lid angle 8 € [1.2,2.5]. The observation space contains the endeffector position,
joint angles, position, orientation, and joint angle of the laptop.

A.1.3 ROD BALANCING

Similar to the sphere manipulation, we restrict the exploration policy to endeffector control with
dx,dy and attach a peg to the Franka. The rod has dimensions 0.04 x 0.3 x 0.04 and initializes as
x € [0.5,0.6],y € [-0.2,0.2], yaw € [0.00, 3.14]

15



Published as a conference paper at ICLR 2024

A.2 QUALITATIVE RESULTS
A.2.1 EXPLORATION STRATEGIES LEARNED BY THE AGENT

We evaluate the exploration behavior qualitatively across multiple environments to understand
whether the exploration behavior is meaningful. In the sphere environment, we observe the agent
hitting the sphere multiple times when it bounces off the walls or stays within reach. The other
environments also experience emergent behavior, as the agent executes a horizontal motion towards
the top of the lid if the laptop is mostly open while an almost closed laptop causes it to push from
top to bottom instead. Finally, when determining the rod’s inertia, the policy pushes both sides to
gain maximum information about the center of mass through the rotation motions in both directions.
See Figure[7]for a visualization of the exploration for the sphere environment.

. . 0.68 10
0.8

. . 058
0.6
0.4

. . 0.48
0.2
038 038 038 0.0

"=0.25 -0.15 —0.05 0.05 0.15 . =0.25 -0.15 —0.05 0.05 0.15 . 7=0.25 -0.15 —0.05 0.05 0.15 0.25

(a) () (©) (d

Figure 7: Absolute sphere displacement for different sphere starting locations. Zero means the
sphere didn’t get hit, higher numbers denote larger displacements. Initial endeffector position
marked in red . a) Random Coverage, b) PPO Coverage, c) Fisher Coverage, d) Legend.

A.2.2 RECONSTRUCTING ARTICULATION FROM INTERACTION DATA

Figure 8: Articulated object: before (left) and after (middle) exploration with ASID and part-level recon-

struction with Ditto (Jiang et al.}[2022): articulated M and static part B (right).

A.3 COMPARISON TO MODEL-BASED APPROACHES

A.3.1 ENVIRONMENT SETUP

Figure 9: Environment with multiple spheres. The single red sphere B is subject to changing
friction values while the three blue spheres B act as distractors.

16



Published as a conference paper at ICLR 2024

A.3.2 MODEL-BASED EXPLORATION

In this section, Figure [T0] we compare the performance of our algorithm to that of the MAX algo-
rithm (Shyam et al.| 2019).

MAX aims to cover the state space through multiple policies throughout training. Since it uses the
disagreement between fully learned dynamics models, it gets distracted by novel states induced by
the movement of all spheres (red and blue). In contrast, our method based on the Fisher information
yields a single policy that seeks out the sphere affected by the changing physics parameters (red)
and ignores the irrelevant spheres (blue) even if they lead to novel states.

08 0500 08 0500
0150 0150
5450 5450
100 100
0.7 1 750 0.7 1 750
400 400
050 050
7% 78
0.6 1 7000 @ 0.6 1 . . 7000 @
650 S 030
300 & 300 2
950 950
05 00 o 0.5 600 &
: 250 2 g 250 5
. i
\ 4 & %% 8
i i j i
0.4 I 500 0.4 . . 500
150 150
800 800
450 450
034 100 0.3 100
750 750
400 400
050 050
00 00
0.2 T T T T T 350 0.2 T T T T T 350
—0.4 0.2 0.0 0.2 0.4 —-0.4 0.2 0.0 0.2 0.4
(a) MAX (checkpoints throughout training) (b) MAX (last checkpoints)
08 0000
9000
2989 038 0000
208 5000
0.7 2000 3000
7000
2000 1000
3000 0.7 5000

- F ue e 7

0
7 -6 1 9990
05 / 6900 5 8000 &
3000 2 0.5 50995

| ok e
0.4 000 30002
000! 2000 &

. . e e

000 0000

034 000 000
208 000
000 03 000
o 000
02 - - . - . 1000 500
—0.4 -0.2 0.0 02 0.4 oo
02 , . ' . ! 1000
-0.4 -0.2 0.0 02 0.4

(c) Fisher information (checkpoints throughout train-
ing) (d) Fisher information (last checkpoint)

Figure 10: Exploration MAX vs. Fisher information: Trajectories collected (30) from policy
checkpoints throughout training or from the last policy checkpoint. While [Model-based Active|
[Exploration (MAX)|(Shyam et al.,[2019) explores the state space over the course of training, getting
distracted by the novel states induced by the blue spheres B (c.f fig. , Fisher information-
based exploration (ours) shows directed exploration (c.f. fig.[T0d), moving towards the sphere with
changing parameters (red M)and yielding a single exploration policy.

17



Published as a conference paper at ICLR 2024

A.3.3 LEARNED STATE-TRANSITION MODELS VS. SIMULATORS

We next illustrate the improvement using a simulator vs a fully learned dynamics model can give.
We train a forward dynamics model (three layer MLP) on data generated both from MAX and
our exploration procedure. When evaluated on out-of-distribution trajectories, i.e., trajectories not
included in the training data, we find the model to be extremely inaccurate (see Figure [TT). While
the simulator extrapolates to unseen states and correctly predicts the movement of the sphere, the
model hallucinates movement even when the end-effector does not interact with it at all! These
findings make ASID preferable to a purely model-based approach.

0.8 0.8

— ee — ee

——- red sphere (model) ——- red sphere (model)
0.7 { — red sphere (sim) 0.7 —— red sphere (sim)
0o | @ oo | () ?
0.5 0.5 1 °
® o ® ®
0.3 4 0.3
0.2 T T T T T 0.2 T

—0.4 —0.2 0.0 0.2 0.4 —0.4 —0.2 0.0 02 0.4
(a) MAX (pushing actions) (b) MAX (zero actions)

0.8

— ee

0.8

— ee

——- red sphere (model) Y ——- red sphere (model)
0.7 { — red sphere (sim) 0.7 q —— red sphere (sim)
“ e “ e e
N x
%=
A Ve A
0.5 0.5 Y 4

d [ ] e /
,xf-"“"‘
o o o

0.3 4 0.3

0.2 T T T T T 0.2

(c) Fisher information (pushing actions) (d) Fisher information (zero actions)

Figure 11: Learned models vs. simulator: Evaluation of a forward model trained on trajectories
(30) fromMAX] (Shyam et al, 2019) (checkpoints throughout training) and Fisher information (last
checkpoint). In contrast to our simulator, the learned model fails to predict the red sphere’s H
trajectory accurately even under no contact scenarios (c.f. fig.[TTb] fig. [TTd).

18



Published as a conference paper at ICLR 2024

A.4 PoLICY GENERALIZATION

We evaluate the generalization capabilities of our exploration policy for different sphere locations
and parameter combinations seen and unseen during training (Figure[I3). Since we train the policies
using an arena setup, we remove the arena during this evaluation to be able to query sphere locations
outside of it (Figure[12).

Figure 12: Environment with free space. The red sphere B is subject to changing parameter values
and position is randomized.

0.58 06 058

0.28 0.28
—-0.35 =025 -0.15 -0.05 0.05 0.15 0.25 0.35 -0.35 =025 -015 -0.05 0.05 0.1> 0.25 0.35

. EEinit == training area reachable area . EEinit == training area reachable area

(a) Changing friction parameters (in distribution) (b) Changing mass parameter (out of distribution)

Figure 13: Generalization capabilities of an exploration policy trained on sphere friction for dif-
ferent sphere starting locations. The plot shows the success rate of pushing the sphere spawned at
the corresponding x-y-location and evaluated over 5 different seeds, i.e., different physics parameter
values. Initial endeffector position marked in red l. Boxes denote sphere locations seen during
training (purple box M) and reachable area of the endeffector (orange box M). Our policies experi-
ence surprising generalization capabilities to unseen sphere locations as long as they can be reached
by the robot (cf.fig. [I3a). Furthermore, the actions extrapolate to unseen physics parameters as long
as they can be uncovered with similar interactions, e.g., pushing (cf.fig. [T3b). This is the case be-
cause the policy does not have any information about the underlying physics parameters until it hits
the sphere.

19



	Introduction
	Related Work
	Preliminaries
	Asid: Targeted Exploration for Test-Time Simulation Construction, Identification, and Policy Optimization
	Exploration via Fisher Information Maximization
	System Identification
	Solving the Downstream Task

	Experimental Evaluation
	Ablations and Baseline Comparisons
	Simulated Task Descriptions
	Does Asid learn effective exploration behavior?
	How does Asid perform quantitatively in simulation on downstream tasks?
	Does Asid allow for real-world controller synthesis using minimal real-world data?

	Discussion
	Appendix
	Task Details
	Sphere Manipulation
	Articulation
	Rod Balancing

	Qualitative results
	Exploration Strategies learned by the agent
	Reconstructing articulation from interaction data

	Comparison to model-based approaches
	Environment Setup
	Model-based exploration
	Learned state-transition models vs. simulators

	Policy Generalization


