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Abstract

Collaborative learning enables multiple clients to learn shared feature representa-
tions across local data distributions, with the goal of improving model performance
and reducing overall sample complexity. While empirical evidence shows the
success of collaborative learning, a theoretical understanding of the optimal sta-
tistical rate remains lacking, even in linear settings. In this paper, we identify
the optimal statistical rate when clients share a common low-dimensional linear
representation. Specifically, we design a spectral estimator with local averaging
that approximates the optimal solution to the least squares problem. We establish
a minimax lower bound to demonstrate that our estimator achieves the optimal
error rate. Notably, the optimal rate reveals two distinct phases. In typical cases,
our rate matches the standard rate based on the parameter counting of the linear
representation. However, a statistical penalty arises in collaborative learning when
there are too many clients or when local datasets are relatively small. Furthermore,
our results, unlike existing ones, show that, at a system level, collaboration always
reduces overall sample complexity compared to independent client learning. In
addition, at an individual level, we provide a more precise characterization of when
collaboration benefits a client in transfer learning and private fine-tuning.

1 Introduction

Collaborative learning of shared feature representations across data distributions has become a crucial
challenge in machine learning and data science. The goal is to extract common structures from related
distributions to improve model performance and reduce overall sample complexity, compared to
independently learning each distribution from scratch. Such problems find widespread applications
in fields like federated learning [7], multi-task transfer learning [22, 9], and private fine-tuning with
public knowledge [29]. For example, in federated learning, clients collaboratively learn a shared
model using datasets sampled from their local distributions. In healthcare, federated learning enables
doctors to improve disease detections or treatment effect predictions by leveraging medical data
stored at multiple hospitals [24]. In addition, multi-task transfer learning enables knowledge transfer
across tasks using a pretrained common model. This technique is applicable in few-shot image
classification [28], deep reinforcement learning [39], and large language models [19]. Likewise, in
private fine-tuning, a shared model is first pretrained on publicly available data and then fine-tuned for
specific tasks using private datasets [37]. While empirical evidence shows the success of collaborative
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learning, these studies often involve large datasets. A theoretical understanding of the optimal
statistical rate is still lacking, even in linear settings.

There is extensive literature in linear settings [8, 33, 7, 30, 32, 9, 38, 21], and our work contributes to
this line. In such settings, there are M clients (or tasks), where each client i observes ni data points
{(xij , yij)}ni

j=1. Here xij ∈ Rd is the covariate and yij ∈ R is the response of the j-th sample. Let
N =

∑M
i=1 ni be the total number of data across all clients. For client i ∈ [M ] and sample j ∈ [ni],

the response yij is represented as
yij = x⊺

ijθ
⋆
i + ξij , (1.1)

where θ⋆i ∈ Rd is the ground-truth parameter and ξij ∈ R is an additive noise. Suppose that for
each i, the covariates {xij}ni

j=1 share the same but unknown covariance, i.e., E[xijx
⊺
ij ] = Γi for all j.

We further assume a low-dimensional structure on the parameters, where there exist an orthonormal
matrix B⋆ ∈ Od×k with k ≤ d and vectors α⋆

i ∈ Rk such that Γiθ
⋆
i = B⋆α⋆

i for all i. Here B⋆

is the shared low-dimensional representation and α⋆
i is the client-specific parameter for client i.

The clients aim to collaboratively learn the shared representation B⋆ using their observed datasets.
Let

∑M
i=1 niα

⋆
i (α

⋆
i )

⊺/N be the client diversity matrix, where for now we assume its condition
number, the ratio of its largest to smallest eigenvalue, is Θ(1). This assumption ensures that α⋆

i are
not concentrated in certain directions and the data partition ni is not dominated by a few clients.
Consequently, we have sufficient information to accurately estimate all k columns of B⋆. In particular,
this implies that the client diversity matrix is full rank, so that k ≤ M .1

Several previous works [33, 8, 7, 30, 10, 9] have studied the error rate of a consistent estimation
for B⋆ in this problem. However, existing results exhibit a suboptimal dependence on the subspace
dimension k. In particular, there remains a gap between the best-known error bounds, where the
upper bound is O(

√
dk2/N) [33, 8, 10, 9], while the lower bound is Ω(

√
dk/N) [33].2 In fact, this

suboptimality has been acknowledged in many works [33, 30, 29, 32] as a challenging open problem:

What is the optimal statistical rate to learn the low-dimensional representation B⋆?

Identifying the optimal statistical rate is also crucial for understanding the benefits of collaboration
compared to clients learning their parameters independently. Aside from the undetermined optimal
rate, it remains unclear whether a statistical-computational gap exists. Specifically, we aim to design
an efficient estimator to achieve optimal error rates with polynomial runtime. In addition, it is worth
noting that when directly observing data points composed of B⋆ and noises, rather than through
multiple B⋆α⋆

i , the standard optimal error rate for estimating B⋆ is Θ(
√

dk/N), based on the
parameter counting that B⋆ has dk entries. Therefore, we are also interested in comparing the optimal
rate for the multi-client problem with this standard rate.

Main Contributions. Our work addresses this challenging open problem by improving both
the upper and lower bounds (Corollaries 3.1 and 4.1) and identifying the optimal statistical rate,
Θ(
√
dk/N +

√
Mdk2/N2). To further illustrate our results, we consider a specific regime:

ni ≡ n, N = Mn, n = kβ , M = kγ+1, d = kδ+1, (1.2)
where β, γ, δ > 0 are fixed constants since k ≤ min{d,M}. Figure 1 illustrates the phase diagram,
with each region indicating whether a consistent estimation of B⋆ with vanishing estimation error is
possible or not.3 In particular, a consistent estimation is impossible in light red Region I and possible
in light blue Region II, identified by previous works [33, 8, 10]. However, a wide gap remains
between these two regions. Our contribution bridges this gap by identifying the optimal sample
complexity, which delineates the boundary between Region IV and Regions I and III. We prove that a
consistent estimation is impossible in dark red Region III and possible in dark blue Region IV.

1Otherwise, if M < k, estimating B⋆ accurately is impossible. In this case, {B⋆α⋆
i }Mi=1 spans only an

M -dimensional subspace of Rk; thus the data {xij} contains information only about that subspace. The
remaining k −M columns of B⋆ can be any vectors from the (d−M)-dimensional complementary space.

2For ease of presentation, we will ignore polylogarithmic factors and use standard big O notations in Section
1. In later sections, we will use Õ to emphasize the hidden polylogarithmic factors.

3For the existing error upper bound
√

dk2/N to be Θ(1), we need N = Θ(dk2). This translates to
β + γ = δ + 2 in the regime of (1.2). In a similar vein, the existing lower bound

√
dk/N corresponds to

β + γ = δ + 1, and the second term in our established error rate
√

Mdk2/N2 corresponds to 2β + γ = δ + 2.
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Figure 1: The phase diagram for estimating B⋆ in the regime of (1.2). Regions I and II show
the impossibility and possibility, respectively, from previous works. Regions III and IV show
the impossibility and possibility, respectively, in our work. The boundary between Region I and
Regions III and IV is β+γ = δ+1, between Regions III and IV is 2β+γ = δ+2, and between
Regions II and IV is β + γ = δ + 2.

The identified optimal statistical rate, Θ(
√
dk/N +

√
Mdk2/N2), delineates the boundary between

Region IV and Regions I and III in Figure 1, with two distinct phases. Recall that the standard rate
Θ(
√
dk/N) from parameter counting corresponds to β+γ = δ+1 in this diagram. Our optimal rate

matches this standard rate along the boundary between Regions I and IV. However, deviations from
the standard rate arise along the boundary between Regions III and IV, when γ > δ or 0 < β < 1,
that is, when M = Ω(d) or n = O(k). This is when the second term

√
Mdk2/N2 becomes

dominant. Such a discrepancy highlights a statistical penalty to pay for multi-client collaborative
learning, particularly when there are many clients in the system (M = Ω(d)) or when clients have an
insufficient number of local data points compared to the subspace dimension (n = O(k)).

Our optimal rate quantifies the benefits of collaboration for both the overall system and individual
clients. At the system level, unlike previous results, we find that collaboration always reduces overall
sample complexity compared to independent client learning (Remark 3.1). However, at the individual
level, collaboration is not always beneficial. By applying our optimal rates, we achieve tighter error
bounds for transfer learning (Corollary 5.1) and private fine-tuning (Corollary 5.2) at an individual
client. This provides a more precise quantification of when collaboration benefits individual clients.

In addition to determining the rate, we introduce the first estimator in the literature that achieves
this optimal statistical rate, thereby showing no statistical-computational gap here. Our spectral
estimator of B⋆ is an optimal solution to an approximated version of the non-convex least squares
problem. This estimator leverages two independent replicas of local averages of cross-correlation
vectors {yijxij}ni

j=1 at each client. It preserves privacy in federated learning settings since clients
can send only their local averages rather than raw data to the server. Furthermore, our estimator only
requires at least two data points for each client,4 which significantly relaxes the strict assumptions
that N/M = Ω(d) imposed by [8, 9, 32].5

Finally, our results extend to general ill-conditioned cases, where the analysis allows for any imbal-
anced data partition and covariate heterogeneity (i.e. covariate shift). Let λ1 and λk be the largest
and smallest eigenvalues, respectively, of the client diversity matrix. Our estimator achieves an
error upper bound O(

√
dλ1/(Nλ2

k) +
√
Md/(N2λ2

k)) with λ1 = O(1) in Theorem 3.1, improv-
ing the best-known error rate O(

√
d/(Nλ2

k)) [33, 8, 10]. In addition, Theorem 4.1 establishes a
minimax lower bound Ω(

√
d/(Nλk) +

√
Md/(N2λ2

k)), which differs from the upper bound only
by a condition number

√
λ1/λk in the first term. This lower bound improves the state-of-the-art

result in [33], which is Ω(
√

1/(Nλk)+
√
dk/N) with λk = O(1/k). In particular, our lower bound

4Note that in the extreme case where every client has only a single data point, i.e., ni ≡ 1, the existing
error bound O(

√
dk2/N) in [33, 10] already matches our improved lower bound in Corollary 4.1. Therefore,

assuming ni ≥ 2 does not result in a significant loss of generality.
5[32] is only able to identify an optimal rate Θ(

√
dk/N) in the restricted setting N/M = Ω(d). In contrast,

we characterize the optimal rate for the entire region and discover the two distinct phases of the rate.
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improves the first term by a factor of
√
d, by leveraging the packing set on the unit sphere to construct

multiple problem instances, rather than using Le Cam’s two-point method as in [33]. Moreover, the
second term in our bound is entirely new, derived by choosing randomly generated αi’s instead of
deterministic ones.

Notation and Organization. For positive integers k ≤ d, let Od×k be the set of d× k matrices
with k orthogonal unit vectors as columns. Let Sd−1 be the unit sphere in Rd. For a matrix M , let
λr(M) denote the r-th largest eigenvalue value of M and ∥M∥ denote the spectral norm. We use the
Bachmann–Landau notations O, Ω, and Θ, and use Õ to hide polylogarithmic factors in quantities.

The rest of the paper is organized as follows. Section 2 presents the main model with assumptions.
Section 3 introduces our estimator and the error upper bound. Section 4 establishes a minimax lower
bound. Section 5 provides several applications of our results. We conclude the paper and discuss
future directions in Section 6. In the appendix, Section A provides further related works. Sections B,
C, and D prove the upper and lower bounds, and the corollaries of applications, respectively.

2 Model and Assumptions

Our targeting problem is modeled in (1.1). Formally, we impose the following assumptions on the
variables, ξij , xij , and θ⋆i , with a key assumption of the low-dimensional structure for θ⋆i .
Assumption 2.1 (Sub-gaussian noises). The noise variables ξij are independent, zero-mean, sub-
gaussian6 with constant variance proxy σ2 = Θ(1) and are independent of covariates xij .
Assumption 2.2 (Sub-gaussian covariates). The covariates xij are independent, zero-mean, sub-
gaussian with variance proxy γ2 = Θ(1). For each i, xij share the same but unknown covariance, i.e.,
E[xijx

⊺
ij ] = Γi for all j. These covariance matrices are well-conditioned, with λ1(Γi)/λd(Γi) =

Θ(1) for all i.

The sub-gaussian assumptions are standard in statistical learning for deriving tail bounds. Assumption
2.2 generalizes those in [33, 10] by allowing non-identity covariance. We now assume Γiθ

⋆
i has a

common low-dimensional structure.
Assumption 2.3 (Low-dimensional structure). There exist B⋆ ∈ Od×k with k ≤ d and α⋆

i ∈ Rk

such that Γiθ
⋆
i = B⋆α⋆

i for i ∈ [M ].

Here B⋆ ∈ Od×k is the shared low-dimensional representation and α⋆
i ∈ Rk is the client-specific

parameter for client i. When Γi = Id for all i, this reduces to the standard assumption θ⋆i = B⋆α⋆
i ,

imposed by previous works such as [33, 10]. We generalize this standard assumption to the case
with non-identity covariance Γi, by requiring the cross-correlation vector E[yijxij ] = Γiθ

⋆
i to share

a common subspace.7

Assumption 2.4 (Client normalization). Each α⋆
i satisfies ∥α⋆

i ∥ = O(1) for i ∈ [M ].

The normalization assumption is standard in the literature. Let λr = λr(
∑M

i=1 niα
⋆
i (α

⋆
i )

⊺)/N

denote the r-th largest eigenvalue of the client diversity matrix
∑M

i=1 niα
⋆
i (α

⋆
i )

⊺/N for r ∈ [k],
unless otherwise specified. The normalization then gives

∑k
r=1 λr = Tr(

∑M
i=1 niα

⋆
i (α

⋆
i )

⊺)/N =∑M
i=1 ni∥α⋆

i ∥2/N = O(1), which further implies that kλk ≤ O(1) and λ1 = O(1).

Given the model described in (1.1) and the assumptions introduced, the goal of the clients in these
problems is to collectively estimate the shared representation B⋆. In particular, we define the
following metric to measure the distance between two orthonormal matrices.
Definition 2.1 (Principal angle distance). Let B,B⋆ ∈ Od×k be orthonormal matrices. Then the
principal angle distance between B and B⋆ is

∥ sinΘ(B,B⋆)∥ = ∥BB⊺ −B⋆(B⋆)⊺∥.
6A random variable ξ ∈ R is sub-gaussian with variance proxy σ2, denoted by ξ ∼ subG(σ2), if Eξ = 0

and E[exp(tξ)] ≤ exp(σ2t2/2) for any t ∈ R. A random vector ξ ∈ Rd is sub-gaussian with variance proxy
σ2, denoted by ξ ∼ subGd(σ

2), if u⊺ξ ∼ subG(σ2) for any u ∈ Sd−1.
7Note that since the covariance matrices Γi are unknown, one cannot apply the whitening procedure by

writing xij = Γ
1/2
i x̃ij so that x̃ij have an identity covariance matrix. Moreover, it is difficult to accurately

estimating Γi, as the size of the local dataset ni ≪ d.
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The principal angle distance measures the separation between the column spaces of B and B⋆, and
is invariant to any rotations of B and B⋆. Using this metric, the clients aim to learn an estimator B̂
that minimizes ∥ sinΘ(B,B⋆)∥ over B ∈ Od×k, ensuring that the column space of B̂ closely aligns
with that of B⋆. We study the optimal statistical rate of this problem.

3 Estimator and Error Upper Bound

In this section, we propose an estimator of B⋆, designed to achieve the optimal error upper bound.

3.1 Optimal Estimator

We review the limitations of existing estimators and introduce the innovations of our proposed one.

Limitations of Existing Estimators. Many recent works have designed estimators with provable
error bounds [8, 33, 30, 7, 10]. The method-of-moments estimator in [33] is formed by the top-k
eigenvectors of the matrix,

Z1 =

M∑
i=1

ni∑
j=1

y2ijxijx
⊺
ij . (3.1)

Their analysis is limited to cases where xij ∼ N(0, Id), and the corresponding error upper bound is
suboptimal compared to the lower bound [33, Theorem 5]. A subsequent work [10] assumes ni ≥ 2
and introduces an estimator using the matrix,

Z2 =

M∑
i=1

1

ni − 1

∑
j1 ̸=j2

yij1yij2xij1x
⊺
ij2

. (3.2)

By excluding the diagonal terms j1 = j2 in the summation, their estimator is designed to handle
scenarios where the noise ξij may depend on xij and shown to achieve the suboptimal error bound
of [33]. However, whether this estimator provides any improvement on the estimation error rates
remains unclear. Several works [30, 7] study the alternating minimization methods. However, their
results rely on initialization via the method-of-moments estimator from [33] and thus still suffer from
the suboptimality inherent in the method-of-moments approach. In fact, the suboptimality of the
method-of-moments approach has been acknowledged in many works [33, 30, 29, 32] and closing
this gap has remained a well-recognized open problem.

A Warm-up Example: Mean Estimation Problems. We will introduce our estimator to address
the limitations of these existing ones and improve error upper bounds. To illustrate our ideas, we
begin with a simpler mean estimation problem and show that a local averaging estimator is an optimal
solution to the least squares problem. Specifically, we consider the scenario where each client i
observes ni data sample vectors, denoted by uij ∈ Rd for j ∈ [ni] such that

uij = θ⋆i + ξij = B⋆α⋆
i + ξij .

Here ξij ∈ Rd is an additive noise for the j-th sample and θ⋆i = B⋆α⋆
i is the ground-truth parameter

at client i, where B⋆ ∈ Od×k with k ≤ d and α⋆
i ∈ Rk. The direct approach to solving mean

estimation, given the observed datasets, is to minimize the following non-convex least squares loss,

min
B∈Od×k,{αi}

M∑
i=1

ni∑
j=1

∥uij −Bαi∥2. (3.3)

Let ui = (
∑ni

j=1 uij)/ni be the local average at client i, and B̃ be the top-k eigenvectors of the

matrix
∑M

i=1 niuiu
⊺
i . The following proposition shows that B̃ solves this least squares problem.

Proposition 3.1. After first optimizing over αi, the problem in (3.3) is equivalent to the following

max
B∈Od×k

M∑
i=1

niu
⊺
i BB⊺ui. (3.4)

In addition, the estimator B̃ formed by the top-k eigenvectors of the matrix
∑M

i=1 niuiu
⊺
i is an

optimal solution to problems in (3.3) and (3.4).
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Proposition 3.1 demonstrates that B̃, utilizing local averaging, is an optimal solution to the least
squares problem for mean estimation.

Introducing Our Estimator. Now, we return to tackle the original problem by leveraging the idea
of local averaging discussed above. Similar to mean estimation, we consider the non-convex least
squares problem for linear regression, with θi = Γ−1

i Bαi,

min
{θi}

M∑
i=1

ni∑
j=1

(
yij − x⊺

ijθi
)2

= min
B,{αi}

M∑
i=1

ni∑
j=1

(
yij − x⊺

ijΓ
−1
i Bαi

)2
. (3.5)

Let ẑi = (
∑ni

j=1 yijxij)/ni be client i’s local average, and A† be the pseudoinverse of a matrix A.

Proposition 3.2. After first optimizing over αi, with Λi = Γ−1
i B(B⊺Γ−1

i Γ̂iΓ
−1
i B)†B⊺Γ−1

i , the
problem in (3.5) is equivalent to maxB∈Od×k

∑M
i=1 niẑ

⊺
i Λiẑi.

Unfortunately, unlike (3.4) in Proposition 3.1, the problem in Proposition 3.2 lacks a closed-form
solution due to the complex form of Λi that also involves B. But if we assume Γ̂i ≈ Γi ≈ Id, then
Λi ≈ BB⊺. Thus, we approximate Λi using BB⊺ in Proposition 3.2 and instead solve

max
B∈Od×k

M∑
i=1

niẑ
⊺
i BB⊺ẑi. (3.6)

The problem (3.6) share the same form as (3.4) and therefore the matrix formed by the top-k
eigenvectors of

∑M
i=1 niẑiẑ

⊺
i is an optimal solution to (3.6). As a result, it is tempting to estimate B⋆

based on the top-k eigenvectors of
∑M

i=1 niẑiẑ
⊺
i . However, since {xij} follows general sub-gaussian

distributions with non-identity covariance Γi, without additional assumptions on the covariance
matrix Γi and the fourth-order moments, it is impossible to construct the column space of B⋆ solely
by using the eigenvectors of

∑M
i=1 niẑiẑ

⊺
i .8

To resolve this issue, we construct two independent replicas, zi and z̃i, in replace of the local
average ẑi. For convenience, suppose that ni ≥ 2 is an even number. For i ∈ [M ], let zi =

(2/ni) ·
∑ni/2

j=1 yijxij and z̃i = (2/ni) ·
∑ni

j=ni/2+1 yijxij be two independent replicas of local
averages at client i. We consider the following matrix,

Z =

M∑
i=1

niziz̃
⊺
i =

M∑
i=1

ni

( 2

ni

ni/2∑
j=1

yijxij

)( 2

ni

ni∑
j=ni/2+1

yijx
⊺
ij

)
. (3.7)

We define B̂ as the matrix formed by the right (or left) top-k singular vectors of Z. Now, with two
independent replicas, it is easy to see that

EZ = E
[ M∑

i=1

niziz̃
⊺
i

]
=

M∑
i=1

niE[zi]E[z̃⊺i ] = B⋆
( M∑

i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺,

and the column space of EZ recovers that of B⋆; thus, B̂, formed by the singular vectors of Z,
provides a good estimate for B⋆, ensured by the classic perturbation theory for singular vectors [36].
This highlights the benefits of using two replicas. Similar replica ideas have appeared in other related
problems of mixed linear regression [22, 27], but with different motivations and results.

Finally, compared to Z1 in (3.1), our estimator Z applies local averaging of xijyij at each client,
which leads to a tighter upper bound by effectively reducing noise. For Z2 in (3.2), while excluding
diagonal terms can be viewed as an alternative to our use of independent replicas, our approach
provides significant advantages in privacy-sensitive settings, such as federated learning. To compute
our estimator, each client can send only vectors of their local averages zi and z̃i, or their variants
with added noise, to the server, rather than transmitting any raw data yijxij . Thus, our estimator
effectively prevents the leakage of local data. In addition, since our estimator approximates the least
squares solution in (3.5), we will show that it achieves the optimal statistical rate without the need for
further refinement via alternating minimization.9

8Interested readers can find a detailed explanation in Proposition B.1.
9When the noise variance σ2 is vanishing, further refinement via alternating minimization may improve the

dependence on σ2 and thus achieve a smaller estimation error, as shown in [30] for sufficiently fast diminishing
σ and [7] for σ = 0.
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3.2 Error Upper Bound

The following theorem establishes the error upper bound of our estimator.

Theorem 3.1. Suppose that Assumptions 2.1-2.4 hold. For the estimator B̂ obtained in (3.7), with
probability at least 1−O((d+N)−10),

∥ sinΘ(B̂, B⋆)∥ = O

((√
dλ1

Nλ2
k

+

√
Md

N2λ2
k

)
· log3(d+N)

)
.

Here the condition number λ1/λk and the smallest eigenvalue λk appear in the numerator and
denominator of the rate, respectively. This aligns with our intuition that a larger λ1/λk or a smaller
λk causes more difficulty in estimating B⋆, as the client diversity matrix

∑M
i=1 niα

⋆
i (α

⋆
i )

⊺/N lacks
information in certain directions.

Our bound improves over the previously best-known error rates in the literature. Specifically,
by further assuming xij ∼ N(0, Id), [33] shows that the method-of-moments estimator given

in (3.1) achieves estimation error rate Õ(
√
d(
∑k

r=1 λr)/(Nλ2
k)). However, the analysis therein

crucially relies on the isotropy property of standard Gaussian vectors (see e.g. the proof of Lemma 4
in [33]). If instead xij’s were sub-gaussian, the error bound would become Õ(

√
dkλ1/(Nλ2

k)). The
subsequent work [10] shows that a different spectral estimator given in (3.2) achieves a smaller error
of Õ(

√
d/(Nλ2

k)) when xij’s are sub-gaussian. In comparison, our error bound further improves
by a factor of

√
min{λ1,M/N}. Our improvement is particularly significant when the condition

number of the client diversity matrix satisfies λ1/λk = Θ(1), as shown in the following corollary.

Corollary 3.1. Suppose Assumptions 2.1-2.4 hold and λ1 = Θ(λk) = Θ(1/k). For the estimator B̂
obtained in (3.7), with probability at least 1−O((d+N)−10),

∥ sinΘ(B̂, B⋆)∥ = O

((√
dk

N
+

√
Mdk2

N2

)
· log3(d+N)

)
. (3.8)

This rate improves the results given by [33, 10], which are Õ(
√
dk2/N). More strikingly, our rate is

order-wise optimal, matching up to a polylogarithmic factor the minimax lower bound shown in the
next section. This resolves the challenging open problem of characterizing the optimal estimation
error rate, and our estimator is the first in the literature to achieve this optimal rate.

To further illustrate our results, we plot a phase diagram in Figure 1, where the regions indicate
whether a consistent estimation of B⋆ with vanishing estimation error is possible or not.

Remark 3.1. In contrast to the previous findings, our optimal rate shows that, at a system level,
collaboration always reduces overall sample complexity compared to independent client learning.
Specifically, collaboration requires only N = Θ(max{dk,

√
Mdk2}) data points to learn B⋆ with

a vanishing error. With a shared estimator of B⋆, the M clients can then learn their {α⋆
i } ⊂ Rk,

with an additional sample complexity of Θ(Mk). In contrast, independently learning all parameters
{θ⋆i } ⊂ Rd from scratch requires N = Θ(Md), where Md ≥ max{dk,

√
Mdk2,Mk} since

k ≤ min{d,M}. Thus, collaboration always reduces sample complexity compared to independent
learning. However, the previous best-known results [33] show that collaboration requires N = Θ(dk2)
data points, where dk2 is smaller than Md only when M ≥ k2.

At an individual level, collaboration is no longer always beneficial. Our optimal rate provides a more
precise characterization of when collaboration benefits a new client, as discussed in Section 5.

4 Minimax Lower Bound

This section establishes an information-theoretic lower bound that matches the error upper bound
achieved by our estimator up to a polylogarithmic factor in the well-conditioned cases. For fixed
M and N , we use the eigenvalues λ1 and λk of the client diversity matrix

∑M
i=1 niα

⋆
i (α

⋆
i )

⊺/N to
capture the complexity of the estimation problem. In particular, we analyze the minimax estimation
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error against the worst possible choice of the model parameters B, {αi}Mi=1, and {ni}Mi=1 from a
parameter space. The problem of estimating B can then be represented as the Markov chain,(

B, {αi}Mi=1, {ni}Mi=1

)
→ {{(xij , yij)}ni

j=1}
M
i=1 → B̂.

Here the data volumes {ni}Mi=1, satisfying
∑M

i=1 ni = N , can be observed from the data and hence
are nuisance parameters.

We now define the parameter space. We take B ∈ Od×k to be any d × k orthogonal matrix.
Let α = (α1, · · · , αM ) be the matrix whose columns are the client-specific parameters αi and
n⃗ = (n1, · · · , nM )⊺ be the vector with entries ni. For any λ1 ≥ λk > 0, we define Ψλ1,λk

as the
parameter space for all α and n⃗ that satisfy Assumption 2.4,

Ψλ1,λk
=
{
(α, n⃗) ∈ Rk×M

+ × ZM
+ : ∥αi∥ = O(1) ∀i ∈ [M ],

M∑
i=1

ni = N,

Ω(λk)Ik ⪯ 1

N

M∑
i=1

niαiα
⊺
i ⪯ O(λ1)Ik

}
.

We only consider scenarios where λk > 0, as it is otherwise impossible to fully reconstruct B⋆. When
λk = 0, {α⋆

i } spans only an r-dimensional subspace of Rk with r < k. As a result, the parameters
{θ⋆i } and thus the data {xij} will only contain information about an r-dimensional subspace of
B⋆’s column space. In this case, the remaining k − r columns of B⋆ can be any vectors from the
(d − r)-dimensional complementary space, making it impossible to estimate B⋆ accurately. This
also implies M ≥ k. Recall that Assumption 2.4 yields kλk = O(1) and λ1 = O(1); otherwise, the
parameter space is empty. Henceforth, we assume λk > 0, M ≥ k, kλk = O(1), and λ1 = O(1).

The following theorem presents the minimax error lower bound. Here ∧ is a shorthand notation for
the minimum operation.
Theorem 4.1. Consider a system with M clients and N data points in total. Assume xij ∼ N(0, Id)
and ξij ∼ N(0, 1) independently for i ∈ [M ] and j ∈ [n], and Assumptions 2.3 and 2.4 hold. When
k = Ω(logM), d ≥ (1 + ρ1)k, and M ≥ (1 + ρ2)k for constants ρ1, ρ2 > 0, we have

inf
B̂∈Od×k

sup
B∈Od×k

sup
(α,n⃗)∈Ψλ1,λk

E
[∥∥ sinΘ(B̂, B)

∥∥] = Ω

((√
d

Nλk
+

√
Md

N2λ2
k

)
∧ 1

)
.

Theorem 4.1 establishes an error lower bound, which improves the state-of-the-art result from [33],
which is of order Ω(

√
1/(Nλk) +

√
dk/N). Our lower bound matches the upper bound presented

in Theorem 3.1, differing only by a condition number
√
λ1/λk in the first term and a logarithmic

factor. Thus, in the well-conditioned case when λ1/λk = Θ(1), we have the following corollary.
Corollary 4.1. Under the conditions in Theorem 4.1, when λ1 = Θ(λk) = Θ(1/k), we have

inf
B̂∈Od×k

sup
B∈Od×k

sup
(α,n⃗)∈Ψλ1,λk

E
[∥∥ sinΘ(B̂, B)

∥∥] = Ω

((√
dk

N
+

√
Mdk2

N2

)
∧ 1

)
.

Corollary 4.1 establishes the error lower bound for well-conditioned cases and improves that from [33]
of order Ω(

√
dk/N). This result matches the upper bound in Corollary 3.1 up to a polylogarithmic

factor, thereby determining the optimal statistical rate.

5 Applications

Having identified the statistical rate for estimating B⋆, we now apply this result to learn the model pa-
rameters for a newly joined client or an unseen private task and provide a more precise characterization
of when collaboration benefits a new client.

5.1 Transferring Representations to New Clients

We consider a new client M + 1, who observes nM+1 data points, {(xM+1,j , yM+1,j)}nM+1

j=1 , gen-
erated from the model in (1.1) with the ground-truth parameter θ⋆M+1. Suppose that Assumptions
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2.1 and 2.2 hold with ΓM+1 = Id. We then assume the existence of α⋆
M+1 ∈ Rk such that

θ⋆M+1 = B⋆α⋆
M+1 and ∥α⋆

M+1∥ = O(1). Our goal is to learn θ⋆M+1.

If we substitute an estimator B̂, learned from clients 1 to M , in place of the shared B⋆, the problem
reduces to learning α̂M+1 as follows,

α̂M+1 = argmin
α̂

nM+1∑
j=1

∥x⊺
M+1,jB̂α̂− yM+1,j∥2. (5.1)

There is an explicit solution for α̂M+1 in (5.1). Notably, [33, Theorem 4] provides an error upper
bound for B̂α̂M+1 when ∥ sinΘ(B̂, B⋆)∥ ≤ δ2 for any δ > 0. Recall that Corollary 3.1 establishes
an error bound for our estimator B̂ in well-conditioned cases. Thus, as a direct corollary using our
estimator and its error bound, we derive the following result.
Corollary 5.1 (Transfer learning). Suppose that Assumptions 2.1-2.4 hold and λ1 = Θ(λk) =

Θ(1/k). For B̂ given by (3.7) and then α̂M+1 given by (5.1), with high probability,

∥B̂α̂M+1 −B⋆α⋆
M+1∥2 = Õ

(
dk

N
+

Mdk2

N2
+

k

nM+1

)
.

Corollary 5.1 decomposes the estimation error into two parts, where the first part Õ(dk/N +

Mdk2/N2) captures the error for estimating B⋆, and the second part Õ(k/nM+1) evaluates the
error for estimating α⋆

M+1 given B̂.

Compared to the previous literature [33], our optimal rate provides a more precise characterization
of when collaboration benefits the new client. If client M + 1 estimates its parameter θ⋆M+1 ∈ Rd

from scratch based on the local data, the resulting error rate will be Õ(d/nM+1). Therefore, it is
advantageous to first learn the shared representation when dk/N ≪ d/nM+1 and Mdk2/N2 ≪
d/nM+1. Such conditions are satisfied when nM+1 ≪ min{N/k,N2/(Mk2)}. Conversely, if
nM+1 ≫ min{N/k,N2/(Mk2)}, then the collaboration is unhelpful and the new client would be
better off learning individually.

5.2 Private Fine-tuning for New Clients

In addition, [29] studies a differentially private variant of learning α⋆
M+1 in the same setting further

with xij ∼ N(0, Id). We present an additional corollary under (ϵ, δ)-differential privacy (see the
formal definition in [11, 12]), building upon [29, Theorem 5.4] and derived using our estimator.
Corollary 5.2 (Private transfer learning). Suppose that Assumptions 2.1-2.4 hold, λ1 = Θ(λk) =

Θ(1/k), and xij ∼ N(0, Id). Given B̂ obtained in (3.7), there exists an (ε, δ)-differentially private
estimator α̂ε,δ

M+1 such that, with high probability,∥∥∥B̂α̂ε,δ
M+1 −B⋆α⋆

M+1

∥∥∥2 = Õ

(
dk

N
+

Mdk2

N2
+

k

nM+1
+

k2 log(1/δ)

n2
M+1ε

2

)
.

For comparison, if the client privately estimates its d-dimensional parameter θ⋆M+1 from scratch, the
resulting tight error rate is Õ(d/nM+1 + d2 log(1/δ)/(n2

M+1ε
2)) [34, 3]. Thus, when the estimation

error of B̂, Õ(dk/N +Mdk2/N2), is smaller, learning B̂ first will effectively reduce its error rates.

6 Discussion and Future Work

In this work, we introduce a spectral estimator with local averaging and analyze its performance with
an improved error upper bound. In addition, we sharpen the existing minimax lower bound. Our
results together settle the optimal statistical rate in well-conditioned cases. Our optimal rate shows
that collaboration among clients always reduces overall sample complexity compared to independent
local learning and further quantifies the benefits of transfer learning and private fine-tuning for new
clients or tasks. Furthermore, the optimal rate reveals two distinct phases, where a statistical penalty
arises for collaborative learning, especially with many clients or relatively small local datasets.
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An open problem is whether we can eliminate the dependency on condition numbers and achieve the
optimal rate in ill-conditioned cases. Moreover, when the noise variance is rapidly diminishing, can
we obtain the optimal error rates? Finally, is it possible to extend our analysis to generalized linear
models and non-linear regression models while maintaining similar guarantees of optimal rates?
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A Further Related Work

Our work contributes to the growing literature studying collaborative learning of shared feature
representations, which dates back to [5, 31, 2, 1, 26]. This problem has a broad range of applications,
including federated learning, multi-task transfer learning, meta-learning, and private fine-tuning with
public knowledge [33, 8, 7, 29, 9].

Most relevant recent works, including [33, 8, 7, 30, 10], focus on the linear model described in
(1.1). However, none of them identifies the optimal statistical rate, even in well-conditioned cases.
In particular, [33] introduces a method-of-moments estimator for standard Gaussian covariates but
obtains upper and lower bounds suboptimal to the subspace dimension k. Concurrently, [8] provides
purely statistical guarantees by directly analyzing the optimal solution to the nonconvex empirical
risk minimization, yet still obtains a suboptimal error upper bound. In addition, [10] presents a
spectral estimator that achieves an optimal rate for simpler mean estimation problems, but its error
upper bound for linear regression settings remains suboptimal. Furthermore, [7, 30] study alternating
minimization initialized at the method-of-moments estimator, which reduces the error rates when
the noise level of ξij rapidly diminishing or zero but the rates remain suboptimal with respect to the
subspace dimension k.

Several studies have explored variants of the model in (1.1). For example, [29] studies differentially
private fine-tuning given the method-of-moments estimator. Moreover, [9] studies adaptive and robust
multi-task learning, where, in a specific low-rank scenario, they assume θ⋆i = B⋆α⋆

i + v⋆i with a
bounded offset term v⋆i . In addition, [32] considers the case when clients share similar representations
such that θ⋆i = B⋆

i α
⋆
i , with the subspaces B⋆

i constrained to certain angles, while also allowing
outliers. However, the statistical rates in [29] and [9] are suboptimal with respect to k, and both [9]
and [32] impose much stricter assumptions that N/M = Ω(d).

Other related works including gradient-based meta-learning [23, 20, 13], non-parametric transfer
learning [16, 4], and the hardness of multi-task learning [17]. It is also worth noting that the
shared linear representation model in (1.1) provides an effective approach for addressing data
heterogeneity with concept shift in federated learning [7], which includes the clustered federated
learning framework [15, 14, 27] as a special case.

12



B Proof of the Upper Bound

In this section, we prove the results in Section 3.

B.1 Proofs of Results in Section 3.1

We prove Proposition 3.1 by first fixing B and optimizing for αi.

Proof of Proposition 3.1. We first partially optimize for αi given a fixed B ∈ Od×k. By taking
partial derivatives and solving

∑ni

j=1 B
⊺(uij −Bα̂i) = 0 with B⊺B = Ik, we have

α̂i = B⊺ui.

Substituting the optimal α̂i into the original problem, this leaves us to find B ∈ Od×k to minimize:
M∑
i=1

ni∑
j=1

∥∥uij −BB⊺ui

∥∥2 =

M∑
i=1

ni∑
j=1

∥∥uij − ui + ui −BB⊺ui

∥∥2
=

M∑
i=1

ni∑
j=1

∥∥uij − ui

∥∥2 + M∑
i=1

ni

∥∥ui −BB⊺ui

∥∥2
=

M∑
i=1

ni∑
j=1

∥∥uij − ui

∥∥2 + M∑
i=1

ni

∥∥ui

∥∥2 − M∑
i=1

ni(ui)
⊺BB⊺ui,

where the second equality holds since
∑ni

j=1(uij − ui)
⊺(ui −BB⊺ui) = 0 for i ∈ [M ] and the last

equality holds due to B⊺B = Ik. Thus, the least-squares problem is equivalent to the following one,

max
B∈Od×k

M∑
i=1

niu
⊺
i BB⊺ui.

In addition, we have
M∑
i=1

niu
⊺
i BB⊺ui =

M∑
i=1

niTr
(
B⊺uiu

⊺
i B
)
= Tr

(
B⊺
( M∑

i=1

niuiu
⊺
i

)
B
)
.

We define Z =
∑M

i=1 niuiu
⊺
i . Solving the PCA problem maxB∈Rd×k Tr(BZB) s.t. B⊺B = Ik, we

obtain the optimal B̃ as the top-k eigenvectors of Z.

Similarly, we prove Proposition 3.2.

Proof of Proposition 3.2. We first partially optimize for αi for a fixed B ∈ Od×k. Let Γ̂i =
(
∑ni

j=1 xijx
⊺
ij)/ni. By taking partial derivatives and solving

∑ni

j=1 B
⊺Γ−1

i xij(yij − x⊺
ijΓ

−1
i Bαi) =

0 with B⊺B = Ik, we have

α̂i =
(
B⊺Γ−1

i Γ̂iΓ
−1
i B

)†
B⊺Γ−1

i ẑi.

Let Λi = Γ−1
i B

(
B⊺Γ−1

i Γ̂iΓ
−1
i B

)†
B⊺Γ−1

i . Substituting the optimal α̂i into the original problem,
this leaves us to find B ∈ Od×k to minimize:

M∑
i=1

ni∑
j=1

(
yij − x⊺

ijΓ
−1
i Bα̂i

)2
=

M∑
i=1

ni∑
j=1

(
yij − x⊺

ijΛiẑi
)2

=

M∑
i=1

( ni∑
j=1

y2ij − 2niẑ
⊺
i Λiẑi + niẑ

⊺
i ΛiΓ̂iΛiẑi

)

=

M∑
i=1

( ni∑
j=1

y2ij − niẑ
⊺
i Λiẑi

)
,
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where the last equality holds since it is easy to compute that ΛiΓ̂iΛi = Λi. Thus, the least squares
problem in (3.5) is equivalent to the following one,

max
B∈Od×k

M∑
i=1

niẑ
⊺
i Λiẑi.

We now present the following proposition with the formal form of E[
∑M

i=1 niẑiẑ
⊺
i ].

Proposition B.1. Under Assumptions 2.1-2.3, the matrix
∑M

i=1 niẑiẑ
⊺
i satisfies

E
[ M∑

i=1

niẑiẑ
⊺
i

]
= B⋆

( M∑
i=1

(ni − 1)α⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺ +

M∑
i=1

1

ni

ni∑
j=1

E[x⊺
ijθ

⋆
i (θ

⋆
i )

⊺xijxijx
⊺
ij ]

+

M∑
i=1

E[ξ2ij ]Γi.

Proof of Proposition B.1. We begin with E[
∑M

i=1 niẑiẑ
⊺
i ]. By the definition of ẑi, we have

E
[ M∑

i=1

niẑiẑ
⊺
i

]
= E

[ M∑
i=1

ni

( 1

ni

ni∑
j=1

yijxij

)( 1

ni

ni∑
j=1

yijx
⊺
ij

)]

=

M∑
i=1

1

ni

( ∑
j1 ̸=j2

E[yij1xij1 ]E[yij2x
⊺
ij2

] +

ni∑
j=1

E[y2ijxijx
⊺
ij ]
)
. (B.1)

For the second term above, since ξij and xij are independent, we have
M∑
i=1

1

ni

ni∑
j=1

E[y2ijxijx
⊺
ij ] =

M∑
i=1

1

ni

ni∑
j=1

E[(x⊺
ijθ

⋆
i + ξij)

2xijx
⊺
ij ]

=

M∑
i=1

1

ni

ni∑
j=1

(
E[x⊺

ijθ
⋆
i (θ

⋆
i )

⊺xijxijx
⊺
ij ] + E[ξ2ij ]E[xijx

⊺
ij ]
)

=

M∑
i=1

1

ni

ni∑
j=1

E[x⊺
ijθ

⋆
i (θ

⋆
i )

⊺xijxijx
⊺
ij ] +

M∑
i=1

E[ξ2ij ]Γi.

In addition, we have E[yij1xij1 ] = E[xij1x
⊺
ij1

]θ⋆i = B⋆α⋆
i . We conclude the proof by substituting

these results into (B.1).

B.2 Proof of Theorem 3.1

In this section, we prove the error upper bound of our estimator. We first introduce Wedin’s sinΘ
theorem, which generalizes Davis–Kahan theorem to singular subspaces.
Theorem B.1 (Wedin’s sinΘ theorem [36]). Consider two matrices M⋆ and M = M⋆ + E in
Rd×d, with singular values σ⋆

1 ≥ · · · ≥ σ⋆
d and σ1 ≥ · · · ≥ σd respectively. Let u⋆

i (resp. ui) and v⋆i
(resp. vi) be the left and right singular vectors associated with σ⋆

i (resp. σi). For r ≤ d, we define
matrices Σ⋆ = diag (σ⋆

1 , · · · , σ⋆
r ), Σ

⋆
⊥ = diag

(
σ⋆
r+1, · · · , σ⋆

d

)
, U⋆ = (u⋆

1, · · · , u⋆
r) ∈ Rd×r, U⋆

⊥ =

(u⋆
r+1, · · · , u⋆

d) ∈ Rd×(d−r), V ⋆ = (v⋆1 , · · · , v⋆r ) ∈ Rd×r, and V ⋆
⊥ = (v⋆r+1, · · · , v⋆d) ∈ Rd×(d−r).

Similar matrices Σ, Σ⊥, U , U⊥, V , V⊥ are defined for M . Then their singular value decompositions
are given by

M⋆ = (U⋆ U⋆
⊥)

(
Σ⋆ 0
0 Σ⋆

⊥

)(
(V ⋆)⊺

(V ⋆)⊺⊥

)
, M = (U U⊥)

(
Σ 0
0 Σ⊥

)(
V ⊺

V ⊺
⊥

)
,

If ∥E∥ < (σ⋆
r − σ⋆

r+1)/2, we have

max
{
∥ sinΘ(U,U⋆)∥, ∥ sinΘ(V, V ⋆)∥

}
≤ 2∥E∥

σ⋆
r − σ⋆

r+1

.
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We now prove Theorem 3.1 using Wedin’s theorem.

Proof of Theorem 3.1. We first compute EZ. The independence of xij and ξij yields that

Ezi =
2

ni

ni/2∑
i=1

E[yijxij ] = E[xi1x
⊺
i1]θ

⋆
i = B⋆α⋆

i .

Similarly, we have Ez̃i = B⋆α⋆
i and thus

EZ =

M∑
i=1

ni(Ezi)(Ez̃⊺i ) = B⋆
( M∑

i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺.

Let Γi = 2/ni ·
∑ni/2

j=1 xijx
⊺
ij , Γ̃i = 2/ni ·

∑ni

j=ni/2+1 xijx
⊺
ij , Ei = 2/ni ·

∑ni/2
j=1 ξijxij , and

Ẽi = 2/ni ·
∑ni

j=ni/2+1 ξijxij . Then, by applying the model (1.1), we have zi = Γiθ
⋆
i + Ei and

z̃i = Γ̃iθ
⋆
i + Ẽi. By substituting zi = Γiθ

⋆
i + Ei and z̃i = Γ̃iθ

⋆
i + Ẽi into the estimator Z, we have

Z − EZ =

M∑
i=1

niziz̃
⊺
i −B⋆

( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺

=

M∑
i=1

ni(Γiθi + Ei)(Γ̃iθi + Ẽi)
⊺ −B⋆

( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺

=

M∑
i=1

niΓiθiθ
⊺
i Γ̃

⊺
i −B⋆

( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺ +

M∑
i=1

niΓiθiẼ
⊺
i +

M∑
i=1

niEi

(
Γ̃iθi

)⊺
+

M∑
i=1

niEiẼ
⊺
i .

Lemmas B.5, B.6, and B.7 will bound the fluctuations of each term in spectral norm using random
matrix tools. Thus, by substituting these results, we have, with probability at least 1−O((d+N)−10),

∥Z − EZ∥ ≤
∥∥∥ M∑

i=1

niΓiθiθ
⊺
i Γ̃

⊺
i −B⋆

( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺

∥∥∥+ ∥∥∥ M∑
i=1

niΓiθiẼ
⊺
i

∥∥∥
+
∥∥∥ M∑

i=1

niEi

(
Γ̃iθi

)⊺∥∥∥+ ∥∥∥ M∑
i=1

niEiẼ
⊺
i

∥∥∥ (B.2)

= O
((√

Md+
√
Ndλ1 + d

)
· log3(d+N)

)
.

Finally, we apply Wedin’s sinΘ theorem, noting EZ = B⋆
(∑M

i=1 niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺ is rank-k

with λk(EZ) = Nλk and λk+1(EZ) = 0. Therefore, we have

∥ sinΘ(B̂, B⋆)∥ ≤ 2∥Z − EZ∥
λk(EZ)

=
O((

√
Md+

√
Ndλ1 + d) · log3(d+N))

Nλk

= O

((√
dλ1

Nλ2
k

+

√
Md

N2λ2
k

+
d

Nλk

)
· log3(d+N)

)

= O

((√
dλ1

Nλ2
k

+

√
Md

N2λ2
k

)
· log3(d+N)

)
,

where the last line follows from d/(Nλk) ≤
√
d/(Nλk) ≤

√
dλ1/(Nλ2

k) given Nλk = Ω(d) and
λ1/λk ≥ 1.

Now it remains to bound each error term using the truncated matrix Bernstein inequality. Interested
readers can find a proof of this truncated variant in [18, Section A.2.2].

15



Theorem B.2 (Truncated matrix Bernstein’s inequality). Let Z1, · · · , ZM ∈ Rd1×d2 be independent
random matrices. Suppose there exist positive constants β, q, and δ ≤ 1, such that for any i ∈ [M ],

P
(
∥Zi − EZi∥ ≥ β

)
≤ δ∥∥EZi − E[Zi1{∥Zi∥ < β}]

∥∥ ≤ q.

In addition, let v be the matrix variance statistic defined as

v = max
{∥∥∥ M∑

i=1

(
E[ZiZ

⊺
i ]− (EZi)(EZ⊺

i )
)∥∥∥,∥∥∥ M∑

i=1

(
E[Z⊺

i Zi]− (EZ⊺
i )(EZi)

)∥∥∥}.
Then for any t ≥ Mq, we have

P
(∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ ≥ t

)
≤ (d1 + d2) exp

(
− (t−Mq)2/2

v + 2β(t−Mq)/3

)
+Mδ.

We present a user-friendly corollary of Theorem B.2 as follows [6].

Corollary B.1. Suppose the conditions of Theorem B.2 hold, and set d = max{d1, d2}. For any
c ≥ 2, with probability at least 1− 2d−c+1 −Mδ, we have∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ ≤
√
2cv log d+

2c

3
β log d+Mq.

We now begin our analysis of the error terms. The next lemma applies Bernstein’s inequality on a
normalized sum of sub-exponential variables and helps identify the truncation level of our targeted
random matrices.

Lemma B.1. Let ζ1, · · · , ζn ∈ R and x1, · · · , xn ∈ Rd be a sequence of sub-gaussian random
variables and random vectors respectively, with constant variance proxies. Assume (ζj , xj) are
mutually independent pairs across different j ∈ [n], while ζj and xj may be dependent on each
other. Let η be the normalized sum of their products, that is, η = (

∑n
j=1 ζjxj)/

√
n. Then there exist

positive constants c1 and c2 such that for any t > 0,

P
(
∥η − Eη∥ ≥ t

)
≤ 2d exp

(
−min

{
c1t

2/d, c2t
√

n/d
})

.

Proof. Let x(r)
j denote the r-th entry of vector xj , and define η(r) = (

∑n
j=1 ζjx

(r)
j )/

√
n as the r-th

entry of η. Then we have ∥η − Eη∥2 =
∑d

r=1(η
(r) − Eη(r))2 and thus

P
(
∥η − Eη∥ ≥ t

)
= P

( d∑
r=1

(
η(r) − Eη(r)

)2 ≥ t2
)
≤

d∑
r=1

P
(∣∣η(r) − Eη(r)

∣∣ ≥ t/
√
d
)
.

For a fixed r, the product of sub-gaussians, ζjx
(r)
j , is sub-exponential; {ζjx(r)

j − Eζjx(r)
j }j∈[n]

is a sequence of independent, mean zero, sub-exponential random variables. Thus, Bernstein’s
inequality [35, Theorem 2.8.1] yields the existence of positive constants c1 and c2 such that,

P
(∣∣η(r) − Eη(r)

∣∣ ≥ t/
√
d
)
= P

(∣∣∣ 1√
n

n∑
j=1

(
ζjx

(r)
j − Eζjx(r)

j

)∣∣∣ ≥ t/
√
d

)
≤ 2 exp

(
−min

{
c1t

2/d, c2t
√

n/d
})

.

We conclude the proof by combining the above two equations.

The following lemma assists in bounding the mean shift after truncation.

Lemma B.2. Let ai, bi ∈ Rd be independent random vectors and Zi = aib
⊺
i . Then for any β > 0,∥∥EZi − E[Zi1{∥Zi∥ < β}]

∥∥ ≤
√

E
[
∥ai∥2

]
E
[
∥bi∥2

]
P
(
∥Zi∥ ≥ β

)
.
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Proof. We bound the mean shift after truncation as follows,∥∥EZi − E[Zi1{∥Zi∥ < β}]
∥∥ =

∥∥E[Zi1{∥Zi∥ ≥ β}]
∥∥

≤ E
[
∥Zi∥1{∥Zi∥ ≥ β}

]
≤
√
E
[
∥Zi∥2

]
E
[
1{∥Zi∥ ≥ β}

]
,

where Cauchy–Schwarz inequality gives the last line. Since ai and bi are independent, we have
E[∥Zi∥2] = E[∥ai∥2∥bi∥2] = E[∥ai∥2]E[∥bi∥2]. We further note E[1{∥Zi∥ ≥ β}] = P(∥Zi∥ ≥ β)
and complete the proof.

The following two lemmas bound the variance of random vectors
√
niΓiθi and

√
niEi.

Lemma B.3. Suppose Assumptions 2.1-2.4 hold. Let ai =
√
niΓiθi = 2/

√
ni ·

∑ni/2
j=1 xijx

⊺
ijθi. We

have

∥Eai∥ ≤
√
Nλ1, E

[
∥ai∥2

]
= O(d∥α⋆

i ∥2) + ni∥α⋆
i ∥2.

In addition, for any s ∈ Sd−1, we have

s⊺E[aia⊺i ]s = O(∥α⋆
i ∥2) + nis

⊺B⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺s.

Proof. We first note that Eai =
√
niB

⋆α⋆
i and EaiEa⊺i = niB

⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺. For any s ∈ Sd−1,
we have ∥(B⋆)⊺s∥ ≤ 1 and thus

s⊺EaiEa⊺i s = nis
⊺B⋆α⋆

i (α
⋆
i )

⊺(B⋆)⊺s ≤ s⊺B⋆
( M∑

i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺s

≤ Nλ1∥(B⋆)⊺s∥ ≤ Nλ1.

Then we can bound the vector norm as follows, and conclude the first statement,

∥Eai∥2 = ∥EaiEa⊺i ∥ ≤ Nλ1.

Next, we compute E[∥ai∥2] using its definition,

E
[
∥ai∥2

]
= E

[
niθ

⊺
i Γ

⊺
i Γiθi

]
= E

[
niθ

⊺
i

( 2

ni

ni/2∑
j=1

xijx
⊺
ij

)( 2

ni

ni/2∑
j=1

xijx
⊺
ij

)
θi

]

=
4

ni

[
E
( ni/2∑

j=1

θ⊺i xijx
⊺
ijxijx

⊺
ijθi

)
+ E

( ni/2∑
j=1

∑
r ̸=j

θ⊺i xijx
⊺
ijxirx

⊺
irθi

)]
= 2E

[
(θ⊺i xi1)

2∥xi1∥2
]
+ (ni − 2)θ⊺i E

[
xi1x

⊺
i1

]
E
[
xi2x

⊺
i2

]
θi

= 2E
[
((θi/∥θi∥)⊺xi1)

2∥xi1∥2
]
· ∥θi∥2 + (ni − 2)∥B⋆α⋆

i ∥2. (B.3)

We bound the first term using Cauchy–Schwarz inequality,

E
[
((θi/∥θi∥)⊺xi1)

2∥xi1∥2
]
· ∥θi∥2 ≤

√
E
[
((θi/∥θi∥)⊺xi1)4

]
E
[
∥xi1∥4

]
· ∥θi∥2.

The moments of sub-gaussian variables are bounded by constants that rely on the variance proxies,
thus E[((θi/∥θi∥)⊺xi1)

4] = O(1). Given bounded moments E[(x(r)
i1 )4], we have E[∥xi1∥4] =

E[(
∑d

r=1(x
(r)
i1 )2)2] ≤ d

∑d
r=1 E[(x

(r)
i1 )4] = O(d2). In addition, λd(Γi) = Θ(1) from Assumption

2.2 implies ∥θi∥2 = ∥Γ−1
i B⋆α⋆

i ∥2 = Θ(∥α⋆
i ∥2). As a summary, the first term of (B.3) is of the

following order:

2E
[
((θi/∥θi∥)⊺xi1)

2∥xi1∥2
]
· ∥θi∥2 = O(d∥α⋆

i ∥2).

Thus, following from (B.3) and (B⋆)⊺B⋆ = Ik, we conclude E[∥ai∥2] = O(d∥α⋆
i ∥2) + ni∥α⋆

i ∥2.

Similarly, we compute E[aia⊺i ] as follows,

E[aia⊺i ] = E
[
niΓiθiθ

⊺
i Γ

⊺
i

]
= E

[
ni

( 2

ni

ni/2∑
j=1

xijx
⊺
ij

)
θiθ

⊺
i

( 2

ni

ni/2∑
j=1

xijx
⊺
ij

)]
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=
4

ni

[
E
( ni/2∑

j=1

xijx
⊺
ijθiθ

⊺
i xijx

⊺
ij

)
+ E

( ni/2∑
j=1

∑
r ̸=j

xijx
⊺
ijθiθ

⊺
i xirx

⊺
ir

)]
= 2E

[
(θ⊺i xi1)

2xi1x
⊺
i1

]
+ (ni − 2)B⋆α⋆

i (α
⋆
i )

⊺(B⋆)⊺. (B.4)

Then for the first term and any s ∈ Sd−1, Cauchy–Schwarz inequality gives that

s⊺E
[
(θ⊺i xi1)

2xi1x
⊺
i1

]
s = E

[
((θi/∥θi∥)⊺xi1)

2(s⊺xi1)
2
]
· ∥θi∥2

≤
√

E
[
((θi/∥θi∥)⊺xi1)4

]
E
[
(s⊺xi1)4

]
· ∥θi∥2

= O(∥α⋆
i ∥2),

where last line holds since (θi/∥θi∥)⊺xi1 and u⊺xi1 are sub-gaussian variables with bounded constant
moments, and ∥θi∥2 = Θ(∥α⋆

i ∥2) due to Assumption 2.2. Thus, following from (B.4), for any
s ∈ Sd−1, we conclude that

s⊺E[aia⊺i ]s = 2s⊺E
[
(θ⊺i xi1)

2xi1x
⊺
i1

]
s+ (ni − 2)s⊺B⋆α⋆

i (α
⋆
i )

⊺(B⋆)⊺s

= O(∥α⋆
i ∥2) + nis

⊺B⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺s.

Lemma B.4. Suppose Assumptions 2.1-2.4 hold. Let bi =
√
niEi = 2/

√
ni ·
∑ni/2

j=1 ξijxij . We have

E
[
∥bi∥2

]
= O(d),

∥∥E[bib⊺i ]∥∥ = O(1).

Proof. By definition, we have

E
[
∥bi∥2

]
= E

[
niE

⊺
i Ei

]
= E

[
ni

( 2

ni

ni/2∑
j=1

ξijxij

)⊺( 2

ni

ni/2∑
j=1

ξijxij

)]

=
4

ni
E
[ ni/2∑

j=1

ni/2∑
r=1

ξijξirx
⊺
ijxir

]
=

4

ni

ni/2∑
j=1

E[ξ2ij ]E[∥xij∥2] = 2E[ξ2i1]E
[
∥xi1∥2

]
.

Since E[∥xi1∥2] =
∑d

r=1 E(x
(r)
i1 )2 = dE(x(1)

i1 )2, and the variances of sub-gaussian random variables,
E[ξ2i1] and E(x(1)

i1 )2, are bounded by constants dependent on the variance proxies, we have E[∥bi∥2] =
O(d). Similarly, the straightforward computation gives

E[bib⊺i ] = 2E[ξ2i1]E[xi1x
⊺
i1],

where the variance E[ξ2i1] is bounded. For any u ∈ Sd−1, since u⊺xi1 is sub-gaussian, its variance
u⊺E[xi1x

⊺
i1]u = E[∥u⊺xi1∥2] is bounded. Thus, we have ∥E[xi1x

⊺
i1]∥ = O(1) and conclude that

∥E[bib⊺i ]∥ ≤ 2E[ξ2i1]∥E[xi1x
⊺
i1]∥ = O(1).

We now bound the three error terms in the proof of Theorem 3.1 in the following lemmas.

Bounding the first error term in (B.2).
Lemma B.5. Suppose Assumptions 2.1-2.4 hold. With probability at least 1−O((d+N)−10), we
have∥∥∥ M∑

i=1

niΓiθiθ
⊺
i Γ̃

⊺
i −B⋆

( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺

∥∥∥ = O
((√

Md+
√
Ndλ1 + d

)
· log3(d+N)

)
.

Proof. Let ai =
√
niΓiθi, ui =

√
niΓ̃iθi, and Zi = aiu

⊺
i . Then ai and ui are independent

and identically distributed, and we aim to bound ∥
∑M

i=1(niΓiθiθ
⊺
i Γ̃

⊺
i − niB

⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺)∥ =

∥
∑M

i=1(Zi−EZi)∥ by the truncated matrix Bernstein’s inequality in Corollary B.1. Since ∥Zi−EZi∥
might be unbounded, we first identify an appropriate truncation level. By adding and subtracting
terms, we have∥∥Zi − EZi

∥∥ =
∥∥aiu⊺

i − EaiEu⊺
i

∥∥
18



≤
∥∥(ai − Eai)(ui − Eui)

⊺
∥∥+ ∥∥(ai − Eai)Eu⊺

i

∥∥+ ∥∥Eai(ui − Eui)
⊺
∥∥.

Since ai and ui share identical distributions, the above equation yields that for any β > 0,

P
(
∥Zi − EZi∥ ≥ β

)
≤ P

(
∥(ai − Eai)(ui − Eui)

⊺∥ ≥ β/3
)
+ 2P

(
∥(ai − Eai)Eu⊺

i ∥ ≥ β/3
)

≤ 2P
(
∥ai − Eai∥ ≥

√
β/3

)
+ 2P

(
∥Eui∥ · ∥ai − Eai∥ ≥ β/3

)
≤ 2P

(
∥ai − Eai∥ ≥

√
β/3

)
+ 2P

(
∥ai − Eai∥ ≥ β/

(
3
√
Nλ1

))
,

where the last inequality holds since ∥Eui∥ ≤
√
Nλ1 by Lemma B.3. Note ai = 2/

√
ni ·∑ni/2

j=1 (x
⊺
ijθi)xij , where x⊺

ijθi is a sub-gaussian variable and xij is a sub-gaussian vector. Thus,
following from the above equation, we apply the bound from Lemma B.1 to ∥ai − Eai∥, and have
the existence of constants c1, c2, c3, c4 such that for any β > 0,

P
(
∥Zi − EZi∥ ≥ β

)
≤ 4d exp

(
−min

{
c1β/d, c2

√
niβ/d

})
+ 4d exp

(
−min

{
c3β

2/(Ndλ1), c4β
√
ni/(Ndλ1)

})
.

For any δ > 0, we take a large enough C and set β = Cmax{d log2(d/δ),
√
Ndλ1 log(d/δ)}. Thus,

using ni ≥ 1, we obtain from the above equation ,

P
(
∥Zi − EZi∥ ≥ β

)
≤ δ. (B.5)

Next, we bound the mean shift after truncation using Lemma B.2. For β defined above, we have∥∥EZi − E[Zi1{∥Zi∥ < β}]
∥∥ ≤

√
E
[
∥ai∥2

]
E
[
∥ui∥2

]√
δ.

Lemma B.3 provides the bound that E[∥ai∥2] = E[∥ui∥2] = O(d+N). Thus, we have∥∥EZi − E[Zi1{∥Zi∥ < β}]
∥∥ = O

(
(d+N)

√
δ
)
:= q. (B.6)

Then it remains to determine the variance statistic. We first have

E[ZiZ
⊺
i ] = E[aiu⊺

i uia
⊺
i ] = E[∥ui∥2]E[aia⊺i ].

Note that EZi = niB
⋆α⋆

i (α
⋆
i )

⊺(B⋆)⊺. Then Lemma B.3 yields that, for any s ∈ Sd−1,

s⊺
(
E[ZiZ

⊺
i ]− (EZi)(EZ⊺

i )
)
s

= E[∥ui∥2] · s⊺E[aia⊺i ]s− n2
i ∥B⋆α⋆

i ∥2 · s⊺B⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺s

=
(
O(d∥α⋆

i ∥2) + ni∥α⋆
i ∥2
)
·
(
O(∥α⋆

i ∥2) + nis
⊺B⋆α⋆

i (α
⋆
i )

⊺(B⋆)⊺s
)

− n2
i ∥α⋆

i ∥2 · s⊺B⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺s

= O
(
d∥α⋆

i ∥4 + ni∥α⋆
i ∥4 + dni∥α⋆

i ∥2s⊺B⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺s
)
.

Since
∑M

i=1 ni∥α⋆
i ∥2 = Tr(

∑M
i=1 niα

⋆
i (α

⋆
i )

⊺) = O(Nkλ1), when summing over all i ∈ [M ], we
have

s⊺
[ M∑

i=1

(
E[ZiZ

⊺
i ]− (EZi)(EZ⊺

i )
)]
s

= O
(
d

M∑
i=1

∥α⋆
i ∥4 +max

i
∥α⋆

i ∥2 ·
M∑
i=1

ni∥α⋆
i ∥2 + dmax

i
∥α⋆

i ∥2 · s⊺B⋆
( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺s

)
= O

(
Md ·max

i
∥α⋆

i ∥4 +Nkλ1 ·max
i

∥α⋆
i ∥2 +Ndλ1 ·max

i
∥α⋆

i ∥2 · ∥(B⋆)⊺s∥
)

= O(Md+Ndλ1). (B.7)

where the third line holds since λ1(
∑M

i=1 niα
⋆
i (α

⋆
i )

⊺) ≤ Nλ1 and the last line follows from d ≥ k,
maxi ∥α⋆

i ∥2 = O(1), and ∥(B⋆)⊺s∥ ≤ 1. In addition, note that E[Z⊺
i Zi] = E[uia

⊺
i aiu

⊺
i ] =

E[∥ai∥2]E[uiu
⊺
i ]. Since ai and ui share identical distributions, and EZi = EZ⊺

i , we observe
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E[ZiZ
⊺
i ] − (EZi)(EZ⊺

i ) = E[Z⊺
i Zi] − (EZ⊺

i )(EZi). Thus, following from (B.7), the variance
statistic is bounded such that

v = max
{∥∥∥ M∑

i=1

(
E[ZiZ

⊺
i ]− (EZi)(EZ⊺

i )
)∥∥∥,∥∥∥ M∑

i=1

(
E[Z⊺

i Zi]− (EZ⊺
i )(EZi)

)∥∥∥}
= O(Md+Ndλ1). (B.8)

We apply Corollary B.1 with c = 11, and β, q, and v discussed in (B.5), (B.6), and (B.8). Then with
probability at least 1− 2d−10 −Mδ, we have∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ ≤
√
2cv log d+ 2cβ log d/3 +Mq

= O
(√

(Md+Ndλ1) log d+
(
d log2(d/δ) +

√
Ndλ1 log(d/δ)

)
log d+

√
δM(d+N)

)
.

Note that M ≤ N . Taking δ = (d+N)−11, it holds with probability at least 1− O((d+N)−10)
that, ∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ = O
((√

Md+
√
Ndλ1 + d

)
· log3(d+N)

)
.

Bounding the second and third error terms in (B.2).
Lemma B.6. Suppose Assumptions 2.1-2.4 hold. With probability at least 1−O((d+N)−10), we
have ∥∥∥ M∑

i=1

niΓiθiẼ
⊺
i

∥∥∥ = O
((√

Md+
√
Ndλ1 + d

)
· log3(d+N)

)
.

Proof. Let ai =
√
niΓiθi, bi =

√
niẼi, and Zi = aib

⊺
i with Ebi = 0 and EZi = 0. We first identify

a truncation level of ∥Zi∥. Since ∥Zi∥ = ∥aib⊺i ∥ ≤ ∥(ai − Eai)b⊺i ∥+ ∥(Eai)b⊺i ∥, we have for any
β ≥ 0,

P
(
∥Zi∥ ≥ β

)
≤ P

(
∥(ai − Eai)b⊺i ∥ ≥ β/2

)
+ P

(
∥(Eai)b⊺i ∥ ≥ β/2

)
≤ P

(
∥ai − Eai∥ ≥

√
β/2

)
+ P

(
∥bi∥ ≥

√
β/2

)
+ P

(
∥bi∥ ≥ β/2

(√
Nλ1

))
,

where the last inequality holds since ∥Eai∥ ≤
√
Nλ1 by Lemma B.3. Note that ai = 2/

√
ni ·∑ni/2

j=1 (x
⊺
ijθi)xij with sub-gaussian variable x⊺

ijθi and vector xij and bi = 2/
√
ni·
∑ni

j=ni/2+1 ξijxij .
Applying the bounds on ∥ai − Eai∥ and ∥bi∥ from Lemma B.1 to the above equation, there are
constants c1, c2, c3, c4 such that for any β > 0,

P
(
∥Zi∥ ≥ β

)
≤ 4d exp

(
−min

{
c1β/d, c2

√
niβ/d

})
+ 2d exp

(
−min

{
c3β

2/(Ndλ1), c4β
√
ni/(Ndλ1)

})
.

For any δ > 0, we take a large enough C and set β = Cmax{d log2(d/δ),
√
Ndλ1 log(d/δ)}

thereby obtaining (noting ni ≥ 1)

P
(
∥Zi∥ ≥ β

)
≤ δ. (B.9)

Next, we bound the mean shift after truncation using Lemma B.2. For β defined above, we have∥∥EZi − E[Zi1{∥Zi∥ < β}]
∥∥ ≤

√
E
[
∥ai∥2

]
E
[
∥bi∥2

]√
δ.

Lemmas B.3 and B.4 provide the bounds that E[∥ai∥2] = O(d +N) and E[∥bi∥2] = O(d). Thus,
we have ∥∥EZi − E[Zi1{∥Zi∥ < β}]

∥∥ = O
(√

d(d+N)
√
δ
)
:= q. (B.10)

Then it remains to determine the variance statistic. We first have

E[ZiZ
⊺
i ] = E[aib⊺i bia

⊺
i ] = E[∥bi∥2]E[aia⊺i ].
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Then Lemmas B.3 and B.4 yield that, for any s ∈ Sd−1,

s⊺E[ZiZ
⊺
i ]s = E[∥bi∥2] · s⊺E[aia⊺i ]s

= O(d∥α⋆
i ∥2) +O(d) · nis

⊺B⋆α⋆
i (α

⋆
i )

⊺(B⋆)⊺s.

Therefore, when summing over i ∈ [M ], we have

s⊺
( M∑

i=1

E[ZiZ
⊺
i ]
)
s = O(d) ·

M∑
i=1

∥α⋆
i ∥2 +O(d) · s⊺B⋆

( M∑
i=1

niα
⋆
i (α

⋆
i )

⊺
)
(B⋆)⊺s

= O(Md) ·max
i

∥α⋆
i ∥2 +O(Ndλ1) · ∥(B⋆)⊺s∥

= O(Md+Ndλ1), (B.11)

where the second line holds since λ1(
∑M

i=1 niα
⋆
i (α

⋆
i )

⊺) ≤ Nλ1 and the last line holds since
maxi ∥α⋆

i ∥2 = O(1) and ∥(B⋆)⊺s∥ ≤ 1. Next, we have E[Z⊺
i Zi] = E[bia⊺i aib

⊺
i ] = E[∥ai∥2]E[bib⊺i ].

Then Lemmas B.3 and B.4 give that∥∥E[Z⊺
i Zi]

∥∥ ≤ E[∥ai∥2] ·
∥∥E[bib⊺i ]∥∥ =

(
O(d∥α⋆

i ∥2) + ni∥α⋆
i ∥2
)
·O(1) = O(d∥α⋆

i ∥2 + ni∥α⋆
i ∥2
)
.

Thus, since
∑M

i=1 ni∥α⋆
i ∥2 = Tr(

∑M
i=1 niαiα

⊺
i ) = O(Nkλ1), we have∥∥∥ M∑

i=1

E[Z⊺
i Zi]

∥∥∥ ≤
M∑
i=1

∥∥E[Z⊺
i Zi]

∥∥
= O(Md) ·max

i
∥α⋆

i ∥2 +O
( M∑

i=1

ni∥α⋆
i ∥2
)

= O(Md+Nkλ1). (B.12)

Following from (B.11) and (B.12) and recalling EZi = 0, we bound the variance statistic as follows,

v = max
{∥∥∥ M∑

i=1

E[ZiZ
⊺
i ]
∥∥∥,∥∥∥ M∑

i=1

E[Z⊺
i Zi]

∥∥∥}
= max

{
O(Md+Ndλ1), O(Md+Nkλ1)

}
= O(Md+Ndλ1). (B.13)

We apply Corollary B.1 with c = 11, and β, q, and v discussed in (B.9), (B.10), and (B.13). Then
with probability at least 1− 2d−10 −Mδ, we have∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ ≤
√
2cv log d+ 2cβ log d/3 +Mq

= O
(√

(Md+Ndλ1) log d+
(
d log2(d/δ) +

√
Ndλ1 log(d/δ)

)
log d+

√
δ
√
d(d+N)M

)
.

Note that M ≤ N . Taking δ = (d+N)−11, it holds with probability at least 1− O((d+N)−10)
that, ∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ = O
((√

Md+
√
Ndλ1 + d

)
· log3(d+N)

)
.

Bounding the last error term in (B.2).
Lemma B.7. Suppose Assumptions 2.1-2.4 hold. With probability at least 1−O((d+N)−10), we
have ∥∥∥ M∑

i=1

niEiẼ
⊺
i

∥∥∥ = O
((√

Md+ d
)
· log3(d+N)

)
.
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Proof. Let bi =
√
niEi, vi =

√
niẼi, and Zi = biv

⊺
i = niEiẼ

⊺
i , where Ebi = Evi = 0 and

EZi = 0. We first identify a truncation level of ∥Zi∥. By applying Lemma B.1 to bound the norms
of bi = 2/

√
ni ·

∑ni/2
j=1 ξijxij and vi = 2/

√
ni ·

∑ni

j=ni/2+1 ξijxij , there are c1 and c2 such that for
any β ≥ 0,

P
(
∥Zi∥ ≥ β

)
≤ P

(
∥ai∥∥bi∥ ≥ β

)
≤ P

(
∥ai∥ ≥

√
β
)
+ P

(
∥bi∥ ≥

√
β
)

≤ 4d exp
(
−min

{
c1β/d, c2

√
niβ/d

})
.

For any δ > 0, we take β = Cd log2(d/δ) with a large enough C in the above equation such that
β ≥ Cmax{d log(d/δ), d log2(d/δ)/mini{ni}} and thus obtain

P
(
∥Zi∥ ≥ β

)
≤ δ. (B.14)

Next, for β defined above, we establish bounds on the mean shift after truncation using Lemma B.2.
Here we substitute E[∥bi∥2] = E[∥vi∥2] = O(d) from Lemma B.4 to obtain,∥∥EZi − E[Zi1{∥Zi∥ < β}]

∥∥ ≤
√

E
[
∥bi∥2

]
E
[
∥vi∥2

]√
δ ≤ O

(√
δd
)
:= q. (B.15)

Then it remains to determine the variance statistic. By definition, we have

E[ZiZ
⊺
i ] = E[biv⊺i vib

⊺
i ] = E[∥vi∥2]E[bib⊺i ],

E[Z⊺
i Zi] = E[vib⊺i biv

⊺
i ] = E[∥bi∥2]E[viv⊺i ].

Since bi and vi share identical distributions, here we have E[ZiZ
⊺
i ] = E[Z⊺

i Zi]. Lemma B.4 yields
that ∥∥E[ZiZ

⊺
i ]
∥∥ =

∥∥E[Z⊺
i Zi]

∥∥ ≤ E[∥vi∥2] ·
∥∥E[bib⊺i ]∥∥ = O(d).

Since Zi is mean zero, we further have

v = max
{∥∥∥ M∑

i=1

E[ZiZ
⊺
i ]
∥∥∥,∥∥∥ M∑

i=1

E[Z⊺
i Zi]

∥∥∥} = O(Md). (B.16)

Applying Corollary B.1 with c = 11, and β, q, and v discussed in (B.14), (B.15), and (B.16), we
obtain, with probability at least 1− 2d−10 −Mδ,∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ ≤
√

2cv log d+ 2cβ log d/3 +Mq

= O
(√

Md log d+ d log2(d/δ) log d+
√
δMd

)
.

Note that M ≤ N . Taking δ = (d+N)−11, it holds with probability at least 1− O((d+N)−10)
that, ∥∥∥ M∑

i=1

(
Zi − EZi

)∥∥∥ = O
((√

Md+ d
)
· log3(d+N)

)
.

C Proof of the Lower Bound

This section proves the lower bound by an information-theoretic argument via Fano’s method. In
particular, we establish the two terms in Theorem 4.1 separately in the subsequent theorems. For
convenience, we define the parameter space of α for a fixed n⃗ = (n1, . . . , nM ) as follows:

Ψn1,··· ,nM

λ1,λk
=
{
α ∈ Rk×M : ∥αi∥ = O(1) ∀i ∈ [M ],Ω(λk)Ik ⪯ 1

N

M∑
i=1

niαiα
⊺
i ⪯ O(λ1)Ik

}
.

(C.1)

We assume λk > 0, kλk = O(1), λ1 = O(1), M ≥ k; otherwise, the parameter space is empty.
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Theorem C.1. Consider a system with M clients and N data points in total. Assume xij ∼ N(0, Id)
and ξij ∼ N(0, 1) independently for i ∈ [M ] and j ∈ [ni]. Then for the model in (1.1), when
d ≥ (1 + ρ1)k for a constant ρ1 > 0, we have

inf
B̂∈Od×k

sup
B∈Od×k

sup
n1,··· ,nM∑M
i=1 ni=N

sup
α∈Ψ

n1,··· ,nM
λ1,λk

E
[∥∥ sinΘ(B̂, B)

∥∥] = Ω

(√
d

Nλk
∧ 1

)
.

Theorem C.2. Consider a system with M clients and N data points in total. Suppose xij ∼ N(0, Id)
and ξij ∼ N(0, 1) independently for i ∈ [M ] and j ∈ [n]. For the model in (1.1), when k =
Ω(logM), d ≥ (1 + ρ1)k, and M ≥ (1 + ρ2)k for constants ρ1, ρ2 > 0, we have

inf
B̂∈Od×k

sup
B∈Od×k

sup
n1,··· ,nM∑M
i=1 ni=N

sup
α∈Ψ

n1,··· ,nM
λ1,λk

E
[∥∥ sinΘ(B̂, B)

∥∥] = Ω

(√
Md

N2λ2
k

∧ 1

)
.

Then Theorem 4.1 follows by combining these two theorems. We now prove the theorems, beginning
with some preliminaries, including Fano’s inequality.

Lemma C.1 (Fano’s inequality). Let X → Y → X̂ be a Markov chain. Suppose that X is uniform
over a finite set X . Then we have

P(X̂ ̸= X) ≥ 1− I(X;Y ) + log 2

log |X |
,

where I(X;Y ) ≜ EX

[
DKL(PY |X∥PY )

]
is the mutual information between X and Y .

The following lemma presents the KL-divergence between multivariate Gaussian distributions.
Lemma C.2. Suppose P and Q are d-dimensional multivariate Gaussian distributions, where
P = N(µ1,Σ1) and Q = N(µ2,Σ2), with µ1, µ2 ∈ Rd and nonsingular Σ1,Σ2 ∈ Rd×d. Then we
have

DKL(P∥Q) =
1

2

[
log

|Σ2|
|Σ1|

+Tr
(
Σ−1

2 Σ1 − Id
)
+ (µ2 − µ1)

⊺Σ−1
2 (µ2 − µ1)

]
.

The following lemma constructs B as a (c
√
ε)-separated packing set of Od×k for a constant c > 0

and any 0 < ε < 1/2. Let {er}kr=1 be the standard basis in Rk.
Lemma C.3 (Packing set). There exists a constant c > 0 such that one can construct a packing set
B̃ = {b1, · · · , bK} ⊂ O(d−k)×1 with K ≥ 10(d−k) that is (

√
2c)-separated, i.e., ∥ sinΘ(br, bs)∥ ≥√

2c for any r ̸= s.

Moreover, given any 0 < ε < 1/2, for r ∈ [K], we define Br ∈ Rd×k as

Br =

(
e1, · · · , ek−1,

√
1− εek

0, · · · , 0,
√
εbr

)
.

Then the set B = {B1, · · · , BK} forms a packing set of Od×k such that ∥ sinΘ(Br, Bs)∥ ≥ c
√
ε

for any r ̸= s.

Proof. First, [25] ensures the existence of a (
√
2c)-separated packing set B̃ ⊂ O(d−k)×1 with

cardinality K = |B̃| ≥ 10(d−k). This verifies the first statement. We now study the properties of B.
For any r ∈ [K], we have B⊺

rBr = Ik; thus B ⊂ Od×k. In addition, we compute that

BrB
⊺
r =

(
Ik − εeke

⊺
k

√
ε(1− ε)ekb

⊺
r√

ε(1− ε)bre
⊺
k εbrb

⊺
r

)
.

Fix any r ̸= s and recall ∥ sinΘ(Br, Bs)∥ = ∥BrB
⊺
r −BsB

⊺
s ∥. Then by the definition of spectral

norm, we have

∥ sinΘ(Br, Bs)∥ = ∥BrB
⊺
r −BsB

⊺
s ∥

≥
√

ε(1− ε)∥ek(br − bs)
⊺∥
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=
√

ε(1− ε)∥br − bs∥

≥
√

ε(1− ε)∥ sinΘ(br, bs)∥

≥
√

ε(1− ε)×
√
2c ≥ c

√
ϵ,

where the first inequality holds because the spectral norm of a matrix is no smaller than that of its
submatrix; the second equality holds because ek(br − bs)

⊺ is rank-one; the second inequality holds
because ∥br − bs∥ = 2∥ sin(Θ(br, bs)/2)∥ ≥ ∥ sinΘ(br, bs)∥; the last inequality holds because
0 < ε < 1/2.

C.1 Proof of Theorem C.1

We first prove Theorem C.1 by considering deterministic {αi}.

Proof of Theorem C.1. For any B̂, B, {ni}, and α, Markov’s inequality gives that

E
[∥∥ sinΘ(B̂, B)

∥∥] ≥ c
√
ε

2
P
(∥∥ sinΘ(B̂, B)

∥∥ ≥ c
√
ε

2

)
.

Thus, to conclude the proof, it suffices to show that when ε = Θ(d/(Nλk)), the following holds,

inf
B̂∈Od×k

sup
B∈Od×k

sup
n1,··· ,nM∑M
i=1 ni=N

sup
α∈Ψ

n1,··· ,nM
λ1,λk

P
(∥∥ sinΘ(B̂, B)

∥∥ ≥ c
√
ε/2
)
≥ 1/2. (C.2)

We will prove this for the remainder of the analysis. We take B = {B1, · · · , BK} ⊂ Od×k as the
(c
√
ε)-separated packing set given by Lemma C.3, where K ≥ 10(d−k). Then we have logK ≥ c1d

for a constant c1 since d ≥ (1 + ρ1)k for a constant ρ1 > 0. We sample B ∼ Unif(B). Then we take
ni = n = N/M for all i ∈ [M ]. The choice of αi will be specified later.

Given a shared subspace B ∈ Od×k, Assumption 2.3 implies θ⋆i = Bαi since Γi = Id for i ∈ [M ].
Each client i observes n data points from the model in (1.1). Let yi = (yi1; · · · ; yin) ∈ Rn,
xi = (xi1, · · · , xin) ∈ Rd×n, and ξi = (ξi1; · · · ; ξin) ∈ Rn be the concatenation of local variables
at client i, and Y = (y1, · · · , yM ) and X = (x1, · · · , xM ) be the entire dataset. We have yi =
x⊺
i Bαi + ξi.

Let PB,(X,Y )(·) denote the joint distribution of (B, (X,Y )), where B ∼ Unif(B), xij ∼ N(0, Id)

independently for i and j, and Y is generated by the model in (1.1) given B, α, and X . For any B̂
and ε > 0, we lower-bound the supremum by an average and obtain

sup
B∈Od×k

sup
n1,··· ,nM∑M
i=1 ni=N

sup
α∈Ψ

n1,··· ,nM
λ1,λk

P
(∥∥ sinΘ(B̂, B)

∥∥ ≥ c
√
ε/2
)

≥ PB,(X,Y )

(∥∥ sinΘ(B̂, B)
∥∥ ≥ c

√
ε/2
)
. (C.3)

Let ϕ : Od×k → B be a quantizer that maps any B ∈ Od×k to the closet point in B. Recall
that ∥ sinΘ(Br, Bs)∥ ≥ c

√
ε for any r ̸= s. For any Bi ∈ B, if ϕ(B̂) ̸= Bi, then we have

∥ sinΘ(B̂, Bi)∥ ≥ c
√
ε/2. Thus, we obtain

PB,(X,Y )

(∥∥ sinΘ(B̂, B)
∥∥ ≥ c

√
ε/2
)
≥ PB,(X,Y )

(
ϕ(B̂) ̸= B

)
≥ 1− I(B; (X,Y )) + log 2

logK
, (C.4)

where the last inequality follows from Fano’s inequality stated in Lemma C.1.

Next, we establish an upper bound for I(B; (X,Y )). Since (x1, y1), · · · , (xM , yM ) are independent
conditioned on B, we have

I(B; (X,Y )) = I
(
B; (x1, y1), · · · , (xM , yM )

)
≤

M∑
i=1

I
(
B; (xi, yi)

)
.
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It remains to choose αi and bound the mutual information I(B; (xi, yi)) for a fixed i. We fix αi

for i ∈ [M ] such that αi = O(1) and
∑M

i=1 nαiα
⊺
i = NλkIk. Specifically, for each i ∈ [M ], we

write i as i = rk + s, where r, s ∈ Z+, r ≤ ⌊M/k⌋ and s < k. Let αi =
√
Mλk/ ⌊M/k⌋es+1 if

r ≤ ⌊M/k⌋, and αi = 0 otherwise. In this way, since 0 < kλk = O(1) and M ≥ k by assumption,
∥αi∥ = O(1) satisfies Assumption 2.4 and

∑M
i=1 nαiα

⊺
i = NλkIk. Since αi is assumed to be

deterministic and yi = x⊺
i Bαi + ξi, we have

Pyi | xi,B = N(x⊺
i Bαi, In).

Since B and xi are independent, we have
I
(
B; (xi, yi)

)
= EBExi

[
DKL(Pyi | xi,B∥Pyi | xi

)
]

= EBExi

[
DKL(Pyi | xi,B∥EB′ [Pyi | xi,B′ ])

]
≤ EB′EBExi

[
DKL(Pyi | xi,B∥Pyi | xi,B′)

]
,

where the inequality follows from the convexity of KL-divergence. Combining the above two
inequalities, we obtain

I
(
B; (X,Y )

)
≤ EB′EB

( M∑
i=1

Exi

[
DKL(Pyi | xi,B∥Pyi | xi,B′)

])
≤ max

Br,Bs∈B

M∑
i=1

Exi

[
DKL(Pyi | xi,Br

∥Pyi | xi,Bs
)
]
. (C.5)

We now compute the divergence for fixed Br ̸= Bs. Recall that Pyi | xi,Br
= N(x⊺

i Brαi, In). Since
E[xix

⊺
i ] =

∑n
j=1 E[xijx

⊺
ij ] = nId, Lemma C.2 yields that

Exi

[
DKL(Pyi | xi,Br

∥Pyi | xi,Bs
)
]
=

1

2
α⊺
i (Br −Bs)

⊺E[xix
⊺
i ](Br −Bs)αi

=
1

2
nα⊺

i (Br −Bs)
⊺(Br −Bs)αi

=
1

2
Tr
(
(Br −Bs)

⊺(Br −Bs) · nαiα
⊺
i

)
.

Let ∆r,s = (Br − Bs)
⊺(Br − Bs)/2 = Ik − B⊺

rBs/2 − B⊺
sBr/2. For Br, Bs defined

in Lemma C.3, we compute that B⊺
rBs = B⊺

sBr = diag (1, · · · , 1, 1− ε+ εb⊺r bs). Thus,
∆r,s = diag (0, · · · , 0, ε(1− b⊺r bs)). Substituting this into the above equation and recalling that∑M

i=1 nαiα
⊺
i = NλkIk, we have

M∑
i=1

Exi

[
DKL(Pyi | xi,Br

∥Pyi | xi,Bs
)
]
= Tr

(
∆r,s ·

( M∑
i=1

nαiα
⊺
i

))
= Nλk · Tr

(
diag (0, · · · , 0, ε(1− b⊺r bs))

)
= ε(1− b⊺r bs)Nλk

≤ 2εNλk,

where the last inequality holds since −b⊺r bs ≤ ∥br∥∥bs∥ = 1. Substituting the above into (C.5), we
obtain I

(
B; (X,Y )

)
≤ 2εNλk. Thus, when ε > 0 satisfies

ε =
c1d

6Nλk
∧ 1 = Θ

( d

Nλk
∧ 1
)
,

we have I(B; (X,Y )) ≤ 2εNλk = c1d/3. Thus, following from (C.4), it holds that
PB,α,X(∥ sinΘ(B̂, B)∥ ≥ c

√
ε/2) ≥ 1/2 since logK ≥ c1d. Finally, substituting (C.4) into

(C.3), we conclude the proof of (C.2) and thus the lemma.

C.2 Proof of Theorem C.2

The proof of Theorem C.2 is similar to that of Theorem C.1 except for the choice of αi and the
way to bound the mutual information I(B; (xi, yi)). In particular, rather than a deterministic choice
of {αi}, we will consider random {αi}. The following lemma shows the concentration of α for
Gaussian-generated columns.
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Lemma C.4. Assume k = Ω(logM) and M ≥ (1 + ρ2)k for a constant ρ2 > 0, and fix ni = n =
N/M for i ∈ [M ]. When generating αi ∼ N(0, λkIk) independently, we have

P
(
α ∈ Ψn,··· ,n

λ1,λk

)
≥ 3/4.

Proof. By the definition of Ψn,··· ,n
λ1,λk

in (C.1), we have

P
(
α ∈ Ψn,··· ,n

λ1,λk

)
≥ P

(
∥αi∥ = O(1),∀i

)
+ P

(
Ω(λk)Ik ⪯ 1

N

M∑
i=1

nαiα
⊺
i ⪯ O(λ1)Ik

)
− 1.

By union bound,

1− P
(
∥αi∥ = O(1),∀i

)
= P

(
∃i ∈ [M ] : ∥αi∥ ≠ O(1)

)
≤

M∑
i=1

P
(
∥αi∥ ≠ O(1)

)
= MP

(
∥α1∥ ≠ O(1)

)
Thus, to ensure P

(
∥αi∥ = O(1),∀i

)
≥ 7/8, it suffices to show that P(∥α1∥ ≠ O(1)) ≤ 1/(8M).

Since α1/
√
λk is a k × 1 standard Gaussian matrix, using the concentration inequality [35, Theorem

7.3.3], we have for any t ≥ 0, with probability at least 1− 2 exp(−t2/2),

∥α1∥ ≤
√
λk(

√
k + 1 + t)

Thus, taking t =
√
2 log(16M) we have with probability at least 1− 1/(8M),

∥α1∥ ≤
√
λk

(√
k + 1 +

√
2 log(16M)

)
≤ O(1),

where the last inequality holds due to the assumptions that kλk = O(1) and k = Ω(logM), so that
λk logM = O(log(M)/k) = O(1). Thus, we have

P
(
∥α1∥ ≠ O(1)

)
≤ 1/(8M).

Now it remains to show that

P

(
Ω(λk)Ik ⪯ 1

N

M∑
i=1

nαiα
⊺
i ⪯ O(λ1)Ik

)
≥ 7/8.

Let σr(·) be the r-th largest singular value of a matrix. Since λr(
∑M

i=1 nαiα
⊺
i ) = nσ2

r(α), it reduces
to proving that

P
(
Ω(
√
Mλk) ≤ σk(α) ≤ σ1(α) ≤ O(

√
Mλ1)

)
≥ 7/8.

We proceed by bounding σ1(α) and σk(α). Using the concentration properties of the standard
Gaussian matrix α/

√
λk [35, Theorem 7.3.3], we have for any t ≥ 0, with probability at least

1− 2 exp(−t2/2),√
λk(

√
M −

√
k − t) ≤ σk(α) ≤ σ1(α) ≤

√
λk(

√
M +

√
k + t).

Thus, by picking t =
√
2 log(16), we have, with probability at least 7/8,√

λk(
√
M −

√
k −

√
2 log(16)) ≤ σk(α) ≤ σ1(α) ≤

√
λk(

√
M +

√
k +

√
2 log(16)).

Finally, since M ≥ (1 + ρ2)k for a constant ρ2 > 0,
√
M −

√
k −

√
2 log(16) ≥ Ω(

√
M)

√
M +

√
k +

√
2 log(16) ≤ O(

√
M).

This concludes the proof of the lemma.

We now prove Theorem C.2 by following similar steps as in the proof of Theorem C.1, but with
Gaussian-generated α.
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Proof of Theorem C.2. Similar to the proof of Theorem C.1, we only need to show that when
ε = Θ(Md/(N2λ2

k)), the following holds:

inf
B̂∈Od×k

sup
B∈Od×k

sup
n1,··· ,nM∑M
i=1 ni=N

sup
α∈Ψ

n1,··· ,nM
λ1,λk

P
(∥∥ sinΘ(B̂, B)

∥∥ ≥ c
√
ε/2
)
≥ 1/2. (C.6)

We generate αi ∼ N(0, λkIk) independently for i ∈ [M ]. Let B = {B1, · · · , BK} ⊂ Od×k be the
(c
√
ε)-separated packing set given by Lemma C.3, where logK ≥ c1d for a constant c1. We sample

B ∼ Unif(B). Let PB,α,(X,Y )(·) denote the joint distribution of (B,α, (X,Y )) where B ∼ Unif(B),
αi ∼ N(0, λkIk) independently for i, xij ∼ N(0, Id) independently for i and j, and Y is generated
by the model in (1.1) given B, α, and X . For any B̂ and ε > 0, we lower-bound the supremum and
obtain

sup
B∈Od×k

sup
n1,··· ,nM∑M
i=1 ni=N

sup
α∈Ψ

n1,··· ,nM
λ1,λk

P
(∥∥ sinΘ(B̂, B)

∥∥ ≥ c
√
ε/2
)

≥ PB,α,(X,Y )

(∥∥ sinΘ(B̂, B)
∥∥ ≥ c

√
ε/2

∣∣α ∈ Ωn,··· ,n
λ1,λk

)
≥ PB,α,(X,Y )

(∥∥ sinΘ(B̂, B)
∥∥ ≥ c

√
ε/2, α ∈ Ωn,··· ,n

λ1,λk

)
≥ PB,α,(X,Y )

(∥∥ sinΘ(B̂, B)
∥∥ ≥ c

√
ε/2
)
+ P

(
α ∈ Ωn,··· ,n

λ1,λk

)
− 1, (C.7)

where the inequalities hold since for any events E and A, we have P(E |A) = P(E ∩ A)/P(A) ≥
P(E ∩ A) and P(E ∩ A) ≥ P(E) + P(A)− 1. Lemma C.4 gives that P

(
α ∈ Ωn,··· ,n

λ1,λk

)
− 1 ≥ −1/4.

Thus, it remains to lower bound the first term of (C.7). Similar to the proof of Theorem C.1, using
Fano’s inequality, we have

PB,α,(X,Y )

(∥∥ sinΘ(B̂, B)
∥∥ ≥ c

√
ε/2
)
≥ 1− I(B; (X,Y )) + log 2

logK
, (C.8)

where the independence of (x1, y1), · · · , (xM , yM ) gives that I(B; (X,Y )) ≤
∑M

i=1 I(B; (xi, yi)).
We now bound I

(
B; (xi, yi)

)
for a fixed i. Given any Br ∈ B and recalling αi ∼ N(0, λkIk), the

model yi = x⊺
i Brαi + ξi implies that Pyi | xi,Br

= N(0,Σir) with

Σir = λkx
⊺
i BrB

⊺
r xi + In, where BrB

⊺
r =

(
Ik − εeke

⊺
k

√
ε(1− ε)ekb

⊺
r√

ε(1− ε)bre
⊺
k εbrb

⊺
r

)
.

We define Q· | xi
= N(0,ΣQi

) with ΣQi
shown as follows

ΣQi
= λkx

⊺
i

(
Ik 0
0 0

)
d×d

xi + In.

Since B and xi are independent, we can bound I(B; (xi, yi)) as follows,

I
(
B; (xi, yi)

)
= EBExi

[
DKL(Pyi | xi,B∥Pyi | xi

)
]

= EBExi

[
DKL(Pyi | xi,B∥Q· | xi

)
]
−DKL(Pyi | xi

∥Q· | xi
)

≤ EBExi

[
DKL(Pyi | xi,B∥Q· | xi

)
]

≤ max
Br∈B

Exi

[
DKL(Pyi | xi,Br

∥Q· | xi
)
]
. (C.9)

We now compute Exi [DKL(Pyi | xi,Br
∥Q· | xi

)] for a fixed Br. Lemma C.2 yields that

Exi

[
DKL(Pyi | xi,Br

∥Q· | xi
)
]
=

1

2
Exi

[
log

|ΣQi
|

|Σir|
+Tr

(
Σ−1

Qi
Σir − In

)]
.

Because of the non-negativity of the KL divergence: 2DKL(Q· | xi
∥Pyi | xi,Br

) = log |Σir|
|ΣQi

| +

Tr
(
Σ−1

ir ΣQi − In
)
≥ 0, we have log

|ΣQi
|

|Σir| ≤ Tr
(
Σ−1

ir ΣQi − In
)
. Thus, we can bound the above

equation as

Exi

[
DKL(Pyi | xi,Br

∥Q· | xi
)
]
≤ 1

2
Exi

[
Tr
(
Σ−1

ir ΣQi
+Σ−1

Qi
Σir − 2In

)]
.
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Let ∆ = Σir − ΣQi . Since Σir ⪰ In and ΣQi ⪰ In, we have

Tr
(
Σ−1

ir ΣQi
+Σ−1

Qi
Σir − 2In

)
= Tr

(
Σ−1

ir

(
ΣQi

+ΣirΣ
−1
Qi

Σir − 2Σir

))
≤ Tr

(
ΣQi

+ΣirΣ
−1
Qi

Σir − 2Σir

)
= Tr

(
∆Σ−1

Qi
∆
)
= Tr

(
Σ−1

Qi
∆2
)
≤ Tr(∆2).

Combining the above two equations, we have

Exi

[
DKL(Pyi | xi,Br

∥Q· | xi
)
]
≤ 1

2
Exi

[
Tr(∆2)

]
=

1

2
Tr
(
Exi(∆

2)
)
. (C.10)

We split xi = (ai;ui) with ai = (ai1, · · · , ain) ∈ Rk×n and ui = (ui1, · · · , uin) ∈ R(d−k)×n.
Then aij ∼ N(0, Ik), uij ∼ N(0, Id−k), and all {aij} and {uij} are mutually independent. Note
that

∆ = λk (a
⊺
i u⊺

i )

(
−εeke

⊺
k

√
ε(1− ε)ekb

⊺
r√

ε(1− ε)bre
⊺
k εbrb

⊺
r

)(
a⊺i
u⊺
i

)
= λk(−εa⊺i eke

⊺
kai +

√
ε(1− ε)u⊺

i bre
⊺
kai +

√
ε(1− ε)a⊺i ekb

⊺
rui + εu⊺

i brb
⊺
rui).

Let ãi = a⊺i ek and ũi = u⊺
i br. We have ãi ∼ N(0, In) and ũi ∼ N(0, In). By the symmetry and

independence, we obtain

Exi
(∆2) = 2λ2

kExi

[
ε2ãiã

⊺
i ãiã

⊺
i − ε2ãiã

⊺
i ũiũ

⊺
i + (1− ε)εũiã

⊺
i ũiã

⊺
i + (1− ε)εũiã

⊺
i ãiũ

⊺
i

]
.

(C.11)

By the linearity, we compute the trace of each term above. Note that ã⊺i ãi ∼ χ2(n). We first have

Tr
(
Exi

(
ãiã

⊺
i ãiã

⊺
i

))
= Eai

[
(ã⊺i ãi)

2
]
= Var

(
ã⊺i ãi

)
+
(
Eai

[
ã⊺i ãi

])2
= n2 + 2n.

For the second term, we have

Tr
(
Exi

(
ãiã

⊺
i ũiũ

⊺
i

))
= Tr

(
[Eai

(ãiã
⊺
i )] · [Eui

(ũiũ
⊺
i )]
)
= Tr(In) = n.

For the third term, we have

Tr
(
Exi

(
ũiã

⊺
i ũiã

⊺
i

))
= Tr

(
Eai

(
Eui

(
ã⊺i ũiã

⊺
i ũi

∣∣ ãi)))
= Tr

(
Eai

(
Varui

(
ã⊺i ũi

∣∣ ãi))) = Tr
(
Eai

(
ã⊺i ãi

))
= n.

Then we compute the last term as follows,

Tr
(
Exi

(
ũiã

⊺
i ãiũ

⊺
i

))
= Tr

(
Eui

(
Eai

(
ũiã

⊺
i ãiũ

⊺
i

∣∣ ũi

)))
= nTr

(
Eui

(
ũiũ

⊺
i

))
= nTr(In) = n2.

Substituting the above four terms into (C.11), we have

Tr
(
Exi

(∆2)
)
= 2λ2

k

[
ε2(n2 + 2n)− ε2n+ (1− ε)εn+ (1− ε)εn2

]
= 2ελ2

k(n
2 + n).

Combining the above with (C.9) and (C.10), we have

I
(
B; (xi, yi)

)
≤ ελ2

k(n
2 + n).

Recall that N = Mn. When ε > 0 satisfies

ε =
c1d

5Mλ2
k(n

2 + n)
∧ 1 = Θ

( Md

N2λ2
k

∧ 1
)
,

we bound the mutual information by I(B; (X,Y )) ≤
∑M

i=1 I(B; (xi, yi)) ≤ εMλ2
k(n

2 + n) =
c1d/5. Recall that logK ≥ c1d. Thus, (C.8) yields that

PB,α,X(∥ sinΘ(B̂, B)∥ ≥ c
√
ε/2) ≥ 3/4. (C.12)

Finally, by substituting Lemma C.4 and (C.12) into (C.7), we conclude the proof of (C.6) and the
theorem.
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D Proofs of Corollaries in Section 5

Theorem 4 from [33] shows the error rate of learning αM+1.
Theorem D.1 (Theorem 4 from [33]). Suppose that Assumptions 2.1-2.4 hold and λ1 = Θ(λk) =

Θ(1/k). If ∥ sinΘ(B̂, B⋆)∥ ≤ δ and nM+1 ≥ k log nM+1, then with probability at least 1 −
O(n−100

M+1), the output α̂M+1 given by (5.1) satisfies

∥B̂α̂M+1 −B⋆α⋆
M+1∥2 = Õ

(
δ2 +

k

nM+1

)
.

Proof of Corollary 5.1. By substituting δ = Õ(
√
dk/N +

√
Mdk2/N2) given by Corollary 3.1

into Theorem D.1, we conclude the proof of Corollary 5.1.

Theorem 5.4 from [29] gives the error rate for learning a differentially private estimator of αM+1. In
particular, let L(θ) = E(x,y)[(x

⊺θ − y)2]/2 be the population risk at client M + 1, where (x, y) is
from the model in (1.1) with θ⋆M+1.

Theorem D.2 (Theorem 5.4 from [29]). Suppose that Assumptions 2.1-2.4 hold and λ1 = Θ(λk) =

Θ(1/k). In addition, xij ∼ N(0, Id). If ∥ sinΘ(B̂, B⋆)∥ ≤ δ, then there exists an (ε, δ)-
differentially private estimator α̂ε

M+1 such that, with high probability,

L(B̂α̂ε
M+1)− L(B⋆α⋆

M+1) = Õ

(
k

nM+1
+

k2 log(1/δ)

n2
M+1ε

2

)
+ δ2.

Proof of Corollary 5.2. We first show that L(θ)− L(θ⋆M+1) = ∥θ − θ⋆M+1∥2/2 for any θ ∈ Rd. By
substituting y = x⊺θ⋆M+1 + ξ into L(θ), since ξ and x are independent, and E[xx⊺] = Id, we have

L(θ) = E(x,y)[(x
⊺θ − y)2]/2 = E(x,y)[(x

⊺θ − x⊺θ⋆M+1 − ξ)2]/2

= (θ − θ⋆M+1)
⊺E[xx⊺](θ − θ⋆M+1)/2 + E[ξ2]/2

= ∥θ − θ⋆M+1∥2/2 + E[ξ2]/2.

We further have L(θ⋆M+1) = E[ξ2]/2, and thus,

L(θ)− L(θ⋆M+1) = ∥θ − θ⋆M+1∥2/2.

Therefore, by substituting δ = Õ(
√
dk/N +

√
Mdk2/N2) given by Corollary 3.1 into Theorem

D.2, we conclude the proof of Corollary 5.2.
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