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ABSTRACT

Using a nearly-frozen pretrained model, the continual representation learning
paradigm reframes parameter updates as a similarity-matching problem to miti-
gate catastrophic forgetting. However, directly leveraging pretrained features for
downstream tasks often suffers from multicollinearity in the similarity-matching
stage, and more advanced methods can be computationally prohibitive for real-time,
low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a
bio-inspired framework compatible with a wide range of pretrained backbones. Fly-
CL substantially reduces training time while achieving performance comparable to
or exceeding that of current state-of-the-art methods. We theoretically show how
Fly-CL progressively resolves multicollinearity, enabling more effective similarity
matching with low time complexity. Extensive simulation experiments across
diverse network architectures and data regimes validate Fly-CL’s effectiveness in
addressing this challenge through a biologically inspired design.

1 INTRODUCTION

Artificial neural networks have exhibited remarkable capabilities across various domains in recent
years. Nevertheless, real-world applications often require continuous model adaptation to handle
progressively emerging unseen scenarios, making updates based on sequential incoming data essential.
This need has led to the development of Continual Learning (CL). Earlier research primarily focused
on training models from scratch (Aljundi et al., 2018; Kirkpatrick et al., 2017; Li & Hoiem, 2017;
Zenke et al., 2017). Pretrained models have recently become prominent in CL, owing to their robust
generalization in downstream tasks for downstream tasks (Wang et al., 2022a;b) .

Popular CL methods utilizing pre-trained models can generally be classified into three categories:
(1) prompt/adapter-based approaches (Jung et al., 2023; Smith et al., 2023; Tang et al., 2023; Wang
et al., 2022a;b; 2025; Liang & Li, 2024; Yu et al., 2024), (2) mixture-based approaches (Chen et al.,
2023; Gao et al., 2023; Wang et al., 2023a;b; Zhou et al., 2023b), and (3) representation-based
approaches (McDonnell et al., 2023; Sun et al., 2025; Zhou et al., 2023a; 2024; Zhuang et al., 2024).
All three paradigms operate without exemplars and significantly outperform traditional training-
from-scratch methods. Despite their strengths, each approach has limitations. Prompt/adapter-based
methods are constrained to transformer architectures, and updating prompts/adapters inherently
risks propagating forgetting within the prompt/adapter space. Mixture-based approaches require
storing previous models, resulting in significant storage overhead and increased computational
complexity during model fusion. Compared with parameter-learning approaches, representation-
based methods perform better by reframing learning as similarity matching and avoiding
dependence on a specific backbone. They form class prototypes (CPs) by averaging features
extracted by a frozen pretrained network, with each prototype acting as the centroid of its class.
However, insufficient separation between features can lead to ambiguous decision boundaries
when distinguishing between prototypes, complicating the similarity matching process. This
challenge is formally recognized as the multicollinearity problem. Previous studies (McDonnell
et al., 2023) have attempted to address this issue, but they still incur substantial computational costs,
hindering real-world deployment.
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Figure 1: Schematic of the Fly Olfactory Circuit. Odors are first detected and pre-processed by
olfactory receptor neurons (ORNs) in the antennal lobe, where feature extraction and normalization
take place, before being transmitted to projection neurons (PNs). Expansion coding occurs as signals
move from PNs to Kenyon cells (KCs), with an expansion ratio of approximately 40. Each KC
connects to a fixed number of PNs (about 6). Lateral inhibition, mediated by an anterior paired
lateral (APL) neuron, suppresses most weakly activated KCs, exemplifying a winner-take-all strategy.
Finally, signals from KCs to mushroom body output neurons (MBONs) involve a dense down-
projection that reduces dimensionality to select specific actions.

In biological systems, pattern separation is a well-recognized circuit motif across cerebellum-like
and related networks, including the cerebellum, the hippocampus, and the fly olfactory system (Lin
et al., 2014; Papadopoulou et al., 2011; Stevens, 2015; Zang & De Schutter, 2023). These neural
circuits implement efficient decorrelation of overlapping sensory inputs. Figure 1 illustrates the
information processing mechanism in the fly olfactory circuit. The process unfolds in several steps: in
response to an odor stimulus, olfactory neurons extract and pre-process odor information represented
as a 50-dimensional vector (PNs). These pre-extracted features are then randomly projected into
expanded dimensions (KCs), selectively activating a small subset of KCs that receive the strongest
excitation while zeroing out others. The high-dimensional features in KCs subsequently converge to
low-dimensional MBONs for classification. Over the years, numerous studies have highlighted the
role of the PN→KC transformation in producing decorrelated representations, and many strategies
have been proposed to model this process. By contrast, the downstream KC→MBON transformation
has received far less attention, and a clear theory of its contribution to decorrelation has yet to be
established. To address this gap, we examine whether the KC→MBON pathway also supports
decorrelation.

Inspired by the fly olfactory circuit, we propose Fly-CL, an efficient framework for progressive
decorrelation in representation-based learning with pre-trained models. The pipeline starts with
feature extraction and normalization using a pre-trained model, followed by random sparse projection
into a high-dimensional space and a top-k operation for collective decorrelation, mimicking the PN-
to-KC process. We then implement a similarity matching mechanism between class prototypes that
mimics the KC-to-MBON structure during inference, and an efficient streaming ridge classification
method to decorrelate parameter weights during training. Empirical results show substantially reduced
time consumption versus baseline methods.

Our main contributions are as follows:

1. We propose an efficient and biologically plausible decorrelation framework that significantly
reduces computational costs compared to current SOTA methods while achieving comparable or
improved performance in CL.

2. Our method’s effectiveness and robustness in decorrelation are validated by extensive experiments
under various data setups and model architectures, supported by theoretical and empirical analyses.

3. The alignment of our framework with the fly olfactory circuit suggests that biological structures
can inspire effective and efficient solutions to AI problems.

2 RELATED WORK

Representation-based methods in CL using Pre-trained Models: Representation-based methods
(McDonnell et al., 2023; Sun et al., 2025; Zhou et al., 2023a; 2024) demonstrate superior performance
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over parameter-learning approaches by leveraging features extracted from a frozen pre-trained
model to compute similarities with class prototypes. They are also more practical for resource-
constrained deployments (e.g., edge computing scenarios), since they avoid updating the entire model.
For instance, in a smart camera system, such methods enable the efficient addition of new object
recognition capabilities without retraining the entire model. While showing promising progress,
their computational overhead remains substantial, which may limit their applicability in scenarios
requiring real-time responses.

Fly Olfactory Circuit: Information processing in cerebellum-like circuits, including the fly olfac-
tory circuit, involves several stages (Lin et al., 2014; Papadopoulou et al., 2011; Stevens, 2015; Zang
& De Schutter, 2023). Theoretical neuroscience studies suggest that most stages exhibit progressive
feature separation effects (Hige et al., 2015). Algorithms inspired by the fly olfactory circuit have
been applied across various AI domains, including locality-sensitive hashing (Dasgupta et al., 2017;
Ryali et al., 2020; Sharma & Navlakha, 2018), word embedding (Liang et al., 2021), and federated
learning (Ram & Sinha, 2022).

3 BACKGROUND

3.1 PROBLEM STATEMENT

In this paper, we focus on CL within the context of image classification tasks. We denote sequentially
arriving tasks as D = {D1, . . . ,DT }, where each task Dt = {(xi

t, y
i
t)}

nt
i=1 consists of nt samples.

Each sample xi
t within a task is drawn from the input space Xt, and its corresponding label yit belongs

to the label space Yt. The training process involves sequential learning from D1 to DT , followed by
class prediction on an unseen test set spanning the full label space.

To demonstrate the effectiveness and efficiency of our framework, we adopt Class Incremental
Learning (CIL), a widely used experimental setup. Unlike traditional Task Incremental Learning,
CIL does not provide access to the task ID during the testing process, making it more challenging. In
CIL, the model learns mutually exclusive classes within each task, ensuring that the intersection of
label spaces satisfies Yi ∩ Yj = ∅. We denote that there are ct classes for the first t tasks.

3.2 REPRESENTATION-BASED PARADIGM IN CL

We study on the basis of the recently popular representation-based paradigm using pre-trained models
(McDonnell et al., 2023; Sun et al., 2025; Zhou et al., 2023a; 2024), which demonstrates superior
performance for CL. Given an input image xi

t, it is first compressed into a d-dimensional feature
vi
t = fθ(x

i
t) ∈ Rd using a pre-trained encoder fθ. For each class i in task t, we compute its prototype

by averaging features over all training samples belonging to this class:

µi
t =

1

Ni

|Dt|∑
j=1

I(yjt = i)fθ(x
j
t ) ∈ Rd, (1)

where Ni =
∑|Dt|

j=1 I(yj = i) denotes the cardinality of class i’s training set, and I(·) is the indicator
function. During inference, for a test sample with feature vector v, the predicted class ŷ is determined
by finding the maximum cosine similarity between v and all learned class prototypes:

ŷ = argmax
t,i

v⊤µi
t

∥v∥ · ∥µi
t∥
. (2)

However, significant inter-prototype correlations (E[µmi⊤
ti µ

mj

tj ]≫ 0, see Figure 3(a)), can severely
compromise the discriminative power of the similarity measurement (Belsley et al., 2005). This
phenomenon arises because high correlations reduce the effective angular separation between classes
in the embedding space, leading to ambiguous decision boundaries. Specifically, when prototypes
cluster near a dominant direction in Rd, the cosine similarity metric becomes less sensitive to subtle
but critical inter-class distinctions, thereby degrading classification performance.
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4 FLY-CL

In this section, we detail the design motivation and functionality of each component of our Fly-CL
framework. A schematic of the overall framework is provided in Figure 2, along with the pseudocode
for the training and inference pipeline in Appendix A. The decorrelation effect of each component is
visualized in Figure 3 using Pearson correlation coefficients of different class prototypes.

Figure 2: Schematic of the Fly-CL Framework. Left: Our framework extracts image embeddings
using a frozen pre-trained model, projects them into a higher-dimensional space via a fixed sparse
random projection, and filters them through a top-k operation (PNs → KCs). Then we utilize a
learned down-projection for similarity matching during inference time (KCs→MBONs). Right:
During the training phase, the parameter Ct is learned via a streaming ridge classification scheme.

4.1 SPARSE RANDOM PROJECTION AND TOP-K OPERATION

Building upon the representation-based paradigm, it is necessary to decouple different class prototypes.
Inspired by the decorrelation mechanism of the fly olfactory circuit, we emulate the sparse expansion
projection from PNs to KCs, followed by winner-take-all inhibition mediated by APL neurons. Given
a feature embedding v ∈ Rd extracted from the pre-trained encoder, we formulate the transformation
Z(v) : Rd → Rm as:

h′ = Z(v) = top-k(h) = top-k (Wv) , (3)
where the fixed projection matrix W ∈ Rm×d (with m≫ d) implements weight sparsity: each row
contains exactly p (p < d) non-zero entries independently sampled fromN (0, 1). The top-k operator
implements activation sparsity by preserving only the k largest components (k < m) while zeroing
out others, formally defined as:

[h′]i =

{
[h]i if the magnitude of [h]i is among the top-k values of h,
0 otherwise.

(4)

This two-stage process achieves effective decorrelation through the following properties, and its
empirical effect is visualized in the transformation from Figure 3(a) to (b).

1. High-Dimensional Embedding Enhances Linear Separability: Random projection of low-
dimensional features into an extremely high-dimensional space can improve the linear separability of
the feature representations (Litwin-Kumar et al., 2017).

2. Powerful Inhibition Suppresses Noisy Components: The top-k operation imposes sparsity by
suppressing noisy dimensions that may interfere with discrimination through dimensional competition,
while enhancing separation by keeping the most discriminative dimensions (Metwally et al., 2006).

Considering computational efficiency, W ’s sparse pattern reduces the time complexity for random
projection from O(mntd) to O(mntp) while preserving the core representational capacity compared
to dense projection. Similarly, the top-k operation reduces similarity matching complexity from
O(mntct) to O(kntct), while simultaneously improving performance.

We further propose two theorems to demonstrate that strong sparsity does not significantly degrade
performance. According to Theorem 4.1, as long as p and d are not extremely small, the matrix W
retains full column rank with probability 1− o(1), which is a common approach to demonstrate that
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(a) After feature extraction (b) After random projection (c) After similarity matching

Figure 3: Pearson Correlation Coefficients of Prototypes at Different Decorrelation Stages in
Fly-CL. Heatmaps display Pearson correlation coefficients for 10 randomly selected class prototypes
at each stage of our pipeline (consistent across visualizations).

a sparse random projection does not result in severe information loss. Furthermore, in Theorem 4.2,
by proving that the performance degradation between this sparsification operation and the original
vector is bounded, we show that if k is not extremely small, it can preserve most of its performance.
For a complete proof, please refer to Appendix B.

Theorem 4.1. Given the matrix W ∈ Rm×d, where m > d, with each row having exactly p non-zero
entries, which are randomly sampled from N (0, 1). LetW ∈ Rd×d be any square submatrix of W .
Then, for any ϵ > 0, it holds that

P
(
| det(W)| ≥

(p
d

)d/2√
d! exp(−d1/2+ϵ)

)
= 1− o(1).

Thus, for sufficiently large p and d, any submatrixW is invertible with probability at least 1− o(1).

Theorem 4.2. For top-k sparsification in the expanded dimension m, the performance degradation
is bounded by:

E [|L(h, y)− L(h′, y)|] ≤M ·
√

C

k
· E[∥h∥22],

where L(·) is a performance loss function for downstream tasks and C, M are constants. To ensure
negligible performance degradation, we require:√

C

k
· E[∥h∥22] ≤ O

(
1√
mα

)
,

i.e., when k = Ω(mα) (0 < α < 1), the error bound decays polynomially with increasing dimension.

4.2 STREAMING RIDGE CLASSIFICATION

Previous studies on decorrelation in the fly olfactory circuit have primarily focused on the transfor-
mation from PNs to KCs, where sparse and decorrelated representations have been experimentally
observed. In contrast, the downstream transformation from KCs to MBONs has received little
attention in this regard, and the physiological evidence remains inconclusive. This gap motivates us
to investigate whether the KC→MBON pathway can also facilitate decorrelation. To better align
with the goal of CL, we model it using a streaming ridge classification framework with adaptive
regularization, which naturally achieves decorrelation while ensuring computational efficiency and
compatibility with sequential data. Ridge classification (Hoerl & Kennard, 1970) mitigates feature
collinearity through ℓ2-regularization, trading increased bias for reduced variance by shrinking cor-
related feature weights, thereby stabilizing prototype estimation in non-i.i.d. sequential learning
scenarios. Let Ht ∈ Rnt×m denote the concatenation of high-dimensional features h′ for nt samples
in task t, and Yt ∈ {0, 1}nt×ct represent the corresponding one-hot label matrix for the total ct
classes. We maintain two streaming statistics: a Gram matrix G ∈ Rm×m, which captures self-
correlated statistics, and a matrix S ∈ Rm×ct , which accumulates cross-dimensional weights for
each class prototype. During each task iteration t, these are updated as follows:

Gt ← Gt−1 +H⊤
t Ht, St ← St−1 +H⊤

t Yt. (5)
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The classifier matrix C ∈ Rm×ct is updated via regularized least squares accordingly:

Ct = (Gt + λIm)−1St. (6)

Prediction for preprocessed new samples h′ ∈ Rm follows:

ŷ = arg max
i∈{1,...,ct}

h′⊤C·,i, (7)

where C·,i denotes the i-th column of modulated prototypes.

Adaptive Regularization: Due to the inherent heterogeneity of different tasks, a fixed penalty
coefficients λ will cause suboptimal performance. For adaptive regularization, vanilla λ selection via
grid search and cross-validation incurs prohibitive computational costs of O(lm3) for l candidates
where the expanded feature dimension m is extremely large (McDonnell et al., 2023). To achieve our
efficiency desideratum, we draw inspiration from an adaptive Generalized Cross-Validation (GCV)
(Golub et al., 1979) framework that analytically approximates cross-validation error without explicit
validation steps that require calculating large matrix inverses.

Given new task data Ht ∈ Rnt×m, we first obtain its singular value decomposition (SVD) as
Ht = UtΣtV

⊤
t , where Ut ∈ Rnt×r and Vt ∈ Rm×r are semi-orthogonal column matrices that

satisfy UtU
⊤
t = Int

, VtV
⊤
t = Im, and Σt = diag(s1, . . . , sr) ∈ Rr×r contains non-zero singular

values with r = rank(Ht) = min(nt,m) (typically it’s of full rank, since numerical computation
is usually precise). The time complexity for SVD is O(ntrm). For l candidate regularization
coefficients λ ∈ Λ = {λmin, . . . , λmax} on a log scale, we use the following steps to compute the
GCV criterion for each one:

First, in O(lr) time, we get the shrinkage matrix and calculate the effective degrees-of-freedom by:

Dt =
Σ2

t

Σ2
t + λIr

, df(λ) = tr(Dt) =

r∑
i=1

s2i
s2i + λ

. (8)

Then, we reconstruct the prediction value of ridge regression in O(lntrct) time by

Ŷt = Ut(vecdiag(Dt)⊗ 1⊤
c )⊙U⊤

t Yt, (9)

where the ⊗ denotes the outer product, ⊙ denotes the Hadamard product, vecdiag denotes extracting
the diagonal elements and concatenating them into a column vector. Finally, we can get the GCV
value by

GCV(λ) =
∥Yt − Ŷt(λ)∥2F
nt

(
1− df(λ)

nt

)2 , (10)

with time complexity being O(lntct). The optimal regularization parameter is then selected by:

λ∗
t = argmin

λ∈Λ
GCV(λ). (11)

Considering projected dimension m is extremely large, we can make a mild assumption m > nt, and
lct ≪ m, thus r = min(nt,m) = nt. The original l loop complexity is O(lntrct) = O(ln2

t ct)≪
O(n2

tm) = O(ntrm). Hence, the time complexity is reduced to being determined by SVD, at
O(n2

tm). Compared to vanilla cross-validation that takes O(lm3), time consumption is greatly
reduced.

Accelerated Prototype Calculation: Upon determining the optimal regularization parameter λ
through GCV, we solve Eq. 6 to obtain class prototypes Ct. While vanilla matrix inversion via LU
decomposition provides a baseline implementation, for the sake of computational efficiency, we
exploit the inherent positive-definiteness of Gt + λtIt to achieve computational acceleration through
Cholesky factorization by:

LtL
⊤
t = Gt + λ∗

t Im, Ct = L−⊤
t (L−1

t St), (12)

where Lt denotes the lower-triangular Cholesky factor. This approach reduces theoretical complexity
from O( 23m

3) to O( 13m
3) for factorization, with triangular solves requiring half the FLOPs of

general linear system solutions. The numerical stability of this method is ensured by the condition
number bound κ(Lt) ≤ κ(Gt + λ∗

t Im), making it particularly suitable for ill-conditioned streaming
scenarios where Gt may accumulate numerical noise over tasks. The decorrelation effect of the
streaming ridge classification is visualized via the transformation from Figure 3(b) to (c).
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Table 1: Performance Comparison on Pre-trained ViT-B/16 Models. We report the average
training time per task (τtrain), average post-extraction training time (τpost), and overall accuracy (Ā)
across three benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
L2P 263.54±0.10 183.56±0.36 87.74±0.46 52.02±0.04 37.03±0.07 77.48±1.43 42.10±0.04 36.45±0.02 81.24±0.67

DualPrompt 231.89±0.63 153.66±0.47 87.47±0.58 46.28±0.05 31.64±0.06 79.89±1.44 38.14±0.16 31.64±0.06 80.85±1.34

InfLoRA 220.82±0.44 140.31±0.41 91.10±0.36 45.31±0.19 30.97±0.22 80.65±0.73 35.80±0.28 29.26±0.17 88.73±0.57

SEMA 241.60±0.82 160.87±0.69 92.04±0.25 48.21±0.23 32.96±0.20 84.31±0.37 45.50±0.13 39.82±0.26 91.18±0.46

MoE-Adapter 187.91±0.61 106.37±0.53 90.43±0.46 37.89±0.15 22.61±0.12 79.65±0.32 32.28±0.19 26.06±0.14 86.39±0.77

EASE 621.26±1.05 583.4±0.76 92.96±0.25 138.78±0.36 122.48±0.27 89.56±0.43 108.35±0.97 94.73±1.11 94.02±0.15

RanPAC 98.62±0.42 84.42±0.44 94.21±0.11 37.95±0.15 33.83±0.13 92.67±0.20 63.68±0.18 61.44±0.17 94.16±0.32

F-OAL 71.05±0.23 57.13±0.19 91.96±0.29 6.24±0.09 2.04±0.05 91.13±0.15 3.19±0.05 1.03±0.02 94.68±0.32

Fly-CL 19.07±0.07 5.38±0.01 93.89±0.12 4.43±0.11 0.35±0.01 93.84±0.18 2.48±0.13 0.34±0.03 96.54±0.38

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Backbones: We conduct experiments using various architectures, including
transformer-based and CNN-based backbones. Specifically, we utilize the Vision Transformer
(ViT-B/16) (Dosovitskiy et al., 2020) and ResNet-50 (He et al., 2016) as representative architectures.
We test our method on five widely used datasets: CIFAR-100 (Krizhevsky et al., 2009), CUB-200-
2011 (Wah et al., 2011), VTAB (Zhai et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and
ImageNet-A (Hendrycks et al., 2021b). Further details of the data setup are provided in Appendix E.

Baselines: We compare Fly-CL against eight baselines, including two prompt-based approaches:
L2P (Wang et al., 2022b) and DualPrompt (Wang et al., 2022a), three lora/adapter-based approaches:
InfLoRA (Liang & Li, 2024), SEMA (Wang et al., 2025), and MoE-Adapter (Yu et al., 2024), as well
as three representation-based methods: EASE (Zhou et al., 2024), RanPAC (McDonnell et al., 2023),
and F-OAL (Zhuang et al., 2024). In Fly-CL, we find that applying data normalization according
to the specific combination of backbone and dataset is beneficial; a detailed analysis can be found
in Appendix C.3. For a fair comparison, all baselines use the same data normalization strategy as
Fly-CL. Comparisons among the different baselines and implementation details are provided in
Appendices D and E, respectively.

Evaluation Metrics: To assess CL performance, we employ four metrics: average accuracy (At),
last stage accuracy (AT ), backward transfer (BWT ), and overall accuracy (Ā). The average accuracy
at stage t is defined as: At =

1
t

∑t
i=1 at,i, where at,i denotes the test accuracy on the i-th task after

training on the t-th task. Specially, we refer to the average accuracy at the last stage T as the last
stage accuracy (AT ). The backward transfer is denoted as BWT = 1

t−1

∑T
i=1(at,i − ai,i). The

overall accuracy is computed as the mean of At across all T tasks: Ā = 1
T

∑T
i=1 At. To evaluate

computational efficiency, we introduce two time-related metrics: average training time per task
(τtrain) and average post-extraction training time (τpost). Here, τtrain represents the total training time
amortized across all tasks, while τpost is derived by subtracting the average feature extraction time
for each task (using the pre-trained model) from τtrain. τpost is a more precise metric for evaluating
algorithm-specific time consumption, as it excludes the shared preprocessing overhead. 1

5.2 LOW LATENCY AND HIGH ACCURACY

The main CL results across various datasets, architectures, and task settings are summarized in Tables
1, 2, and 5. Our framework’s key strength is achieving CL accuracy comparable to or exceeding SOTA
performance with significantly lower computational costs, as measured by both τtrain and τpost. In
Table 1, using ViT-B/16, Fly-CL reduces τpost by 91% on CIFAR-100 with only a marginal accuracy
drop of 0.32% compared to SOTA methods. On CUB-200-2011 and VTAB, Fly-CL achieves 83%
and 67% reductions in τpost versus the most efficient baseline while improving overall accuracy by

1τtrain and τpost are measured in seconds (wall clock time); At and Ā are measured in %.
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Table 2: Performance Comparison on Pre-trained ResNet-50 Models. We report the average
training time per task (τtrain), average post-extraction training time (τpost), and overall accuracy (Ā)
across three benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB. The best results are
highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
RanPAC 55.68±0.97 46.65±0.88 82.72±0.22 58.74±0.84 54.35±0.99 78.72±0.40 50.15±0.36 47.94±0.38 92.80±0.40

F-OAL 80.74±0.35 71.78±0.35 66.63±0.71 5.19±0.09 1.69±0.01 60.84±1.67 2.76±0.03 0.55±0.01 26.15±2.50

Fly-CL 14.28±0.04 5.25±0.01 84.61±0.16 3.90±0.31 0.44±0.08 80.25±0.10 2.53±0.10 0.34±0.02 94.00±0.15

Table 3: Performance Comparison on Pre-trained ViT-B/16 Models using Online Learning
Setting. ◦ denotes methods in online mode. We report the average training time per task (τtrain),
average post-extraction training time (τpost), and overall accuracy (Ā) across three benchmark datasets:
CIFAR-100, CUB-200-2011, and VTAB. The best results are highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
RanPAC◦ 1236.74±1.36 1223.56±1.07 92.48±0.31 242.54±1.56 238.36±1.47 91.89±0.26 122.89±0.46 120.69±0.42 93.41±0.57

F-OAL◦ 164.58±0.71 151.27±0.64 91.48±0.42 31.34±0.32 27.20±0.28 91.60±0.22 11.49±0.14 9.47±0.16 95.28±0.21

Fly-CL◦ 25.46±0.32 12.57±0.26 92.96±0.14 6.44±0.08 2.33±0.05 92.59±0.13 3.17±0.05 1.09±0.04 96.38±0.24

1.17% and 2.38% over the best-performing methods, respectively. In Table 2, with ResNet-50, Fly-CL
improves overall accuracy by 1.89%, 1.53%, and 1.20% on CIFAR-100, CUB-200-2011, and VTAB,
respectively, while reducing τpost by 93%, 74%, and 38% versus the most efficient baselines. These
improvements align with transformer-based backbone trends. Notably, F-OAL exhibits significant
performance degradation on CNN backbones, presumably due to error accumulation in its iterative
update mechanism, but Fly-CL does not suffer from this issue. These results highlight Fly-CL’s
ability to balance computational efficiency and accuracy across diverse CL scenarios, demonstrating
its robustness. Results on datasets with severe domain shifts are presented in Table 6.

Additionally, the time difference between τtrain and τpost in Tables 1 and 2 indicates that feature
extraction becomes the dominant time consumer in Fly-CL. For a fair comparison with the baselines,
we do not apply additional acceleration techniques here. However, in practical applications, tech-
niques like model quantization (e.g., INT8) can further reduce feature extraction time by around 4×
without significant accuracy degradation, thereby enhancing the speedup ratio. For hardware-specific
deployment, frameworks like TVM (Chen et al., 2018) can be utilized to maximize efficiency.

Furthermore, Fly-CL can be easily adapted to Online CL setups by updating the G and S matrices
and solving Eq. 6 for each batch, without concatenating all batch embeddings within a task. The
results in Table 3 indicate that batch-mode Fly-CL remains superior to other baselines in training
time and is also competitive in accuracy.

5.3 FACTORS CONTRIBUTING TO COMPUTATIONAL SPEEDUP

Our analysis in Sections 4.1 and 4.2 demonstrates that the proposed framework achieves significant
speedup over the vanilla implementation through component-level optimizations. To quantify these
improvements precisely, we split the post-extraction training time into three key components (as
illustrated in Figure 2) and evaluate Fly-CL against its vanilla implementation under the CUB-200-
2011 setting in Table 4. The components include: (1) Random Projection: Acceleration via weight
sparsity induced by sparse projection versus the dense version. (2) Ridge Selection: Time reduction
achieved by GCV, which eliminates the need for explicit cross-validation. (3) Prototype Calculation:
Optimization from LU decomposition to Cholesky factorization. Additionally, the inference stage
also benefits from the activation sparsity induced by the top-k operation in similarity comparisons.

5.4 ABLATION STUDY AND HYPERPARAMETER SENSITIVITY ANALYSIS

Using ViT-B/16 as the backbone, we conduct ablation studies by individually removing the projection
layer (w/o proj), the streaming ridge classification (w/o ridge), and the data normalization components

8
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Table 4: Time Savings for Post-Extracting Components on CUB-200-2011. We compare the theo-
retical time complexity per task (Ttheory) and the actual runtime per task (Tactual) for each component
on an NVIDIA GeForce RTX 3090 GPU. The optimized implementations demonstrate significant
speedups across all components.

Method Random Projection Ridge Selection Prototype Calculation Similarity Comparison
Ttheory Tactual Ttheory Tactual Ttheory Tactual Ttheory Tactual

vanilla O(mntd) 0.22±0.03 O(lm3) 7.34±0.12 O( 23m
3) 0.20±0.01 O(mntct) 0.21±0.01

optimized O(mntp) 0.08±0.02 O(mn2
t ) 0.14±0.01 O( 13m

3) 0.10±0.01 O(kntct) 0.08±0.01

(w/o norm). The results in Figure 4 demonstrate that each component contributes significantly to
overall performance. Removing any of these components, or all of them (w/o all), leads to noticeable
performance degradation.

We also analyze the sensitivity of the key hyperparameters in Fly-CL: m (projection dimension),
p (weight sparsity), and k (activation sparsity) in Figure 5. Increasing m improves accuracy, with
performance saturating beyond m = 10, 000. Notably, Fly-CL does not suffer from the curse of
dimensionality, which can be attributed to the fact that random projection into a higher-dimensional
space preserves pairwise distances between data points, as guaranteed by the Johnson-Lindenstrauss
Lemma (Johnson et al., 1984). CL performance increases monotonically with p, and no significant
performance drop occurs as long as p does not take an excessively small value. A sufficiently large
k value avoids information loss, while a smaller value suppresses noisy dimensions. Thus, finding
an appropriate trade-off can lead to optimal accuracy. Encouragingly, Figure 5(c) shows a broad
plateau for optimal k selection. Based on our empirical results, we set m = 10, 000, p = 300, and
k = 3, 000 as default values.
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Figure 4: Accuracy Curves from Ablation Studies on Three Datasets. We report average accuracy
(At) for each stage. w/o refers to the removal of the specific component.

(a) Expanded dim m (b) Sparsity level p (c) Coding level k

Figure 5: Sensitivity Analysis for Expanded dim m, Weight Sparsity p, and Activation Sparsity
k on CUB-200-2011. We report average accuracy in last task (AT ) and overall accuracy (Ā). The
dots denote the default values we use across experiments.
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6 CONCLUSION

In this work, inspired by the decorrelation mechanism in the fly olfactory circuit, we propose
an efficient CL framework, Fly-CL. Fly-CL significantly reduces computational overhead during
training while achieving competitive performance compared to SOTA methods. This framework
integrates several key components: data normalization, feature extraction, sparse random projection
with top-k operation, and streaming ridge classification, each contributing to the overall efficiency
and effectiveness of the system. This work establishes that neurobiological principles—particularly
sparse coding and progressive decorrelation—can effectively address fundamental efficiency-accuracy
trade-offs in artificial continual learning systems.
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A ALGORITHM PSEUDOCODE

Algorithm 1 Fly-CL Training Pipeline

Input: Sequentially arriving data Dt = {(xt
i, y

t
i)}

nt
i=1 where t = 1, . . . , T . Pre-trained encoder

fθ. Projection operator Z(·) : Rd → Rm. Penalty coefficient candidates Λ = {λ1, . . . , λl}.
Zero-initialized matrices G0 ∈ Rm×m and S0 ∈ Rm×ct .

Output: Modulated Prototypes C ∈ Rm×ct .
1: for t = 1, . . . , T do
2: r = min(nt,m)
3: Get compressed embedding for each datum vt

i = fθ(x
t
i) ∈ Rd

4: Transform to high-dim sparse embedding Z(vt
i) = top-k (Wvt

i) ▷ O(mntp)
5: Concatenate Z(vt

i) to get Ht ∈ Rnt×m

6: Gt ← Gt−1 +H⊤
t Ht ▷ O(ntm

2)
7: St ← St−1 +H⊤

t Yt ▷ O(ntctm)
8: Ut,Σt,Vt = svd(Ht) ▷ O(ntrm)
9: for λ ∈ Λ do

10: Dt =
Σ2

t

Σ2
t+λIr

▷ O(lr)

11: df(λ) = tr(Dt) =
∑r

i=1
s2i

s2i+λ
▷ O(lr)

12: Ŷt = Ut(vecdiag(Dt)⊗ 1⊤
c )⊙U⊤

t Yt ▷ O(lntrct)

13: GCV(λ) =
∥Yt−Ŷt(λ)∥2

F

nt(1− df(λ)
nt

)
2 ▷ O(lntct)

14: end for
15: Select λ∗

t = argminλ∈Λ GCV(λ)
16: LtL

⊤
t = Gt + λ∗

t Im ▷ O( 13m
3)

17: Ct = L−⊤
t (L−1

t St) ▷ O(m2ct)
18: end for

Algorithm 2 Fly-CL Inference Pipeline

Input: Sequentially arriving data Dt = {(xt
i, y

t
i)}

nt
i=1 where t = 1, . . . , T . Pre-trained encoder fθ.

Projection operator Z. Modulated class prototypes Ct ∈ Rm×ct .
Output: Predicted labels ŷ.

1: Get compressed embedding for each datum v = fθ(x) ∈ Rd

2: Transform to high-dim sparse embedding Z(v) = top-k (Wv) ▷ O(mp)
3: Compute prediction ŷ = Z(v)⊤Ct ▷ O(kct)

B COMPLETE THEORETICAL ANALYSIS

In this section, we present a comprehensive theoretical analysis of the sparsification effects on both
the weights and activations in the random projection operation, and demonstrate the consistency
between the biologically plausible Hebbian learning rule and ridge classification in modeling the
KC-MBON transformation..

B.1 INFORMATION PRESERVING FOR SPARSE CONNECTIONS IN RANDOM PROJECTION
MATRIX

A common approach to demonstrate that sparse random matrix multiplication preserves information
equivalently to its dense counterpart lies in proving the matrix’s near-preservation of full column rank.
For our sparse random matrix W ∈ Rm×d where m > d, we prove that W almost surely maintains
rank d.

Theorem B.1. Given the matrix W ∈ Rm×d, where m > d, with each row having exactly p non-zero
entries, which are randomly sampled from N (0, 1). LetW ∈ Rd×d be any square submatrix of W .
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Then, for any ϵ > 0, it holds that

P
(
| det(W)| ≥

(p
d

)d/2√
d! exp(−d1/2+ϵ)

)
= 1− o(1).

Thus, for sufficiently large p and d, any submatrixW is invertible with probability at least 1− o(1).

Proof. According to aformentioned definition, we have E(Wij) = 0 and Var(Wij) =
p
d . Consider-

ing R = 1
σW , which satisfies E(Rij) = 0, Var(Rij) = 1, we can conclude, based on (Tao & Vu,

2006, Theorem 8.9), that

P
(
| det(R)| ≥

√
d! exp(−d1/2+ϵ)

)
= 1− o(1). (13)

By using σ =
√

p
d and det(R) = σ−d det(W) for substitution, we complete the proof.

Figure 6: Empirical Verification of the Johnson-
Lindenstrauss (JL) Property using Sparse Random
Projection.

To better demonstrate the information preserv-
ing property of our construction, another line
of validation is to utilize the random matrix’s
distance preservation property, which is theoret-
ically guaranteed by the Johnson-Lindenstrauss
(JL) lemma (Johnson et al., 1984). Specifi-
cally, we conduct an empirical simulation to
verify that the normalization of our sparse pro-
jection matrix Φ =

√
d

mpW preserves pair-
wise Euclidean distances between feature vec-
tors with high probability. For every pair of vec-
tors (x1,x2), we calculate the Distortion Ratio
defined as Ratio =

∥Φ(x1−x2)∥2
2

∥x1−x2∥2
2

. We randomly
select 500 data points from the extracted fea-
tures of CIFAR-100 dataset and compute the
pairwise distances between all point pairs, with
the results illustrated in Figure 6. By analyzing
the distribution of these ratios across all vector
pairs, the resulting histogram shows a strong
concentration around the ideal value of 1. If we set ϵ to 0.03, then the vast majority of the ratios
are empirically confined within the bounds of [1− ϵ, 1 + ϵ]. This concentration strongly validates
that our sparse projection structure-comprising only p non-zero N (0, 1) entries per row-effectively
maintains the geometric structure of the high-dimensional data.

B.2 ROBUSTNESS OF TOP-k SPARSIFICATION ON HIGH-DIMENSIONAL EMBEDDINGS

Let the high-dimensional embedding vector be h ∈ Rm. After applying the top-k operation, we
obtain a sparsified vector h′ ∈ Rm, where only the k largest absolute values in h are retained, and
the remaining elements are set to zero. We aim to prove that when k = Ω(mα) (with 0 < α < 1, i.e.,
not overly sparse), the performance degradation is negligible.

According to statistic learning theory (Bartlett & Mendelson, 2002) and extreme value theory (Coles
et al., 2001; Fisher & Tippett, 1928), we start with the following two widely-accepted assumption:
Assumption B.2. Assume that the “energy" (squared ℓ2-norm) of the embedding vector x is concen-
trated in a few dimensions, i.e., there exists a constant C > 0 such that:

E

[∑k
i=1 h

2
i

∥h∥22

]
≥ 1− C

k
,

where where hi denotes the i-th largest value in h.
Assumption B.3. Assume that the performance loss function L(h, y) of the downstream task (e.g.,
classifier) is Lipschitz continuous with respect to input perturbations, i.e., there exists a constant
M > 0 such that:

|L(h, y)− L(h′, y)| ≤M · ∥h− h′∥.
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Regarding the approximation error of top-k operation, we show it is bounded.

Theorem B.4. Under the Assumption B.2, the sparsification error satisfies:

E
[
∥h− h′∥22

]
≤ C

k
· E

[
∥h∥22

]
.

Proof. By Assumption B.2:

E

[
d∑

i=k+1

h2
i

]
≤ C

k
· E

[
∥h∥22

]
.

Thus,

E
[
∥h− h′∥22

]
= E

[
m∑

i=k+1

h2
i

]
≤ C

k
· E

[
∥h∥22

]
.

Then, we can quantify the upper bound of possible performance degradation.

Theorem B.5. Under Assumption B.3, the performance degradation due to sparsification satisfies:

E [|L(h, y)− L(h′, y)|] ≤M ·
√

C

k
· E[∥h∥22]

Proof. By the Cauchy-Schwarz inequality and Theorem B.4, we can derive that

E [|L(h, y)− L(h′, y)|] ≤M · E [∥h− h′∥2]

≤M ·
√
E [∥h− h′∥22]

≤M ·
√

C

k
· E [∥h∥22].

From Theorem B.5, we establish in Theorem B.6 that moderate sparsity does not result in significant
performance degradation, as the error decreases exponentially with the increasing expanded dimension
m.

Theorem B.6. For top-k sparsification in the expanded dimension m, the performance degradation
is bounded by:

E [|L(h, y)− L(h′, y)|] ≤M ·
√

C

k
· E[∥h∥22],

where L(·) is a performance loss function for downstream tasks and C, M are constants. To ensure
negligible performance degradation, we require:√

C

k
· E[∥h∥22] ≤ O

(
1√
mα

)
,

i.e., when k = Ω(mα) (0 < α < 1), the error bound decays exponentially with increasing dimension.

For example:

• If k = Ω(d0.5), the performance degradation is O(d−0.25).

• If k = Ω(d0.8), the performance degradation is O(d−0.4).
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B.3 CONSISTENCY BETWEEN RIDGE CLASSIFICATION AND HEBBIAN LEARNING RULES

In this section, we show that a biologically plausible local learning rule—constructed from Hebbian
and anti-Hebbian plasticity (Hebb, 2005)—converges to the same stationary point as ridge classifica-
tion. This provides a theoretical bridge between synaptic dynamics in the KC→MBON pathway and
the streaming ridge classification algorithm used in Fly-CL.

We begin by defining a synaptic update rule that depends only on variables locally available at each
synapse. Let h′ ∈ Rm denote the pre-synaptic activity vector and ŷ = C⊤

t h′ the post-synaptic
response predicted by the current weights Ct ∈ Rm×ct . The synaptic update is defined as:

∆C = Ct+1 −Ct = η
(
h′y⊤ − h′ŷ⊤ − λCt

)
, (14)

where η > 0 is a small learning rate, y ∈ Rct is the one-hot ground-truth label. This rule consists of
three biologically meaningful components:

1. Hebbian term h′y⊤, which strengthens synapses when both pre-synaptic activity and the
target post-synaptic signal co-activate.

2. Anti-Hebbian term −h′ŷ⊤, which suppresses correlations between the input and the
model’s own prediction, implementing an error-correcting mechanism.

3. Weight decay −λCt, corresponding to metabolic cost or homeostatic constraints.

This formulation is biologically plausible: it requires only pre-synaptic activity, post-synaptic activity,
and a modulatory teaching signal—i.e., a standard three-factor learning rule commonly observed in
neuromodulated plasticity.

Taking the expectation over data samples (h′,y), we obtain:

E[∆C] = η
(
E[h′y⊤]− E[h′ŷ⊤ ]− λCt

)
= η

(
St −GtCt − λCt

)
, (15)

where we define

Gt = E[h′h′⊤] ∈ Rm×m, St = E[h′y⊤] ∈ Rm×ct .

Thus, the expected synaptic dynamics follow the linear recursion:

Ct+1 = Ct + η
(
St − (Gt + λIm)Ct

)
. (16)

Taking the continuous-time limit η → 0 yields the ordinary differential equation:
dCt

dt
= κ

(
St − (Gt + λIm)Ct

)
, (17)

where κ > 0 rescales time. The stationary solution satisfies:

(Gt + λIm)C⋆
t = St,

and therefore:
C⋆

t = (Gt + λIm)−1St, (18)
which is exactly the closed-form solution of ridge regression.

In our representation-based CIL setting, since all samples in the same task are available simultaneously,
we do not need to integrate the continuous-time dynamics in Eq. 17. Instead, we can directly compute
the ridge solution to obtain the optimal stationary classifier.

C ADDITIONAL RESULTS

C.1 EXPERIMENTS IN LONGER TASK SEQUENCES

To evaluate the long-term stability of Fly-CL, we conduct experiments with task sequences twice as
long as those in Table 1. Results are presented in Table 5 and Figure 7. Overall, both τtrain and τpost
are shorter than those in Table 1 due to fewer samples per task. Fly-CL improves overall accuracy
by 0.54%, 1.21%, and 1.58% compared to SOTA methods, while significantly reducing average
post-extraction training time by 89%, 74%, and 59% compared to the most efficient baselines. These
results are consistent with the trends observed in Table 1 and Figure 8, demonstrating the robustness
of Fly-CL across different task lengths.
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Table 5: Performance Comparison on Pre-trained ViT-B/16 Models with Longer Task Sequence.
We report the average training time per task (τtrain), average post-extraction training time (τpost), and
overall accuracy (Ā) across three benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB. The
best results are highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
L2P 147.47±0.36 107.59±0.26 82.69±0.91 30.93±0.25 23.39±0.26 72.83±1.45 32.17±0.39 29.31±0.38 71.84±1.42

Dualprompt 130.12±0.09 91.05±0.07 83.42±0.86 27.66±0.18 20.28±0.18 77.93±0.91 29.44±0.24 26.62±0.23 78.46±1.14

InfLoRA 124.80±0.39 84.36±0.12 88.18±0.34 27.12±0.14 19.85±0.09 75.67±0.16 29.71±0.21 26.92±0.17 81.09±0.73

SEMA 128.95±0.46 88.57±0.19 88.93±0.52 27.98±0.25 20.52±0.18 80.82±0.11 30.36±0.27 27.55±0.20 84.56±0.48

MoE-Adapter 132.67±0.62 92.31±0.45 88.42±0.28 30.25±0.19 22.82±0.15 78.62±0.35 29.25±0.18 26.81±0.13 83.24±0.57

EASE 350.92±0.39 331.76±0.29 90.14±0.51 83.38±0.22 75.05±0.16 91.47±0.65 64.68±0.73 57.24±0.62 90.26±0.41

RanPAC 44.53±0.58 37.03±0.59 93.68±0.24 20.68±0.32 18.18±0.31 92.65±0.26 41.49±0.74 40.02±0.59 93.62±0.32

F-OAL 16.32±0.02 8.91±0.02 92.63±0.46 3.65±0.02 1.10±0.01 91.48±0.23 2.17±0.16 0.71±0.03 94.96±0.27

Fly-CL 8.31±0.04 1.00±0.01 94.22±0.09 2.76±0.06 0.29±0.01 93.86±0.27 1.70±0.10 0.29±0.02 96.54±0.38
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Figure 7: Accuracy Curves of Different Methods on Pre-trained ViT-B/16 with Longer Task
Sequence. The average accuracy (At) is reported for each dataset. These results align with and
extend the quantitative analysis presented in Table 5.

C.2 EXPERIMENTS ON DATASETS WITH SEVERE DOMAIN SHIFT

Table 6 summarizes the results on ImageNet-R and ImageNet-A under severe domain shift. Compared
with existing continual learning baselines, Fly-CL achieves the best overall accuracy on both datasets
(83.19% on ImageNet-R and 67.98% on ImageNet-A), comparable with the previous SOTA RanPAC.
More importantly, Fly-CL attains these improvements with substantially lower computation cost.
Its average training time per task is reduced by an order of magnitude compared to prompt-based
methods (e.g., L2P, DualPrompt) and much faster than EASE, while its post-extraction training time
is almost negligible (0.21s vs. 67.71s for RanPAC on ImageNet-R). These results demonstrate that
Fly-CL is not only robust to severe distribution shifts but also highly efficient, making it especially
suitable for practical continual learning scenarios where both accuracy and efficiency are critical.

C.3 DATA NORMALIZATION STRATEGY

While data normalization is a well-established technique for improving classification performance
in i.i.d. scenarios, its effectiveness in facilitating CL with frozen pre-trained encoders remains
unclear. Our results indicate that applying proper architecture-specific normalization to input images
significantly improves the learning performance compared to baseline CL methods (Table 7). The
optimal normalization strategies for the included backbones differ. Across all tested datasets, ViT-
B/16 (Dosovitskiy et al., 2020) benefits more from standard normalization that projects inputs into
the [−1, 1] range, while ResNet-50 (He et al., 2016) achieves optimal performance when normalized
using ImageNet statistics.

We hypothesize that the imporved performance arises from a reduced feature distribution shift across
tasks. Proper normalization preserves the geometry of the pre-trained feature manifold, which is
crucial for prototype-based classification, where cosine similarity measures depend on the angular
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Table 6: Performance Comparison on Pre-trained ViT-B/16 Models with Severe Domain Shift.
We report the average training time per task (τtrain), average post-extraction training time (τpost), and
overall accuracy (Ā) across two benchmark datasets: ImageNet-R and ImageNet-A. The best results
are highlighted in bold.

Method ImageNet-R ImageNet-A

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
L2P 131.97±0.46 110.56±0.42 76.13±0.21 56.28±0.32 48.92±0.27 48.86±0.08

Dualprompt 117.80±0.34 96.58±0.30 73.92±0.46 49.60±0.28 42.31±0.26 57.05±0.13

InfLoRA 62.32±0.33 41.05±0.23 82.15±0.41 25.71±0.30 18.50±0.24 62.32±0.28

SEMA 68.85±0.21 47.34±0.19 81.89±0.17 28.65±0.26 21.23±0.22 61.79±0.32

MoE-Adapter 66.37±0.29 45.02±0.24 81.76±0.33 26.27±0.41 18.89±0.37 61.72±0.21

EASE 311.00±0.29 274.36±0.25 81.69±0.24 80.80±0.19 73.47±0.22 65.03±0.28

RanPAC 76.25±0.35 67.71±0.28 83.02±0.12 32.43±0.13 28.86±0.11 67.28±0.09

F-OAL 16.51±0.11 8.80±0.04 80.62±0.25 3.99±0.07 1.05±0.02 63.99±0.30

Fly-CL 7.55±0.04 0.21±0.02 83.19±0.14 3.10±0.03 0.15±0.01 67.98±0.17

relationships between features. Our empirical results suggest that input normalization may serve
as a fundamental defense against forgetting by anchoring the feature space topology to the original
pre-training distribution.

Table 7: Comparison of CL Performance across Pre-trained Models and Normalization Strate-
gies. We report overall accuracy (Ā). Normalization methods includes: “None” (no data normaliza-
tion), “ImageNet” (ImageNet statistics), and “Standard”(scaled to the [−1, 1]).

Backbone CIFAR CUB VTAB
None ImageNet Standard None ImageNet Standard None ImageNet Standard

ViT-B/16 91.64±0.62 87.87±0.62 93.89±0.12 93.04±0.37 90.68±0.42 93.84±0.18 95.26±0.68 95.47±0.52 96.54±0.38

ResNet-50 80.66±0.48 84.61±0.16 83.09±0.48 75.08±1.23 80.25±0.10 76.78±1.08 92.45±0.71 94.00±0.15 92.76±0.54

C.4 MEMORY CONSUMPTION

We also compare the memory consumption of Fly-CL against other methods in Table 8 using ViT-
B/16 with the same task sequence as in Table 1. For fairness, we use a batch size of 128 across all
methods and datasets. The results show Fly-CL also has the minimal memory cost, strengthening the
efficiency of our method.

Table 8: Memory Usage (GB) of Different Methods on Pre-trained ViT-B/16. We report highest
peak memory usage of each methods. The best results are highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB
L2P 16.4GB 16.4GB 16.4GB
DualPrompt 13.6GB 13.6GB 13.6GB
InfLoRA 14.1GB 14.1GB 14.1GB
SEMA 12.9GB 12.9GB 12.9GB
MoE-Adapter 20.2GB 20.2GB 20.2GB
EASE 12.2GB 12.2GB 12.2GB
RanPAC 12.2GB 12.2GB 22.8GB
F-OAL 12.2GB 4.9GB 4.5GB
Fly-CL 6.7GB 4.6GB 4.3GB

C.5 MEMORY-TIME TRADEOFF IN HIGH-DIM PROJECTIONS

We present the trade-off between memory, training time, and overall accuracy in Table 9. The
overall accuracy gradually saturates as the dimension increases, while memory and training time
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grow quadratically. Therefore, we chose 10,000 as the dimension in our simulations. As long as the
dimension does not exceed 10,000, both memory and training time consumption remain lower than
those of previous methods, as summarized in Table 1.

Table 9: Memory-Time-Accuracy comparison with increasing projection dimension. It’s con-
ducted on the CUB dataset using ViT B/16. We report highest peak memory usage of each methods.
The best results are highlighted in bold.

Dimension 1000 2000 5000 10000 20000
Memory 2.8G 2.8G 3.0G 4.6G 9.3G
τtrain 4.19±0.02 4.20±0.05 4.25±0.07 4.43±0.11 5.13±0.08

Ā 90.87±0.49 91.97±0.52 92.93±0.41 93.84±0.18 93.90±0.52

C.6 ADDITIONAL VISUALIZED FIGURES AND EVALUATION METRIC DURING THE TRAINING
PROCESS

Here, we present a more detailed breakdown of the training processes for ViT-B/16 and ResNet-50.
Results from Tables 1 and 2 are visualized in Figures 8 and 9. We list the average accuracy of different
methods at different stages across three datasets. We additionally report the last-stage accuracy (AT )
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Figure 8: Accuracy Curves of Different Methods on Pre-trained ViT-B/16. The average accuracy
(At) is reported for each dataset. These results align with and extend the quantitative analysis
presented in Table 1.
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Figure 9: Accuracy Curves of Different Methods on Pre-trained ResNet-50. The average accuracy
(At) is reported for each dataset. These results align with and extend the quantitative analysis
presented in Table 2.

and the backward transfer score (a representative forgetting metric) of Table 1 in Table 10 to provide
a more comprehensive evaluation.
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Table 10: Performance Comparison on Pre-trained ViT-B/16 Models. We report the last stage
accuracy (AT ), and backward transfer (BWT ) across three benchmark datasets: CIFAR-100, CUB-
200-2011, and VTAB.

Method CIFAR-100 CUB-200-2011 VTAB
AT (↑) BWT (↑) AT (↑) BWT (↑) AT (↑) BWT (↑)

L2P 83.55±1.53 -6.23±0.41 65.41±1.84 -13.14±0.57 79.12±2.18 -8.04±0.78

DualPrompt 81.45±0.52 -7.06±0.20 67.90±1.89 -12.12±0.53 79.83±2.37 -7.63±0.75

InfLoRA 86.56±0.46 -5.07±0.16 69.45±0.56 -11.53±0.25 87.88±0.73 -4.59±0.24

SEMA 87.47±0.43 -4.70±0.13 73.66±0.36 -9.94±0.19 89.28±0.60 -4.06±0.22

MoE-Adapter 86.88±0.32 -4.97±0.15 68.11±0.41 -12.11±0.23 88.06±0.48 -4.51±0.19

EASE 87.63±0.20 -4.66±0.06 85.10±0.19 -5.68±0.08 93.30±0.07 -2.48±0.04

RanPAC 90.83±0.41 -3.47±0.11 88.95±0.48 -4.16±0.22 89.97±0.71 -3.79±0.26

F-OAL 87.04±0.50 -4.90±0.14 85.61±0.50 -5.43±0.24 92.91±0.07 -2.66±0.04

Fly-CL 89.85±0.17 -3.82±0.09 89.97±0.18 -3.80±0.07 94.61±0.35 -2.01±0.15

C.7 ADDITIONAL SENSITIVITY ANALYSIS ACROSS TASK COMPLEXITY, NUMBER OF
TASKS/CLASSES, AND DIFFERENT PRETRAINED BACKBONES

We further conduct additional sensitivity analyses under three complementary settings: (i) ImageNet-
A with 10 tasks and 20 classes per task using ViT-B/16 to examine the effect of task complexity
(Figure 10); (ii) CUB-200-2011 with 20 tasks and 10 classes per task using ViT-B/16 to evaluate the
impact of a larger number of tasks and classes (Figure 11); and (iii) CUB-200-2011 with 10 tasks
and 20 classes per task using ResNet-50 to assess the influence of different backbone architectures
(Figure 12). Across all settings, the observed trends remain consistent with those reported in Figure 5.

(a) Expanded dim m (b) Sparsity level p (c) Coding level k

Figure 10: Sensitivity Analysis for Expanded dim m, Weight Sparsity p, and Activation Sparsity
k on ImageNet-A. We report average accuracy in last task (AT ) and overall accuracy (Ā). The dots
denote the default values we use across experiments.

(a) Expanded dim m (b) Sparsity level p (c) Coding level k

Figure 11: Sensitivity Analysis for Expanded dim m, Weight Sparsity p, and Activation Sparsity
k on CUB-200 with Longer Task Sequence. We report average accuracy in last task (AT ) and
overall accuracy (Ā). The dots denote the default values we use across experiments.
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(a) Expanded dim m (b) Sparsity level p (c) Coding level k

Figure 12: Sensitivity Analysis for Expanded dim m, Weight Sparsity p, and Activation Sparsity
k on CUB-200 with ResNet-50 as Backbone. We report average accuracy in last task (AT ) and
overall accuracy (Ā). The dots denote the default values we use across experiments.

C.8 ADDITIONAL EXPERIMENTS ON LARGER PRE-TRAINED MODELS

In our previous experiments, we primarily adopted ResNet-50 and ViT-B/16 as backbones for feature
extraction. To further evaluate the scalability of Fly-CL on modern foundation models, we employ
the vision encoder of Qwen2.5-VL-7B (Bai et al., 2025) to extract visual features. As shown in
Table 11, increasing the scale of the pre-trained backbone consistently leads to improved performance.
Furthermore, in Figure 13, we analyze the effect of expanding the projection dimension when using
Qwen2.5-VL. The trend remains consistent with our earlier findings: performance improves steadily
as the expanded dimension grows, but begins to saturate around 10, 000.

Table 11: Performance Comparison on Different Scale Pre-
trained Models. We report overall accuracy (Ā) across three
benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB.

Model CIFAR-100 CUB-200-2011 VTAB
ResNet-50 84.61±0.16 80.25±0.10 94.00±0.15

ViT-B/16 93.89±0.12 93.84±0.18 96.54±0.38

Qwen2.5-VL-7B 95.06±0.23 94.68±0.21 97.45±0.24 Figure 13: Sensitivity Analysis
for Expanded dim m on CUB-
200 with Qwen2.5-VL-7B as
Backbone.

D DETAILED DISCUSSION OF RELATED WORK

D.1 COMPARISON WITH SEVERAL REPRESENTATION-BASED METHODS

We highlight the main advantages of our proposed Fly-CL over several related representation-based
methods, including RanPAC (McDonnell et al., 2023), F-OAL (Zhuang et al., 2024), and RanDumb
(Prabhu et al., 2024).

Comparison with RanPAC. RanPAC employs several Parameter-Efficient Transfer Learning (PETL)
approach (Chen et al., 2022; Jia et al., 2022; Lian et al., 2022) to adapt the pre-trained model
to the downstream domain in the first task, alongside a ridge classification with explicit cross-
validation for all ridge candidates. Although effective, these two components make the entire pipeline
computationally expensive (see Table 1, 2, and 5). In contrast, Fly-CL eliminates the need for PETL
and significantly optimizes the ridge classification process. Additionally, we introduce a sparse
projection layer with a top-k operation, replacing the dense projection with ReLU, and analyze the
impact of data normalization techniques. The speedup for each components can be refered to Table 4.
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Comparison with F-OAL. F-OAL is originally designed for online CL and shares similarities with
Fly-CL in feature extraction, random projection, and decorrelation. Although it can also be adapted to
the CIL setting with batched data, it has several flaws under this circumstance. For instance, F-OAL
lacks the top-k operation to filter noisy components after random projection, and its iterative analytic
classifier may accumulate errors, leading to significant performance degradation on ResNet-50 (see
Table 2). Moreover, while F-OAL is efficient on CUB-200-2011 and VTAB, its computational cost
scales more rapidly with sample size compared to Fly-CL, making it less efficient on CIFAR-100
(see Table 1, 2, and 5).

Comparison with RanDumb. RanDumb shares a similar pipeline with F-OAL and is also designed
for online CL. Like F-OAL, it does not utilize a top-k-like operation, and its fixed penalty coefficient
λ may result in suboptimal performance. Crucially, RanDumb relies on StreamingLDA, which
processes samples sequentially and cannot be parallelized for batch processing. This makes RanDumb
significantly slower than all baselines evaluated in Table 1, 2, and 5.

D.2 SUMMARY OF OTHER COMPARED BASELINES

L2P (Wang et al., 2022b) utilizes a prompt pool P = {P1, P2, · · · , PM} where M is the size of the
pool, to store task-specific knowledge. Each prompt Pi is associated with a learnable key Ki for
key-value selection. By optimizing the cosine distance γ(p(x), ki), where p(x) is the feature selected
by the query function during the training process, L2P can select the most appropriate prompt to
provide information that is specific to the task.

DualPrompt (Wang et al., 2022a) extends the key-value selection and optimization methods of L2P
by further encoding different types of information into a task-invariant prompt g and a task-specific
prompt e. This is shown to be more effective in encoding the learned knowledge. It also decouples
the higher-level prompt space by attaching prompts to different layers, which is crucial for the model
to reduce forgetting and achieve effective knowledge sharing.

EASE (Zhou et al., 2024) first initializes and trains an adapter for each incoming task to encode
task-specific information. It then extracts features of the current task and synthesizes prototypes of
former classes to mitigate the subspace gaps between adapters. Finally, EASE constructs the full
classifier and reweights the logits for prediction.

InfLoRA (Liang & Li, 2024) is a Interference-Free Low-Rank Adaptation method for continual
learning. It injects a small set of parameters to constrain weight updates to a specific subspace.
Critically, this subspace is designed to be orthogonal to the gradients of all past tasks while containing
the gradient subspace of the new task, thereby eliminating interference and achieving an effective
balance between model stability and plasticity.

SEMA (Wang et al., 2025) introduces a self-expansion mechanism by dynamically adding modular
adapters only when significant distribution shifts are detected. Each adapter consists of a functional
module and a representation descriptor, which acts as a novelty detector to determine whether existing
adapters can handle the new task. SEMA further maintains an expandable mixture router to compose
adapters through weighted combination, enabling flexible reuse of old modules while expanding
only on demand. This design achieves a sub-linear parameter growth rate while improving the
stability–plasticity balance across tasks.

MoE-Adapter (Yu et al., 2024) enhances continual learning by injecting a mixture-of-experts adapter
structure into transformer blocks. Each MoE-Adapter contains multiple expert adapters, and a learned
routing network selects or mixes experts conditioned on the input. This architecture allows the model
to capture diverse task-specific patterns while mitigating forgetting through expert specialization. By
leveraging the MoE structure, the method improves representational flexibility and achieves stronger
adaptation capacity compared to using a single shared adapter.

D.3 RELATIONSHIP WITH KANERVA’S SPARSE DISTRIBUTED MEMORY

Kanerva’s Sparse Distributed Memory (SDM) (Kanerva, 1988) is a classical high-dimensional
computing framework in which memory addresses are distributed in a large binary space, and
read/write operations are performed by activating only those locations within a neighborhood defined
by Hamming similarity. To highlight its conceptual connection to Fly-CL, we rewrite the SDM
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forward computation using the same notation as Fly-CL:

ŷ = C⊤(f(Wv)
)
, (19)

where W is an address transformation matrix, C is a content transformation matrix, and f(·) denotes
a binary activation function.

Under this formulation, SDM and Fly-CL share two high-level principles: (i) expansion into a high-
dimensional representational space, which promotes separability and reduces interference; and (ii)
sparse activation, which suppresses noises and enhances discrimination through selective addressing.

Despite these conceptual parallels, Fly-CL differs from SDM in several important ways. First, W in
SDM is updated through iterative read/write operations, whereas Fly-CL employs a fixed, randomly
initialized projection matrix motivated by the fly olfactory circuit. Second, SDM does not incorporate
any decorrelation mechanism analogous to the Fly-CL ridge-based KC-to-MBON transformation.
Third, SDM operates in a binary space: the activation function f(·) produces binary addresses and
similarity is evaluated via Hamming distance, while Fly-CL performs real-valued projections and
uses cosine similarity for downstream matching and classification.

These distinctions illustrate that although Fly-CL and SDM share the broad philosophy of high-
dimensional sparse representations, their architectural assumptions, objectives, and operating regimes
differ substantially.

E TRAINING DETAILS

E.1 PRE-TRAINED MODELS

We use pre-trained ViT-B/16 and ResNet-50 models in our experiments. The ViT-B/16 checkpoint
we used was first pretrained on ImageNet-21K and then fine-tuned on the ImageNet-1K dataset. All
of which are loaded using the timm library. We list the dimensions of the extracted features and the
download links for the checkpoints of each model in Table 12.

Table 12: Information Related to the Pre-trained Models We Used in This Work. We list the
dimensions of the extracted features and provide corresponding download links for these pre-trained
models.

Model feature dimension Link

ViT-B/16 768 Link
ResNet-50 2048 Link

E.2 DATASETS

We evaluate our method on three benchmark datasets for CL tasks. Detailed information about these
datasets, including download links, is provided in Table 13. For the experiments summarized in Tables
1, 2, and 3, we configure the number of training tasks as T = 10 for CIFAR-100 and CUB-200-2011,
with 10 and 20 classes per task, respectively. For VTAB, we set T = 5 with 10 classes per task. In
the longer task sequence experiments (Table 5), we double the task sequence length: for CIFAR-100
and CUB-200-2011, we set T = 20 with 5 and 10 classes per task, respectively, while for VTAB, we
set T = 10 with 5 classes per task. For experiments in Table 6, we set T = 10 with 20 classes per
task.

E.3 EXPERIMENT SETUP

We reproduce the baseline results for L2P, DualPrompt, EASE, and RanPAC using the code provided
by PILOT (Sun et al., 2023), ensuring that the learning parameters for each baseline align with
the description in their original papers. For F-OAL, we adopt their official implementation for
reproduction.

In our proposed Fly-CL, we set the expanded dimension m to 10, 000, p to 300, and k to 3, 000 across
all experiments. For ViT-B/16, we apply standard data normalization, scaling each pixel value to the
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Table 13: Details of CIFAR-100, CUB-200-2011, VTAB Datasets. We list the number of training,
validation samples and classes for the following datasets, along with the download links.

Dataset Training Samples Validation Samples Classes Download Link
CIFAR-100 (Krizhevsky et al., 2009) 50000 10000 100 Link

CUB-200-2011 (Wah et al., 2011) 9430 2358 200 Link
VTAB (Zhai et al., 2019) 1796 8619 50 Link

Imagenet-R Hendrycks et al. (2021a) 24000 6000 200 Link
Imagenet-A Hendrycks et al. (2021b) 5981 1519 200 Link

range [−1, 1]. For ResNet-50, we normalize the input images using ImageNet statistics. Given the
prior knowledge of high multicollinearity in this task, we explore the penalty coefficient range starting
from larger values, specifically from 106 to 109 on a log scale for ViT-B/16 and 104 to 109 for ResNet-
50. Since prompt-based methods and PETL techniques are limited to transformer-based architectures,
we compare Fly-CL only with RanPAC and F-OAL in the ResNet-50 setting. For RanPAC, we remove
PETL and incorporate data normalization following their original implementation (McDonnell et al.,
2023) for ResNet-50. All experiments are conducted using five different random seeds, and we report
the mean ± standard deviation.

E.4 ENVIRONMENTS

All experiments were conducted on a Linux server running Ubuntu 20.04.4 LTS, equipped with an
Intel(R) Xeon(R) Platinum 8358P CPU at 2.60GHz and 8 NVIDIA GeForce RTX 3090 GPUs, using
CUDA version 11.7. For model loading, we employed the timm library (version 0.9.16).

F LIMITATIONS AND FUTURE WORK

Our proposed Fly-CL is theoretically applicable to various scenarios requiring feature separation. Its
lightweight design further suggests potential utility in a wide range of Continual Learning and Metric
Learning tasks.

Recent neuroscience research (Dasgupta et al., 2017) indicates that the random projection layer in the
fly olfactory circuit may not be entirely random. Biological experiments also suggest the presence of
certain constraints within this projection layer. Inspired by these findings, a promising direction for
future research is to explore structuring the projection layer as an entity with learnable parameters,
potentially enhancing its adaptability and performance.

G BROADER IMPACT

Our work provides a new perspective for enhancing the efficiency of CL using pre-trained models,
which is crucial for real-world deployment, especially with increasingly large modern models. Fly-CL
can help AI researchers and developers create more efficient CL algorithms.

On the other hand, the efficiency improvements in CL could potentially accelerate the development
of AI systems that rapidly adapt to new domains without proper safeguards. This might lead to: (1)
amplified propagation of biases present in sequential datasets, (2) reduced transparency as models
continuously evolve beyond their initial training, and (3) potential misuse for generating tailored
content at scale. We recommend implementing rigorous monitoring frameworks to track model
behavior across learning phases.

H LLM USAGE DECLARATION

During the preparation of this manuscript, a large language model was employed exclusively for
language refinement. Its role was limited to rephrasing certain passages and enhancing the overall
clarity and readability of the text. All conceptual contributions, theoretical derivations, experimental
design, and analysis were independently developed and verified by the authors. The LLM was not
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involved in generating research ideas, shaping methodologies, or producing novel scientific content.
The authors bear full responsibility for the entirety of the paper.
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