
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLY-CL: A FLY-INSPIRED FRAMEWORK FOR EN-
HANCING EFFICIENT DECORRELATION AND REDUCED
TRAINING TIME IN PRE-TRAINED MODEL-BASED CON-
TINUAL REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Using a nearly-frozen pretrained model, the continual representation learning
paradigm reframes parameter updates as a similarity-matching problem to miti-
gate catastrophic forgetting. However, directly leveraging pretrained features for
downstream tasks often suffers from multicollinearity in the similarity-matching
stage, and more advanced methods can be computationally prohibitive for real-time,
low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a
bio-inspired framework compatible with a wide range of pretrained backbones. Fly-
CL substantially reduces training time while achieving performance comparable to
or exceeding that of current state-of-the-art methods. We theoretically show how
Fly-CL progressively resolves multicollinearity, enabling more effective similarity
matching with low time complexity. Extensive simulation experiments across
diverse network architectures and data regimes validate Fly-CL’s effectiveness in
addressing this challenge through a biologically inspired design.

1 INTRODUCTION

Artificial neural networks have exhibited remarkable capabilities across various domains in recent
years. Nevertheless, real-world applications often require continuous model adaptation to handle
progressively emerging unseen scenarios, making updates based on sequential incoming data essential.
This need has led to the development of Continual Learning (CL). Earlier research primarily focused
on training models from scratch (Aljundi et al., 2018; Kirkpatrick et al., 2017; Li & Hoiem, 2017;
Zenke et al., 2017). Pretrained models have recently become prominent in CL, owing to their robust
generalization in downstream tasks for downstream tasks (Wang et al., 2022a;b) .

Popular CL methods utilizing pre-trained models can generally be classified into three categories:
(1) prompt-based approaches (Jung et al., 2023; Smith et al., 2023; Tang et al., 2023; Wang et al.,
2022a;b), (2) mixture-based approaches (Chen et al., 2023; Gao et al., 2023; Wang et al., 2023a;b;
Zhou et al., 2023b), and (3) representation-based approaches (McDonnell et al., 2023; Sun et al.,
2025; Zhou et al., 2023a; 2024; Zhuang et al., 2024). All three paradigms operate without exemplars
and significantly outperform traditional training-from-scratch methods. Despite their strengths, each
approach has limitations. Prompt-based methods are constrained to transformer architectures, and
updating prompts inherently risks propagating forgetting within the prompt space. Mixture-based
approaches require storing previous models, resulting in significant storage overhead and increased
computational complexity during model fusion. Compared with parameter-learning approaches,
representation-based methods perform better by reframing learning as similarity matching
and avoiding dependence on a specific backbone. They form class prototypes (CPs) by averaging
features extracted by a frozen pretrained network, with each prototype acting as the centroid of its class.
However, insufficient separation between features can lead to ambiguous decision boundaries
when distinguishing between prototypes, complicating the similarity matching process. This
challenge is formally recognized as the multicollinearity problem. Previous studies (McDonnell
et al., 2023) have attempted to address this issue, but they still incur substantial computational costs,
hindering real-world deployment.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Schematic of the Fly Olfactory Circuit. Odors are first detected and pre-processed by
olfactory receptor neurons (ORNs) in the antennal lobe, where feature extraction and normalization
take place, before being transmitted to projection neurons (PNs). Expansion coding occurs as signals
move from PNs to Kenyon cells (KCs), with an expansion ratio of approximately 40. Each KC
connects to a fixed number of PNs (about 6). Lateral inhibition, mediated by an anterior paired
lateral (APL) neuron, suppresses most weakly activated KCs, exemplifying a winner-take-all strategy.
Finally, signals from KCs to mushroom body output neurons (MBONs) involve a dense down-
projection that reduces dimensionality to select specific actions.

In biological systems, pattern separation is a well-recognized circuit motif across cerebellum-like
and related networks, including the cerebellum, the hippocampus, and the fly olfactory system (Lin
et al., 2014; Papadopoulou et al., 2011; Stevens, 2015; Zang & De Schutter, 2023). These neural
circuits implement efficient decorrelation of overlapping sensory inputs. Figure 1 illustrates the
information processing mechanism in the fly olfactory circuit. The process unfolds in several steps: in
response to an odor stimulus, olfactory neurons extract and pre-process odor information represented
as a 50-dimensional vector (PNs). These pre-extracted features are then randomly projected into
expanded dimensions (KCs), selectively activating a small subset of KCs that receive the strongest
excitation while zeroing out others. The high-dimensional features in KCs subsequently converge to
low-dimensional MBONs for classification. Over the years, numerous studies have highlighted the
role of the PN→KC transformation in producing decorrelated representations, and many strategies
have been proposed to model this process. By contrast, the downstream KC→MBON transformation
has received far less attention, and a clear theory of its contribution to decorrelation has yet to be
established. To address this gap, we examine whether the KC→MBON pathway also supports
decorrelation.

Inspired by the fly olfactory circuit, we propose Fly-CL, an efficient framework for progressive
decorrelation in representation-based learning with pre-trained models. The pipeline starts with
feature extraction and normalization using a pre-trained model, followed by random sparse projection
into a high-dimensional space and a top-k operation for collective decorrelation, mimicking the PN-
to-KC process. We then implement a similarity matching mechanism between class prototypes that
mimics the KC-to-MBON structure during inference, and an efficient streaming ridge classification
method to decorrelate parameter weights during training. Empirical results show substantially reduced
time consumption versus baseline methods.

Our main contributions are as follows:

1. We propose an efficient and biologically plausible decorrelation framework that significantly
reduces computational costs compared to current SOTA methods while achieving comparable or
improved performance in CL.

2. Our method’s effectiveness and robustness in decorrelation are validated by extensive experiments
under various data setups and model architectures, supported by theoretical and empirical analyses.

3. The alignment of our framework with the fly olfactory circuit suggests that biological structures
can inspire effective and efficient solutions to AI problems.

2 RELATED WORK

Representation-based methods in CL using Pre-trained Models: Representation-based methods
(McDonnell et al., 2023; Sun et al., 2025; Zhou et al., 2023a; 2024) demonstrate superior performance

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

over parameter-learning approaches by leveraging features extracted from a frozen pre-trained
model to compute similarities with class prototypes. They are also more practical for resource-
constrained deployments (e.g., edge computing scenarios), since they avoid updating the entire model.
For instance, in a smart camera system, such methods enable the efficient addition of new object
recognition capabilities without retraining the entire model. While showing promising progress,
their computational overhead remains substantial, which may limit their applicability in scenarios
requiring real-time responses.

Fly Olfactory Circuit: Information processing in cerebellum-like circuits, including the fly olfac-
tory circuit, involves several stages (Lin et al., 2014; Papadopoulou et al., 2011; Stevens, 2015; Zang
& De Schutter, 2023). Theoretical neuroscience studies suggest that most stages exhibit progressive
feature separation effects (Hige et al., 2015). Algorithms inspired by the fly olfactory circuit have
been applied across various AI domains, including locality-sensitive hashing (Dasgupta et al., 2017;
Ryali et al., 2020; Sharma & Navlakha, 2018), word embedding (Liang et al., 2021), and federated
learning (Ram & Sinha, 2022).

3 BACKGROUND

3.1 PROBLEM STATEMENT

In this paper, we focus on CL within the context of image classification tasks. We denote sequentially
arriving tasks as D = {D1, . . . ,DT }, where each task Dt = {(xi

t, y
i
t)}

nt
i=1 consists of nt samples.

Each sample xi
t within a task is drawn from the input space Xt, and its corresponding label yit belongs

to the label space Yt. The training process involves sequential learning from D1 to DT , followed by
class prediction on an unseen test set spanning the full label space.

To demonstrate the effectiveness and efficiency of our framework, we adopt Class Incremental
Learning (CIL), a widely used experimental setup. Unlike traditional Task Incremental Learning,
CIL does not provide access to the task ID during the testing process, making it more challenging. In
CIL, the model learns mutually exclusive classes within each task, ensuring that the intersection of
label spaces satisfies Yi ∩ Yj = ∅. We denote that there are ct classes for the first t tasks.

3.2 REPRESENTATION-BASED PARADIGM IN CL

We study on the basis of the recently popular representation-based paradigm using pre-trained models
(McDonnell et al., 2023; Sun et al., 2025; Zhou et al., 2023a; 2024), which demonstrates superior
performance for CL. Given an input image xi

t, it is first compressed into a d-dimensional feature
vi
t = fθ(x

i
t) ∈ Rd using a pre-trained encoder fθ. For each class i in task t, we compute its prototype

by averaging features over all training samples belonging to this class:

µi
t =

1

Ni

|Dt|∑
j=1

I(yjt = i)fθ(x
j
t) ∈ Rd, (1)

where Ni =
∑|Dt|

j=1 I(yj = i) denotes the cardinality of class i’s training set, and I(·) is the indicator
function. During inference, for a test sample with feature vector v, the predicted class ŷ is determined
by finding the maximum cosine similarity between v and all learned class prototypes:

ŷ = argmax
t,i

v⊤µi
t

∥v∥ · ∥µi
t∥
. (2)

However, significant inter-prototype correlations (E[µmi⊤
ti µ

mj

tj]≫ 0, see Figure 3(a)), can severely
compromise the discriminative power of the similarity measurement (Belsley et al., 2005). This
phenomenon arises because high correlations reduce the effective angular separation between classes
in the embedding space, leading to ambiguous decision boundaries. Specifically, when prototypes
cluster near a dominant direction in Rd, the cosine similarity metric becomes less sensitive to subtle
but critical inter-class distinctions, thereby degrading classification performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 FLY-CL

In this section, we detail the design motivation and functionality of each component of our Fly-CL
framework. A schematic of the overall framework is provided in Figure 2, along with the pseudocode
for the training and inference pipeline in Appendix A. The decorrelation effect of each component is
visualized in Figure 3.

Figure 2: Schematic of the Fly-CL Framework. Left: Our framework extracts image embeddings
using a frozen pre-trained model, projects them into a higher-dimensional space via a fixed sparse
random projection, and filters them through a top-k operation (PNs → KCs). Then we utilize a
learned down-projection for similarity matching during inference time (KCs→MBONs). Right:
During the training phase, the parameter Ct is learned via a streaming ridge classification scheme.

4.1 SPARSE RANDOM PROJECTION AND TOP-K OPERATION

Building upon the representation-based paradigm, it is necessary to decouple different class prototypes.
Inspired by the decorrelation mechanism of the fly olfactory circuit, we emulate the sparse expansion
projection from PNs to KCs, followed by winner-take-all inhibition mediated by APL neurons. Given
a feature embedding v ∈ Rd extracted from the pre-trained encoder, we formulate the transformation
Z(v) : Rd → Rm as:

h′ = Z(v) = top-k(h) = top-k (Wv) , (3)
where the fixed projection matrix W ∈ Rm×d (with m≫ d) implements weight sparsity: each row
contains exactly p (p < d) non-zero entries independently sampled fromN (0, 1). The top-k operator
implements activation sparsity by preserving only the k largest components (k < m) while zeroing
out others, formally defined as:

[h′]i =

{
[h]i if the magnitude of [h]i is among the top-k values of h,
0 otherwise.

(4)

This two-stage process achieves effective decorrelation through the following properties, and its
empirical effect is visualized in the transformation from Figure 3(a) to (b).

1. High-Dimensional Embedding Enhances Linear Separability: Random projection of low-
dimensional features into an extremely high-dimensional space can improve the linear separability of
the feature representations (Litwin-Kumar et al., 2017).

2. Powerful Inhibition Suppresses Noisy Components: The top-k operation imposes sparsity by
suppressing noisy dimensions that may interfere with discrimination through dimensional competition,
while enhancing separation by keeping the most discriminative dimensions (Metwally et al., 2006).

Considering computational efficiency, W ’s sparse pattern reduces the time complexity for random
projection from O(mntd) to O(mntp) while preserving the core representational capacity compared
to dense projection. Similarly, the top-k operation reduces similarity matching complexity from
O(mntct) to O(kntct), while simultaneously improving performance.

We further propose two theorems to demonstrate that strong sparsity does not significantly degrade
performance. According to Theorem 4.1, as long as p and d are not extremely small, the matrix W
retains full column rank with probability 1− o(1), which is a common approach to demonstrate that

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) After feature extraction (b) After random projection (c) After similarity matching

Figure 3: Pearson Correlation Coefficients of Prototypes at Different Decorrelation Stages in
Fly-CL. Heatmaps display Pearson correlation coefficients for 10 randomly selected class prototypes
at each stage of our pipeline (consistent across visualizations).

a sparse random projection does not result in severe information loss. Furthermore, in Theorem 4.2,
by proving that the performance degradation between this sparsification operation and the original
vector is bounded, we show that if k is not extremely small, it can preserve most of its performance.
For a complete proof, please refer to Appendix B.

Theorem 4.1. Given the matrix W ∈ Rm×d, where m > d, with each row having exactly p non-zero
entries, which are randomly sampled from N (0, 1). LetW ∈ Rd×d be any square submatrix of W .
Then, for any ϵ > 0, it holds that

P
(
| det(W)| ≥

(p
d

)d/2√
d! exp(−d1/2+ϵ)

)
= 1− o(1).

Thus, for sufficiently large p and d, any submatrixW is invertible with probability at least 1− o(1).

Theorem 4.2. For top-k sparsification in the expanded dimension m, the performance degradation
is bounded by:

E [|L(h, y)− L(h′, y)|] ≤M ·
√

C

k
· E[∥h∥22],

where L(·) is a performance loss function for downstream tasks and C, M are constants. To ensure
negligible performance degradation, we require:√

C

k
· E[∥h∥22] ≤ O

(
1√
mα

)
,

i.e., when k = Ω(mα) (0 < α < 1), the error bound decays polynomially with increasing dimension.

4.2 STREAMING RIDGE CLASSIFICATION

Previous studies on decorrelation in the fly olfactory circuit have primarily focused on the transfor-
mation from PNs to KCs, where sparse and decorrelated representations have been experimentally
observed. In contrast, the downstream transformation from KCs to MBONs has received little
attention in this regard, and the physiological evidence remains inconclusive. This gap motivates us
to investigate whether the KC→MBON pathway can also facilitate decorrelation. To better align
with the goal of CL, we model it using a streaming ridge classification framework with adaptive
regularization, which naturally achieves decorrelation while ensuring computational efficiency and
compatibility with sequential data. Ridge classification (Hoerl & Kennard, 1970) mitigates feature
collinearity through ℓ2-regularization, trading increased bias for reduced variance by shrinking cor-
related feature weights, thereby stabilizing prototype estimation in non-i.i.d. sequential learning
scenarios. Let Ht ∈ Rnt×m denote the concatenation of high-dimensional features h′ for nt samples
in task t, and Yt ∈ {0, 1}nt×ct represent the corresponding one-hot label matrix for the total ct
classes. We maintain two streaming statistics: a Gram matrix G ∈ Rm×m, which captures self-
correlated statistics, and a matrix S ∈ Rm×ct , which accumulates cross-dimensional weights for
each class prototype. During each task iteration t, these are updated as follows:

Gt ← Gt−1 +H⊤
t Ht, St ← St−1 +H⊤

t Yt. (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The classifier matrix C ∈ Rm×ct is updated via regularized least squares accordingly:

Ct = (Gt + λIm)−1St. (6)

Prediction for preprocessed new samples h′ ∈ Rm follows:

ŷ = arg max
i∈{1,...,ct}

h′⊤C·,i, (7)

where C·,i denotes the i-th column of modulated prototypes.

Adaptive Regularization: Due to the inherent heterogeneity of different tasks, a fixed penalty
coefficients λ will cause suboptimal performance. For adaptive regularization, vanilla λ selection via
grid search and cross-validation incurs prohibitive computational costs of O(lm3) for l candidates
where the expanded feature dimension m is extremely large (McDonnell et al., 2023). To achieve our
efficiency desideratum, we draw inspiration from an adaptive Generalized Cross-Validation (GCV)
(Golub et al., 1979) framework that analytically approximates cross-validation error without explicit
validation steps that require calculating large matrix inverses.

Given new task data Ht ∈ Rnt×m, we first obtain its singular value decomposition (SVD) as
Ht = UtΣtV

⊤
t , where Ut ∈ Rnt×r and Vt ∈ Rm×r are semi-orthogonal column matrices that

satisfy UtU
⊤
t = Int

, VtV
⊤
t = Im, and Σt = diag(s1, . . . , sr) ∈ Rr×r contains non-zero singular

values with r = rank(Ht) = min(nt,m) (typically it’s of full rank, since numerical computation
is usually precise). The time complexity for SVD is O(ntrm). For l candidate regularization
coefficients λ ∈ Λ = {λmin, . . . , λmax} on a log scale, we use the following steps to compute the
GCV criterion for each one:

First, in O(lr) time, we get the shrinkage matrix and calculate the effective degrees-of-freedom by:

Dt =
Σ2

t

Σ2
t + λIr

, df(λ) = tr(Dt) =

r∑
i=1

s2i
s2i + λ

. (8)

Then, we reconstruct the prediction value of ridge regression in O(lntrct) time by

Ŷt = Ut(vecdiag(Dt)⊗ 1⊤
c)⊙U⊤

t Yt, (9)

where the ⊗ denotes the outer product, ⊙ denotes the Hadamard product, vecdiag denotes extracting
the diagonal elements and concatenating them into a column vector. Finally, we can get the GCV
value by

GCV(λ) =
∥Yt − Ŷt(λ)∥2F
nt

(
1− df(λ)

nt

)2 , (10)

with time complexity being O(lntct). The optimal regularization parameter is then selected by:

λ∗
t = argmin

λ∈Λ
GCV(λ). (11)

Considering projected dimension m is extremely large, we can make a mild assumption m > nt, and
lct ≪ m, thus r = min(nt,m) = nt. The original l loop complexity is O(lntrct) = O(ln2

t ct)≪
O(n2

tm) = O(ntrm). Hence, the time complexity is reduced to being determined by SVD, at
O(n2

tm). Compared to vanilla cross-validation that takes O(lm3), time consumption is greatly
reduced.

Accelerated Prototype Calculation: Upon determining the optimal regularization parameter λ
through GCV, we solve Eq. 6 to obtain class prototypes Ct. While vanilla matrix inversion via LU
decomposition provides a baseline implementation, for the sake of computational efficiency, we
exploit the inherent positive-definiteness of Gt + λtIt to achieve computational acceleration through
Cholesky factorization by:

LtL
⊤
t = Gt + λ∗

t Im, Ct = L−⊤
t (L−1

t St), (12)

where Lt denotes the lower-triangular Cholesky factor. This approach reduces theoretical complexity
from O(23m

3) to O(13m
3) for factorization, with triangular solves requiring half the FLOPs of

general linear system solutions. The numerical stability of this method is ensured by the condition
number bound κ(Lt) ≤ κ(Gt + λ∗

t Im), making it particularly suitable for ill-conditioned streaming
scenarios where Gt may accumulate numerical noise over tasks. The decorrelation effect of the
streaming ridge classification is visualized via the transformation from Figure 3(b) to (c).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on Pre-trained ViT-B/16 Models. We report the average
training time per task (τtrain), average post-extraction training time (τpost), and overall accuracy (Ā)
across three benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
L2P 263.54±0.10 183.56±0.36 87.74±0.46 52.02±0.04 37.03±0.07 77.48±1.43 42.10±0.04 36.45±0.02 81.24±0.67

DualPrompt 231.89±0.63 153.66±0.47 87.47±0.58 46.28±0.05 31.64±0.06 79.89±1.44 38.14±0.16 31.64±0.06 80.85±1.34

EASE 621.26±1.05 583.4±0.76 92.96±0.25 138.78±0.36 122.48±0.27 89.56±0.43 108.35±0.97 94.73±1.11 94.02±0.15

RanPAC 98.62±0.42 84.42±0.44 94.21±0.11 37.95±0.15 33.83±0.13 92.67±0.20 63.68±0.18 61.44±0.17 94.16±0.32

F-OAL 71.05±0.23 57.13±0.19 91.96±0.29 6.24±0.09 2.04±0.05 91.13±0.15 3.19±0.05 1.03±0.02 94.68±0.32

Fly-CL 19.07±0.07 5.38±0.01 93.89±0.12 4.43±0.11 0.35±0.01 93.84±0.18 2.48±0.13 0.34±0.03 96.54±0.38

Table 2: Performance Comparison on Pre-trained ResNet-50 Models. We report the average
training time per task (τtrain), average post-extraction training time (τpost), and overall accuracy (Ā)
across three benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB. The best results are
highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
RanPAC 55.68±0.97 46.65±0.88 82.72±0.22 58.74±0.84 54.35±0.99 78.72±0.40 50.15±0.36 47.94±0.38 92.80±0.40

F-OAL 80.74±0.35 71.78±0.35 66.63±0.71 5.19±0.09 1.69±0.01 60.84±1.67 2.76±0.03 0.55±0.01 26.15±2.50

Fly-CL 14.28±0.04 5.25±0.01 84.61±0.16 3.90±0.31 0.44±0.08 80.25±0.10 2.53±0.10 0.34±0.02 94.00±0.15

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Backbones: We conduct experiments using various architectures, including
transformer-based and CNN-based backbones. Specifically, we utilize the Vision Transformer
(ViT-B/16) (Dosovitskiy et al., 2020) and ResNet-50 (He et al., 2016) as representative architectures.
We test our method on five widely used datasets: CIFAR-100 (Krizhevsky et al., 2009), CUB-200-
2011 (Wah et al., 2011), VTAB (Zhai et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and
ImageNet-A (Hendrycks et al., 2021b). Further details of the data setup are provided in Appendix E.

Baselines: We compare Fly-CL against five baselines, including two prompt-based approaches:
L2P (Wang et al., 2022b) and DualPrompt (Wang et al., 2022a), as well as three representation-based
methods: EASE (Zhou et al., 2024), RanPAC (McDonnell et al., 2023), and F-OAL (Zhuang et al.,
2024). In Fly-CL, we find that applying data normalization according to the specific combination
of backbone and dataset is beneficial; a detailed analysis can be found in Appendix C.3. For a fair
comparison, all baselines use the same data normalization strategy as Fly-CL. Comparisons among
the different baselines and implementation details are provided in Appendices D and E, respectively.

Evaluation Metrics: To assess CL performance, we employ two metrics: average accuracy (At)
and overall accuracy (Ā). The average accuracy at stage t is defined as: At =

1
t

∑t
i=1 at,i, where

at,i denotes the test accuracy on the i-th task after training on the t-th task. The overall accuracy
is computed as the mean of At across all T tasks: Ā = 1

T

∑T
i=1 At. To evaluate computational

efficiency, we introduce two time-related metrics: average training time per task (τtrain) and average
post-extraction training time (τpost). Here, τtrain represents the total training time amortized across all
tasks, while τpost is derived by subtracting the average feature extraction time for each task (using the
pre-trained model) from τtrain. τpost is a more precise metric for evaluating algorithm-specific time
consumption, as it excludes the shared preprocessing overhead. 1

5.2 LOW LATENCY AND HIGH ACCURACY

The main CL results across various datasets, architectures, and task settings are summarized in Tables
1, 2, and 5. Our framework’s key strength is achieving CL accuracy comparable to or exceeding SOTA

1τtrain and τpost are measured in seconds (wall clock time); At and Ā are measured in %.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance Comparison on Pre-trained ViT-B/16 Models using Online Learning
Setting. ◦ denotes methods in online mode. We report the average training time per task (τtrain),
average post-extraction training time (τpost), and overall accuracy (Ā) across three benchmark datasets:
CIFAR-100, CUB-200-2011, and VTAB. The best results are highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
RanPAC◦ 1236.74±1.36 1223.56±1.07 92.48±0.31 242.54±1.56 238.36±1.47 91.89±0.26 122.89±0.46 120.69±0.42 93.41±0.57

F-OAL◦ 164.58±0.71 151.27±0.64 91.48±0.42 31.34±0.32 27.20±0.28 91.60±0.22 11.49±0.14 9.47±0.16 95.28±0.21

Fly-CL◦ 25.46±0.32 12.57±0.26 92.96±0.14 6.44±0.08 2.33±0.05 92.59±0.13 3.17±0.05 1.09±0.04 96.38±0.24

performance with significantly lower computational costs, as measured by both τtrain and τpost. In
Table 1, using ViT-B/16, Fly-CL reduces τpost by 91% on CIFAR-100 with only a marginal accuracy
drop of 0.32% compared to SOTA methods. On CUB-200-2011 and VTAB, Fly-CL achieves 83%
and 67% reductions in τpost versus the most efficient baseline while improving overall accuracy by
1.17% and 2.38% over the best-performing methods, respectively. In Table 2, with ResNet-50, Fly-CL
improves overall accuracy by 1.89%, 1.53%, and 1.20% on CIFAR-100, CUB-200-2011, and VTAB,
respectively, while reducing τpost by 93%, 74%, and 38% versus the most efficient baselines. These
improvements align with transformer-based backbone trends. Notably, F-OAL exhibits significant
performance degradation on CNN backbones, presumably due to error accumulation in its iterative
update mechanism, but Fly-CL does not suffer from this issue. These results highlight Fly-CL’s
ability to balance computational efficiency and accuracy across diverse CL scenarios, demonstrating
its robustness. Results on datasets with severe domain shifts are presented in Table 6.

Additionally, the time difference between τtrain and τpost in Tables 1 and 2 indicates that feature
extraction becomes the dominant time consumer in Fly-CL. For a fair comparison with the baselines,
we do not apply additional acceleration techniques here. However, in practical applications, tech-
niques like model quantization (e.g., INT8) can further reduce feature extraction time by around 4×
without significant accuracy degradation, thereby enhancing the speedup ratio. For hardware-specific
deployment, frameworks like TVM (Chen et al., 2018) can be utilized to maximize efficiency.

Furthermore, Fly-CL can be easily adapted to Online CL setups by updating the G and S matrices
and solving Eq. 6 for each batch, without concatenating all batch embeddings within a task. The
results in Table 3 indicate that batch-mode Fly-CL remains superior to other baselines in training
time and is also competitive in accuracy.

5.3 FACTORS CONTRIBUTING TO COMPUTATIONAL SPEEDUP

Our analysis in Sections 4.1 and 4.2 demonstrates that the proposed framework achieves significant
speedup over the vanilla implementation through component-level optimizations. To quantify these
improvements precisely, we split the post-extraction training time into three key components (as
illustrated in Figure 2) and evaluate Fly-CL against its vanilla implementation under the CUB-200-
2011 setting in Table 4. The components include: (1) Random Projection: Acceleration via weight
sparsity induced by sparse projection versus the dense version. (2) Ridge Selection: Time reduction
achieved by GCV, which eliminates the need for explicit cross-validation. (3) Prototype Calculation:
Optimization from LU decomposition to Cholesky factorization. Additionally, the inference stage
also benefits from the activation sparsity induced by the top-k operation in similarity comparisons.

Table 4: Time Savings for Post-Extracting Components on CUB-200-2011. We compare the theo-
retical time complexity per task (Ttheory) and the actual runtime per task (Tactual) for each component
on an NVIDIA GeForce RTX 3090 GPU. The optimized implementations demonstrate significant
speedups across all components.

Method Random Projection Ridge Selection Prototype Calculation Similarity Comparison
Ttheory Tactual Ttheory Tactual Ttheory Tactual Ttheory Tactual

vanilla O(mntd) 0.22±0.03 O(lm3) 7.34±0.12 O(23m
3) 0.20±0.01 O(mntct) 0.21±0.01

optimized O(mntp) 0.08±0.02 O(mn2
t) 0.14±0.01 O(13m

3) 0.10±0.01 O(kntct) 0.08±0.01

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 ABLATION STUDY AND HYPERPARAMETER SENSITIVITY ANALYSIS

Using ViT-B/16 as the backbone, we conduct ablation studies by individually removing the projection
layer (w/o proj), the streaming ridge classification (w/o ridge), and the data normalization components
(w/o norm). The results in Figure 4 demonstrate that each component contributes significantly to
overall performance. Removing any of these components, or all of them (w/o all), leads to noticeable
performance degradation.

We also analyze the sensitivity of the key hyperparameters in Fly-CL: m (projection dimension),
p (weight sparsity), and k (activation sparsity) in Figure 5. Increasing m improves accuracy, with
performance saturating beyond m = 10, 000. Notably, Fly-CL does not suffer from the curse of
dimensionality, which can be attributed to the fact that random projection into a higher-dimensional
space preserves pairwise distances between data points, as guaranteed by the Johnson-Lindenstrauss
Lemma (Johnson et al., 1984). CL performance increases monotonically with p, and no significant
performance drop occurs as long as p does not take an excessively small value. A sufficiently large
k value avoids information loss, while a smaller value suppresses noisy dimensions. Thus, finding
an appropriate trade-off can lead to optimal accuracy. Encouragingly, Figure 5(c) shows a broad
plateau for optimal k selection. Based on our empirical results, we set m = 10, 000, p = 300, and
k = 3, 000 as default values.

10 20 30 40 50 60 70 80 90 100
number of classes

75

80

85

90

95

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

Fly-CL
w/o proj
w/o ridge
w/o norm
w/o all

(a) CIFAR-100

10 20 30 40 50 60 70 80 90 100
number of classes

80

85

90

95

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

Fly-CL
w/o proj
w/o ridge
w/o norm
w/o all

(b) CUB-200-2011

10 20 30 40 50
number of classes

75

80

85

90

95

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

Fly-CL
w/o proj
w/o ridge
w/o norm
w/o all

(c) VTAB

Figure 4: Accuracy Curves from Ablation Studies on Three Datasets. We report average accuracy
(At) for each stage. w/o refers to the removal of the specific component.

(a) Expanded dim m (b) Sparsity level p (c) Coding level k

Figure 5: Sensitivity Analysis for Expanded dim m, Weight Sparsity p, and Activation Sparsity
k on CUB-200-2011. We report average accuracy in last task (AT) and overall accuracy (Ā). The
dots denote the default values we use across experiments.

6 CONCLUSION

In this work, inspired by the decorrelation mechanism in the fly olfactory circuit, we propose
an efficient CL framework, Fly-CL. Fly-CL significantly reduces computational overhead during
training while achieving competitive performance compared to SOTA methods. This framework
integrates several key components: data normalization, feature extraction, sparse random projection
with top-k operation, and streaming ridge classification, each contributing to the overall efficiency
and effectiveness of the system. This work establishes that neurobiological principles—particularly
sparse coding and progressive decorrelation—can effectively address fundamental efficiency-accuracy
trade-offs in artificial continual learning systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

David A Belsley, Edwin Kuh, and Roy E Welsch. Regression diagnostics: Identifying influential data
and sources of collinearity. John Wiley & Sons, 2005.

Haoran Chen, Zuxuan Wu, Xintong Han, Menglin Jia, and Yu-Gang Jiang. Promptfusion: Decoupling
stability and plasticity for continual learning. arXiv preprint arXiv:2303.07223, 2023.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End}
optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 578–594, 2018.

Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to statistical modeling
of extreme values, volume 208. Springer, 2001.

Sanjoy Dasgupta, Charles F. Stevens, and Saket Navlakha. A neural algorithm for a fundamental
computing problem. Science, 358(6364):793–796, 2017. doi: 10.1126/science.aam9868.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. Limiting forms of the frequency distribution
of the largest or smallest member of a sample. In Mathematical proceedings of the Cambridge
philosophical society, volume 24, pp. 180–190. Cambridge University Press, 1928.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang.
A unified continual learning framework with general parameter-efficient tuning. In ICCV, pp.
11483–11493, October 2023.

Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15262–15271, 2021b.

Toshihide Hige, Yoshinori Aso, Gerald M Rubin, and Glenn C Turner. Plasticity-driven individ-
ualization of olfactory coding in mushroom body output neurons. Nature, 526(7572):258–262,
2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
for rehearsal-free continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11847–11857, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in Neural Information Processing Systems, 35:
109–123, 2022.

Yuchen Liang, Chaitanya K Ryali, Benjamin Hoover, Leopold Grinberg, Saket Navlakha, Mo-
hammed J Zaki, and Dmitry Krotov. Can a fruit fly learn word embeddings? arXiv preprint
arXiv:2101.06887, 2021.

Andrew C Lin, Alexei M Bygrave, Alix De Calignon, Tzumin Lee, and Gero Miesenböck. Sparse,
decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nature
neuroscience, 17(4):559–568, 2014.

Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and LF Abbott.
Optimal degrees of synaptic connectivity. Neuron, 93(5):1153–1164, 2017.

Mark D McDonnell, Dong Gong, Amin Parveneh, Ehsan Abbasnejad, and Anton van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. arXiv preprint
arXiv:2307.02251, 2023.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. An integrated efficient solution for
computing frequent and top-k elements in data streams. ACM Transactions on Database Systems
(TODS), 31(3):1095–1133, 2006.

Maria Papadopoulou, Stijn Cassenaer, Thomas Nowotny, and Gilles Laurent. Normalization for
sparse encoding of odors by a wide-field interneuron. Science, 332(6030):721–725, 2011.

Ameya Prabhu, Shiven Sinha, Ponnurangam Kumaraguru, Philip HS Torr, Ozan Sener, and Puneet K
Dokania. Random representations outperform online continually learned representations. arXiv
preprint arXiv:2402.08823, 2024.

Parikshit Ram and Kaushik Sinha. Federated nearest neighbor classification with a colony of fruit-
flies. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8036–8044,
2022.

Chaitanya Ryali, John Hopfield, Leopold Grinberg, and Dmitry Krotov. Bio-inspired hashing for
unsupervised similarity search. In International conference on machine learning, pp. 8295–8306.
PMLR, 2020.

Jaiyam Sharma and Saket Navlakha. Improving similarity search with high-dimensional locality-
sensitive hashing. arXiv preprint arXiv:1812.01844, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In CVPR, pp. 11909–11919, 2023.

Charles F Stevens. What the fly’s nose tells the fly’s brain. Proceedings of the National Academy of
Sciences, 112(30):9460–9465, 2015.

Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Pilot: A pre-trained model-based
continual learning toolbox. arXiv preprint arXiv:2309.07117, 2023.

Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, and Han-Jia Ye. Mos: Model
surgery for pre-trained model-based class-incremental learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 20699–20707, 2025.

Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning does not
meet strong pretraining. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1706–1716, 2023.

Terence Tao and Van Vu. On random ±1 matrices: singularity and determinant. Random Struct.
Algor., 28(1):1–23, 2006.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. arXiv
preprint arXiv:2310.07234, 2023a.

Yabin Wang, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su, and Xiaopeng Hong. Isolation
and impartial aggregation: A paradigm of incremental learning without interference. In AAAI,
volume 37, pp. 10209–10217, 2023b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. arXiv preprint arXiv:2204.04799, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In CVPR, pp.
139–149, 2022b.

Yunliang Zang and Erik De Schutter. Recent data on the cerebellum require new models and theories.
Current Opinion in Neurobiology, 2023.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
ing with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023a.

Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Learning
without forgetting for vision-language models. arXiv preprint arXiv:2305.19270, 2023b.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In CVPR, 2024.

Huiping Zhuang, Yuchen Liu, Run He, Kai Tong, Ziqian Zeng, Cen Chen, Yi Wang, and Lap-Pui
Chau. F-oal: Forward-only online analytic learning with fast training and low memory footprint in
class incremental learning. Advances in Neural Information Processing Systems, 37:41517–41538,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ALGORITHM PSEUDOCODE

Algorithm 1 Fly-CL Training Pipeline

Input: Sequentially arriving data Dt = {(xt
i, y

t
i)}

nt
i=1 where t = 1, . . . , T . Pre-trained encoder

fθ. Projection operator Z(·) : Rd → Rm. Penalty coefficient candidates Λ = {λ1, . . . , λl}.
Zero-initialized matrices G0 ∈ Rm×m and S0 ∈ Rm×ct .

Output: Modulated Prototypes C ∈ Rm×ct .
1: for t = 1, . . . , T do
2: r = min(nt,m)
3: Get compressed embedding for each datum vt

i = fθ(x
t
i) ∈ Rd

4: Transform to high-dim sparse embedding Z(vt
i) = top-k (Wvt

i) ▷ O(mntp)
5: Concatenate Z(vt

i) to get Ht ∈ Rnt×m

6: Gt ← Gt−1 +H⊤
t Ht ▷ O(ntm

2)
7: St ← St−1 +H⊤

t Yt ▷ O(ntctm)
8: Ut,Σt,Vt = svd(Ht) ▷ O(ntrm)
9: for λ ∈ Λ do

10: Dt =
Σ2

t

Σ2
t+λIr

▷ O(lr)

11: df(λ) = tr(Dt) =
∑r

i=1
s2i

s2i+λ
▷ O(lr)

12: Ŷt = Ut(vecdiag(Dt)⊗ 1⊤
c)⊙U⊤

t Yt ▷ O(lntrct)

13: GCV(λ) =
∥Yt−Ŷt(λ)∥2

F

nt(1− df(λ)
nt

)
2 ▷ O(lntct)

14: end for
15: Select λ∗

t = argminλ∈Λ GCV(λ)
16: LtL

⊤
t = Gt + λ∗

t Im ▷ O(13m
3)

17: Ct = L−⊤
t (L−1

t St) ▷ O(m2ct)
18: end for

Algorithm 2 Fly-CL Inference Pipeline

Input: Sequentially arriving data Dt = {(xt
i, y

t
i)}

nt
i=1 where t = 1, . . . , T . Pre-trained encoder fθ.

Projection operator Z. Modulated class prototypes Ct ∈ Rm×ct .
Output: Predicted labels ŷ.

1: Get compressed embedding for each datum v = fθ(x) ∈ Rd

2: Transform to high-dim sparse embedding Z(v) = top-k (Wv) ▷ O(mp)
3: Compute prediction ŷ = Z(v)⊤Ct ▷ O(kct)

B COMPLETE THEORETICAL ANALYSIS

In this section, we present a comprehensive theoretical analysis of the sparsification effects on both
the weights and activations in the random projection operation.

B.1 INFORMATION PRESERVING FOR SPARSE CONNECTIONS IN RANDOM PROJECTION
MATRIX

A common approach to demonstrate that sparse random matrix multiplication preserves information
equivalently to its dense counterpart lies in proving the matrix’s near-preservation of full column rank.
For our sparse random matrix W ∈ Rm×d where m > d, we prove that W almost surely maintains
rank d.
Theorem B.1. Given the matrix W ∈ Rm×d, where m > d, with each row having exactly p non-zero
entries, which are randomly sampled from N (0, 1). LetW ∈ Rd×d be any square submatrix of W .
Then, for any ϵ > 0, it holds that

P
(
| det(W)| ≥

(p
d

)d/2√
d! exp(−d1/2+ϵ)

)
= 1− o(1).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Thus, for sufficiently large p and d, any submatrixW is invertible with probability at least 1− o(1).

Proof. According to aformentioned definition, we have E(Wij) = 0 and Var(Wij) =
p
d . Consider-

ing R = 1
σW , which satisfies E(Rij) = 0, Var(Rij) = 1, we can conclude, based on (Tao & Vu,

2006, Theorem 8.9), that

P
(
| det(R)| ≥

√
d! exp(−d1/2+ϵ)

)
= 1− o(1). (13)

By using σ =
√

p
d and det(R) = σ−d det(W) for substitution, we complete the proof.

B.2 ROBUSTNESS OF TOP-k SPARSIFICATION ON HIGH-DIMENSIONAL EMBEDDINGS

Let the high-dimensional embedding vector be h ∈ Rm. After applying the top-k operation, we
obtain a sparsified vector h′ ∈ Rm, where only the k largest absolute values in h are retained, and
the remaining elements are set to zero. We aim to prove that when k = Ω(mα) (with 0 < α < 1, i.e.,
not overly sparse), the performance degradation is negligible.

According to statistic learning theory (Bartlett & Mendelson, 2002) and extreme value theory (Coles
et al., 2001; Fisher & Tippett, 1928), we start with the following two widely-accepted assumption:
Assumption B.2. Assume that the “energy" (squared ℓ2-norm) of the embedding vector x is concen-
trated in a few dimensions, i.e., there exists a constant C > 0 such that:

E

[∑k
i=1 h

2
i

∥h∥22

]
≥ 1− C

k
,

where where hi denotes the i-th largest value in h.
Assumption B.3. Assume that the performance loss function L(h, y) of the downstream task (e.g.,
classifier) is Lipschitz continuous with respect to input perturbations, i.e., there exists a constant
M > 0 such that:

|L(h, y)− L(h′, y)| ≤M · ∥h− h′∥.

Regarding the approximation error of top-k operation, we show it is bounded.
Theorem B.4. Under the Assumption B.2, the sparsification error satisfies:

E
[
∥h− h′∥22

]
≤ C

k
· E

[
∥h∥22

]
.

Proof. By Assumption B.2:

E

[
d∑

i=k+1

h2
i

]
≤ C

k
· E

[
∥h∥22

]
.

Thus,

E
[
∥h− h′∥22

]
= E

[
m∑

i=k+1

h2
i

]
≤ C

k
· E

[
∥h∥22

]
.

Then, we can quantify the upper bound of possible performance degradation.
Theorem B.5. Under Assumption B.3, the performance degradation due to sparsification satisfies:

E [|L(h, y)− L(h′, y)|] ≤M ·
√

C

k
· E[∥h∥22]

Proof. By the Cauchy-Schwarz inequality and Theorem B.4, we can derive that
E [|L(h, y)− L(h′, y)|] ≤M · E [∥h− h′∥2]

≤M ·
√
E [∥h− h′∥22]

≤M ·
√

C

k
· E [∥h∥22].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

From Theorem B.5, we establish in Theorem B.6 that moderate sparsity does not result in significant
performance degradation, as the error decreases exponentially with the increasing expanded dimension
m.
Theorem B.6. For top-k sparsification in the expanded dimension m, the performance degradation
is bounded by:

E [|L(h, y)− L(h′, y)|] ≤M ·
√

C

k
· E[∥h∥22],

where L(·) is a performance loss function for downstream tasks and C, M are constants. To ensure
negligible performance degradation, we require:√

C

k
· E[∥h∥22] ≤ O

(
1√
mα

)
,

i.e., when k = Ω(mα) (0 < α < 1), the error bound decays exponentially with increasing dimension.

For example:

• If k = Ω(d0.5), the performance degradation is O(d−0.25).
• If k = Ω(d0.8), the performance degradation is O(d−0.4).

C ADDITIONAL RESULTS

C.1 EXPERIMENTS IN LONGER TASK SEQUENCES

To evaluate the long-term stability of Fly-CL, we conduct experiments with task sequences twice as
long as those in Table 1. Results are presented in Table 5 and Figure 6. Overall, both τtrain and τpost
are shorter than those in Table 1 due to fewer samples per task. Fly-CL improves overall accuracy
by 0.54%, 1.21%, and 1.58% compared to SOTA methods, while significantly reducing average
post-extraction training time by 89%, 74%, and 59% compared to the most efficient baselines. These
results are consistent with the trends observed in Table 1 and Figure 7, demonstrating the robustness
of Fly-CL across different task lengths.

Table 5: Performance Comparison on Pre-trained ViT-B/16 Models with Longer Task Sequence.
We report the average training time per task (τtrain), average post-extraction training time (τpost), and
overall accuracy (Ā) across three benchmark datasets: CIFAR-100, CUB-200-2011, and VTAB. The
best results are highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
L2P 147.47±0.36 107.59±0.26 82.69±0.91 30.93±0.25 23.39±0.26 72.83±1.45 32.17±0.39 29.31±0.38 71.84±1.42

Dualprompt 130.12±0.09 91.05±0.07 83.42±0.86 27.66±0.18 20.28±0.18 77.93±0.91 29.44±0.24 26.62±0.23 78.46±1.14

EASE 350.92±0.39 331.76±0.29 90.14±0.51 83.38±0.22 75.05±0.16 91.47±0.65 64.68±0.73 57.24±0.62 90.26±0.41

RanPAC 44.53±0.58 37.03±0.59 93.68±0.24 20.68±0.32 18.18±0.31 92.65±0.26 41.49±0.74 40.02±0.59 93.62±0.32

F-OAL 16.32±0.02 8.91±0.02 92.63±0.46 3.65±0.02 1.10±0.01 91.48±0.23 2.17±0.16 0.71±0.03 94.96±0.27

Fly-CL 8.31±0.04 1.00±0.01 94.22±0.09 2.76±0.06 0.29±0.01 93.86±0.27 1.70±0.10 0.29±0.02 96.54±0.38

C.2 EXPERIMENTS ON DATASETS WITH SEVERE DOMAIN SHIFT

Table 6 summarizes the results on ImageNet-R and ImageNet-A under severe domain shift. Compared
with existing continual learning baselines, Fly-CL achieves the best overall accuracy on both datasets
(83.19% on ImageNet-R and 67.98% on ImageNet-A), comparable with the previous SOTA RanPAC.
More importantly, Fly-CL attains these improvements with substantially lower computation cost.
Its average training time per task is reduced by an order of magnitude compared to prompt-based
methods (e.g., L2P, DualPrompt) and much faster than EASE, while its post-extraction training time
is almost negligible (0.21s vs. 67.71s for RanPAC on ImageNet-R). These results demonstrate that
Fly-CL is not only robust to severe distribution shifts but also highly efficient, making it especially
suitable for practical continual learning scenarios where both accuracy and efficiency are critical.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

5 15 25 35 45 55 65 75 85 95
number of classes

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

L2P
DualPrompt
EASE

RanPAC
F-OAL
Fly-CL

(a) CIFAR-100

10 30 50 70 90 110 130 150 170 190
number of classes

50

60

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

L2P
DualPrompt
EASE
RanPAC
F-OAL
Fly-CL

(b) CUB-200-2011

5 10 15 20 25 30 35 40 45 50
number of classes

50

60

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

L2P
DualPrompt
EASE

RanPAC
F-OAL
Fly-CL

(c) VTAB

Figure 6: Accuracy Curves of Different Methods on Pre-trained ViT-B/16 with Longer Task
Sequence. The average accuracy (At) is reported for each dataset. These results align with and
extend the quantitative analysis presented in Table 5.

Table 6: Performance Comparison on Pre-trained ViT-B/16 Models with Severe Domain Shift.
We report the average training time per task (τtrain), average post-extraction training time (τpost), and
overall accuracy (Ā) across two benchmark datasets: ImageNet-R and ImageNet-A. The best results
are highlighted in bold.

Method ImageNet-R ImageNet-A

τtrain(↓) τpost(↓) Ā(↑) τtrain(↓) τpost(↓) Ā(↑)
L2P 131.97±0.46 110.56±0.42 76.13±0.21 56.28±0.32 48.92±0.27 48.86±0.08

Dualprompt 117.80±0.34 96.58±0.30 73.92±0.46 49.60±0.28 42.31±0.26 57.05±0.13

EASE 311.00±0.29 274.36±0.25 81.69±0.24 80.80±0.19 73.47±0.22 65.03±0.28

RanPAC 76.25±0.35 67.71±0.28 83.02±0.12 32.43±0.13 28.86±0.11 67.28±0.09

F-OAL 16.51±0.11 8.80±0.04 80.62±0.25 3.99±0.07 1.05±0.02 63.99±0.30

Fly-CL 7.55±0.04 0.21±0.02 83.19±0.14 3.10±0.03 0.15±0.01 67.98±0.17

C.3 DATA NORMALIZATION STRATEGY

While data normalization is a well-established technique for improving classification performance
in i.i.d. scenarios, its effectiveness in facilitating CL with frozen pre-trained encoders remains
unclear. Our results indicate that applying proper architecture-specific normalization to input images
significantly improves the learning performance compared to baseline CL methods (Table 7). The
optimal normalization strategies for the included backbones differ. Across all tested datasets, ViT-
B/16 (Dosovitskiy et al., 2020) benefits more from standard normalization that projects inputs into
the [−1, 1] range, while ResNet-50 (He et al., 2016) achieves optimal performance when normalized
using ImageNet statistics.

We hypothesize that the imporved performance arises from a reduced feature distribution shift across
tasks. Proper normalization preserves the geometry of the pre-trained feature manifold, which is
crucial for prototype-based classification, where cosine similarity measures depend on the angular
relationships between features. Our empirical results suggest that input normalization may serve
as a fundamental defense against forgetting by anchoring the feature space topology to the original
pre-training distribution.

Table 7: Comparison of CL Performance across Pre-trained Models and Normalization Strate-
gies. We report overall accuracy (Ā). Normalization methods includes: “None” (no data normaliza-
tion), “ImageNet” (ImageNet statistics), and “Standard”(scaled to the [−1, 1]).

Backbone CIFAR CUB VTAB
None ImageNet Standard None ImageNet Standard None ImageNet Standard

ViT-B/16 91.64±0.62 87.87±0.62 93.89±0.12 93.04±0.37 90.68±0.42 93.84±0.18 95.26±0.68 95.47±0.52 96.54±0.38

ResNet-50 80.66±0.48 84.61±0.16 83.09±0.48 75.08±1.23 80.25±0.10 76.78±1.08 92.45±0.71 94.00±0.15 92.76±0.54

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.4 MEMORY CONSUMPTION

We also compare the memory consumption of Fly-CL against other methods in Table 8 using ViT-
B/16 with the same task sequence as in Table 1. For fairness, we use a batch size of 128 across all
methods and datasets. The results show Fly-CL also has the minimal memory cost, strengthening the
efficiency of our method.

Table 8: Memory Usage (GB) of Different Methods on Pre-trained ViT-B/16. We report highest
peak memory usage of each methods. The best results are highlighted in bold.

Method CIFAR-100 CUB-200-2011 VTAB
L2P 16.4GB 16.4GB 16.4GB
DualPrompt 13.6GB 13.6GB 13.6GB
EASE 12.2GB 12.2GB 12.2GB
RanPAC 12.2GB 12.2GB 22.8GB
F-OAL 12.2GB 4.9GB 4.5GB
Fly-CL 6.7GB 4.6GB 4.3GB

C.5 MEMORY-TIME TRADEOFF IN HIGH-DIM PROJECTIONS

We present the trade-off between memory, training time, and overall accuracy in Table 9. The
overall accuracy gradually saturates as the dimension increases, while memory and training time
grow quadratically. Therefore, we chose 10,000 as the dimension in our simulations. As long as the
dimension does not exceed 10,000, both memory and training time consumption remain lower than
those of previous methods, as summarized in Table 1.

Table 9: Memory-Time-Accuracy comparison with increasing projection dimension. It’s con-
ducted on the CUB dataset using ViT B/16. We report highest peak memory usage of each methods.
The best results are highlighted in bold.

Dimension 1000 2000 5000 10000 20000
Memory 2.8G 2.8G 3.0G 4.6G 9.3G
τtrain 4.19±0.02 4.20±0.05 4.25±0.07 4.43±0.11 5.13±0.08

Ā 90.87±0.49 91.97±0.52 92.93±0.41 93.84±0.18 93.90±0.52

C.6 ADDITIONAL VISUALIZED FIGURES DURING THE TRAINING PROCESS

Here, we present a more detailed breakdown of the training processes for ViT-B/16 and ResNet-50.
Results from Tables 1 and 2 are visualized in Figures 7 and 8. We list the average accuracy of different
methods at different stages across three datasets.

10 20 30 40 50 60 70 80 90 100
number of classes

80

85

90

95

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

L2P
DualPrompt
EASE
RanPAC
F-OAL
Fly-CL

(a) CIFAR-100

10 20 30 40 50 60 70 80 90 100
number of classes

60

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

L2P
DualPrompt
EASE
RanPAC
F-OAL
Fly-CL

(b) CUB-200-2011

10 20 30 40 50
number of classes

60

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

L2P
DualPrompt
EASE

RanPAC
F-OAL
Fly-CL

(c) VTAB

Figure 7: Accuracy Curves of Different Methods on Pre-trained ViT-B/16. The average accuracy
(At) is reported for each dataset. These results align with and extend the quantitative analysis
presented in Table 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60 70 80 90 100
number of classes

50

60

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
) RanPAC

F-OAL
Fly-CL

(a) CIFAR-100

20 40 60 80 100 120 140 160 180 200
number of classes

50

60

70

80

90

100

av
er

ag
e

ac
cu

ra
cy

 (%
) RanPAC

F-OAL
Fly-CL

(b) CUB-200-2011

10 20 30 40 50
number of classes

0

20

40

60

80

100

av
er

ag
e

ac
cu

ra
cy

 (%
)

RanPAC
F-OAL
Fly-CL

(c) VTAB

Figure 8: Accuracy Curves of Different Methods on Pre-trained ResNet-50. The average accuracy
(At) is reported for each dataset. These results align with and extend the quantitative analysis
presented in Table 2.

D DETAILED DISCUSSION OF RELATED WORK

D.1 COMPARISON WITH SEVERAL REPRESENTATION-BASED METHODS

We highlight the main advantages of our proposed Fly-CL over several related representation-based
methods, including RanPAC (McDonnell et al., 2023), F-OAL (Zhuang et al., 2024), and RanDumb
(Prabhu et al., 2024).

Comparison with RanPAC. RanPAC employs several Parameter-Efficient Transfer Learning (PETL)
approach (Chen et al., 2022; Jia et al., 2022; Lian et al., 2022) to adapt the pre-trained model
to the downstream domain in the first task, alongside a ridge classification with explicit cross-
validation for all ridge candidates. Although effective, these two components make the entire pipeline
computationally expensive (see Table 1, 2, and 5). In contrast, Fly-CL eliminates the need for PETL
and significantly optimizes the ridge classification process. Additionally, we introduce a sparse
projection layer with a top-k operation, replacing the dense projection with ReLU, and analyze the
impact of data normalization techniques. The speedup for each components can be refered to Table 4.

Comparison with F-OAL. F-OAL is originally designed for online CL and shares similarities with
Fly-CL in feature extraction, random projection, and decorrelation. Although it can also be adapted to
the CIL setting with batched data, it has several flaws under this circumstance. For instance, F-OAL
lacks the top-k operation to filter noisy components after random projection, and its iterative analytic
classifier may accumulate errors, leading to significant performance degradation on ResNet-50 (see
Table 2). Moreover, while F-OAL is efficient on CUB-200-2011 and VTAB, its computational cost
scales more rapidly with sample size compared to Fly-CL, making it less efficient on CIFAR-100
(see Table 1, 2, and 5).

Comparison with RanDumb. RanDumb shares a similar pipeline with F-OAL and is also designed
for online CL. Like F-OAL, it does not utilize a top-k-like operation, and its fixed penalty coefficient
λ may result in suboptimal performance. Crucially, RanDumb relies on StreamingLDA, which
processes samples sequentially and cannot be parallelized for batch processing. This makes RanDumb
significantly slower than all baselines evaluated in Table 1, 2, and 5.

D.2 SUMMARY OF OTHER COMPARED BASELINES

L2P (Wang et al., 2022b) utilizes a prompt pool P = {P1, P2, · · · , PM} where M is the size of the
pool, to store task-specific knowledge. Each prompt Pi is associated with a learnable key Ki for
key-value selection. By optimizing the cosine distance γ(p(x), ki), where p(x) is the feature selected
by the query function during the training process, L2P can select the most appropriate prompt to
provide information that is specific to the task.

DualPrompt (Wang et al., 2022a) extends the key-value selection and optimization methods of L2P
by further encoding different types of information into a task-invariant prompt g and a task-specific
prompt e. This is shown to be more effective in encoding the learned knowledge. It also decouples
the higher-level prompt space by attaching prompts to different layers, which is crucial for the model
to reduce forgetting and achieve effective knowledge sharing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

EASE (Zhou et al., 2024) first initializes and trains an adapter for each incoming task to encode
task-specific information. It then extracts features of the current task and synthesizes prototypes of
former classes to mitigate the subspace gaps between adapters. Finally, EASE constructs the full
classifier and reweights the logits for prediction.

E TRAINING DETAILS

E.1 PRE-TRAINED MODELS

We use pre-trained ViT-B/16 and ResNet-50 models in our experiments. All of which are loaded
using the timm library. We list the dimensions of the extracted features and the download links for
the checkpoints of each model in Table 10.

Table 10: Information Related to the Pre-trained Models We Used in This Work. We list the
dimensions of the extracted features and provide corresponding download links for these pre-trained
models.

Model feature dimension Link

ViT-B/16 768 Link
ResNet-50 2048 Link

E.2 DATASETS

We evaluate our method on three benchmark datasets for CL tasks. Detailed information about these
datasets, including download links, is provided in Table 11. For the experiments summarized in Tables
1, 2, and 3, we configure the number of training tasks as T = 10 for CIFAR-100 and CUB-200-2011,
with 10 and 20 classes per task, respectively. For VTAB, we set T = 5 with 10 classes per task. In
the longer task sequence experiments (Table 5), we double the task sequence length: for CIFAR-100
and CUB-200-2011, we set T = 20 with 5 and 10 classes per task, respectively, while for VTAB, we
set T = 10 with 5 classes per task. For experiments in Table 6, we set T = 10 with 20 classes per
task.

Table 11: Details of CIFAR-100, CUB-200-2011, VTAB Datasets. We list the number of training,
validation samples and classes for the following datasets, along with the download links.

Dataset Training Samples Validation Samples Classes Download Link
CIFAR-100 (Krizhevsky et al., 2009) 50000 10000 100 Link

CUB-200-2011 (Wah et al., 2011) 9430 2358 200 Link
VTAB (Zhai et al., 2019) 1796 8619 50 Link

Imagenet-R Hendrycks et al. (2021a) 24000 6000 200 Link
Imagenet-A Hendrycks et al. (2021b) 5981 1519 200 Link

E.3 EXPERIMENT SETUP

We reproduce the baseline results for L2P, DualPrompt, EASE, and RanPAC using the code provided
by PILOT (Sun et al., 2023), ensuring that the learning parameters for each baseline align with
the description in their original papers. For F-OAL, we adopt their official implementation for
reproduction.

In our proposed Fly-CL, we set the expanded dimension m to 10, 000, p to 300, and k to 3, 000 across
all experiments. For ViT-B/16, we apply standard data normalization, scaling each pixel value to the
range [−1, 1]. For ResNet-50, we normalize the input images using ImageNet statistics. Given the
prior knowledge of high multicollinearity in this task, we explore the penalty coefficient range starting
from larger values, specifically from 106 to 109 on a log scale for ViT-B/16 and 104 to 109 for ResNet-
50. Since prompt-based methods and PETL techniques are limited to transformer-based architectures,
we compare Fly-CL only with RanPAC and F-OAL in the ResNet-50 setting. For RanPAC, we remove

19

https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz
https://download.pytorch.org/models/resnet50-11ad3fa6.pth
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://google-research.github.io/task_adaptation/
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/natural-adv-examples

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

PETL and incorporate data normalization following their original implementation (McDonnell et al.,
2023) for ResNet-50. All experiments are conducted using five different random seeds, and we report
the mean ± standard deviation.

E.4 ENVIRONMENTS

All experiments were conducted on a Linux server running Ubuntu 20.04.4 LTS, equipped with an
Intel(R) Xeon(R) Platinum 8358P CPU at 2.60GHz and 8 NVIDIA GeForce RTX 3090 GPUs, using
CUDA version 11.7. For model loading, we employed the timm library (version 0.9.16).

F LIMITATIONS AND FUTURE WORK

Our proposed Fly-CL is theoretically applicable to various scenarios requiring feature separation. Its
lightweight design further suggests potential utility in a wide range of Continual Learning and Metric
Learning tasks.

Recent neuroscience research (Dasgupta et al., 2017) indicates that the random projection layer in the
fly olfactory circuit may not be entirely random. Biological experiments also suggest the presence of
certain constraints within this projection layer. Inspired by these findings, a promising direction for
future research is to explore structuring the projection layer as an entity with learnable parameters,
potentially enhancing its adaptability and performance.

G BROADER IMPACT

Our work provides a new perspective for enhancing the efficiency of CL using pre-trained models,
which is crucial for real-world deployment, especially with increasingly large modern models. Fly-CL
can help AI researchers and developers create more efficient CL algorithms.

On the other hand, the efficiency improvements in CL could potentially accelerate the development
of AI systems that rapidly adapt to new domains without proper safeguards. This might lead to: (1)
amplified propagation of biases present in sequential datasets, (2) reduced transparency as models
continuously evolve beyond their initial training, and (3) potential misuse for generating tailored
content at scale. We recommend implementing rigorous monitoring frameworks to track model
behavior across learning phases.

H LLM USAGE DECLARATION

During the preparation of this manuscript, a large language model was employed exclusively for
language refinement. Its role was limited to rephrasing certain passages and enhancing the overall
clarity and readability of the text. All conceptual contributions, theoretical derivations, experimental
design, and analysis were independently developed and verified by the authors. The LLM was not
involved in generating research ideas, shaping methodologies, or producing novel scientific content.
The authors bear full responsibility for the entirety of the paper.

20

	Introduction
	Related Work
	Background
	Problem Statement
	Representation-based paradigm in CL

	Fly-CL
	Sparse Random Projection and Top-k Operation
	Streaming Ridge Classification

	Experiments
	Experimental Setup
	Low Latency and High Accuracy
	Factors Contributing to Computational Speedup
	Ablation Study and Hyperparameter Sensitivity Analysis

	Conclusion
	Algorithm Pseudocode
	Complete Theoretical Analysis
	Information Preserving for Sparse Connections in Random Projection Matrix
	Robustness of Top-k Sparsification on High-Dimensional Embeddings

	Additional Results
	Experiments in Longer Task Sequences
	Experiments on Datasets with Severe Domain Shift
	Data Normalization Strategy
	Memory Consumption
	Memory-time tradeoff in high-dim projections
	Additional Visualized Figures During the Training Process

	Detailed Discussion of Related Work
	Comparison with Several Representation-Based Methods
	Summary of Other Compared Baselines

	Training Details
	Pre-trained Models
	Datasets
	Experiment Setup
	Environments

	Limitations and Future Work
	Broader Impact
	LLM Usage Declaration

