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ABSTRACT

We propose a method for evaluating the robustness of widely used LLM rank-
ing systems—variants of a Bradley–Terry model—to dropping a worst-case very
small fraction of preference data. Our approach is computationally fast and easy
to adopt. When we apply our method to matchups from popular LLM ranking
platforms, including Chatbot Arena and derivatives, we find that the rankings
of top-performing models can be remarkably sensitive to the removal of a small
fraction of preferences; for instance, dropping just 0.003% of human preferences
can change the top-ranked model on Chatbot Arena. Our robustness check iden-
tifies the specific preferences most responsible for such ranking flips, allowing
for inspection of these influential preferences. We observe that the rankings de-
rived from MT-bench preferences are notably more robust than those from Chat-
bot Arena, likely due to MT-bench’s use of expert annotators and carefully con-
structed prompts. Finally, we find that neither rankings based on crowdsourced
human evaluations nor those based on LLM-as-a-judge preferences are systemat-
ically more sensitive than the other.

1 INTRODUCTION

Open evaluation platforms like Chatbot
Arena have, in large part due to their
openness, become a gold standard for as-
sessing the capabilities of leading LLMs
via human preference. These open plat-
forms are now widely used by top LLM
developers and companies to evaluate and
design new models and benchmarks (Chi-
ang et al., 2024a; Singh et al., 2025;
Grattafiori et al., 2024; Hui et al., 2024;
White et al., 2025). Such platforms rely
on crowdsourced pairwise battles and hu-
man votes to compute model rankings
(Lee et al., 2023; Bai et al., 2022).

#1.Gemini-1.5-pro
#2.GPT-4o
#3.Claude-3-5-sonnet

#1.GPT-4o
#2.Gemini-1.5-pro
#3.Claude-3-5-sonnet

Dropped Subset

Full Arena

prompt:write a
haiku about rain.

model b:model a:

Figure 1: Our method (i) tests whether AI leaderboard
rankings remain stable upon dropping small fractions of
data and (ii) pinpoints the specific data points (e.g., pref-
erences) that drive ranking flips.

At the heart of these preference-based evaluation pipelines is the Bradley–Terry (BT) model
(Bradley & Terry, 1952), which is widely used to rank LLMs based on human feedback (Chiang
et al., 2024a). The BT model is also used to train reward models for RLHF (Ouyang et al., 2022;
Touvron et al., 2023; Xu et al., 2024; Sun et al., 2025) and route queries to the most appropriate
LLM or inference-time scaling strategy (Damani et al., 2025).

A growing body of work has called into question the trustworthiness of LLM leaderboards, showing
that they are vulnerable to adversarial attacks: a few hundred injected votes can change top rankings
on Chatbot Arena (Min et al., 2025), attackers can identify model outputs to systematically upvote or
downvote targets (Huang et al., 2025b), LLM-judges can be easily gamed (Zheng et al., 2025; Raina
et al., 2024), and issues such as data leakage or selective reporting further undermine leaderboard
reliability (Singh et al., 2025).
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In this work, we study a different type of untrustworthiness of LLM ranking systems. That is:
“Will the top rankings from LLM-evaluation platforms change upon dropping a very small fraction
of the human (or AI) preference evaluations?” A positive answer would raise concerns about the
stability and generalizability of rankings produced by such systems. Our notion of non-robustness
differs from those of Min et al. (2025); Huang et al. (2025b); Zhao et al. (2025) in two major
respects. First, it occurs at a different place in the process, at the data analysis step after data has
been collected (including from malicious or apathetic users). Second, it does not require adversarial
intent. Our notion is more concerned with statistical robustness, namely of a ranking learned from
data to dropping a small fraction of the data. While we do aim to find a worst-case fraction, the
intent is to provide an upper bound on the degree of non-robustness.

Our question posed above motivates the need for a systematic way to assess the robustness of top
rankings in BT-based evaluation systems to worst-case data dropping. However, no such method
currently exists, beyond a brute-force combinatorial search over all possible small subsets of data.1
In order to avoid this computationally intractable search, we turn to a recent line of works from
statistics and theoretical computer science that design algorithms for assessing whether data analyses
are robust to dropping a small, worst-case fraction of data points (Broderick et al., 2020; Kuschnig
et al., 2021; Moitra & Rohatgi, 2023; Freund & Hopkins, 2023; Shiffman et al., 2023; Nguyen
et al., 2024; Huang et al., 2025a; Rubinstein & Hopkins, 2025). One such method, the Approximate
Maximum Influence Perturbation (AMIP), estimates how much a statistic of interest could change
if a worst-case subset of the data were dropped (Broderick et al., 2020). We extend these ideas to
develop a fast approximation method for assessing the robustness of rankings from LLM evaluation
systems to worst-case data-dropping.

We apply our method to assess several popular LLM ranking platforms, including Chatbot Arena
and derivatives (Chiang et al., 2024a; Zheng et al., 2023; Miroyan et al., 2025; Vichare et al., 2025;
Chou et al., 2025) and find most to be non-robust to dropping a very small fraction of votes.

In Section 2, we formalize the setup for assessing worst-case data-dropping robustness in BT-based
ranking systems, and in Section 3 we introduce a computationally efficient method for assessing this
form of robustness in practice (Figure 1). In Section 4, we apply our robustness assessment method
to investigate the robustness of several LLM leaderboards.

2 SETUP

Human preference data. We consider a preference-based ranking system akin to Chatbot Arena
(Chiang et al., 2024a). There are in total M language models. Any user can submit a prompt to be
answered by a pair of language models. Let the nth such prompt be sent to models in and jn for
in, jn ∈ [M ] := {1, . . . ,M} with in ̸= jn. The user then determines if the response from model
in is better than that of model jn, or is tied. Suppose there are in total N such comparisons; the nth
comparison can be seen as a tuple (in, jn, yn), with yn ∈ {W,L, T} for whether in the nth match,
model in is preferred over model jn (a win, W ), jn is preferred over in (a loss, L), or the two models
are similar (a tie, T ). From a collection of preference data, the goal is to rank the language models.

Ranking with the (unweighted) Bradley–Terry model. The Bradley–Terry (BT) model is a
classical statistical model used to rank players from binary match outcomes when there are only
wins and losses, yn ∈ {W,L}. In this model, each player (e.g., language model), i, is associated
with a BT score, θi, and the outcomes are modeled as

Iyn=W ∼ Bernoulli(σ(θin − θjn)), (1)

where the sigmoid function σ(x) = 1/(1 + e−x) and I is the indicator function. Note, since
the “winning” probability depends on the difference between two players’ scores rather than on
their raw scores, the scores are identified only up to a constant additive term. There are differ-
ent ways to avoid this identifiability problem (Wu et al., 2022). Chatbot Arena chooses to set
mixtral-8x7b-instruct-v0.1 as the reference model, assigning it a fixed score of 1,114.
Chatbot Arena computes the BT-scores (i.e., the estimates of θ = (θ1, . . . , θM )) for the unweighted

1This combinatorial search is computationally infeasible for large-scale platforms like Chatbot Arena.
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BT-model by maximum likelihood,

θ̂ := argmax
θ:θ1=0

N∑
n=1

(
Iyn=W log σ(θin − θjn) + Iyn=L log(1− σ(θin − θjn))

)
. (2)

Ranking with the weighted Bradley–Terry model to handle ties. The classic BT model cannot
handle ties. To handle ties, Chatbot Arena adds weights to Equation (2), counting a tie as both a win
and a loss (Chiang et al., 2024a).2 In the weighted BT model, one specifies a weight for wins and
losses, wWL, and a weight for ties wT . That is, we estimate BT scores by maximizing the weighted
likelihood,

θ̂ := argmax
θ:θ1=0

N∑
n=1

[
wWLIyn=W log σ(θin − θjn) + wWLIyn=L log(1− σ(θin − θjn))

+ wT Iyn=T

(
log σ(θin − θjn) + log(1− σ(θin − θjn))

)]
.

(3)

As done on Chatbot Arena, we use wWL = 2 and wT = 1. This choice can be interpreted as each
win or loss counting as two matches of the same outcome, and a tie counting as one win and one
loss. They also suggested an alternative treatment of dropping all ties and using the unweighted BT
model, which corresponds to wWL = 1 and wT = 0.

Finally, we define the rank of a model as its position in the sorted list of models, (θ̂(1), . . . , θ̂(M)),
ordered by their scores in descending order, so that θ̂(1) corresponds to the top-ranked model.

Postprocessing in Chatbot Arena. Chatbot Arena applies a linear transformation to the learned
BT scores (Chiang et al., 2024b). They use SCALE = 400, INIT RATING = 1,000, and a further
shift ANCHOR SHIFT to produce the displayed scores:

ELOi = SCALE · θ̂i + INIT RATING+ ANCHOR SHIFT.

The final constant (ANCHOR SHIFT) shifts all the ELOi scores so that a specific reference model
has a certain score. Chatbot Arena uses mixtral-8x7b-instruct-v0.1 as the reference
model, assigning it a fixed score of 1,114. We use the same reference model in our analysis of
Chatbot Arena; however, we assign the model a fixed score of 0 (a design choice that does not
impact rankings). We note that the affine transformation does not affect model rankings since it
is strictly monotonic and does not affect our proposed procedure since linear transformations can
commute with first-order Taylor expansion.

Setup for Data-Dropping. We study whether dropping a small fraction α ∈ (0, 1) (e.g., α = 0.01)
of the preference data can change the ordering of the estimated BT scores. Broderick et al. (2020)
define the Maximum Influence Perturbation as the largest possible change induced in a quantity of
interest by removing at most 100α% of the data.

Let wn denote a weight on the nth data point, and collect these into a vector w := (w1, ..., wN ).
Define the weighted estimator as

θ̂(w) := argmax
θ:θ1=0

N∑
n=1

wn

[
wWLIyn=W log σ(θin − θjn) + wWLIyn=L log(1− σ(θin − θjn))

+ wT Iyn=T

(
log σ(θin − θjn) + log(1− σ(θin − θjn))

)]
.

(4)

Setting w = 1N (the all-ones vector) recovers the BT scores computed on the full data (e.g., the
original arena), while setting wn = 0 corresponds to dropping the nth data point (e.g., a matchup).
We define the set of all weight vectors corresponding to dropping at most an α-fraction of the data
as follows.

Definition 1 (Feasible Drop Set). Let Wα := {w ∈ {0, 1}N :
∑N

n=1(1−wn) ≤ αN} be the set of
all binary weight vectors indicating subsets where at most 100α% of the data has been dropped.

2“Chatbot Arena Leaderboard Calculation (Bradley–Terry model)” Colab notebook:https://colab.
research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH.
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We begin by analyzing the robustness of the ordering of BT scores between a pair of players, i and
j. Without loss of generality, we assume3 that player i has the higher estimated BT score on the full
data:

θ̂i(1N ) ≥ θ̂j(1N ).

We are interested in whether this ordering can be reversed by dropping at most an α-fraction of the
data.

We now extend this notion to an arena with M players, for any M ≥ 2. Let T (w) := {θ̂i(w)}Mi=1
denote the set of BT scores under weighting w.

Definition 2 (Top-k Set). The top-k set under full data is defined as the set of players whose scores
rank among the top k:

KT (1N ) :=
{
θ̂i(1N ) : rank

[
θ̂i(1N ); T (1N )

]
≤ k

}
. (5)

Definition 3 (Top-k Data-Dropping Robustness). An arena is top-k robust at level α if no α-fraction
subset of data can be dropped to change the top-k set. That is,{

w ∈Wα : KT (1N ) ̸= KT (w)

}
= ∅. (6)

Notice that Equation (6) is nontrivial to directly verify; to check directly, we have to test out dropping
all possible small-fraction subsets of the arena, a combinatorial operation that is computationally
intractable in practice.

In Section 3, we show that verifying whether Equation (6) holds can be reduced to checking the
robustness of a series of pairwise comparisons. Specifically, top-k robustness as defined in Defini-
tion 3 can be checked by checking whether there exists a reweighting w ∈Wα that flips the ranking
of a pair (i, j) such that i is inside and j is outside the top-k set. We then can test if such flipping
can happen by using a continuous approximation of the discrete weights w (also known as “approx-
imate data-dropping”) to identify a promising candidate subset of influential preferences, dropping
these, recomputing the BT-based rankings, and observing whether the rankings change. We detail
this procedure in Section 3.

3 PROPOSED METHOD

Recall that our goal is to evaluate the robustness of the rankings induced by a BT-model
{θ̂(1), ..., θ̂(M)} when a small fraction of matches (e.g., evaluations) is removed from the arena. To
this end, we introduce a method based on checking the robustness of pairwise BT score differences.
We provide pseudocode for our method in Algorithm 1 and explain its steps below.

In Proposition B.1, we show that a top-k set can be characterized by considering a set of pairwise
comparisons. This result allows us to check top-k robustness by checking pairwise robustness of all
models inside the top-k set against all models outside of this set. In the case that there does exist
such a pair of models (one inside and one outside the top-k) whose rankings flip, then the top-k set
has changed, i.e., the arena is non-robust. In the case that there does not exist at least one such pair
of models whose rankings can be flipped upon dropping a small fraction of preferences, then the
top-k set remains unchanged, i.e., the arena is top-k robust.

Given the equivalence between checking the robustness of the top-k set and checking the robustness
of the aforementioned series of pairwise player comparisons, we propose a greedy algorithm to test
whether the top-k set is robust to worst-case data-dropping. Namely, we test the data-dropping
robustness of all players in the top-k set against all players outside of the top-k set.

Before that, we describe what it means for a given pair of player scores, (θ̂i(w), θ̂j(w)), to be data-
dropping robust. Without loss of generality, we assume throughout this section that player i has the
higher estimated BT score on the full data.

3If this assumption does not hold, the identities of i and j can be swapped.
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Pairwise Robust. Given a pair of players, (i, j), we say that the scores for this pair, (θ̂i(w), θ̂j(w)),
are robust to small-fraction data-dropping at level-α if

{w ∈Wα : θ̂i(w) < θ̂j(w)} = ∅. (7)

Top-k Robust. Recall that an arena is top-k robust at level-α if there does not exist a reweighting,
w ∈Wα, such thatKT (1N ) ̸= KT (w). Using the line of logic in Proposition B.1, this is equivalent to
showing that, ∀ (i, j) where i ∈ KT (w) and j /∈ KT (w), the pair (θ̂i(w), θ̂j(w)) is robust. Namely, if
every comparison (i, j) in this set of pairwise comparisons stays the same (after reweighting), then
the top-k set also stays the same (see Proposition B.1 for a detailed proof).

We now provide a method for checking the robustness of pairwise comparisons.

Method for Checking Pairwise Robustness. In Equation (7), we are interested in checking whether
there exists a small fraction of evaluations, w ∈ Wα, that can be dropped to change the sign of a
difference in BT scores. Without loss of generality, we will assume that the sign of the difference of
BT scores fit to the full data is positive (e.g., [θ̂i(1N ) − θ̂j(1N )] > 0, meaning that model i has a
higher score than model j).

To evaluate the robustness of the sign of [θ̂i(1N )− θ̂j(1N )] to dropping a small fraction of matches,
we adopt a recently-developed method from the statistics literature known as the Approximate Max-
imum Influence Perturbation (Broderick et al., 2020) (see Appendix C.3 for a more detailed discus-
sion on how we adapt this method to our problem setup). This method approximates the maximal
directional change in a statistic, e.g., [θ̂i(1N )− θ̂j(1N )], that can result from dropping a worst-case
subset of data points (in our case, evaluations) of size at most ⌊αN⌋. This method allows us to
sidestep running an expensive combinatorial search over all data subsets for the worst-case subset of
matches to drop, a procedure that is computationally prohibitive for large LLM evaluation platforms
like Chatbot Arena.

The optimization problem implied by the Maximum Influence Perturbation problem in our particular
case is shown below,

max
w∈Wα

([
θ̂i(1N )− θ̂j(1N )

]
−
[
θ̂i(w)− θ̂j(w)

])
. (8)

We approximate this discrete optimization problem using AMIP approximation (Broderick et al.,
2020), the idea is that, instead of solving the optimization directly, we first approximate the effect
of dropping data by a first order Taylor expansion of the quantity θ̂i(w) − θ̂j(w) over data weights
w and then solve the approximated optimization problem. In Appendix C, we provided a review of
the general AMIP approximation, then formulate the both weighted and unweighted BT model as
logistic regressions and explicit form of the approximation for BT models.

For a candidate pair of players, (i, j), we check whether after dropping, [θ̂i(w̃) − θ̂j(w̃)] < 0. In
other words, we refit the BT-model upon leaving out the subset of impactful evaluations identified by
AMIP and check whether leaving out this subset induces a sign change in the difference of BT scores
for the pair, (i, j). We say that the BT scores for a pair of players, (i, j), are non-robust if the sign
of the difference in scores becomes negative upon refitting under w̃, (i.e., if [θ̂i(w̃)− θ̂j(w̃)] < 0).

Method for Checking Top-k Robustness. We now describe how we can fold our check for pairwise
robustness into an overall routine for checking for top-k robustness.

Recall from earlier in Section 3 that we can check top-k robustness by checking pairwise robustness
for every comparison (i, j) where i ∈ KT (w) and j /∈ KT (w). This amounts to checking the pairwise
robustness for at most k(M − k) pairs.

Thus, we check top-k robustness by iterating over pairs of players. Note that, when checking the
robustness of a given pair (i, j), we allow matches between any two models (not only (i, j)) to be
dropped. Since we only need to find one non-robust pair to render the set non-robust, not all pairs
need to be checked. To save on compute, we take a greedy approach and start with comparing the
most closely-ranked pairs between the top-k ranked players and the remaining M−k players, where
“closeness” is quantified using the absolute difference in BT scores fit on the full data.4; pairs with

4The robustness of the relative ranking of two players is correlated with the proximity of their BT scores as
seen in Figure 18.
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smaller BT-score gaps are more likely to exhibit data-dropping non-robustness. Upon finding any
single pair that is pairwise non-robust at an α-level, the procedure terminates early and returns the
corresponding players and the indices of the dropped evaluations. We say that an arena is α-level
top-k robust if there does not exist a pair of players (i, j), where i ∈ KT (w) and j /∈ KT (w), that
are α-level pairwise non-robust. While our method uses an approximation to identify the influential
preferences, it then performs an exact recomputation of the Bradley–Terry scores with the identified
preferences removed. As a result, all non-robustness reported in this paper is definitive: when we
state that dropping 100α% of preferences changes the ranking, we have explicitly verified that the
ranking does in fact change upon removal of the surfaced subset. However, the algorithm may not
catch all cases of non-robustness (i.e., false negatives are possible). See Appendix H for an extended
discussion on the possibility of false negatives.

Runtime. The above procedure is fast for assessing the robustness of preference-based ranking
systems. For example, we tested our method on historical preference datasets released by the Chat-
bot Arena project and hosted on Hugging Face (Chiang et al., 2024a). Specifically, we run top-1 and
top-5 robustness on a dataset of size around 50,000 evaluations in under 3 minutes on a personal
computer equipped with an Apple M1 Pro CPU at 3200 MHz and 16 GB of RAM.

4 EXPERIMENTS

Our analysis reveals that 1) dropping as little as 0.003% of the evaluation data can flip the top-ranked
model in popular LLM evaluation platforms (Section 4.2), 2) crowdsourced human-evaluated sys-
tems are about as non-robust as AI-evaluated systems (Section 4.3), 3) the LLM-generated responses
of the dropped evaluations appear similar in content (Section 4.4), and 4) sensitivity depends on BT
score margins (Appendix F.1). Henceforth, for convenience, we use “robustness” as shorthand for
robustness of a system’s top-k ranking to dropping a small fraction, α, of the data.

4.1 DATA AND SETUP

We run our robustness check on a variety of LLM Arenas, including Chatbot Arena (Chiang et al.,
2024a), MT-bench (Zheng et al., 2023), Search Arena (Miroyan et al., 2025), Webdev Arena
(Vichare et al., 2025), and Vision Arena (Chou et al., 2025). For more information about each
arena, see Appendix D. Our analysis relies on historical preference datasets released by the Chat-
bot Arena project (Chiang et al., 2024a) and publicly hosted on LMArena’s HuggingFace account.
Each record represents a matchup consisting of two LLMs that answer the same prompt, the names
of the two models, and the user label indicating preference for model A, model B, or a tie. Figure ??
presents the Bradley–Terry scores of the top-10 models on Chatbot Arena.

To compare the robustness of LLM arenas to more classical use cases of BT models, we also run
our check on two sports datasets, namely NBA (FiveThirtyEight, 2025) and ATP tennis (Sackmann,
2024). For details on the sports datasets, see Appendix D.

For each dataset, we assess top-k robustness with k ∈ {1, 3, 5, 10, 20}, extending up to the maxi-
mum number of models present in the respective arena when fewer than 20 models are present.

4.2 SENSITIVITY OF LLM ARENAS

We find many popular LLM arenas to be incredibly sensitive to data-dropping (see Table 1). In
particular, we find that dropping just two (0.003% of) evaluations is enough to change the top-
ranked model on Chatbot Arena from GPT-4-0125-preview to GPT-4-1106-preview; see the two
surfaced prompts and response pairs in Appendix F. We then find that dropping just three (0.005%
of) evaluations can change one of the models in the top-5 rankings (the 5th and 6th-ranked models
changed). Surprisingly, GPT-4-1106-preview participated in the most matchups across the entire
arena and GPT-4-0125-preview also participated in a sizable number of matchups, as shown in
Figure 17, suggesting that data-dropping sensitivity cannot be attributed to a small sample size
alone.

In addition to reporting rankings based on point-estimate BT-scores, LMArena reports an approxi-
mate ranking based on the end points of bootstrap confidence intervals (see LMArena (2025); Chiang

6
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Algorithm 1 Our Data-dropping Robustness Check on Rankings

1: Input: Dataset (X, y), rank k, drop fraction α.
2: Output: (1) A determination of whether top-k non-robustness was found. (2) If top-k non-

robustness is found, we additionally return the pair of players (i, j) whose rankings flipped, the
differences in their scores pre- and post- data-dropping, and the most influential set Dα.

3:
4: ▷ Fit a Bradley–Terry model on the full arena.
5: θ̂(1N )← FitBTModel(X, y)

6: Determine the top-k set, KT (1N ), from θ̂(1N ).
7:
8: ▷ Compute score gap for each player pair of interest.
9: P ← {(i, j) : i ∈ KT (1N ), j /∈ KT (1N )}

10: for each (i, j) ∈ P do
11: Compute score gap ∆̂(1N )ij ← |θ̂i(1N )− θ̂j(1N )|
12: end for
13: Sort pairs (i, j) in P by increasing ∆(1N )ij
14:
15: ▷ Check pairwise robustness by choosing pairs in order to increasing score gap.
16: for each (i, j) in sorted P do
17: ▷ Compute influence scores.
18: for each datapoint (preference) n do
19: IFn(i)← influence score for datapoint n on θ̂i(1N )

20: IFn(j)← influence score for datapoint n on θ̂j(1N )
21: ∆n(i, j)← IFn(i)− IFn(j)
22: end for
23:
24: ▷ Identify worst-case subset by sorting influence scores.
25: Choose the ⌊αN⌋ values of ∆n(i, j) that are the largest in the negative direction, assuming

that θ̂i(1N )− θ̂j(1N ) > 0.
26: Dα ← indices corresponding to the ⌊αN⌋ most negative ∆n values.
27:
28: ▷ Compute the AMIP-predicted score difference.
29: (θ̂i(w)− θ̂j(w))AMIP ← (θ̂i(1N )− θ̂j(1N )) +

∑
n∈Dα

∆n

30:
31: ▷ Compute the exact refit for verification.
32: θ̂(w)← FitBTModel(X \Dα, y \Dα)

33: Compute new difference: (θ̂i(w)− θ̂j(w))
34:
35: if sign((θ̂i(1N )− θ̂j(1N ))) ̸= sign(θ̂i(w)− θ̂j(w)) then
36: return “Arena is α-level top-k non-robust”, (i, j), (θ̂i(1N )−θ̂j(1N )), (θ̂i(w)−θ̂j(w)), Dα

37: end if
38: end for
39:
40: return “Arena was not found to be α-level top-k non-robust”

et al. (2024b;a)). Even with the bootstrap-based rankings, we still find arenas to be surprisingly sen-
sitive to worst-case data-dropping. For instance, we surface arenas where the bootstrap-based rank-
ing outputs a single top-ranked model, but upon small-fraction data dropping, the model becomes
no longer the sole top-ranked model (see Figure 7 in Appendix A.1). See Table 2 in Appendix A.1
for more details on the sensitivity of LMArena rankings based on bootstrap confidence intervals.

Out of the LLM arenas we analyze, MT-bench is the sole benchmark that is robust at an α-level of
0.01 (see Table 1). Here, dropping 92 out of 3,355 (2.74% of) evaluations changes the top model
from GPT-4 to Claude-v1. Dropping 110 (3.28% of) matchups can change one of the models in
the top-5 rankings (again, the 5th and 6th ranked models changed). There are several reasons that
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Arena Evaluator (Judge) Number Dropped Percentage Dropped
Chatbot Arena Human 2 out of 57477 0.00348%
Vision Arena Human 28 out of 29845 0.0938%
NBA Games NA 17 out of 109892 0.0155%

Chatbot Arena LLM 9 out of 49938 0.0180%
Webdev Arena Human 18 out of 10501 0.171%
Search Arena Human 61 out of 24469 0.253%

MT-bench LLM 40 out of 2400 1.67%
ATP Tennis NA 6 out of 278 2.16%
MT-bench Human 92 out of 3355 2.74%

Table 1: Results of checking top-1 robustness of BT-scores on each of the arenas, listed in ascending
order of robustness (from the least to the most robust). The “Number Dropped” column reports
the number of preferences (matches) that are sufficient to flip the first and second-place models
(players). The “Percentage Dropped” column shows this number as a percentage of the number of
total preferences in the full arena. Datasets we found to be robust at an α-level of 1% are colored in
gray.

Figure 2: Each bar shows the fraction of data points dropped from Chatbot Arena that is sufficient
to demote the BT score of a model inside the top-k to outside of the top-k (k ∈ {1, 3, 5, 10, 20}).
The orange bars correspond to human evaluators and green bars to LLM-as-a-judge evaluators.

may lead MT-bench to be much more robust than the other LLM arenas. MT-bench consists of 80
carefully-designed multi-turn questions intended to differentiate models on core capabilities such as
math, reasoning, and writing, and annotated by expert annotators (Zheng et al., 2023). In contrast,
all other arenas in our analysis are large-scale crowdsourced platforms, which rely on user-submitted
prompts and crowd-sourced preference judgments.

4.3 HUMANS VS. LLM-AS-A-JUDGE

Within arenas that used both human and LLM judges, we find neither human-annotated nor LLM-
annotated datasets to be clearly more sensitive than the other to worst-case data-dropping (see Ta-
ble 1 and Figure 2). For Chatbot Arena, we find that the human-annotated dataset is slightly more
sensitive (required dropping fewer evaluations) for k ∈ {1, 5, 10, 20} while the LLM-annotated
dataset is slightly more sensitive for k = 3 (see Figure 2). In contrast, for MT-Bench, the LLM-
annotated dataset is more sensitive than the human-annotated dataset for all k ∈ {1, 3, 5}, perhaps
due to the use of expert-human annotators.5 Taken together, we cannot conclude that rankings based
on human preferences nor those based on LLM-as-a-judge preferences are systematically more sen-
sitive than the other.

4.4 INSPECTING DROPPED PREFERENCES

Our method can identify the prompts and response-pairs responsible for changing top leaderboard
rankings. On Chatbot Arena, we find that dropping just two human evaluations suffices to flip the

5We do not test k ∈ 10, 20, as MT-Bench includes only six models.
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rankings of GPT-4-1106-preview (originally ranked first) and GPT-4-0125-preview (ranked second).
We provide these prompts and response pairs in Appendix F. A qualitative analysis of the prompt-
response pairs (see Appendix F) shows that the two surfaced preferences correspond to cases that a
strong judge model (GPT-5.1) identifies as atypical (i.e., different to what the “typical” user might
prefer). In both cases, GPT-4-1106-preview was judged to have lost against substantially lower-
ranked models: Vicuna-13b (ranked 43rd) and Stripedhyena-nous-7b (ranked 45th). Dropping these
two anomalous losses is enough to raise GPT-4-1106-preview’s position from second to first.

5 RELATED WORK

5.1 VULNERABILITIES IN AI LEADERBOARDS

Despite its ease-of-use and widespread popularity, largescale, community-driven platforms like
Chatbot Arena are found to be vulnerable to adversarial attacks that can distort model rankings.
Min et al. (2025) demonstrate that Chatbot Arena is vulnerable to vote-rigging: by injecting just a
few hundred manipulated votes (out of 1.7 million), attackers can significantly change the top model
rankings. Similarly, Huang et al. (2025b) find that an attacker can accurately identify which model
produced a response on Chatbot Arena, and use that to systematically upvote or downvote a tar-
get model and propose several defenses (e.g., authentication, rate limits, malicious-vote detection)
that make the leaderboard more robust to adversarial agents. Injected votes may be especially easy
to construct on LLM-as-a-judge systems, as recent works show that LLM judges can be gamed in
systematic ways (Zheng et al., 2025; Raina et al., 2024). Beyond vote-rigging, Singh et al. (2025)
identify other issues such as data leakage and private testing practices that allow large, proprietary
model developers to selectively report the best-performing versions of their models on the arena.
Zhao et al. (2025) present a case study showing that model rankings can shift when a fraction of
votes comes from apathetic or arbitrary annotators. Their analysis finds that replacing 10% of votes
with uniform {0, 1} labels can move two models by up to five ranks. In contrast, we do not alter
votes but instead demonstrate that rankings can change by removing an alarmingly small fraction
(0.0003%) of the votes. More importantly, while Zhao et al. (2025) present a case study focused on
the rankings of three specific test models, we develop a systematic method to evaluate the robust-
ness of BT-based ranking systems under worst-case data dropping, which also identifies the specific
prompt–response pairs driving ranking flips. Finally, while all works in this section focus on Chat-
bot Arena, we extend our analysis to other domains (vision, web design, search, and multi-turn
dialogue) and find the leaderboard rankings on these platforms to be similarly non-robust.

5.2 DATA-DROPPING ROBUSTNESS

A growing body of works in statistics and theoretical computer science develops algorithms for as-
sessing whether data analyses are robust to dropping a small, worst-case fraction of the data (Brod-
erick et al., 2020; Kuschnig et al., 2021; Moitra & Rohatgi, 2023; Freund & Hopkins, 2023; Nguyen
et al., 2024; Huang et al., 2025a; Rubinstein & Hopkins, 2025). To our knowledge, only one prior
work has investigated this question in the context of ranking systems: Shiffman et al. (2023) study
the robustness of rankings in gene set enrichment analysis, showing that dropping just a few cells
can alter the ranking of p-values derived from the hypergeometric test. In contrast, our work exam-
ines ranking robustness in a BT-based ranking system. While Shiffman et al. (2023) analyze p-value
rankings, we analyze preference-based rankings of LLMs, extending approximation methods such
as AMIP (Broderick et al., 2020) and Additive One-step Newton (Huang et al., 2025a) to study the
robustness of BT-based ranking systems.

6 DISCUSSION

Crowdsourced LLM evaluation platforms like Chatbot Arena offer a way to rank LLMs by aggregat-
ing preferences over responses to open-ended prompts. There is good reason that this setup has been
widely-adopted: it is easy to scale, doesn’t require expert annotators, and enables the aggregation of
many prompts and judgments across a wide range of users (Zheng et al., 2023; Don-Yehiya et al.,
2025).
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In theory, this aggregation helps average out individual annotator variability and yields a signal that
is generalizable. However, in practice, we find that model rankings can depend on just a small
handful of human (or LLM) evaluations. Thus, we encourage users of leaderboards and benchmark
contests to run our method to investigate the fragility of crowdsourced LLM evaluation platforms
before publishing results.

Sensitivity to worst-case data-dropping is often indicative of low signal-to-noise in the underlying
data (Broderick et al., 2020); to help increase signal-to-noise, we recommend three different design-
related improvements that AI arenas could take. (1) Collect richer forms of feedback beyond binary
preferences (e.g., asking for evaluators’ confidence levels (Méndez et al., 2022).6 (2) Design more
discriminative prompts. Arenas could incorporate a prompt-filtering system to identify and remove
uninformative prompts, or create tools to identify prompts requiring specialized knowledge in order
to route them to appropriate evaluators (Don-Yehiya et al., 2025). Chiang et al. (2024a) perform
topic-modeling of the prompts submitted to Chatbot Arena. Their top-16 topics include “Poetry
Writing Prompts” and “Movie Recommendations and Ratings.” The subjective nature of such topics
may make differentiation between top models less meaningful. (3) Ensure higher-quality preference
annotations. Arenas could use mediators to perform fine-grained assessments of crowdsourced re-
sponses (Don-Yehiya et al., 2025), and categorizing prompts by instruction type (e.g., factual recall,
creative generation) to promote more fine-grained model comparisons within categories (Chia et al.,
2024).

A complementary line of work on creating high-quality synthetic benchmarks argues that
separability—requiring performance gaps between models to be wide enough for leaderboard trends
to remain stable under subsampling—should be a main design criterion (Li et al., 2024). At the same
time, our findings may suggest that apparent leaderboard differences may be artifacts of noise in the
evaluation process rather than genuine performance gaps, which cautions against treating AI leader-
board rankings as definitive indicators of differences in model performance.
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APPENDIX

A UNCERTAINTY QUANTIFICATION

A.1 SENSITIVITY OF LLM ARENA RANKINGS BASED ON BOOTSTRAP CONFIDENCE
INTERVALS

In addition to reporting rankings based on point-estimate BT-scores, LMArena reports an approxi-
mate ranking based on the end points of bootstrap confidence intervals (see LMArena (2025); Chiang
et al. (2024b;a)). Specifically, Chiang et al. (2024a) computes bootstrap-confidence-interval-based
rankings, which we will henceforth refer to as bootstrap-based rankings, as

Rm = 1 +
∑

m′∈[M ]

1{inf Cm′ > supCm} , (9)

where Rm denotes the rank and Cm the bootstrap confidence interval of model m. Under this
scheme, a model’s ranking increases by one for every other model whose lower confidence-interval
endpoint exceeds the upper endpoint of the model in question (see Equation (9)). In other words,
a model, m, is ranked below all models whose performance is significantly higher according to
non-overlapping bootstrap confidence intervals. This definition (see Equation (9)) induces a set-
valued ranking: multiple models may share the same ranking whenever their confidence intervals
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(a) Original.

(b) Post-data-dropping.

Figure 3: Bootstrap-confidence-interval-based rankings on Chatbot Arena (Human Judge).

overlap with one another. Thus, a bootstrap-based “rank” corresponds often to a set of statistically
indistinguishable models, rather than a single model.

In the bootstrap-based ranking setting, we follow the same notion of top-k robustness introduced
in Definition 3. An arena is deemed top-k robust at level-α if no α-fraction subset of data can be
dropped to change the top-k set of models. The only modification under the bootstrap-based ranking
scheme is that each “rank” now corresponds to a set of statistically indistinguishable models. Thus,
we regard the top-k set as having changed whenever any model is added to or removed from this set.

To construct Table 2, we first recompute the bootstrap-based rankings on the full dataset, apply
our method to identify influential preferences, remove those preferences, and then recompute the
bootstrap-based rankings. Along with Table 2, we display the plots of the bootstrap-based rankings
for the full data and the rankings post-data-dropping in Figures 3 to 9.

Despite the bootstrap’s attempt to account for sampling uncertainty, we continue to find many arenas
to be surprisingly sensitive to worst-case small-fraction data-dropping: the set of models ranked
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(a) Original.

(b) Post-data-dropping.

Figure 4: Bootstrap-confidence-interval-based rankings on Chatbot Arena (LLM Judge).

top-1 still changes in many arenas after removing a very small fraction of the arena. Across these
experiments, we observe several arenas in which a new model enters the top-1 set (Figures 3, 5
and 6) and one arena in which a model is removed from the top-1 set (Figure 4), all from dropping
less than 1% of preferences on the arena. We also surface arenas where the bootstrap-based ranking
outputs a single top-ranked model, but upon small-fraction data dropping, the model becomes no
longer the sole top-ranked model (see Figure 7).

This result shows that AMIP-based non-robustness is not an artifact of ignoring statistical uncer-
tainty captured by confidence intervals. Rather, even after incorporating bootstrap variability, the
arenas continue to be AMIP sensitive.
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(a) Original.

(b) Post-data-dropping.

Figure 5: Bootstrap-confidence-interval-based rankings on Vision Arena.

A.2 DISTINCTION BETWEEN WORST-CASE DATA-DROPPING SENSITIVITY AND
CONFIDENCE INTERVALS

Confidence intervals, such as the bootstrap intervals reported on LMArena (LMArena, 2025), do
quantify a form of sensitivity of BT-estimated rankings to variability across samples. However, the
sampling-based sensitivity that bootstrap confidence intervals capture is conceptually different from
that captured by AMIP. Bootstrap intervals characterize how much an estimate (e.g., the BT score)
varies when data are resampled uniformly at random. In contrast, AMIP measures the maximum
change in a BT-score difference that can be induced by removing a worst-case small fraction of the
data. While frequentist (Gao et al., 2023; Hunter, 2004) confidence intervals methods are meant to
capture randomness in the data-generating process, the AMIP targets sensitivity on a single, fixed
dataset. This focus on a single sample differs in spirit from the variability across “counterfactual
worlds” in that the uncertainty quantification methods are meant to measure. In this sense, the two
approaches answer complementary questions about the stability of a sample-based conclusion: the
confidence intervals measure sampling uncertainty, while worst-case data-dropping robustness ex-
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(a) Original.

(b) Post-data-dropping.

Figure 6: Bootstrap-confidence-interval-based rankings on Search Arena.

Arena Evaluator (Judge) Number Dropped Percentage Dropped
Chatbot Arena Human 29 out of 57477 0.0510%
Search Arena Human 25 out of 24469 0.103%
Chatbot Arena LLM 75 out of 49938 0.150%
Vision Arena Human 125 out of 29845 0.419%

Webdev Arena Human 160 out of 10501 1.52%
MT-bench Human 92 out of 3355 2.74%
MT-bench LLM 40 out of 2400 4.00%

Table 2: Results of checking top-1 robustness of bootstrap-based rankings on each of the arenas,
listed in ascending order of robustness (from the least to the most robust). The “Number Dropped”
column reports the number of preferences (matches) that are sufficient to flip the first and second-
place models (players). The “Percentage Dropped” column shows this number as a percentage of
the number of total preferences in the full arena.

amines whether the ranking is driven by a very small fraction of the observations in the sample.
Although Bayesian credible intervals (Leonard, 1977) also operate under the case of a single, fixed
dataset, past work has demonstrated that data analyses can be both statistically significant in the
Bayesian sense (credible interval does not include zero) and still sensitive to worst-case data drop-
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(a) Original.

(b) Post-data-dropping.

Figure 7: Bootstrap-confidence-interval-based rankings on Webdev Arena.

ping (see Bayesian hierarchical model case study in Section 4.4 of (Broderick et al., 2020)). So,
analogous to the frequentist case, the AMIP again represents a different and complementary check.

These tools also differ in the statistical assumptions under which they provide guarantees. Bootstrap-
based confidence intervals rely on the data being i.i.d. draws from a target population. Real-world
preference datasets often depart from this regime due to differences in annotators (e.g., the same, or
similar types of, annotators may annotate several prompts on LMArena), resulting prompt-selection
biases, and various other potential context-based factors. AMIP, by contrast, does not require an
i.i.d. assumption and therefore remains valid in settings where classical resampling tools do not
apply reliably. Prior work (Broderick et al., 2020) has demonstrated that data analyses can be si-
multaneously statistically significant yet worst-case data-dropping non-robust. In this sense, AMIP
provides a complementary and practically useful lens for assessing the generalizability of LLM
leaderboard rankings.
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(a) Original.

(b) Post-data-dropping.

Figure 8: Bootstrap-confidence-interval-based rankings on MTBench (Human Judge).

A.3 UNIFORM DATA-DROPPING EXPERIMENT

To examine the contrast between worst-case data-dropping and dropping random pairs of prefer-
ences, we conduct a uniform subsampling experiment. For each arena, we drop 1% of the evaluations
uniformly at random, repeat the experiment 100 times, and record the fraction of runs in which the
top-ranked model remains unchanged relative to the full arena. For Chatbot Arena (human-judge),
we additionally report robustness at a finer scale of α = 0.1%.

The results in Table 3 highlight a key conceptual distinction between uniform and worst-case data-
dropping. Across nearly all arenas, dropping 1% of the evaluations uniformly at random leaves the
top-ranked model unchanged in every trial. Even Chatbot Arena (human-judge), which is the least
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(a) Original.

(b) Post-data-dropping.

Figure 9: Bootstrap-confidence-interval-based rankings on MTBench (LLM Judge).

stable under uniform subsampling, maintains its top-ranked model in 77% of random 1% deletions,
a fraction that is many magnitudes larger than the 0.00348% of preferences required to flip the top-
ranked model when dropping the worst-case data subset. These results show that the rankings are
extremely sensitive to dropping a worst-case small fraction of preferences, yet stable (at α = 1%) to
dropping preferences chosen at random. Taken together, these observations show that uniform and
worst-case data-dropping probe fundamentally distinct failure modes.
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Arena Fraction of Trials Top-1 Robust
Chatbot Arena (Human-judge) 0.77 (0.97 at α = 0.1%)
Vision Arena 1.00
NBA Games 1.00
Chatbot Arena (LLM-judge) 1.00
Webdev Arena 1.00
Search Arena 1.00
MT-bench (LLM-judge) 1.00
ATP Tennis 1.00
MT-bench (Human-judge) 1.00

Table 3: Top-1 robustness of each arena under uniform-at-random data-dropping. Each entry reports
the proportion of 100 trials in which dropping 1% of the evaluations uniformly-at-random does not
change the top-ranked model.

B TOP-k SETS CAN BE CHARACTERIZED BY SETS OF PAIRWISE PLAYER
COMPARISONS

We show in Proposition B.1 that the top-k set can be characterized by a set of pairwise player
comparisons.

Proposition B.1. Suppose we have M real numbers, T (w) := {θ̂i(w)}Mi=1. Suppose a set S ⊂
T (w) satisfies |S| = k. Suppose it is the case that ∀ θ̂i(w) ∈ S and ∀ θ̂j(w) ∈ T (w) \ S, we have
that θ̂i(w) > θ̂j(w). Then, it must be that S is the top-k set, i.e., S = KT (w).

Proof. We first show that S ⊂ KT (w). Suppose that θ̂i(w) ∈ S. By assumption, we have that
∀ θ̂j(w) ∈ T (w) \ S, θ̂i(w) > θ̂j(w). Since |T (w) \ S| = M − k, there must exist at least
(M − k) values in T (w) that are smaller than θ̂i(w). This must mean that rank(θ̂i(w); T (w)) ≤ k,
so θ̂i(w) ∈ KT (w) as needed.

We next show that KT (w) ⊂ S by contradiction. Suppose there exists a θ̂j(w) such that θ̂j(w) ∈
KT (w) but θ̂j(w) /∈ S . Since θ̂j(w) /∈ S , then θ̂j(w) ∈ T (w) \ S. This means that ∀θ̂i(w) ∈ S we
have θ̂i(w) > θ̂j(w), and since |S| = k, this implies that rank(θ̂j(w); T (w)) > k, contradicting
the assumption θ̂j(w) ∈ KT (w).

C AMIP APPROXIMATION FOR BT MODELS

C.1 AMIP APPROXIMATION OF GENERAL WEIGHTED BT MODELS

For completeness we provide here a review on general AMIP approximation proposed by Broderick
et al. (2020) to solve the optimization problem Equation (8).

Broderick et al. (2020) propose relaxing w to allow continuous values and replacing the w-specific
quantity of interest with a first-order Taylor series expansion with respect to w around 1N . This
first-order Taylor series expansion is known as the influence function (IF) approximation (Hampel
et al., 2011), a classic technique from robust statistics that approximates the affect of upweighting
(or dropping) a data point on model parameters using a first-order Taylor series approximation in
data-weight space. Influence functions have become popular tools for approximating resampling
methods (Giordano et al., 2019) and assigning value to data that a model was trained on (Koh &
Liang, 2017; Park et al., 2023). This approximation applies to more general data analyses and
quantities of interest.

In our case, this approximation amounts to replacing Equation (8) with

max
w∈Wα

∑N

n=1
(1− wn)

(
∂θ̂i(w)

∂wn

∣∣∣
w=1N

− ∂θ̂j(w)

∂wn

∣∣∣
w=1N

)
. (10)
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Let
L(yn, θ) := wWLIyn=W log σ(θin − θjn) + wWLIyn=L log(1− σ(θin − θjn))

+wT Iyn=T

(
log σ(θin − θjn) + log(1− σ(θin − θjn))

)
.

(11)

to be the likelihood for a single data point. The impact of upweighting w on the parameter θ̂i(w) is
then given by

∂θ̂i(w)

∂wn

∣∣∣
w=1N

= −H−1

θ̂(1N )
∇θL(yn, θ)

∣∣∣
θ=θ̂(1N )

, (12)

where

Hθ̂(1N )
:=

1

N

N∑
n=1

∇2
θL(yn, θ)

∣∣∣
θ=θ̂(1N )

. (13)

See Broderick et al. (2020, Section 2.2.2) for more details on this derivation. In what follows we
provide details on how to apply this approximation in BT models by reformulating it as a logistic
regression.

C.2 BT MODELS AS LOGISTIC REGRESSIONS

Unweighted BT. In the unweighted BT model with wW,L = 1, wT = 0, with an abuse of data
indices n, the preferences are assumed to be generated as

yn ∼ Bernoulli(σ(θin − θjn)), (14)

We can cast this model as a logistic regression with a specially-structured design matrix. We denote
the corresponding “design” vector of the nth comparison, xn ∈ {−1, 0, 1}M , a vector encoding
which two players are being compared. That is, if the game is between players i and j, then xn has
a 1 in the ith element, a −1 in the jth element, and 0 otherwise. Using this structure, we can rewrite
the model as a logistic regression model with M − 1 parameters corresponding to the scores of the
players, θ = (θ1, . . . , θM ) ∈ RM with θ1 = 0,

yn ∼ Bernoulli(σ(x⊤
n θ)). (15)

We fit the BT-model (i.e., estimate θ) by maximum likelihood of logistic regression,

θ̂ := argmax
θ:θ1=0

N∑
n=1

(
yn log σ(x

⊤
n θ)

+ (1− yn) log(1− σ(x⊤
n θ))

)
.

(16)

Weighted BT. The model actually used in e.g., ChatBot Arena that handles tie by 1) counting every
winning/loss as two games with the same outcome and 2) couting tie as two games with opposite
outcomes. This effectively sets wW,L = 2, wT = 1. This special case can also be casted as a
logistic regression with two copy of the design matrix same as unweighted version, Xweighted =
[X,X]. That is, suppose there are in total N games, if the nth game is between players i and j,
then xweighted,n as well as xweighted,n+N has a 1 in the ith element, a −1 in the jth element, and 0
otherwise. The response yweighted,n = Iyn=W and yweighted,n+N = Iyn=W + Iyn=T . I.e., in the
first copy of the game, a tie is counted as a loss and in the second copy of the game, a tile is counted
as a win while winning and losing are counted twice in total from both copies. Then we can fit the
weighted BT by maximum likelihood of logistic regression,

θ̂ := argmax
θ:θ1=0

2N∑
n=1

(
yweighted,n log σ(x

⊤
weighted,nθ)

+ (1− yweighted,n) log(1− σ(x⊤
weighted,nθ))

)
.

(17)

C.3 APPLYING AMIP TO BT MODELS IN LOGISTIC FORM

In this section we provide details on applying general Equation (12) in our specific case of logistic
regression formed BT models. We observed that our quantity of interest θi− θj is a linear combina-
tion of effect size θis in logistic regression, thus the first order Taylor expansion of this quantity can
be calculated by first order Taylor expansion of θis.
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Let ej denote the jth standard basis vector and X ∈ RN×P denote the design matrix. Let p̂n =

σ(θ̂⊤xn) and V = diag({p̂n(1 − p̂n)}n). For logistic regression with an effect-size quantity of
interest, θj , the formula for the influence score for the nth data point (Pregibon, 1981) is given by

∂θ̂j(w)

∂wn

∣∣∣
w=1N

= e⊤j (X
⊤V X)−1xnp̂n(1− p̂n) (yn − p̂n) , (18)

In addition to influence functions, our framework enables a second data-dropping approximation
known as the One-step Newton (1sN) approximation, which approximates the effect of dropping a
data point on model parameters using a second-order Taylor expansion in parameter space. This
Newton-style update has become popular for approximating the deletion of data in recent works
on approximate cross validation (Ghosh et al., 2020; Wilson et al., 2020) and machine unlearning
(Sekhari et al., 2021; Suriyakumar & Wilson, 2022). The 1sN is slightly more expensive to compute
than the IF approximation (as it corrects the IF with a multiplicative correction term) but is more
accurate when the to-be-dropped data point has high a leverage score (because the correction term
involves the leverage score of a data point). Previous works have proposed approximating the re-
moval of a group of data points by the sum of leave-one-out 1sN scores, in an algorithm known as
the Additive one-step Newton approximation (Huang et al., 2025a; Park et al., 2023).

To run the AMIP and Additive one-step Newton algorithm to check pairwise robustness between
two given players, i and j, we:

1. Fit a BT model on the entire arena.

2. Compute the influence scores (Equation (18)) (one-step Newton scores for the Additive
one-step Newton algorithm) for all matches in the arena.

3. Identify the ⌊αN⌋ matchups for which the difference in influence scores is the largest in
the negative direction (assuming that player i has a higher estimated BT score than player
j on the full data).

4. Approximate impact of dropping these ⌊αN⌋ matchups by the sum of the influence score
approximations.

5. If the approximation predicts that the relative ranking between players i and j changed,
then refit the model leaving out the identified subgroup.7

These data-dropping algorithms replace a computationally intractable combinatorial search with an
algorithm that costs only

O(Analysis+N log(αN) +NP 2 + P 3),

where Analysis represents the cost of fitting the initial Bradley–Terry model on the original arena to
compute scores. Data-dropping approximations make identifying candidate subsets of the arena that
may induce top-k non-robustness very fast because they eliminate the need to retrain the BT model
repeatedly on every candidate subset. Once a candidate subset is identified, however, our method
always performs a refitting of the BT model with the identified subset removed to verify whether
the non-robustness is true. This final verification step ensures that our method does not return false
positives.

D ARENAS

Chatbot Arena. A crowdsourced platform where users engage in conversations with two chatbots
at the same time and rate their responses based on personal preferences (Zheng et al., 2023). We use
the arena-human-preference-55k amd chatbot-arena-llm-judges datasets. This
benchmark contains a total number of 57,477 preferences. Figure 3 presents the BT scores of the
top models in Chatbot Arena.

MT-Bench. A multi-turn question set designed to compare LLMs in multi-turn conversation and in-
struction following constructed to distinguish between models based on reasoning and mathematics

7Our algorithm gives users the option to refit the BT model for all matchups, regardless of whether a pre-
dicted ranking change occurs.
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Figure 10: The top-10 player rankings in the tennis data.

(Zheng et al., 2023). We use the mt-bench-human-judgments dataset. This benchmark was
handcrafted using 58 expert-level human labelers; it contains 3,355 total preferences. In contrast
to Chatbot Arena, labelers are mostly graduate students, so they are considered more skilled than
average crowd workers. Figure 8 presents the BT scores of the models in MT-bench.

Search Arena. A crowdsourced platform for search-augmented LLMs, focusing on real-world and
current events rather than static factual questions. We conduct our analysis using historical data
available on Hugging Face: lmarena-ai/search-arena-24k. The dataset contains 24,069
multi-turn conversations with search-LLMs across diverse intents, languages, and topics. Figure 6
presents the BT scores of the top models in Search Arena.

Webdev Arena. A crowdsourced platform for LLM web development tasks, such as building inter-
active applications and webpages. We conduct our analysis using historical data available on Hug-
ging Face: lmarena-ai/webdev-arena-preference-10k. This dataset contains 10,000
user-submitted prompts. Figure 7 presents the BT scores of the top models in Webdev Arena.

Vision Arena. A crowdsourced platform that tests vision-language models on visual question-
answering. There are a total of 30,000 single and multi-turn chats between users and two anonymous
vision-language models. We conduct our analysis using historical data available on Hugging Face:
lmarena-ai/VisionArena-Battle. Figure 5 presents the BT scores of the top models in
Vision Arena.

ATP Tennis. Association of Tennis Professionals (ATP) tennis records consolidated by Sackmann
(2024). Each entry represents a match from the ATP tour, a worldwide top-tier men’s tennis tour,
and consists of the identifiers of the winning and losing players and the match-related metadata (e.g.,
player rankings, name of the tournament). We focused on the top-10 ranked players based on the
2024 season ranking and analyzed their plays throughout four seasons, 2020-2024. To avoid the
case where dropping a small proportion of matches could drop a player’s entire record, we focus
our analysis on players who played at least 20 games. There were in total 278 games after filtering.
Figure 10 presents the BT scores of the top models in the tennis dataset.

NBA. Basketball games from all seasons of the National Basketball Association (NBA), consoli-
dated by FiveThirtyEight (2025). Each entry represents a historical game from the National Bas-
ketball Association, consisting of the identifiers of the two teams, the outcome of the game (win or
loss), as well as game-related metadata (e.g., Elo score of each team, game location). To avoid the
case where dropping a small proportion of matches could drop a player’s entire record, we focus our
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Figure 11: The top-20 team rankings in the NBA.

analysis on the top 50 teams by number of games played. There are a total of 109,892 matchups
between the 50 teams. Figure 11 presents the BT scores of the top teams in the NBA.

E PLAYER INVOLVEMENT, HOMOGENEOUS BARS

Across all top-k robustness experiments, 100% of dropped matches involved either one or both of
the models whose rankings were flipped, with 100% belonging to one of these two cases within a
given k (see Figure 12). There are no partial bars or mixed compositions. Readers may ask: Why
does this homogeneous pattern consistently appear? Could this be a property of the arena data?

We investigate this by manually inspecting the dropped matchups returned by our robustness assess-
ing algorithm for each value of k. Specifically, in each case, we identified the dropped matchups
and inspected which players appeared in these matchups. We summarize the findings here:

• k = 1: 2 games were dropped to flip GPT-4-0125-preview (originally 1st) and GPT-4-
1106-preview (2nd). These two matches were between GPT-4-0125-preview and two other
models, vicuna-13b (22nd) and stripedhyena-nous-7b (45th), with GPT-4-0125-preview
losing.

• k = 3: 29 games were dropped to flip models gpt-4-0314 (3rd place) with mistral-7b-
instruct-v0.2 (6th place). Games were played between mistral-7b-instruct-v0.2 and various
other models, with mistral-7b-instruct-v0.2 losing all matches.

• k = 5: 3 games were dropped to flip models qwen1.5-72b-chat (5th place) with mistral-
medium (6th place). All dropped matches were between qwen1.5-72b-chat and gpt-4-
1106-preview (1st place), with qwen1.5-72b-chat (5th place) winning.

• k = 10: 1 game was dropped to flip models gemini-pro (10th) and mixtral-8x7b-instruct-
v0.1 (11th place). The dropped match was between the two models, with gemini-pro win-
ning.

• k = 20: 1 game was dropped to flip models gpt-3.5-turbo-0314 (20th place) with nous-
hermes-2-mixtral-8x7b-dpo (21st place). The dropped match was between nous-hermes-
2-mixtral-8x7b-dpo (21st place) and vicuna-13b (22st place), with nous-hermes-2-mixtral-
8x7b-dpo losing.
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The reason the involvement is always entirely either one or both affected players is because all of the
dropped matchups consist of games played between a central model and a specific competitor (or
group of competitors) whose outcomes all favor or disfavor the specific model and every dropped
preference was a clear win or loss (no ties), aligning in the direction required to flip the ranking.
In other words, whenever a top-k set changed due to the demotion of a model, all dropped matches
were ones that the demoted model had originally won, and vice versa for promotions. This structure
then leads the dropped matchups to consist entirely of evaluations that involved one or both ranking-
flipped models. This finding reveals something interesting about the nature of the non-robustness in
our analysis: small, consistent sets of matchups are sufficient to push a model just above or below
another on the leaderboard.

For every instance where the top-k leaderboard changes due to dropped preferences, we find that
the affected matches always involve at least one of the models whose rank is altered (see Figure 12).
This holds true for both human-judged and LLM-judged Chatbot Arenas. While Min et al. (2025)
find that adding in a small fraction of rigged votes can influence a target model’s ranking even when
the target model is not directly involved in the rigged votes, we are unable to find instances where
rankings were flipped by removing a small fraction of preferences where neither of the affected
models were involved.

Also, notice in Figure 12 that there are no partial bars or mixed compositions. We investigate why
this homogeneous pattern appears consistently across bars. Inspecting dropped matchups manu-
ally, we find that the reason why one or both flipped players are always involved in the dropped
matchups is because these matchups are always played between the model that is flipped, call it the
target model, and a specific competitor (either the model whose ranking is flipped relative to the
target model, or another model) or group of competitors (including models whose rankings remain
unchanged), and all matchups either always favor or disfavor the target model (see Appendix E for
a more detailed description). This finding reveals something about how non-robustness appears in
our analyses: small, consistent sets of matchups are sufficient to push a model just above or below
another on the leaderboard.

(a) Chatbot Arena (Human-Judge) (b) Chatbot Arena (LLM-Judge)

Figure 12: Player involvement in the most influential matches whose removal caused two models
(players), one inside the top-k positions and one outside, to exchange places. Each bar represents
the composition of matches dropped in order to exchange the models. The proportions indicate
whether neither (green), one (orange), or both (blue) of the affected models were involved in each
dropped matchup. For Chatbot Arena (Human-Judge) (top), the number of matches dropped for
each k ∈ {1, 3, 5, 10, 20} is (2, 29, 3, 1, 1), respectively. For Chatbot Arena (LLM-Judge) (bottom),
the number of matches dropped for each k ∈ {1, 3, 5, 10, 20} is (9, 24, 9, 1, 2). Across all k, we find
that 100% of flipped rankings involved matches containing at least one of the players whose ranking
changed.

F INSPECTING DROPPED PREFERENCES

Dropping just two (0.003% of) preferences on Chatbot Arena is enough to change the top-ranked
model on Chatbot Arena from GPT-4-0125-preview to GPT-4-1106-preview. Below we provide the
two prompts and response pairs responsible for the ranking flip, together with the corresponding
annotation. Additionally, we note that the BT model’s estimation procedure does not use any infor-
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mation about prompt content; it depends only on the BT scores of the two models involved in each
match, which means it is possible for dropped subsets to be non-unique.

Prompt 1. “teach me how to make independent classes in python that can be call and install
through pip.”

Competing Models. GPT-4-0125-preview, Vicuna-13b

Preferred Model. Vicuna-13b.

Responses. See Figure 13 for the complete response by GPT-4-0125-preview and Figure 14 for
the complete response by Vicuna-13b.

Prompt 2. “name me challenging c++ projects i can add on my cv as a cs student. give me creative
ideas and dont forget im a student.”

Competing Models. GPT-4-0125-preview, Stripedhyena-nous-7b

Preferred Model. Stripedhyena-nous-7b.

Responses. See Figure 15 for the complete response by GPT-4-0125-preview and Figure 16 for
the complete response by Stripedhyena-nous-7b.

To conduct a qualitative analysis on the response pairs, we provide a strong judge model, GPT-5.18,
with a system prompt requesting a summary of the two responses, their similarities and differences,
and a difficulty rating indicating how distinct the responses are.

System Prompt

Provide a summary of the following two AI-generated responses to the prompt:
[Insert Prompt Here]. Then describe their main similarities and differences. Fi-
nally, rate on a scale from 1 (very similar) to 5 (one response clearly better) how
difficult it would be for a user to distinguish the two responses.

Response A: [Insert Response A here]
Response B: [Insert Response B here]

Provide 2-3 sentences for each of the following headings: summary, similarities,
differences, and difficulty rating.

In the following GPT-5.1 responses, Response A refers to GPT-4-0125-preview, and Response B
refers to the smaller, open-source models, Vicuna-13b and Stripedhyena-nous-7b, respectively for
prompts 1 and 2.

GPT-5.1-Generated Response [for Prompt 1]

Summary. Response A provides a detailed, step-by-step explanation of how
to create Python classes, organize them into a package, build distribution files,
and optionally upload the package to PyPI. It includes full code examples, termi-
nal commands, and practical guidance for beginners. Response B offers a brief
overview of how to create a package with init.py and setup.py, focusing mainly on
local installation and basic configuration, and ends abruptly without deeper detail.

8We accessed GPT-5.1 through the ChatGPT user interface in a logged-out, incognito session.
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Similarities. Both responses explain that Python packages require an init.py file
and a setup.py file using setuptools. They also describe how a user can install the
finished package with pip. Each provides an example of what a setup.py file might
look like.

Differences. Response A is much more comprehensive, guiding the reader
through class creation, directory structure, building distribution files, and pub-
lishing to PyPI, while Response B offers only a high-level outline of the pro-
cess. Response A includes practical, runnable examples, whereas Response B
only sketches the idea of the setup. Response B also feels incomplete and omits
several important steps that Response A covers thoroughly.

Difficulty Rating. On a scale of 1 to 5, where 1 means the responses are very
similar and 5 means one is clearly better, the two responses would rate around
a 4.5. A typical user would likely find Response A significantly more helpful,
complete, and actionable than Response B.

GPT-5.1-Generated Response [for Prompt 2]

Summary. Response A focuses on C++-specific, systems-oriented projects such
as memory allocators, compilers, and physics engines, emphasizing core CS con-
cepts and low-level programming. Response B centers on AI- and application-
focused ideas like chatbots, image recognition, and recommendation systems,
many of which are not inherently tied to C++.

Similarities. Both responses offer lists of challenging project ideas intended
to help a CS student strengthen their CV. They also highlight projects that can
demonstrate technical skills and encourage documenting the work effectively.

Differences. Response A is tightly aligned with the prompt, emphasizing C++
and foundational CS mechanics, whereas Response B presents more general soft-
ware and AI projects that may rely on other languages or frameworks. Addition-
ally, Response A provides deeper technical context, while Response B takes a
more high-level, application-oriented approach.

Difficulty Rating. Rating: 5 — The two responses differ clearly in focus, depth,
and C++ relevance, making them easy to distinguish. A typical user would quickly
notice that only Response A directly addresses the C++-project requirement.

In both surfaced examples, GPT-5.1 judges the pair of responses to be easy to differentiate and
consistently prefers the opposite response from the human annotator (e.g., “A typical user would
likely find Response A significantly more helpful, complete, and actionable than Response B,” and
“A typical user would quickly notice that only Response A directly addresses the C++-project re-
quirement.”). This makes sense, as both matches are cases in which a much lower-scoring model
is preferred to the top-ranked model. Thus, one might interpret the influential subsets the method
identifies as “outlier” preferences, cases where the annotator’s preference deviates from what the
average user might select.

F.1 SENSITIVITY DRIVEN BY NARROW SCORE MARGINS

We find that the stability of the arena depends on the BT score margins between models (see Fig-
ure 18). Recall from Table 1 that dropping only two preferences is enough to change the top-ranked
model. To explore the effect of score margins, we first remove all games involving the second-place
model (GPT-4-1106-preview). The arena then becomes more resilient, requiring dropping 38 out
of 57,477 (0.07%) preferences to overturn the leader. When we further remove all games involving
the 2nd through 5th place models, the leaderboard becomes harder to perturb, but is still remarkably
sensitive, requiring dropping 63 out of 57,477 (0.1%) preferences to flip the top model.
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One possible explanation for this fragility is that top competitors are often closely matched, making
it difficult for annotators to reliably separate their performance on the prompts submitted to the
arena. This raises the possibility that sensitivity could be reduced by that sharpens distinctions
between models (for example, through expert annotators and curated prompts targeting challenging
domains such as mathematics, coding, and multi-turn reasoning, as in MT-Bench (Zheng et al.,
2023)).

G VERIFICATION OF AMIP-IDENTIFIED SUBSETS

For each of our nine data analyses, we can use the machinery of our method to return a w corre-
sponding to a smallest data subset that can be dropped to change the top-1 ranking. The machinery
of our method also returns an estimate (before re-running the BT model) for whether the top-1 rank-
ing is changed. To examine how often an identified weight vector w truly corresponds to a subset
whose removal flips the ranking, we report across all nine arenas the number of cases where the
estimate with the w-vector accurately reflects a change in the top ranking over the total number of
arenas tested for top-1 robustness.

In Table 4, we find that all identified w-vectors lead to a true change in ranking. And we find that
this result holds even when the dropped subset is greater than ⌊αN⌋ of the data (even though the
original AMIP makes no claims to an accurate identification of a decision-changing w in this case).
However, this does not mean that there are no cases where AMIP fails to surface a vector w that
leads to a change in ranking (i.e., false negatives are possible).

Dataset AMIP-Returned Subset (Indices) Flip?

Chatbot Arena {46592, 5156} Yes
Vision Arena {22176, 9686, 887, 15782, 24340, 25110, 9816, 10926, 18732,

21303, 13957, 2934, 2936, 19600, 11072, 15311, 11038, 25845,
17732, 29100, 5421, 24462, 23006, 10572, 2134, 13518, 5390,
15353}

Yes

NBA Games {18819, 19717, 18818, 19762, 14523, 19763, 14522, 20900,
22132, 22133, 18305, 15756, 14383, 18304, 14382, 19716, 20135}

Yes

Chatbot Arena (LLM-
judge)

{41445, 9108, 14834, 11144, 11675, 9123, 17291, 48894, 42411} Yes

Webdev Arena {7164, 7539, 9112, 7711, 2089, 1815, 2414, 6542, 6446, 4883,
8753, 2889, 9272, 3553, 1512, 5933, 6992, 10387}

Yes

Search Arena {22164, 12847, 12819, 21810, 11852, 19956, 9492, 15447, 11324,
16583, 12733, 10116, 21940, 15552, 9451, 12602, 21977, 11499,
12576, 10146, 12557, 11519, 15699, 9420, 12851, 18068, 12931,
11278, 13279, 11143, 11163, 21587, 9963, 13226, 9586, 20632,
13191, 9978, 13189, 12456, 11204, 17160, 13129, 18238, 18231,
10009, 13112, 15234, 11251, 20575, 13043, 10030, 11209, 9607,
20336, 15733, 22646, 12061, 11768, 12023, 10375}

Yes

MT-bench (LLM-judge) {646, 587, 1290, 1741, 720, 570, 571, 72, 223, 1212, 1183, 1122,
2052, 2053, 2112, 1242, 1063, 1033, 1032, 1003, 1812, 2113, 1002,
282, 1093, 1092, 1243, 2022, 1753, 1752, 132, 103, 102, 1872,
1873, 1543, 162, 1453, 1423, 1422}

Yes

ATP Tennis {236, 168, 251, 177, 202, 122} Yes
MT-bench (Human-judge) {137, 2399, 1298, 1884, 2398, 139, 1153, 850, 391, 1111, 3181,

91, 648, 2612, 803, 802, 804, 801, 800, 348, 744, 41, 2726, 349,
2668, 608, 607, 1450, 799, 2909, 1409, 2912, 2725, 748, 2492,
1537, 160, 1536, 2911, 1534, 925, 1535, 2333, 2161, 570, 1830,
346, 2334, 745, 1408, 1191, 2332, 3055, 101, 222, 2883, 3274,
221, 2837, 219, 667, 178, 3021, 3022, 1902, 2552, 2551, 2341,
863, 1124, 1903, 2624, 2626, 2627, 1634, 898, 1744, 2510, 1745,
220, 3275, 666, 1162, 246, 1214, 1294, 1165, 64, 247, 1556, 65,
3278}

Yes

Table 4: For each dataset, the number of cases where the estimate with the w-vector accurately
reflects a change in the top ranking) over the total number of arenas tested for top-1 robustness. All
surfaced w-vectors successfully flip the ranking (9/9).
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H MASKING EFFECTS AND THE POSSIBILITY OF FALSE NEGATIVES

A main limitation of our approach is that while it can conclusively identify non-robustness, it is
possible that there is non-robustness that it does not find: when our method surfaces a subset whose
removal flips the ranking, the resulting perturbation is an exact, verifiable witness of fragility; how-
ever, when no such subset is found, we cannot conclude that the arena is robust.

This limitation is a documented challenge in the literature on identifying influential subsets (Hu
et al., 2024; Huang et al., 2025a; Moitra & Rohatgi, 2023). In linear models, for example, Huang
et al. (2025a) and Hu et al. (2024) show that AMIP and related additive, first-order approximations
can miss influential subsets. A key failure mode is due to a phenomenon is known as “masking,” in
which several highly-impactful data points produce a large change to a statistic (e.g., an estimated
BT-score) when deleted jointly, yet no single point appears influential when considered in isolation.
To address masking effects, works such as Belsley et al. (1980); Kuschnig et al. (2021); Huang
et al. (2025a) have considered using step-wise (greedy) approaches, of removing the most influential
points in sequence. The main empirical conclusion of this paper relies on an existence proof: namely,
that several widely used evaluation datasets exhibit substantial sensitivity to very small targeted
deletions. For this reason, we do not pursue step-wise greedy variants here, though they remain an
interesting direction for future work.

I NON-ROBUSTNESS OF NBA RANKINGS

To assess whether fragility of Bradley–Terry (BT) rankings extends beyond LLM arenas, we applied
our method to historical NBA data. The degree of non-robustness in NBA rankings is comparable to
that observed in Chatbot Arena: both require removing < 0.05% of matchups to alter the top spot.
In both cases, the explanation may trace back to small BT-score gaps at the top of the leaderboard
(See Figure 11). One plausible explanation is that the skill levels among elite NBA teams are tightly
clustered, and so any apparent differences in skill level may not be substantive.

This non-robustness in the NBA datasets suggests a broader conclusion that BT-based evaluation
systems–whether in AI benchmarking or sports–tend to be unstable when the margin between com-
petitors is narrow.

J ADDITIONAL SUPPORTING FIGURES

The figures in this section provide additional insights related to our analysis. Figure 17 shows the
distribution of model appearances in Chatbot Arena, respectively, revealing differences in evaluation
density and coverage across platforms. Figure 18 illustrates the relationship between the robustness
of model rankings and the BT score gap between adjacent models, confirming that small score
differences tend to coincide with greater sensitivity to worst-case data-dropping.

K LARGE LANGUAGE MODEL (LLM) USE

We used LLMs for grammar checks and to polish writing, to help find sports datasets that yielded
the discovery of Sackmann (2024), and as a judge model in the qualitative study described in Ap-
pendix F. Although our study is about LLM rankings, we did not use LLMs as direct study subjects.
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 “Creating independent classes in Python that can be called and installed 
 through `pip` involves a few steps. You'll be packaging your code as a Python 
 package, and optionally, distributing it through PyPi (Python Package Index) 
 so that others can easily install it using `pip`. Let's go through the 
 process.### Step 1: Organize Your Code1. **Create a Project Directory**: This 
 is where your package code will reside. Choose a unique name for your 
 directory, preferably related to your package name.      ```bash   mkdir 
 mypackage   cd mypackage   ```2. **Create a Package Directory**: Inside your 
 project directory, create another directory with the name of your package. 
 This is where the Python files containing your classes will go.   ```bash 
 mkdir mypackage   ```3. **Write Your Classes**: Inside the package directory, 
 create Python files (`*.py`) where you'll define your classes. For example, 
 create `classA.py` and define a class `ClassA` in it.   ```python   # 
 mypackage\/mypackage\/classA.py      class ClassA:       def __init__(self): 
 print(\"Class A is initialized\")                  def greet(self): 
 return \"Hello from Class A\"   ```### Step 2: Make Your Package Installable1. 
 **Create a `setup.py` File**: At the root of your project directory (not 
 inside your package directory), create a `setup.py` file. This file includes 
 metadata about your package and the instructions to install it.   ```python 
 from setuptools import setup, find_packages   setup(       name=\"mypackage\", 
 version=\"0.1\",       packages=find_packages(),       description=\"A simple 
 example package\",       author=\"Your Name\", 
 author_email=\"your.email@example.com\", 
 url=\"https:\/\/github.com\/yourusername\/mypackage\",       classifiers=[ 
 \"Programming Language :: Python :: 3\",           \"License :: OSI Approved 
 :: MIT License\",           \"Operating System :: OS Independent\",       ], 
 )   ```2. **Create an `__init__.py` File**: Inside your package directory, 
 create an `__init__.py` file. This file can be empty but it is necessary to 
 make Python treat the directories as containing packages.   ```bash   touch 
 mypackage\/__init__.py   ```### Step 3: Build Your Package1. **Ensure 
 ̀setuptools` and `wheel` are Installed**: These packages are needed to build 
 your package.   ```bash   python3 -m pip install --user --upgrade setuptools 
 wheel   ```2. **Build Your Package**: From the root of your project directory, 
 run the following command to build your package.   ```bash   python3 setup.py 
 sdist bdist_wheel   ```This will generate distribution files in the `dist` 
 directory.### Step 4: (Optional) Publish Your Package to PyPI1. **Register an 
 Account on PyPI**: To distribute your package, you'll need an account on 
 [PyPI](https:\/\/pypi.org\/).2. **Install Twine**: Twine is a utility for 
 publishing Python packages on PyPI.   ```bash   python3 -m pip install --user 
 --upgrade twine   ```3. **Upload Your Package**: Use Twine to upload your 
 package to PyPI.   ```bash   python3 -m twine upload dist\/*   ```4. **Install 
 Your Package**: Once uploaded, anyone (including you) can install your package 
 using `pip`.   ```bash   pip install mypackage   ```### Step 5: Using Your 
 PackageAfter installing your package via `pip`, you can use it in your Python 
 scripts like so:```pythonfrom mypackage.classA import ClassAa = 
 ClassA()print(a.greet())```This guide provides a basic overview. Depending on 
 your needs, you might want to explore more advanced packaging options, such as 
 including dependencies, providing executable scripts, or supporting C 
 extensions.” 

Figure 13: GPT-4-0125-preview: response to prompt 1.

Figure 14: Vicuna-13b: response to prompt 1.
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 “Certainly! As a computer science student, engaging in challenging C++ 
 projects can significantly enhance your CV by showcasing your coding skills, 
 problem-solving abilities, and creativity. Here are some creative and 
 challenging project ideas that span various levels of complexity:\n\n1. 
 **Custom Memory Allocator**: Develop a C++ project that involves creating a 
 custom memory allocator. This will help you understand how dynamic memory 
 allocation works under the hood and improve your knowledge of pointers, memory 
 management, and optimization techniques.\n\n2. **Blockchain Simulation**: 
 Implement a simple blockchain in C++. This project will introduce you to the 
 fundamentals of blockchain technology, including creating blocks, implementing 
 a proof-of-work algorithm, and understanding the security principles behind 
 blockchain.\n\n3. **Graphical User Interface (GUI) Chat Application**: Use C++ 
 with Qt or any other GUI framework to create a desktop-based chat application. 
 This project can involve client-server architecture, understanding sockets, 
 and multi-threading to handle multiple clients.\n\n4. **Physics Simulation 
 Engine**: Build a physics engine that can simulate basic physics principles 
 like gravity, collision detection, and motion. This project can be extended by 
 incorporating a graphical representation of the simulation using libraries 
 such as OpenGL.\n\n5. **Machine Learning Algorithm Implementation**: Implement 
 a machine learning algorithm from scratch in C++. You could choose algorithms 
 like linear regression, decision trees, or even a simple neural network. This 
 will deepen your understanding of machine learning concepts and mathematical 
 principles.\n\n6. **Game Development with Unreal Engine**: Unreal Engine uses 
 C++ and offers an excellent platform to develop your own game. You could start 
 with something simple like a puzzle or platformer game and gradually add 
 complexity. This project will enhance your understanding of object-oriented 
 programming, game physics, AI, and real-time rendering.\n\n7. **Embedded 
 Systems Simulator**: Create a simulator for embedded systems that can model 
 the behavior of microcontrollers and peripherals. This project will introduce 
 you to the world of embedded systems, requiring you to understand low-level 
 programming and hardware-software interaction.\n\n8. **Compiler for a Simple 
 Language**: Design and implement a compiler for a simplified programming 
 language you create. This involves understanding lexical analysis, parsing, 
 syntax tree generation, and code generation. It's a challenging project that 
 will significantly improve your programming skills and understanding of how 
 compilers work.\n\n9. **File System Implementation**: Develop your own 
 simplified version of a file system in C++, which involves creating a way to 
 store, organize, retrieve, and manage data on a storage medium. This project 
 requires an understanding of disk management, directory structure, and file 
 metadata.\n\n10. **Augmented Reality App**: Utilize C++ with libraries such as 
 OpenCV and others to create a basic augmented reality application. This could 
 involve facial recognition, object tracking, or interactive games that overlay 
 digital content onto the real world.\n\nWhen selecting a project, consider 
 your interests and the specific skills you want to develop or showcase. 
 Completing one or more of these projects can make your CV stand out by 
 demonstrating your initiative, technical skills, and ability to tackle complex 
 problems.” 

Figure 15: GPT-4-0125-preview: response to prompt 2.

Figure 16: Stripedhyena-nous-7b: response to prompt 2.
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Figure 17: The number of times each model appears in a match in Chatbot Arena. The horizontal bar
chart shows how frequently each model appeared in any match, with GPT-4 and GPT-3.5 variants
being the most represented.
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Figure 18: Robustness of results is correlated with the proximity of the BT scores. Each point rep-
resents a pair of models whose relative rankings flipped after dropping a small fraction of matchups.
In every case, the flip causes one model to enter the top-k rankings (for some k ∈ {1, 3, 5, 10, 20})
while the other is demoted. These points are taken from both human and LLM-as-a-judge evaluation
platforms.
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