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Abstract

A new trend uses LLMs as dense text encoders
via contrastive learning. However, since LLM
embeddings predict the probability distribution
of the next token, they are inherently generative
and distributive, conflicting with contrastive
learning, which requires embeddings to cap-
ture full-text semantics and align via cosine
similarity. This discrepancy hinders the full
utilization of LLMs’ pre-training capabilities,
resulting in inefficient learning. In response to
this issue, we propose AutoRegEmbed, a new
contrastive learning method built on embedding
conditional probability distributions, which in-
tegrates two core tasks: information compres-
sion and conditional distribution alignment.
The information compression task encodes text
into the embedding space, ensuring that the em-
bedding vectors capture global semantics. The
conditional distribution alignment task focuses
on aligning text embeddings with positive sam-
ples embeddings by leveraging the conditional
distribution of embeddings while simultane-
ously reducing the likelihood of generating neg-
ative samples from text embeddings, thereby
achieving embedding alignment and unifor-
mity. Experimental results demonstrate that our
method significantly outperforms traditional
contrastive learning approaches and achieves
performance comparable to state-of-the-art
models when using the same amount of data.
Our code is available at https://anonymous.
4open.science/r/AutoRegEmbed-7530

1 Introduction

Text embeddings, which represent the semantic
content of natural language text as vectors, are
extensively utilized in domains such as informa-
tion retrieval, semantic similarity assessment, and
retrieval-augmented generation (RAG) (Khandel-
wal et al., 2020; Shi et al., 2024; Deng et al., 2023;
Ding et al., 2024). Traditional text embedding mod-
els typically employ transformer-based architec-
tures with encoder-only designs, including exam-
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Figure 1: Comparison of pareto front between Au-
toRegEmbed and other methods. The horizontal axis
represents the number of training samples, while the
vertical axis indicates the average performance across
10 STS datasets. The upper left corner represents the
region with the highest learning efficiency.

ples like Bert (Devlin et al., 2019), DeBERTa (He
et al., 2021) and MPNet (Song et al., 2020), and
are trained using contrastive learning.

Recently, contrastive learning has been di-
rectly applied to decoder-only LLMs, which are
trained to generate embedding vectors based on
task-specific instructions, enabling adaptability to
various embedding scenarios (Lee et al., 2024;
BehnamGhader et al., 2024). Despite initial ad-
vancements, training a high-performance 7B-scale
text embedding model using this approach remains
highly resource-intensive. It typically requires mil-
lions of triplets (Wang et al., 2024a; Li et al., 2024b,
2023) and substantial computational power, includ-
ing thousands of hours on an A100 80GB GPUs
(Muennighoff et al., 2024; Ma et al., 2024), even
with the application of Parameter-Efficient Fine-
Tuning (PEFT) (Hu et al., 2022; Dao, 2024). The
high resource consumption might reasonably be
attributed to the inability of the discriminative con-
trastive learning method to fully harness the ca-
pabilities of generative LLMs (Li et al., 2024a).
Firstly, the constraint of unidirectional attention in
LLMs leads to the aggregation of information in
the hidden state of the output layer corresponding
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to the final token. However, as LLMs are opti-
mized for next-token prediction, this hidden state
can only represent the semantics of the next token
(local) rather than the semantics of the input text
itself (global). Consequently, employing this hid-
den state directly in contrastive learning requires
additional training time and computational cost to
transition from a localized to a more global se-
mantic representation. Secondly, the hidden state
in LLMs is used to generate the probability dis-
tribution of the next token, whereas contrastive
learning optimizes the cosine distance between the
hidden states of different texts. This divergence in
optimization objectives introduces additional train-
ing costs. This raises an important question: Is it
feasible to develop a method that follows the auto-
regressive nature while generating high-quality text
embeddings and significantly reducing resource re-
quirements?

We formalize three key requirements to address
this problem. Firstly, embeddings should capture
global semantics rather than focusing solely on
next-token semantics. Secondly, they must follow
alignment and uniformity principles (Wang and
Isola, 2020). Finally, the transformation from the
original embedding to one that meets these crite-
ria should follow an autoregressive nature. To this
end, we propose AutoRegEmbed, which encom-
passes two tasks: information compression and
conditional distribution alignment.

The information compression task is inspired
by the concept of context compression (Cheva-
lier et al., 2023; Ge et al., 2024; Mu et al., 2023),
which addresses the limitations of context window
length and the high computational cost faced by
LLMs when processing long texts. Specifically,
we encode the context and instructions into a set
of compressed variables, which are then passed
to a decoder with the same architecture but frozen
parameters, forcing it to reconstruct the correspond-
ing target. By restricting the decoder to rely solely
on the compressed variables—without access to
the original context or instructions—we introduce
an information bottleneck. This ensures that the
compressed variables effectively capture the global
semantics of the instructions and context.

The conditional distribution alignment task
draws inspiration from traditional contrastive learn-
ing and LLM alignment techniques (Wang et al.,
2024b). We begin by treating the compressed
vectors as embeddings of their corresponding in-
puts. Then, we adopt the structure of the InfoNCE

(van den Oord et al., 2018) loss function, but re-
define the similarity metric. Simply put, we align
the distance between the conditional probability
distributions of text and positive sample embed-
dings while increasing the likelihood of text em-
beddings generating positive samples and decreas-
ing the likelihood of generating negative samples.
This approach promotes the alignment and unifor-
mity of compressed variables while maintaining
the autoregressive nature.

Experimental results on 10 STS datasets demon-
strate that AutoRegEmbed outperforms traditional
contrastive learning methods while utilizing the
same computational resources, making it a highly
efficient and scalable solution. Remarkably, even
with a limited number of training samples, Au-
toRegEmbed achieves performance on par with the
current state-of-the-art (SOTA) models, showcas-
ing its superior ability to learn robust and general-
izable representations from scarce data. As shown
in Figure 1, the Pareto frontier of AutoRegEm-
bed consistently outperforms traditional contrastive
learning methods, demonstrating a more optimal
trade-off between computational efficiency and
performance. This indicates that AutoRegEmbed
achieves superior representation learning while
maintaining a balanced resource utilization.

2 Related Works

Text embedding is a technique that maps text data
into a numerical vector space, capturing both se-
mantic and contextual features of the text. Re-
search in this area can be divided into three cate-
gories based on the underlying model: Early mod-
els, LLMs with fine-tuning, and LLMs without
fine-tuning.

Early Models Early approaches include Sen-
tenceBERT (Reimers and Gurevych, 2019) (su-
pervised) and SimCSE (Gao et al., 2021) (unsu-
pervised), which leverage contrastive learning to
generate high-quality text embeddings using small
encoder-only models. Another area of focus has
been improving the isotropy of embedding spaces.
Works such as BERT-flow (Li et al., 2020) (flow
models) and BERT-whitening (Su et al., 2021) (lin-
ear transformations) address the anisotropic prop-
erties of embeddings. Meanwhile, multi-stage con-
trastive learning (Li et al., 2023; Ni et al., 2022;
Wang et al., 2022) has further advanced text embed-
dings by combining pre-training on large weakly
supervised datasets with fine-tuning on smaller



high-quality datasets. Inspired by instruction fine-
tuning, recent research (Su et al., 2023; Asai et al.,
2023) has shifted toward using text paired with in-
structions to enhance the generalization and trans-
ferability of text embeddings in complex scenarios.
However, the performance of methods based on
early models is limited, due to their reliance on
models with relatively small parameter counts.

LLMs with Fine-Tuning Many studies have fo-
cused on transforming LLMs into text embedding
models through contrastive learning fine-tuning.
RepLLaMA (Ma et al., 2024), for example, fol-
lows the DPR (Karpukhin et al., 2020) pipeline,
using the hidden state of the last token generated
by LLaMA as a text embedding vector and ap-
plying contrastive learning fine-tuning. Recogniz-
ing that the unidirectional attention mechanism in
LLMs may limit text embedding quality, LLM2Vec
(BehnamGhader et al., 2024) introduces a bidirec-
tional attention mechanism combined with average
pooling to enhance embedding quality. NV-Embed
(Lee et al., 2024) takes this further by incorporating
an additional Latent Attention Layer to generate
pooled embeddings. bge-en-icl (Li et al., 2024b)
suggests that retaining the original framework of
LLMs and leveraging in-context learning is the
optimal approach for generating text embeddings.
Some studies (Wang et al., 2024a) even use syn-
thetic data generated by LLMs, rather than real-
world data, for fine-tuning and achieve competi-
tive performance on the MTEB leaderboard (Muen-
nighoff et al., 2023). However, these approaches of-
ten overlook the fundamental differences between
language modeling and contrastive learning, fail-
ing to fully leverage the potential of LLMs. More
closely related to our work is Llama2Vec (Li et al.,
2024a), which proposes two pretext tasks to enable
unsupervised adaptation of LLMs, followed by con-
trastive learning fine-tuning to achieve better perfor-
mance. In contrast, our approach achieves strong
results without any need for contrastive learning
fine-tuning, as our task fully exploits the inherent
potential of LLMs.

LLMs without Fine-Tuning Several studies
have explored methods to transform LLMs into
text encoders without fine-tuning. (Liu et al.,
2024) proposed using possible trajectory distribu-
tions as text representations, achieving effective-
ness but at a high computational cost. (Springer
et al., 2024) introduced echo embeddings by re-
peatedly feeding text into autoregressive models,

addressing architectural limitations but doubling
computational requirements. Other methods fo-
cus on prompt adjustments to produce meaning-
ful embeddings. PromptEOL (Jiang et al., 2024)
introduced a One-Word Limitation prompt to im-
prove embedding performance, while MetaEOL
(Lei et al., 2024) extended this idea by using eight
different prompt types to generate multi-view em-
beddings. GenEOL (Thirukovalluru and Dhingra,
2024) leveraged LLMs to create various sentence
transformations that retain their meaning, aggregat-
ing the resulting embeddings to enhance the overall
sentence representation. Meanwhile, PromptReps
(Zhuang et al., 2024) developed a hybrid document
retrieval framework leveraging prompts to address
challenges in information retrieval tasks. Despite
these innovations, these approaches either perform
poorly or require multiple inferences to achieve
good results. By contrast, our method surpasses
these methods with minimal training costs.

3 Method

In this section, we first introduce the preliminary
information about the task of text embedding with
instructions. We then discuss the information com-
pression, which transitions LLM embeddings from
local semantics to global semantics, followed by
the conditional distribution alignment, which op-
timizes the conditional probability distribution of
embeddings to ensure alignment and uniformity.

3.1 Preliminary

Text embeddings with instructions can adapt to var-
ious downstream tasks. Formally, given a large
collection D = {d;,ds,...,dy} containing N
documents, as well as a text ¢ and an instruction
t, the embedding e, ; = F(q,t) generated from ¢
and ¢ can match documents d € D that are rele-
vant to g, according to ¢, where E represents the
text encoder. Thus, by simply changing the in-
struction ¢, the relevance measure can be adapted
to different downstream tasks. For example, for
dense retrieval tasks, the instruction might be “find
documents that can answer this question,” while
for semantic similarity tasks, the instruction could
be “find sentences that are semantically similar to
this text”. Numerous studies have explored various
embedding techniques and instruction diversities.
Our goal is to identify a simple yet effective way to
enable LLMs to generate high-quality embeddings
directly from autoregressive framework.
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3.2 Information Compression: from
Discriminative to Generative Embeddings

In this section, we first explain the motivation for
transitioning from discriminative embeddings to
generative embeddings, followed by a formal defi-
nition of the information compression task.

In decoder-based LLLMs, embeddings are typi-
cally generated by extracting the hidden state of the
final token in the input sequence. However, this ap-
proach primarily captures the semantics of the first
output token rather than encoding the global seman-
tics of the entire input. Various pooling techniques,
such as average pooling and attention pooling, have
been explored to mitigate this limitation, yet they
introduce their own challenges. The average pool-
ing method, which computes the mean of all to-
ken hidden states, does not necessarily encapsulate
global semantics but instead serves as a mechanism
for "convexity preservation." Conversely, attention
pooling modifies the attention mechanism or in-
troduces additional parameters, thereby altering
the original architecture of LLMs. Such modifica-
tions deviate from the model’s pre-training design
and can lead to unintended consequences, as prior
studies (Li et al., 2024b) indicate that maintaining
the original LLM framework often yields optimal
performance. To enable LLMs to generate embed-
dings that represent global semantics, we introduce
an information compression task. This task com-
pels LLMs to reconstruct the original target using
a compressed embedding derived from the input
text. Given that this compressed embedding mod-
els the conditional probability distribution of the

target, we designate it as the generative embedding
to contrast it with the discriminative embedding
produced by conventional pooling approaches.

The information compression task is inspired by
the concept of context compression. Specifically,
we append k compressed tokens ¢ = (cy, ..., ck),
where k << n + m, to the text ¢ = (q1,-..,qn)
and instruction t = (t1,...,ty), with n and m
representing their respective token lengths. This
combined (g, t, ¢) is then fed into an encoder E to
generate the embedding e, = (e¢,,..., €, ). As
mentioned earlier, we expect the embedding e, to
capture the global semantics of the text ¢ and the
instruction ¢. To achieve this, we input e, into a
frozen decoder D, which shares the same archi-
tecture, and force it to generate the most relevant
document d. The optimization objective for this
task can be expressed as:

Lic = max P(dle,,..

o) eck; HD)
€cyyenrCep,

= HéaXP(d‘Cl .. .Ck,tl e .tm,ql . ..qn;HE,QD),
E

where 0 and 6p denote the parameters of E and
D, respectively.

3.3 Conditional Distribution Alignment: from
Data-Point to Distribution Perspective

After addressing the global semantic representation
issue of the embedding vector, we also require the
embedding vector to meet the criteria of alignment
and uniformity. Existing studies (Wang and Isola,
2020) have provided specific definitions for these
properties. Alignment is typically expressed by the



following formula:

Alignment(f, o) = E
& (f ) (Q7d+)€ppos

I f(@)—f(d") 3,

where o > 0 is a parameter used to adjust the
weight of the distance between positive sample
pairs (¢ and d™), and ppos(-, -) represents the dis-
tribution of positive sample pairs. The smaller
Alignment(f, «) is, the better the alignment of
the embedding vector generated by f. Uniformity
measures how evenly the embedding is distributed,
commonly expressed by the following formula:

Uniformity(f,a) =log E e 1f@-7@I3

(qu) €Pdata
where ¢ > 0 and pgat, represents the data distribu-
tion. In general, we optimize these two properties

asymptotically using a contrastive loss, such as
InfoNCE,

EInfoNCE(f; T) =
@I/
ef@Tfdr)/T )OF ef@Tf(d;)/T

E[—log ],

ey
where 7 denotes the temperature parameter and d;
represents the ¢-th negative sample. Clearly, Equa-
tion 1 differs fundamentally from the generative
pre-training task, as it optimizes the cosine distance
between sample embeddings, aligning data points
in the embedding space rather than modeling the
next-token probability distribution, which is central
to pre-training. So, using this loss function to opti-
mize an LLM may not fully unlock its potential.
To address this, we propose the Conditional Dis-
tribution Alignment task to minimize this discrep-
ancy as much as possible. The concept is straight-
forward: Instead of using the cosine distance be-
tween embeddings, we assess similarity based on
the conditional probability distribution correspond-
ing to each embedding. Simply put, we extend
point alignment to distribution alignment. For-
mally, the decoder Lp is a well-trained autoregres-
sive language model with the following conditional
probability distribution:

T

pldlec) = Hp(dt\d@n e),

t=1

where e, = (e, ..., € ) is the embedding vari-
ables, d = (dy,ds,...,dr) represents the gener-
ated sentence, and d.; denotes the part of the sen-
tence before time step ¢. Intuitively, the similarity

between corresponding samples ¢ and d can be
measured by computing the distance between the
conditional probability distributions of their em-
beddings, e, and eg4:

T

Sa,d) = 7 > Dpldeld<r, ), p(dilder, ),
t=1

where D(+, -) is any function that measures the di-
vergence between two probability distributions. In
addition, since the conditional probability distribu-
tion of the embedding can be adjusted based on
the given instruction, we can compute the loga-
rithmic probability of the text embedding e, 1.,
generating positive or negative samples to measure
the similarity between the text ¢ and the positive
d* and negative d~ samples. Here, the instruc-
tion Ipext 18 similar to “find documents that can
answer this question”, which ensures that the em-
bedding e, mext generated from text g produces
positive samples after passing through the decoder.
For positive and negative samples, we use the in-
struction Iy similar to “find sentences that are se-
mantically similar to this text”, so that their embed-
dings, e4+ . and eg- ;. generate themselves
after passing through the decoder.

Building on the above insights and incorporating
the structure of InfoNCE, we empirically derive
the final loss function:

eS1(a.dt)/T

L =E[-1 ’
cbA [ Ogesl(qd*)/T +>, eSQ(dJr’di_;q)/T]

peE (d+ ‘ eq71next)
Doy (d+|ed+7lself)

Si(q,d") = —o(B [log

o) — Pog (7 1€q, 1)
Sp(d™,d;5q) = —o(B logpref @ e 1)
 Bloghl (d” leg,1ex:)
og - )
Dref (d |6q,1ncxt)

(@)
where 7 and [ are temperature parameters, and
pe,, represents the initial model. We use the Sig-
moid function o (-) to normalize the similarity mea-
sured from the conditional probability distribution
to the range [0,1], ensuring maximum consistency
with the range of cosine distance. S represents the
similarity function between text ¢ and the positive
sample d™. We define it by measuring the absolute
value of the difference in the logarithmic proba-
bility of their corresponding embeddings, € 1.
and eg+ 1., generating the positive sample d*. To
minimize this difference, we apply the absolute
value function. In addition, we then add a negative



sign to ensure that the value of S increases as the
similarity between ¢ and d* increases. S calcu-
lates the difference between the logarithmic proba-
bilities of generating positive and negative samples
for text ¢, similar to DPO (Rafailov et al., 2023).
We amplify this difference to boost the probability
of embedding e, 1., generating positive samples
and decrease the probability of generating negative
samples. We normalize the probabilities by divid-
ing them by the corresponding values from the
initial model to account for the length discrepancy
between positive and negative samples.

4 Experiments

4.1 Experimental Settings

Evaluations Previous studies (Gao et al., 2021;
Li et al., 2020) highlight that a key goal of text
embedding is to cluster semantically similar sen-
tences. Following this approach, we use the MTEB
(Muennighoff et al., 2023) evaluation framework
to evaluate AutoRegEmbed on ten semantic text
similarity datasets, including STS12 (Agirre et al.,
2012), STS13 (Agirre et al., 2013), STS14 (Agirre
et al., 2014), STS15 (Agirre et al., 2015), STS16
(Agirre et al., 2016), STS17 (Cer et al., 2017),
STS22 (Chen et al., 2022), STS-B , BIOSSES and
SICK-R. Each pair of text in the STS dataset is
labeled with a similarity score ranging from O to 5
or 0 to 4, indicating their semantic similarity. The
evaluation metric is the Spearman correlation be-
tween the similarity scores predicted by the model
and the scores annotated by humans.

Training In the information compression stage,
we use the training set of the instruction fine-tuning
dataset PWC (Ge et al., 2024), which includes a
diverse range of instruction types, as the training
data. The original dataset contains 241,564 (con-
text, instruction, target) samples. To reduce re-
dundancy caused by repeated contexts, we remove
duplicates, resulting in the PWC-Unique dataset
with 16,382 samples as the final training data. In
the conditional distribution alignment stage, we
use NLI data (Wang et al., 2024a) and (Chen et al.,
2024) from previous studies as training data. The
former contains 50,000 samples, while the latter
consists of 274,951 samples. Each sample includes
an anchor, a positive sample, and a negative sample.
Unless otherwise specified, the AutoRegEmbed re-
sults presented in the experiment section are based
on training with 50,000 samples.

Baselines We categorize the baselines into three
groups: (1) models without contrast training, in-
cluding base models with various embedding meth-
ods using the same instructions as AutoRegEm-
bed and prompt-adjusted embedded models, in-
cluding Echo (Springer et al., 2024), PromptEOL
(Jiang et al., 2024), MetaEOL (Lei et al., 2024), and
GenEOL (Thirukovalluru and Dhingra, 2024); (2)
unsupervised contrast training models, primarily
LLM2Vec (BehnamGhader et al., 2024) with differ-
ent base models; and (3) supervised contrast train-
ing models, which consist of NV-Embed (Lee et al.,
2024), SFR-Embedding-2_R (Meng et al., 2024),
gte-Qwen2-7B-instruct (Li et al., 2023), LLM2Vec
(BehnamGhader et al., 2024), and fair baselines.

4.2 Main Results

Table 1 summarizes the results of various baselines
and AutoRegEmbed on ten STS datasets, along
with the training data required for each method.

AutoRegEmbed vs. Without Contrastive Train-
ing Models without contrastive training are di-
vided into two categories. The first is our own
fair baseline model, which performs significantly
worse than AutoRegEmbed, with an average perfor-
mance 20% lower. This highlights the difficulty of
untrained LL.Ms in directly generating high-quality
embeddings. While some methods enhance the
base model’s embeddings through prompt optimiza-
tion, their improvements remain limited—even on
a 13B-parameter model—and come with signifi-
cant additional reasoning costs. For instance, Echo
requires processing text twice to mitigate unidirec-
tional attention limitations, MetaEOL aggregates
embeddings from eight different instructions, and
GenEOL relies on ChatGPT to generate up to 32
text variants before aggregating their embeddings.
These additional reasoning steps severely constrain
their practical implementation.

AutoRegEmbed vs. Unsupervised Contrastive
Training LLM2Vec enhances existing LLMs us-
ing an unsupervised contrastive learning approach
similar to SIimCSE, leading to significant perfor-
mance gains. Compared to the base model, the
unsupervised version of LLM2Vec improves per-
formance by over 15%. Although it utilizes almost
160,000 data samples, its performance remains
4.5% lower than AutoRegEmbed, demonstrating
its lower efficiency.



Method Params BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS-B Avg. Vol.
Without Contrastive Training

LLaMA2-L 7B 63.29 65.10 4526 70.83 56.69 6248 6327 49.76 -7.76 60.43 60.58(7)/56.9110) 0
LLaMA2-M 7B 65.96 60.01 4476 64.13 48.66 62.33 63.16 6435 27.59 53.50 56.65(1)/58.6710) 0
Mistral-v0.1-L 7B 54.40 6740 48.54 64.27 5489 65.05 62.12 4822 1371 63.05 60.76(7)/56.20(10) 0
Mistral-v0.1-M 7B 67.46 6242 50.11 6645 52.60 61.93 65.02 7128 29.79 54.19 58.96(7)/61.13(19) 0
Echo-LLaMA?2 7B - 64.39 5240 7240 61.24 7267 7351 - - 65.73 66.05(7)/- 0
Echo-LLaMA2 13B - 7027 5936 79.01 69.75 79.86 76.75 - - 71.31 72.33(7)/- 0
PromptEOL-LLaMA2 7B - 69.64 5881 77.01 6634 7322 73.56 - - 71.66 70.03 (7)/- 0
PromptEOL-Mistral 7B - 69.47 63.08 7858 6940 77.92 79.01 - - 75.77 73.32(7)/- 0
PromptEOL-LLaMA3 8B - 60.88 68.94 7857 68.18 76.75 77.16 - - 72.83 71.90(7)/- 0
PromptEOL-LLaMA2 13B - 6823 56.19 7642 6542 7273 7521 - - 67.96 68.83(7)/- 0
MetaEOL-LLaMA?2 7B - 7486 64.16 81.61 73.09 8l1.11 78.94 - - 77.96 75.96(7)/- 0
MetaEOL-Mistral 7B - 75.13  64.05 8235 7157 8136 79.85 - - 78.29 76.09(7)/- 0
GenEOL-LLaMA2-Mistral 7B - 78.08 70.24 83.43 78.03 81.79 80.65 - - 80.46 78.95(7)/- 0
GenEOL-LLaMA2-ChatGPT 7B - 7871  70.78 8328 77.75 82.10 80.45 - - 79.83 78.99(7)/- 0
Unsupervised Contrastive Training

LLM2Vec-LLaMA2%* 7B 8241 71.77 6539 79.26 7298 8272 81.02 86.70 63.47 7832 75.92(1)/76.41() ~160,000
LLM2Vec-Mistral® 7B 83.29 75.55 67.65 83.90 7697 83.80 81.91 8558 65.93 80.42 78.60(7)/78.50(10) ~160,000
Supervised Contrastive Training

NV-Embed*® 7.73B  85.59 82.80 7622 86.30 82.09 8724 8477 8742 69.85 86.14 83.65(7)/82.84() 1,054,000
SFR-Embedding-2_R* 7B 87.60 77.01  75.67 8240 79.93 8582 8450 88.93 67.10 83.60 81.287)/81.26(19)  ~1,751,000
gte-Qwen2-7B-instruct® 7.49B  81.37 79.16  79.53 88.97 83.87 8848 8649 88.75 67.16 86.81 84.76(7)/83.06(19) ~791,000,000
LLM2Vec-LLaMA2*% 7B 82.13 83.01 7885 86.84 84.04 88.72 86.79 90.63 67.55 88.72 85.28(7)/83.73 (1) 544,000
LLM2Vec-Mistral® 7B 85.24 83.70 78.80 86.37 84.04 8899 8722 90.19 67.68 88.65 85.40(7)/84.01(1) 544,000
LLaMA2-L 7B 77.58 7785 73.72 84.04 79.82 8503 84.78 87.53 26.87 86.18 81.63(7)/76.34(10) 50,000
LLaMA2-inbatch-L 7B 78.81 8276 7770 85.01 8182 8830 86.12 90.53 20.70 87.94 84.24(7)/77.97 ) 50,000
LLaMA2-M 7B 75.65 78.92 7412 84.17 80.00 85.63 83.28 85.65 65.09 86.27 81.771)/79.88(10) 50,000
LLaMA2-inbatch-M 7B 78.09 83.17 77.10 8282 B80.53 87.40 8443 90.02 64.59 87.18 83.23(7)/81.53(1g) 50,000
LLaMA2-inbatch-M 7B 7743 8226  77.95 8490 82.06 87.22 86.43 8322 6642 86.12 83.8517)/81.90(10) 274,951
Information Compression and Conditional Distribution Alignment

AutoRegEmbed-LLaMA2 7B 85.50 79.07  79.57 86.90 8328 8845 86.57 88.61 66.16 86.59 84.35()/83.07(19) 50,000(16,382)
AutoRegEmbed-Mistral 7B 86.69 8021 7833 86.22 8236 8842 8643 8870 64.27 87.05 84.15.7)/82.87(19) 50,000(16,382)
AutoRegEmbed-LLaMA2 7B 85.62 81.93 7884 86.76 84.01 8943 87.72 89.04 66.77 87.96 85.24(7)/83.81(1p) 274,951(16,382)

Table 1: Results on STS tasks (Spearman correlation scaled by 100x). The parentheses in the Avg. column indicate
the number of datasets used to compute the average. Vol. denotes the number of training triplets, while the numbers
in brackets indicate the instruction fine-tuning data used by AutoRegEmbed during the information compression

stage. The symbol “~” denotes an estimated value. "

" represents our own fair baselines, and we apply a grid

search to ensure optimal performance. "-L" and "-M" denote the hidden state of the last token and the average
pooling of all token hidden states, respectively. The symbol & indicates that not all data are open source.

AutoRegEmbed vs. Supervised Contrastive
Training Supervised contrastive learning is the
mainstream approach for building high-quality em-
bedding models. We first compared top-performing
methods that once ranked on the MTEB leaderbord
(with the time they reached SOTA in brackets),
including NV-Embed (2024.08), SFR-Embedding-
2_R (2024.02), gte-Qwen2-7B-instruct (2024.06),
and LLM2Vec (2024.05). In terms of model perfor-
mance, AutoRegEmbed outperforms most SOTA
methods on ten STS datasets, trailing only 0.2%
behind the best version of LLM2Vec. From a data
efficiency perspective, AutoRegEmbed achieves
performance comparable to the previous SOTA
models with just 66,382 training samples, whereas
the latter requires tens of millions of triplets to
reach peak performance. Additionally, previous
SOTA models employ multi-task learning (e.g., re-
trieval and clustering), whose impact on STS per-
formance remains unclear. To ensure a fair com-
parison, we use single-task contrastive learning as

a baseline. Unlike traditional contrastive learning,
AutoRegEmbed does not rely on in-batch negative
samples. So we add two baselines to single-task
contrastive learning that also exclude the in-batch
negative sample strategy. As shown in Table 1,
even under identical training data, AutoRegEmbed
outperforms four different single-task contrastive
learning, further validating its effectiveness.

4.3 Ablation Study

To verify the effectiveness of AutoRegEmbed, we
conducted an ablation study. First, we removed
Conditional Distribution Alignment to evaluate its
impact on model performance. Second, since Equa-
tion 2 was derived empirically in our previous work,
we tested different variants of this equation to con-
firm that it remains the optimal choice. Different
variants of Equation 2 include Log_sigmoid, which
maps similarity to a logarithmic scale for integra-
tion with the exponential function e, as well as KL
divergence and JS divergence, which quantify
the distance between the conditional probability
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Figure 3: We evaluate the learning efficiency of our method against traditional contrastive learning on 10 STS
datasets, comparing their performance under the same number of samples (left figure) and same number of epochs

(right figure). Further details are provided in Appendix A.

Method Avg.
AutoRegEmbed-LLaMA?2 83.07 10)
Tasks

w/o Conditional Distribution Alignment  73.90,4()
LLaMAZ2-L (Without Training) 56.91(10)
Equation 2

Log_sigmoid 82.93(10)
KL divergence 79.8210)
JS divergence 79.02(10)

Table 2: Ablation experiments of AutoRegEmbed. We
conduct ablation and contrast experiments on various
tasks and Equation 2 to demonstrate the effectiveness
of AutoRegEmbed.

distributions of positive and negative sample em-
beddings in distinct ways. The specific equations
are provided in Appendix B. Table 2 presents the
ablation results. The experiments on different tasks
indicate that Conditional Distribution Alignment
improves performance by 9.17%, while Informa-
tion Compression contributes a 16.99% improve-
ment, demonstrating the effectiveness of both tasks.
Additionally, experiments on variants of Equation 2
reveal that, although using a logarithmic scale for
similarity and employing KL or JS divergence to
measure distribution distance are more intuitive
approaches, they do not surpass the performance
of the original loss function in Equation 2. Thus,
Equation 2 can be regarded as a more effective loss
function.

4.4 Learning Efficiency

To verify that AutoRegEmbed is better suited for
LLMs, we compare its performance with four con-
trastive learning baselines under the same training
data and the same number of epochs, as shown in
Figure 3. The left figure in Figure 3 shows that
as the training data increases, the performance of
both AutoRegEmbed and other contrastive learning
methods improves, but AutoRegEmbed exhibits the
fastest growth. Notably, with just 15,000 samples,
AutoRegEmbed already surpasses the maximum
performance of other contrastive learning models.
The right figure demonstrates that as the number of
epochs increases, AutoRegEmbed also improves
at the fastest rate. These results indicate that Au-
toRegEmbed significantly outperforms the baseline
models in learning efficiency.

5 Conclusions

To address the limitation that traditional contrastive
learning does not adhere to the autoregressive na-
ture of LLMs, we propose AutoRegEmbed—a
novel contrastive learning method based on em-
bedded conditional probability distributions. Au-
toRegEmbed ensures that LLM-generated embed-
dings capture global semantics while maintain-
ing alignment and uniformity through information
compression and conditional distribution alignment
tasks. AutoRegEmbed achieves comparable perfor-
mance to SOTA models with fewer training sam-
ples and superior learning efficiency.



6 Limitations

The primary advantage of AutoRegEmbed lies in
its ability to effectively harness the power of large
language models (LLMs) to construct robust and
high-quality text embeddings. However, it is im-
portant to acknowledge several limitations of our
approach.

AutoRegEmbed does not possess inherent mech-
anisms to filter or detect malicious or harmful con-
tent in the data it processes. While the model is ca-
pable of generating embeddings from a wide range
of text inputs, it lacks the ability to evaluate the eth-
ical or safety implications of the data. This makes
it vulnerable to issues related to biased, offensive,
or otherwise problematic content present in the
training corpus. In cases where the training data
contains harmful or discriminatory material, the
embeddings generated by AutoRegEmbed may in-
advertently carry forward these biases, potentially
leading to unintended and undesirable outcomes
when applied to real-world tasks.

To mitigate this risk, we recommend that users
of AutoRegEmbed ensure that the training data is
carefully curated, and ideally, filtered for harmful
content. By using safe and ethically sourced data,
the model’s potential for propagating bias or harm
can be minimized. Additionally, users should be
cautious when applying AutoRegEmbed to sensi-
tive domains, where the generation of unsafe or
biased embeddings could have significant conse-
quences.
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A Implementation details

AutoRegEmbed For the information compres-
sion task, we set the learning rate to 2e-5, the batch
size to 32, and train for 2 epoch. To represent the
semantics of the input, we use 5 compressed to-
kens. For the conditional distribution alignment
task, the learning rate is set to S5e-6, with a batch
size of 32 and 4 epochs. The temperature parame-
ters t and b are both set to 0.1. For the above two
tasks, we set the maximum token length of context,
instruction, and target to 512. Furthermore, we
employ the bfloat16 format, enable FlashAttention
2, and train on four A100-80G GPUs with Deep-
Speed and Zero-2. The information compression
task takes 20 minutes, while the conditional distri-
bution alignment task, involving 50,000 samples,
takes approximately 1 hour.

Fair Comparative Learning Baselines We train
our own fair contrastive learning baseline based on
the standard InfoNCE loss, with some code avail-
able in the FlagEmbedding repository'). For base-
lines utilizing the in-batch negative sample strategy
(LLaMAZ2-inbatch-L and LLaMA2-inbatch-M), we
experimented with batch sizes of 128, 256, 512,
and 1024, determining that 512 yields the best per-
formance. Additionally, we ensure that gradients
are propagated across different devices. For base-
lines that do not use the in-batch negative sample
strategy, we set the batch size to 32, maintaining

"https://github.com/FlagOpen/FlagEmbedding

12

consistency with AutoRegEmbed. Regarding the
learning rate, we tested le-5, Se-5, 1e-4, and 2e-4,
finding that 1e-4 delivers the best results. All train-
ing data is consistent with AutoRegEmbed. We
train the fair contrastive learning baseline using
DeepSpeed and Zero-2 on four A100-80G GPUs
in 1 hour.

B Variants of Equation 2

This section explores various possible modifica-
tions and extensions of Equation 2.

Log_sigmoid Given that most loss functions are
logarithmic in nature, we can modify the similarity
function in Equation 2 by replacing the sigmoid
with a Log-Sigmoid function, resulting in a more
interpretable formulation:
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KL divergence We also experimented with re-
placing the difference in log probabilities with the
KL divergence between the conditional probability
distributions:
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JS divergence In addition to KL divergence, we
also employed JS divergence as a measure of dis-
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