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Abstract

A new trend uses LLMs as dense text encoders001
via contrastive learning. However, since LLM002
embeddings predict the probability distribution003
of the next token, they are inherently generative004
and distributive, conflicting with contrastive005
learning, which requires embeddings to cap-006
ture full-text semantics and align via cosine007
similarity. This discrepancy hinders the full008
utilization of LLMs’ pre-training capabilities,009
resulting in inefficient learning. In response to010
this issue, we propose AutoRegEmbed, a new011
contrastive learning method built on embedding012
conditional probability distributions, which in-013
tegrates two core tasks: information compres-014
sion and conditional distribution alignment.015
The information compression task encodes text016
into the embedding space, ensuring that the em-017
bedding vectors capture global semantics. The018
conditional distribution alignment task focuses019
on aligning text embeddings with positive sam-020
ples embeddings by leveraging the conditional021
distribution of embeddings while simultane-022
ously reducing the likelihood of generating neg-023
ative samples from text embeddings, thereby024
achieving embedding alignment and unifor-025
mity. Experimental results demonstrate that our026
method significantly outperforms traditional027
contrastive learning approaches and achieves028
performance comparable to state-of-the-art029
models when using the same amount of data.030
Our code is available at https://anonymous.031
4open.science/r/AutoRegEmbed-7530032

1 Introduction033

Text embeddings, which represent the semantic034

content of natural language text as vectors, are035

extensively utilized in domains such as informa-036

tion retrieval, semantic similarity assessment, and037

retrieval-augmented generation (RAG) (Khandel-038

wal et al., 2020; Shi et al., 2024; Deng et al., 2023;039

Ding et al., 2024). Traditional text embedding mod-040

els typically employ transformer-based architec-041

tures with encoder-only designs, including exam-042
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Figure 1: Comparison of pareto front between Au-
toRegEmbed and other methods. The horizontal axis
represents the number of training samples, while the
vertical axis indicates the average performance across
10 STS datasets. The upper left corner represents the
region with the highest learning efficiency.

ples like Bert (Devlin et al., 2019), DeBERTa (He 043

et al., 2021) and MPNet (Song et al., 2020), and 044

are trained using contrastive learning. 045

Recently, contrastive learning has been di- 046

rectly applied to decoder-only LLMs, which are 047

trained to generate embedding vectors based on 048

task-specific instructions, enabling adaptability to 049

various embedding scenarios (Lee et al., 2024; 050

BehnamGhader et al., 2024). Despite initial ad- 051

vancements, training a high-performance 7B-scale 052

text embedding model using this approach remains 053

highly resource-intensive. It typically requires mil- 054

lions of triplets (Wang et al., 2024a; Li et al., 2024b, 055

2023) and substantial computational power, includ- 056

ing thousands of hours on an A100 80GB GPUs 057

(Muennighoff et al., 2024; Ma et al., 2024), even 058

with the application of Parameter-Efficient Fine- 059

Tuning (PEFT) (Hu et al., 2022; Dao, 2024). The 060

high resource consumption might reasonably be 061

attributed to the inability of the discriminative con- 062

trastive learning method to fully harness the ca- 063

pabilities of generative LLMs (Li et al., 2024a). 064

Firstly, the constraint of unidirectional attention in 065

LLMs leads to the aggregation of information in 066

the hidden state of the output layer corresponding 067
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to the final token. However, as LLMs are opti-068

mized for next-token prediction, this hidden state069

can only represent the semantics of the next token070

(local) rather than the semantics of the input text071

itself (global). Consequently, employing this hid-072

den state directly in contrastive learning requires073

additional training time and computational cost to074

transition from a localized to a more global se-075

mantic representation. Secondly, the hidden state076

in LLMs is used to generate the probability dis-077

tribution of the next token, whereas contrastive078

learning optimizes the cosine distance between the079

hidden states of different texts. This divergence in080

optimization objectives introduces additional train-081

ing costs. This raises an important question: Is it082

feasible to develop a method that follows the auto-083

regressive nature while generating high-quality text084

embeddings and significantly reducing resource re-085

quirements?086

We formalize three key requirements to address087

this problem. Firstly, embeddings should capture088

global semantics rather than focusing solely on089

next-token semantics. Secondly, they must follow090

alignment and uniformity principles (Wang and091

Isola, 2020). Finally, the transformation from the092

original embedding to one that meets these crite-093

ria should follow an autoregressive nature. To this094

end, we propose AutoRegEmbed, which encom-095

passes two tasks: information compression and096

conditional distribution alignment.097

The information compression task is inspired098

by the concept of context compression (Cheva-099

lier et al., 2023; Ge et al., 2024; Mu et al., 2023),100

which addresses the limitations of context window101

length and the high computational cost faced by102

LLMs when processing long texts. Specifically,103

we encode the context and instructions into a set104

of compressed variables, which are then passed105

to a decoder with the same architecture but frozen106

parameters, forcing it to reconstruct the correspond-107

ing target. By restricting the decoder to rely solely108

on the compressed variables—without access to109

the original context or instructions—we introduce110

an information bottleneck. This ensures that the111

compressed variables effectively capture the global112

semantics of the instructions and context.113

The conditional distribution alignment task114

draws inspiration from traditional contrastive learn-115

ing and LLM alignment techniques (Wang et al.,116

2024b). We begin by treating the compressed117

vectors as embeddings of their corresponding in-118

puts. Then, we adopt the structure of the InfoNCE119

(van den Oord et al., 2018) loss function, but re- 120

define the similarity metric. Simply put, we align 121

the distance between the conditional probability 122

distributions of text and positive sample embed- 123

dings while increasing the likelihood of text em- 124

beddings generating positive samples and decreas- 125

ing the likelihood of generating negative samples. 126

This approach promotes the alignment and unifor- 127

mity of compressed variables while maintaining 128

the autoregressive nature. 129

Experimental results on 10 STS datasets demon- 130

strate that AutoRegEmbed outperforms traditional 131

contrastive learning methods while utilizing the 132

same computational resources, making it a highly 133

efficient and scalable solution. Remarkably, even 134

with a limited number of training samples, Au- 135

toRegEmbed achieves performance on par with the 136

current state-of-the-art (SOTA) models, showcas- 137

ing its superior ability to learn robust and general- 138

izable representations from scarce data. As shown 139

in Figure 1, the Pareto frontier of AutoRegEm- 140

bed consistently outperforms traditional contrastive 141

learning methods, demonstrating a more optimal 142

trade-off between computational efficiency and 143

performance. This indicates that AutoRegEmbed 144

achieves superior representation learning while 145

maintaining a balanced resource utilization. 146

2 Related Works 147

Text embedding is a technique that maps text data 148

into a numerical vector space, capturing both se- 149

mantic and contextual features of the text. Re- 150

search in this area can be divided into three cate- 151

gories based on the underlying model: Early mod- 152

els, LLMs with fine-tuning, and LLMs without 153

fine-tuning. 154

Early Models Early approaches include Sen- 155

tenceBERT (Reimers and Gurevych, 2019) (su- 156

pervised) and SimCSE (Gao et al., 2021) (unsu- 157

pervised), which leverage contrastive learning to 158

generate high-quality text embeddings using small 159

encoder-only models. Another area of focus has 160

been improving the isotropy of embedding spaces. 161

Works such as BERT-flow (Li et al., 2020) (flow 162

models) and BERT-whitening (Su et al., 2021) (lin- 163

ear transformations) address the anisotropic prop- 164

erties of embeddings. Meanwhile, multi-stage con- 165

trastive learning (Li et al., 2023; Ni et al., 2022; 166

Wang et al., 2022) has further advanced text embed- 167

dings by combining pre-training on large weakly 168

supervised datasets with fine-tuning on smaller 169

2



high-quality datasets. Inspired by instruction fine-170

tuning, recent research (Su et al., 2023; Asai et al.,171

2023) has shifted toward using text paired with in-172

structions to enhance the generalization and trans-173

ferability of text embeddings in complex scenarios.174

However, the performance of methods based on175

early models is limited, due to their reliance on176

models with relatively small parameter counts.177

LLMs with Fine-Tuning Many studies have fo-178

cused on transforming LLMs into text embedding179

models through contrastive learning fine-tuning.180

RepLLaMA (Ma et al., 2024), for example, fol-181

lows the DPR (Karpukhin et al., 2020) pipeline,182

using the hidden state of the last token generated183

by LLaMA as a text embedding vector and ap-184

plying contrastive learning fine-tuning. Recogniz-185

ing that the unidirectional attention mechanism in186

LLMs may limit text embedding quality, LLM2Vec187

(BehnamGhader et al., 2024) introduces a bidirec-188

tional attention mechanism combined with average189

pooling to enhance embedding quality. NV-Embed190

(Lee et al., 2024) takes this further by incorporating191

an additional Latent Attention Layer to generate192

pooled embeddings. bge-en-icl (Li et al., 2024b)193

suggests that retaining the original framework of194

LLMs and leveraging in-context learning is the195

optimal approach for generating text embeddings.196

Some studies (Wang et al., 2024a) even use syn-197

thetic data generated by LLMs, rather than real-198

world data, for fine-tuning and achieve competi-199

tive performance on the MTEB leaderboard (Muen-200

nighoff et al., 2023). However, these approaches of-201

ten overlook the fundamental differences between202

language modeling and contrastive learning, fail-203

ing to fully leverage the potential of LLMs. More204

closely related to our work is Llama2Vec (Li et al.,205

2024a), which proposes two pretext tasks to enable206

unsupervised adaptation of LLMs, followed by con-207

trastive learning fine-tuning to achieve better perfor-208

mance. In contrast, our approach achieves strong209

results without any need for contrastive learning210

fine-tuning, as our task fully exploits the inherent211

potential of LLMs.212

LLMs without Fine-Tuning Several studies213

have explored methods to transform LLMs into214

text encoders without fine-tuning. (Liu et al.,215

2024) proposed using possible trajectory distribu-216

tions as text representations, achieving effective-217

ness but at a high computational cost. (Springer218

et al., 2024) introduced echo embeddings by re-219

peatedly feeding text into autoregressive models,220

addressing architectural limitations but doubling 221

computational requirements. Other methods fo- 222

cus on prompt adjustments to produce meaning- 223

ful embeddings. PromptEOL (Jiang et al., 2024) 224

introduced a One-Word Limitation prompt to im- 225

prove embedding performance, while MetaEOL 226

(Lei et al., 2024) extended this idea by using eight 227

different prompt types to generate multi-view em- 228

beddings. GenEOL (Thirukovalluru and Dhingra, 229

2024) leveraged LLMs to create various sentence 230

transformations that retain their meaning, aggregat- 231

ing the resulting embeddings to enhance the overall 232

sentence representation. Meanwhile, PromptReps 233

(Zhuang et al., 2024) developed a hybrid document 234

retrieval framework leveraging prompts to address 235

challenges in information retrieval tasks. Despite 236

these innovations, these approaches either perform 237

poorly or require multiple inferences to achieve 238

good results. By contrast, our method surpasses 239

these methods with minimal training costs. 240

3 Method 241

In this section, we first introduce the preliminary 242

information about the task of text embedding with 243

instructions. We then discuss the information com- 244

pression, which transitions LLM embeddings from 245

local semantics to global semantics, followed by 246

the conditional distribution alignment, which op- 247

timizes the conditional probability distribution of 248

embeddings to ensure alignment and uniformity. 249

3.1 Preliminary 250

Text embeddings with instructions can adapt to var- 251

ious downstream tasks. Formally, given a large 252

collection D = {d1, d2, . . . , dN} containing N 253

documents, as well as a text q and an instruction 254

t, the embedding eq,t = E(q, t) generated from q 255

and t can match documents d ∈ D that are rele- 256

vant to q, according to t, where E represents the 257

text encoder. Thus, by simply changing the in- 258

struction t, the relevance measure can be adapted 259

to different downstream tasks. For example, for 260

dense retrieval tasks, the instruction might be “find 261

documents that can answer this question,” while 262

for semantic similarity tasks, the instruction could 263

be “find sentences that are semantically similar to 264

this text”. Numerous studies have explored various 265

embedding techniques and instruction diversities. 266

Our goal is to identify a simple yet effective way to 267

enable LLMs to generate high-quality embeddings 268

directly from autoregressive framework. 269
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Figure 2: Overall framework of AutoRegEmbed. Firstly, we perform the information compression task to inject
key information from the context and instruction into the compressed tokens. Then, we optimize the conditional
probability distribution of these tokens to align the distributions of eq,Inext and ed+,Iself as closely as possible through
S1(q, d

+), while increasing the probability of eq,Inext generating positive samples and reducing the probability of
eq,Inext

generating negative samples through S2(d
+, d−; q).

3.2 Information Compression: from270

Discriminative to Generative Embeddings271

In this section, we first explain the motivation for272

transitioning from discriminative embeddings to273

generative embeddings, followed by a formal defi-274

nition of the information compression task.275

In decoder-based LLMs, embeddings are typi-276

cally generated by extracting the hidden state of the277

final token in the input sequence. However, this ap-278

proach primarily captures the semantics of the first279

output token rather than encoding the global seman-280

tics of the entire input. Various pooling techniques,281

such as average pooling and attention pooling, have282

been explored to mitigate this limitation, yet they283

introduce their own challenges. The average pool-284

ing method, which computes the mean of all to-285

ken hidden states, does not necessarily encapsulate286

global semantics but instead serves as a mechanism287

for "convexity preservation." Conversely, attention288

pooling modifies the attention mechanism or in-289

troduces additional parameters, thereby altering290

the original architecture of LLMs. Such modifica-291

tions deviate from the model’s pre-training design292

and can lead to unintended consequences, as prior293

studies (Li et al., 2024b) indicate that maintaining294

the original LLM framework often yields optimal295

performance. To enable LLMs to generate embed-296

dings that represent global semantics, we introduce297

an information compression task. This task com-298

pels LLMs to reconstruct the original target using299

a compressed embedding derived from the input300

text. Given that this compressed embedding mod-301

els the conditional probability distribution of the302

target, we designate it as the generative embedding 303

to contrast it with the discriminative embedding 304

produced by conventional pooling approaches. 305

The information compression task is inspired by 306

the concept of context compression. Specifically, 307

we append k compressed tokens c = (c1, . . . , ck), 308

where k << n + m, to the text q = (q1, . . . , qn) 309

and instruction t = (t1, . . . , tm), with n and m 310

representing their respective token lengths. This 311

combined (q, t, c) is then fed into an encoder E to 312

generate the embedding ec = (ec1 , . . . , eck). As 313

mentioned earlier, we expect the embedding ec to 314

capture the global semantics of the text q and the 315

instruction t. To achieve this, we input ec into a 316

frozen decoder D, which shares the same archi- 317

tecture, and force it to generate the most relevant 318

document d. The optimization objective for this 319

task can be expressed as: 320

LIC = max
ec1 ,...,eck

P (d|ec1 , . . . , eck ; θD)

= max
ΘE

P (d|c1 . . . ck, t1 . . . tm, q1 . . . qn; θE , θD),
321

where θE and θD denote the parameters of E and 322

D, respectively. 323

3.3 Conditional Distribution Alignment: from 324

Data-Point to Distribution Perspective 325

After addressing the global semantic representation 326

issue of the embedding vector, we also require the 327

embedding vector to meet the criteria of alignment 328

and uniformity. Existing studies (Wang and Isola, 329

2020) have provided specific definitions for these 330

properties. Alignment is typically expressed by the 331
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following formula:332

Alignment(f, α) = E
(q,d+)∈ppos

∥ f(q)−f(d+) ∥α2 ,333

where α > 0 is a parameter used to adjust the334

weight of the distance between positive sample335

pairs (q and d+), and ppos(·, ·) represents the dis-336

tribution of positive sample pairs. The smaller337

Alignment(f, α) is, the better the alignment of338

the embedding vector generated by f . Uniformity339

measures how evenly the embedding is distributed,340

commonly expressed by the following formula:341

Uniformity(f, α) = log E
(q,d)∈pdata

e−t∥f(q)−f(d)∥22 ,342

where t > 0 and pdata represents the data distribu-343

tion. In general, we optimize these two properties344

asymptotically using a contrastive loss, such as345

InfoNCE,346

LInfoNCE(f ; τ) =

E[−log
ef(q)

T f(d+)/τ

ef(q)T f(d+)/τ +
∑

i e
f(q)T f(d−i )/τ

],

(1)347

where τ denotes the temperature parameter and d−i348

represents the i-th negative sample. Clearly, Equa-349

tion 1 differs fundamentally from the generative350

pre-training task, as it optimizes the cosine distance351

between sample embeddings, aligning data points352

in the embedding space rather than modeling the353

next-token probability distribution, which is central354

to pre-training. So, using this loss function to opti-355

mize an LLM may not fully unlock its potential.356

To address this, we propose the Conditional Dis-357

tribution Alignment task to minimize this discrep-358

ancy as much as possible. The concept is straight-359

forward: Instead of using the cosine distance be-360

tween embeddings, we assess similarity based on361

the conditional probability distribution correspond-362

ing to each embedding. Simply put, we extend363

point alignment to distribution alignment. For-364

mally, the decoder LD is a well-trained autoregres-365

sive language model with the following conditional366

probability distribution:367

p(d|ec) =
T∏
t=1

p(dt|d<t, e),368

where ec = (ec1 , . . . , eck) is the embedding vari-369

ables, d = (d1, d2, . . . , dT ) represents the gener-370

ated sentence, and d<t denotes the part of the sen-371

tence before time step t. Intuitively, the similarity372

between corresponding samples q and d can be 373

measured by computing the distance between the 374

conditional probability distributions of their em- 375

beddings, eq and ed: 376

S(q, d) =
1

T

T∑
t=1

D(p(dt|d<t, eq), p(dt|d<t, ed)), 377

where D(·, ·) is any function that measures the di- 378

vergence between two probability distributions. In 379

addition, since the conditional probability distribu- 380

tion of the embedding can be adjusted based on 381

the given instruction, we can compute the loga- 382

rithmic probability of the text embedding eq,Inext 383

generating positive or negative samples to measure 384

the similarity between the text q and the positive 385

d+ and negative d− samples. Here, the instruc- 386

tion Inext is similar to “find documents that can 387

answer this question”, which ensures that the em- 388

bedding eq,Inext generated from text q produces 389

positive samples after passing through the decoder. 390

For positive and negative samples, we use the in- 391

struction Iself similar to “find sentences that are se- 392

mantically similar to this text”, so that their embed- 393

dings, ed+,Iself and ed−,Iself , generate themselves 394

after passing through the decoder. 395

Building on the above insights and incorporating 396

the structure of InfoNCE, we empirically derive 397

the final loss function: 398

LCDA = E[−log
eS1(q,d+)/τ

eS1(q,d+)/τ +
∑

i e
S2(d+,d−i ;q)/τ

],

S1(q, d
+) = −σ(β |log

pθE (d
+|eq,Inext)

pθE (d
+|ed+,Iself )

|),

S2(d
+, d−i ; q) = −σ(β log

pθE (d
+|eq,Inext)

pref(d+|eq,Inext)

− β log
pθE (d

−|eq,Inext)
pref(d−|eq,Inext)

),

(2) 399

where τ and β are temperature parameters, and 400

pΘLE
represents the initial model. We use the Sig- 401

moid function σ(·) to normalize the similarity mea- 402

sured from the conditional probability distribution 403

to the range [0,1], ensuring maximum consistency 404

with the range of cosine distance. S1 represents the 405

similarity function between text q and the positive 406

sample d+. We define it by measuring the absolute 407

value of the difference in the logarithmic proba- 408

bility of their corresponding embeddings, eq,Inext 409

and ed+,Iself , generating the positive sample d+. To 410

minimize this difference, we apply the absolute 411

value function. In addition, we then add a negative 412
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sign to ensure that the value of S1 increases as the413

similarity between q and d+ increases. S2 calcu-414

lates the difference between the logarithmic proba-415

bilities of generating positive and negative samples416

for text q, similar to DPO (Rafailov et al., 2023).417

We amplify this difference to boost the probability418

of embedding eq,Inext generating positive samples419

and decrease the probability of generating negative420

samples. We normalize the probabilities by divid-421

ing them by the corresponding values from the422

initial model to account for the length discrepancy423

between positive and negative samples.424

4 Experiments425

4.1 Experimental Settings426

Evaluations Previous studies (Gao et al., 2021;427

Li et al., 2020) highlight that a key goal of text428

embedding is to cluster semantically similar sen-429

tences. Following this approach, we use the MTEB430

(Muennighoff et al., 2023) evaluation framework431

to evaluate AutoRegEmbed on ten semantic text432

similarity datasets, including STS12 (Agirre et al.,433

2012), STS13 (Agirre et al., 2013), STS14 (Agirre434

et al., 2014), STS15 (Agirre et al., 2015), STS16435

(Agirre et al., 2016), STS17 (Cer et al., 2017),436

STS22 (Chen et al., 2022), STS-B , BIOSSES and437

SICK-R. Each pair of text in the STS dataset is438

labeled with a similarity score ranging from 0 to 5439

or 0 to 4, indicating their semantic similarity. The440

evaluation metric is the Spearman correlation be-441

tween the similarity scores predicted by the model442

and the scores annotated by humans.443

Training In the information compression stage,444

we use the training set of the instruction fine-tuning445

dataset PWC (Ge et al., 2024), which includes a446

diverse range of instruction types, as the training447

data. The original dataset contains 241,564 (con-448

text, instruction, target) samples. To reduce re-449

dundancy caused by repeated contexts, we remove450

duplicates, resulting in the PWC-Unique dataset451

with 16,382 samples as the final training data. In452

the conditional distribution alignment stage, we453

use NLI data (Wang et al., 2024a) and (Chen et al.,454

2024) from previous studies as training data. The455

former contains 50,000 samples, while the latter456

consists of 274,951 samples. Each sample includes457

an anchor, a positive sample, and a negative sample.458

Unless otherwise specified, the AutoRegEmbed re-459

sults presented in the experiment section are based460

on training with 50,000 samples.461

Baselines We categorize the baselines into three 462

groups: (1) models without contrast training, in- 463

cluding base models with various embedding meth- 464

ods using the same instructions as AutoRegEm- 465

bed and prompt-adjusted embedded models, in- 466

cluding Echo (Springer et al., 2024), PromptEOL 467

(Jiang et al., 2024), MetaEOL (Lei et al., 2024), and 468

GenEOL (Thirukovalluru and Dhingra, 2024); (2) 469

unsupervised contrast training models, primarily 470

LLM2Vec (BehnamGhader et al., 2024) with differ- 471

ent base models; and (3) supervised contrast train- 472

ing models, which consist of NV-Embed (Lee et al., 473

2024), SFR-Embedding-2_R (Meng et al., 2024), 474

gte-Qwen2-7B-instruct (Li et al., 2023), LLM2Vec 475

(BehnamGhader et al., 2024), and fair baselines. 476

4.2 Main Results 477

Table 1 summarizes the results of various baselines 478

and AutoRegEmbed on ten STS datasets, along 479

with the training data required for each method. 480

AutoRegEmbed vs. Without Contrastive Train- 481

ing Models without contrastive training are di- 482

vided into two categories. The first is our own 483

fair baseline model, which performs significantly 484

worse than AutoRegEmbed, with an average perfor- 485

mance 20% lower. This highlights the difficulty of 486

untrained LLMs in directly generating high-quality 487

embeddings. While some methods enhance the 488

base model’s embeddings through prompt optimiza- 489

tion, their improvements remain limited—even on 490

a 13B-parameter model—and come with signifi- 491

cant additional reasoning costs. For instance, Echo 492

requires processing text twice to mitigate unidirec- 493

tional attention limitations, MetaEOL aggregates 494

embeddings from eight different instructions, and 495

GenEOL relies on ChatGPT to generate up to 32 496

text variants before aggregating their embeddings. 497

These additional reasoning steps severely constrain 498

their practical implementation. 499

AutoRegEmbed vs. Unsupervised Contrastive 500

Training LLM2Vec enhances existing LLMs us- 501

ing an unsupervised contrastive learning approach 502

similar to SimCSE, leading to significant perfor- 503

mance gains. Compared to the base model, the 504

unsupervised version of LLM2Vec improves per- 505

formance by over 15%. Although it utilizes almost 506

160,000 data samples, its performance remains 507

4.5% lower than AutoRegEmbed, demonstrating 508

its lower efficiency. 509
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Method Params BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS-B Avg. Vol.

Without Contrastive Training
LLaMA2-L 7B 63.29 65.10 45.26 70.83 56.69 62.48 63.27 49.76 -7.76 60.43 60.58(7)/56.91(10) 0
LLaMA2-M 7B 65.96 60.01 44.76 64.13 48.66 62.33 63.16 64.35 27.59 53.50 56.65(7)/58.67(10) 0
Mistral-v0.1-L 7B 54.40 67.40 48.54 64.27 54.89 65.05 62.12 48.22 13.71 63.05 60.76(7)/56.20(10) 0
Mistral-v0.1-M 7B 67.46 62.42 50.11 66.45 52.60 61.93 65.02 71.28 29.79 54.19 58.96(7)/61.13(10) 0

Echo-LLaMA2 7B - 64.39 52.40 72.40 61.24 72.67 73.51 - - 65.73 66.05(7)/- 0
Echo-LLaMA2 13B - 70.27 59.36 79.01 69.75 79.86 76.75 - - 71.31 72.33(7)/- 0
PromptEOL-LLaMA2 7B - 69.64 58.81 77.01 66.34 73.22 73.56 - - 71.66 70.03(7)/- 0
PromptEOL-Mistral 7B - 69.47 63.08 78.58 69.40 77.92 79.01 - - 75.77 73.32(7)/- 0
PromptEOL-LLaMA3 8B - 60.88 68.94 78.57 68.18 76.75 77.16 - - 72.83 71.90(7)/- 0
PromptEOL-LLaMA2 13B - 68.23 56.19 76.42 65.42 72.73 75.21 - - 67.96 68.83(7)/- 0
MetaEOL-LLaMA2 7B - 74.86 64.16 81.61 73.09 81.11 78.94 - - 77.96 75.96(7)/- 0
MetaEOL-Mistral 7B - 75.13 64.05 82.35 71.57 81.36 79.85 - - 78.29 76.09(7)/- 0
GenEOL-LLaMA2-Mistral 7B - 78.08 70.24 83.43 78.03 81.79 80.65 - - 80.46 78.95(7)/- 0
GenEOL-LLaMA2-ChatGPT 7B - 78.71 70.78 83.28 77.75 82.10 80.45 - - 79.83 78.99(7)/- 0

Unsupervised Contrastive Training
LLM2Vec-LLaMA2♣ 7B 82.41 71.77 65.39 79.26 72.98 82.72 81.02 86.70 63.47 78.32 75.92(7)/76.41(10) ~160,000
LLM2Vec-Mistral♣ 7B 83.29 75.55 67.65 83.90 76.97 83.80 81.91 85.58 65.93 80.42 78.60(7)/78.50(10) ~160,000

Supervised Contrastive Training
NV-Embed♣ 7.73B 85.59 82.80 76.22 86.30 82.09 87.24 84.77 87.42 69.85 86.14 83.65(7)/82.84(10) 1,054,000
SFR-Embedding-2_R♣ 7B 87.60 77.01 75.67 82.40 79.93 85.82 84.50 88.93 67.10 83.60 81.28(7)/81.26(10) ~1,751,000
gte-Qwen2-7B-instruct♣ 7.49B 81.37 79.16 79.53 88.97 83.87 88.48 86.49 88.75 67.16 86.81 84.76(7)/83.06(10) ~791,000,000
LLM2Vec-LLaMA2♣ 7B 82.13 83.01 78.85 86.84 84.04 88.72 86.79 90.63 67.55 88.72 85.28(7)/83.73(10) 544,000
LLM2Vec-Mistral♣ 7B 85.24 83.70 78.80 86.37 84.04 88.99 87.22 90.19 67.68 88.65 85.40(7)/84.01(10) 544,000
LLaMA2-L 7B 77.58 77.85 73.72 84.04 79.82 85.03 84.78 87.53 26.87 86.18 81.63(7)/76.34(10) 50,000
LLaMA2-inbatch-L 7B 78.81 82.76 77.70 85.01 81.82 88.30 86.12 90.53 20.70 87.94 84.24(7)/77.97(10) 50,000
LLaMA2-M 7B 75.65 78.92 74.12 84.17 80.00 85.63 83.28 85.65 65.09 86.27 81.77(7)/79.88(10) 50,000
LLaMA2-inbatch-M 7B 78.09 83.17 77.10 82.82 80.53 87.40 84.43 90.02 64.59 87.18 83.23(7)/81.53(10) 50,000
LLaMA2-inbatch-M 7B 77.43 82.26 77.95 84.90 82.06 87.22 86.43 88.22 66.42 86.12 83.85(7)/81.90(10) 274,951

Information Compression and Conditional Distribution Alignment
AutoRegEmbed-LLaMA2 7B 85.50 79.07 79.57 86.90 83.28 88.45 86.57 88.61 66.16 86.59 84.35(7)/83.07(10) 50,000(16,382)
AutoRegEmbed-Mistral 7B 86.69 80.21 78.33 86.22 82.36 88.42 86.43 88.70 64.27 87.05 84.15(7)/82.87(10) 50,000(16,382)
AutoRegEmbed-LLaMA2 7B 85.62 81.93 78.84 86.76 84.01 89.43 87.72 89.04 66.77 87.96 85.24(7)/83.81(10) 274,951(16,382)

Table 1: Results on STS tasks (Spearman correlation scaled by 100x). The parentheses in the Avg. column indicate
the number of datasets used to compute the average. Vol. denotes the number of training triplets, while the numbers
in brackets indicate the instruction fine-tuning data used by AutoRegEmbed during the information compression
stage. The symbol “~” denotes an estimated value. " " represents our own fair baselines, and we apply a grid
search to ensure optimal performance. "-L" and "-M" denote the hidden state of the last token and the average
pooling of all token hidden states, respectively. The symbol ♣ indicates that not all data are open source.

AutoRegEmbed vs. Supervised Contrastive510

Training Supervised contrastive learning is the511

mainstream approach for building high-quality em-512

bedding models. We first compared top-performing513

methods that once ranked on the MTEB leaderbord514

(with the time they reached SOTA in brackets),515

including NV-Embed (2024.08), SFR-Embedding-516

2_R (2024.02), gte-Qwen2-7B-instruct (2024.06),517

and LLM2Vec (2024.05). In terms of model perfor-518

mance, AutoRegEmbed outperforms most SOTA519

methods on ten STS datasets, trailing only 0.2%520

behind the best version of LLM2Vec. From a data521

efficiency perspective, AutoRegEmbed achieves522

performance comparable to the previous SOTA523

models with just 66,382 training samples, whereas524

the latter requires tens of millions of triplets to525

reach peak performance. Additionally, previous526

SOTA models employ multi-task learning (e.g., re-527

trieval and clustering), whose impact on STS per-528

formance remains unclear. To ensure a fair com-529

parison, we use single-task contrastive learning as530

a baseline. Unlike traditional contrastive learning, 531

AutoRegEmbed does not rely on in-batch negative 532

samples. So we add two baselines to single-task 533

contrastive learning that also exclude the in-batch 534

negative sample strategy. As shown in Table 1, 535

even under identical training data, AutoRegEmbed 536

outperforms four different single-task contrastive 537

learning, further validating its effectiveness. 538

4.3 Ablation Study 539

To verify the effectiveness of AutoRegEmbed, we 540

conducted an ablation study. First, we removed 541

Conditional Distribution Alignment to evaluate its 542

impact on model performance. Second, since Equa- 543

tion 2 was derived empirically in our previous work, 544

we tested different variants of this equation to con- 545

firm that it remains the optimal choice. Different 546

variants of Equation 2 include Log_sigmoid, which 547

maps similarity to a logarithmic scale for integra- 548

tion with the exponential function e, as well as KL 549

divergence and JS divergence, which quantify 550

the distance between the conditional probability 551
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Figure 3: We evaluate the learning efficiency of our method against traditional contrastive learning on 10 STS
datasets, comparing their performance under the same number of samples (left figure) and same number of epochs
(right figure). Further details are provided in Appendix A.

Method Avg.

AutoRegEmbed-LLaMA2 83.07(10)

Tasks
w/o Conditional Distribution Alignment 73.90(10)
LLaMA2-L (Without Training) 56.91(10)

Equation 2
Log_sigmoid 82.93(10)
KL divergence 79.82(10)
JS divergence 79.02(10)

Table 2: Ablation experiments of AutoRegEmbed. We
conduct ablation and contrast experiments on various
tasks and Equation 2 to demonstrate the effectiveness
of AutoRegEmbed.

distributions of positive and negative sample em-552

beddings in distinct ways. The specific equations553

are provided in Appendix B. Table 2 presents the554

ablation results. The experiments on different tasks555

indicate that Conditional Distribution Alignment556

improves performance by 9.17%, while Informa-557

tion Compression contributes a 16.99% improve-558

ment, demonstrating the effectiveness of both tasks.559

Additionally, experiments on variants of Equation 2560

reveal that, although using a logarithmic scale for561

similarity and employing KL or JS divergence to562

measure distribution distance are more intuitive563

approaches, they do not surpass the performance564

of the original loss function in Equation 2. Thus,565

Equation 2 can be regarded as a more effective loss566

function.567

4.4 Learning Efficiency 568

To verify that AutoRegEmbed is better suited for 569

LLMs, we compare its performance with four con- 570

trastive learning baselines under the same training 571

data and the same number of epochs, as shown in 572

Figure 3. The left figure in Figure 3 shows that 573

as the training data increases, the performance of 574

both AutoRegEmbed and other contrastive learning 575

methods improves, but AutoRegEmbed exhibits the 576

fastest growth. Notably, with just 15,000 samples, 577

AutoRegEmbed already surpasses the maximum 578

performance of other contrastive learning models. 579

The right figure demonstrates that as the number of 580

epochs increases, AutoRegEmbed also improves 581

at the fastest rate. These results indicate that Au- 582

toRegEmbed significantly outperforms the baseline 583

models in learning efficiency. 584

5 Conclusions 585

To address the limitation that traditional contrastive 586

learning does not adhere to the autoregressive na- 587

ture of LLMs, we propose AutoRegEmbed—a 588

novel contrastive learning method based on em- 589

bedded conditional probability distributions. Au- 590

toRegEmbed ensures that LLM-generated embed- 591

dings capture global semantics while maintain- 592

ing alignment and uniformity through information 593

compression and conditional distribution alignment 594

tasks. AutoRegEmbed achieves comparable perfor- 595

mance to SOTA models with fewer training sam- 596

ples and superior learning efficiency. 597
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6 Limitations598

The primary advantage of AutoRegEmbed lies in599

its ability to effectively harness the power of large600

language models (LLMs) to construct robust and601

high-quality text embeddings. However, it is im-602

portant to acknowledge several limitations of our603

approach.604

AutoRegEmbed does not possess inherent mech-605

anisms to filter or detect malicious or harmful con-606

tent in the data it processes. While the model is ca-607

pable of generating embeddings from a wide range608

of text inputs, it lacks the ability to evaluate the eth-609

ical or safety implications of the data. This makes610

it vulnerable to issues related to biased, offensive,611

or otherwise problematic content present in the612

training corpus. In cases where the training data613

contains harmful or discriminatory material, the614

embeddings generated by AutoRegEmbed may in-615

advertently carry forward these biases, potentially616

leading to unintended and undesirable outcomes617

when applied to real-world tasks.618

To mitigate this risk, we recommend that users619

of AutoRegEmbed ensure that the training data is620

carefully curated, and ideally, filtered for harmful621

content. By using safe and ethically sourced data,622

the model’s potential for propagating bias or harm623

can be minimized. Additionally, users should be624

cautious when applying AutoRegEmbed to sensi-625

tive domains, where the generation of unsafe or626

biased embeddings could have significant conse-627

quences.628
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A Implementation details957

AutoRegEmbed For the information compres-958

sion task, we set the learning rate to 2e-5, the batch959

size to 32, and train for 2 epoch. To represent the960

semantics of the input, we use 5 compressed to-961

kens. For the conditional distribution alignment962

task, the learning rate is set to 5e-6, with a batch963

size of 32 and 4 epochs. The temperature parame-964

ters t and b are both set to 0.1. For the above two965

tasks, we set the maximum token length of context,966

instruction, and target to 512. Furthermore, we967

employ the bfloat16 format, enable FlashAttention968

2, and train on four A100-80G GPUs with Deep-969

Speed and Zero-2. The information compression970

task takes 20 minutes, while the conditional distri-971

bution alignment task, involving 50,000 samples,972

takes approximately 1 hour.973

Fair Comparative Learning Baselines We train974

our own fair contrastive learning baseline based on975

the standard InfoNCE loss, with some code avail-976

able in the FlagEmbedding repository1). For base-977

lines utilizing the in-batch negative sample strategy978

(LLaMA2-inbatch-L and LLaMA2-inbatch-M), we979

experimented with batch sizes of 128, 256, 512,980

and 1024, determining that 512 yields the best per-981

formance. Additionally, we ensure that gradients982

are propagated across different devices. For base-983

lines that do not use the in-batch negative sample984

strategy, we set the batch size to 32, maintaining985

1https://github.com/FlagOpen/FlagEmbedding

consistency with AutoRegEmbed. Regarding the 986

learning rate, we tested 1e-5, 5e-5, 1e-4, and 2e-4, 987

finding that 1e-4 delivers the best results. All train- 988

ing data is consistent with AutoRegEmbed. We 989

train the fair contrastive learning baseline using 990

DeepSpeed and Zero-2 on four A100-80G GPUs 991

in 1 hour. 992

B Variants of Equation 2 993

This section explores various possible modifica- 994

tions and extensions of Equation 2. 995

Log_sigmoid Given that most loss functions are 996

logarithmic in nature, we can modify the similarity 997

function in Equation 2 by replacing the sigmoid 998

with a Log-Sigmoid function, resulting in a more 999

interpretable formulation: 1000

LCDA = E[−log
eS1(q,d+)/τ

eS1(q,d+)/τ +
∑

i e
S2(d+,d−i ;q)/τ

],

S1(q, d
+) = −logσ(β |log

pθE (d
+|eq,Inext)

pθE (d
+|ed+,Iself )

|),

S2(d
+, d−i ; q) = −logσ(β log

pθE (d
+|eq,Inext)

pref(d+|eq,Inext)

− β log
pθE (d

−|eq,Inext)
pref(d−|eq,Inext)

).

1001

KL divergence We also experimented with re- 1002

placing the difference in log probabilities with the 1003

KL divergence between the conditional probability 1004

distributions: 1005

LCDA = E[−log
eS1(q,d+)/τ

eS1(q,d+)/τ +
∑

i e
S2(q,d

−
i )/τ

],

S1(q, d
+) = −σ(

1

T

T∑
t=1

KL(pθE (d
+
t |d

+
<t, ed+,Iself ),

pθE (d
+
t |d

+
<t, eq,Inext))),

S2(q, d
−) = −σ(

1

T

T∑
t=1

KL(pθE (d
+
t |d

−
<t, ed−,Iself ),

pθE (d
+
t |d

+
<t, eq,Inext))).

1006

JS divergence In addition to KL divergence, we 1007

also employed JS divergence as a measure of dis- 1008
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tribution distance:1009

LCDA = E[−log
eS1(q,d+)/τ

eS1(q,d+)/τ +
∑

i e
S2(q,d

−
i )/τ

],

S1(q, d
+) = −σ(

1

T

T∑
t=1

JS(pθE (d
+
t |d

+
<t, ed+,Iself ),

pθE (d
+
t |d

+
<t, eq,Inext))),

S2(q, d
−) = −σ(

1

T

T∑
t=1

JS(pθE (d
+
t |d

−
<t, ed−,Iself ),

pθE (d
+
t |d

+
<t, eq,Inext))).
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