
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEYNMAN: KNOWLEDGE-INFUSED DIAGRAMMING
AGENT FOR SCALING VISUAL REASONING DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual reasoning is an essential ability of state-of-the-art multi-modal AI systems.
Improving these systems requires high-quality vision-language data at scale. De-
spite the abundance of internet image and text data, knowledge-rich and well-
aligned image-text pairs are rare. In this paper, we present a scalable data gener-
ation pipeline built with our diagramming agent, FEYNMAN. To create diagrams,
FEYNMAN first enumerates domain-specific knowledge components (“ideas”) and
performs code planning based on the ideas. Given the plan, FEYNMAN trans-
lates ideas into simple declarative programs and iterates to receives feedback and
visually refine diagrams. Finally, the declarative programs are rendered by the
PENROSE diagramming system. The optimization-based rendering of PENROSE
preserves the visual semantics while injecting fresh randomness into the layout,
thereby producing diagrams with visual consistency and diversity. As a result,
FEYNMAN can author diagrams along with grounded captions with very little
cost and time. Using FEYNMAN, we synthesized a dataset with more than 100k
well-aligned diagram-caption pairs. We also curate a visual-language benchmark,
DIAGRAMMA, from freshly generated data. DIAGRAMMA evaluates the visual
reasoning capabilities of vision-language models. We plan to release the dataset,
benchmark, and the full agent pipeline as an open-source project.

1 INTRODUCTION

Fig. 1: The FEYNMAN Agent

A diagram is worth ten thousand words. Humans represent knowl-
edge visually and solve complex problems efficiently using dia-
grams (Tversky, 2017; Larkin & Simon, 1987). However, the cur-
rent generation of multi-modal large-language models (MLLMs)
such as GPT-4V (Yang et al., 2023), Gemini (Team et al., 2023)
and Llama 3 (Dubey et al., 2024b) still struggle to understand, use,
and generate simple visual objects that often show up in diagrams,
despite tremendous progress on general multi-modal benchmarks
(Yue et al., 2024). Prior work have shown MLLMs to fail rudimen-
tary vision tests (Rahmanzadehgervi et al., 2024), perceive graph
structures poorly (Li et al., 2024d), and lack compositional under-
standing of visual attributes, relations, and ordering (Yuksekgonul
et al., 2022). The important work (Zhang et al., 2024a) specifically
demonstrated their weaknesses on reasoning with abstract mathe-
matical diagrams.

Currently, training large models relies heavily on enormous amount
of data for both pre- and post-training to make progress on any ca-
pabilities (Dubey et al., 2024a; Li et al., 2024c; Tong et al., 2024),
including diagram understanding (McKinzie et al., 2024). To aug-
ment training data, one general strategy is to synthesize data using
state-of-the-art large-language models. Unfortunately, synthesizing

vision-language data is challenging. Prevalent approaches of synthesizing vision-language data fo-
cus on the language side, such as augmenting instruction-following data from image captions (Li
et al., 2022; Liu et al., 2024b; Wang et al., 2022). To synthesize images, the two main paradigms
are diffusion models (Rombach et al., 2022) and graphics program synthesizers (Belouadi et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2(a): Idea step: In the first step,
FEYNMAN enumerate the knowledge
given a specific domain.

Figure 2(b): Plan step: Per idea, FEYNMAN then devises extract
relevant elements such as chemical bonds and formulate a plan to
translate them into Substance code.

2024b;c; Wu et al., 2023). The former generate raster images while the latter synthesize textual
programs that produce vector graphics. Regardless of the output format, both approaches struggle
to produce good diagrams consistently. Given the demand for high-quality synthetic diagrams and
the limitations of current approaches, we ask the following research question:

Can we generate synthetic diagram-language pairs at scale?

When generating conceptual diagrams, models are tasked to perform both knowledge elicitation and
visual production. When prompted to produce a diagram representing some high-level concepts, the
model needs to elicit the relevant concepts (abstract knowledge, e.g., H2O has 2 hydrogen and 1
oxygen atoms), map them to visual components (visual knowledge, e.g., use ball-and-stick model
to represent molecules), and organize these components in an image (visual production). However,
state-of-the-art diffusion and language models struggle because they are asked to perform these
steps all at once. For instance, diffusion models can produce visually pleasing images but may
ignore important concepts in the diagram; language models may include the right concepts in the
image but the diagram layout can be poor and illegible. In this paper, we recognize this challenge of
diagram generation, and ask:

Can we decouple knowledge elicitation and visual production in diagram synthesis?

To address our questions, we elicit domain knowledge from LLMs and iteratively produce high-
quality diagrams using a knowledge-aware diagram interface. We propose FEYNMAN, an LLM
agent that scales up diagram synthesis by decoupling knowledge elicitation and visual production.
FEYNMAN leverages the knowledge advantage of modern LLMs by isolating knowledge elicitation
as its first step in diagram synthesis. Instead of directly producing SVG source code or a raster
image, FEYNMAN produces knowledge components (“ideas”), which are then translated to their
visual representations. To ensure high-quality visual production, FEYNMAN utilizes the PENROSE
language, which explicitly codifies the mapping from domain-specific concepts to their visual rep-
resentations (Ye et al., 2020). The resulting diagram synthesis pipeline preserves the semantics of
the diagrams, and we further utilize them to generate a diverse question-answer set tailored to the
generated content. Overall, our contributions include:

1. We created a diagramming agent, FEYNMAN, to author knowledge-infused diagrams and
achieves remarkable yield rate in generating textbook-level diagram examples. Powered by
PENROSE, FEYNMAN generates diagrams with diverse visual content.

2. With FEYNMAN, we generated 10693 knowledge-infused programs, leading to the creation
of 106930 well-aligned diagram-caption pairs. This was accomplished within 1,550 million
input and output tokens at a cost of under $400 with GPT-4o-mini.

3. We release a new benchmark DIAGRAMMA made of entirely fresh examples authored by
FEYNMAN. We conducted a thorough quantitative evaluation of 17 MLLMs in Table 2

4. Via comprehensive ablations and analysis, we provide insights into how to build multi-
modal AI agents that can work in the intersection of knowledge, visual design, and code
generation. We analyze the economic aspects of synthesizing large-scale scientific dia-
grams using our pipeline.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: Iterate Step: At each step, FEYNMAN attempts to write PENROSE program to create a
diagram. The generated program is then compiled into images and sent to a panel of visual judges
(MLLMs) for critical feedback. We term this algorithm Iterative Visual-Refine (Algorithm 1).

Among prior work that explored similar directions, Belouadi et al. (2023) and Belouadi et al. (2024a)
collected datasets of TikZ diagrams from the internet and arXiv articles to train coding agents for
TikZ programs. AUTOMATIKZ (Belouadi et al., 2023) is an LLM coding agent that writes TikZ
programs given text captions. However, after being trained with hundreds of thousands of TikZ
diagrams scraped from arXiv LATEX sources, AUTOMATIKZ still exhibits efficiency overhead in
synthesizing scientific diagrams at scale, due to the inherent complexity of both the TikZ language
and visual design. In fact, both Belouadi et al. (2023) and Belouadi et al. (2024a) requires time-
consuming tree search to boost compile success rates for simple programs, making large-scale gen-
eration infeasible. In general, there is still a lack of economical and scalable solution for generating
diagrams embedded with rich knowledge.

2 DIAGRAMMING AGENT PIPELINE

In this section, we present the workflow of our diagramming agent, FEYNMAN. FEYNMAN’s di-
agram synthesis pipeline includes four steps: idea, plan, iterate, and render. By leveraging the
knowledge capacity of LLMs and a conceptual diagramming tool, FEYNMAN can generate grounded
and diverse visual representations of scientific concepts at scale. Our pipeline has the following
characteristics:

1. Knowledge scalability: Our choice to use an LLM to provide general “knowledge-focused
planning” decouples the domain knowledge elicitation and the domain-specific visual de-
sign. This choice alleviates the cost of obtaining diverse and high-quality knowledge for
the generation of domain-specific diagrams (Section 2.2).

2. Visual diversity: The optimization-based approach of the PENROSE rendering engine pro-
vides visual diversity even given the same visual concept (Section 2.1), boosting visual
diversity of the synthesized diagrams.

3. Image-text alignment: The programs written by FEYNMAN simply encode the conceptual
ideas and relationships, from which the visuals are automatically derived. These programs
resemble natural language descriptions of the concepts, enabling smooth translation be-
tween concepts and code.

In this section, we first present the background of conceptual diagramming, which is the foundation
of our approach, and then introduce each step in the agentic pipeline of FEYNMAN.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Hydrogen h1, h2

Oxygen o

Carbon c

Bond b1 := SingleBond(h1,c)

Bond b2 := SingleBond(h2,c)

Bond b3 := DoubleBond(o,c)

ZeroDots(h1)

ZeroDots(h2)

ZeroDots(c)

FourDots(o)

H
H

O

C

Node n_i

 for i in [0,63]

Edge x_i := MakeEdge(n_i, n_j)

 for i in [0,63], j in [0,63]

 where j == (i + 1) mod 64 && i % 4 < 3

Edge y_i := MakeEdge(n_i, n_j)

 for i in [0,63], j in [0,63]

 where j == (i + 4) mod 64 && i % 16 < 12

Edge z_i := MakeEdge(n_i, n_j)

 for i in [0,47], j in [0,63]

 where j == (i + 16) mod 64

Figure 4: Examples of conceptual diagrams and their Substance notations: a graph where node
connections form a cube (left) and the Lewis structure of the formaldehyde molecule (CH2O).

2.1 BACKGROUND: CONCEPTUAL DIAGRAMMING

Figure 5: FEYNMAN generates programs that
PENROSE compiles to generate an layout opti-
mization problem. The PENROSE layout engine
then solves the optimization problem.

Conceptual diagrams refer to abstract images
that visually represent “a set of ideas and
their relations” (Tversky, 2017). At present,
most conceptual diagrams are created by ei-
ther a drawing tool like Adobe Illustrator or a
low-level graphical programming language like
PGF/TikZ or SVG. Using these tools is highly
manual and it is extremely difficult to use them
to automating diagram production (Ma’ayan &
Ni et al., 2020). As a result, AI generation of
diagrams through TikZ has proved challenging
(Belouadi et al., 2023) (Fig. 7).

PENROSE is a diagramming tool specifically
targeting conceptual diagrams. PENROSE sepa-
rates the abstract concepts in the diagram (the
Substance) and the visual representations of
said concepts (the Style). Substance contains
no low-level visual details, it is simpler and eas-
ier to generate correctly (Fig. 4). Style defines
a diverse space of diagram variations for any
given Substance. Combining Substance and
Style, PENROSE samples from this space when rendering a diagram, providing FEYNMAN the ability
to produce many different examples even from just one set of concepts (Fig. 6).

To translate from concepts to visuals, Style converts the concepts and relationships from Substance
into a constrained optimization problem: every concept in substance is translated to one or more
shapes S = {S1, . . . , Sn}, each with degrees of freedom p⃗ = (p1, . . . , pm) such as width, height,
and center. Conceptual relations among concepts are translated to constraints and objectives: con-
straints ensure that geometric predicates (e.g., contains, disjoint, etc.) hold true, while objectives
encourage geometric relations to hold in the resulting diagram (e.g., shapes should be as far apart as
possible). PENROSE encodes constraints as nonnegative penalty functions P1, . . . ,Pl : Rm → R≥0

each of which equal 0 if and only if the constraint is satisfied. Objectives are energy terms
E1, . . . , Ek. Overall, the PENROSE layout engine solves an optimization problem:

min
p⃗∈Rm

k∑
i=1

Ei(p⃗) s.t.
l∑

i=1

Pi(p⃗) = 0. (1)

PENROSE employs an exterior point method (Hiroshi & Tanabe, 2010) to pose this problem as a
sequence of unconstrained optimization problems, where constraints are iteratively stiffened over
layout steps:

min
p⃗∈Rm

k∑
i=1

Ei(p⃗) + cn

l∑
i=1

P2
i (p⃗), n = 0, 1, 2, · · · (2)

PENROSE solve this layout problem by running L-BFGS with line search (Lewis & Overton, 2009).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 6: Diverse visual layouts of PENROSE diagram variations: using the same Substance,
PENROSE can produce diagram variations while preserving the semantics, by sampling random
initial values for shapes, colors, and other numerical quantities in the diagram. We show 4 random
seed for 4 Substance programs for (A) ray-tracing diagrams, (B) Cayley graphs, (C) Chaos game as
a Sierpinski triangle, and (D) Euler diagrams for sets.

2.2 KNOWLEDGE PLANNING: ENUMERATING THE DOMAIN KNOWLEDGE WITH AN LLM

State-of-the-art LLMs learn vast knowledge during their large-scale pretraining. For example, GPT-
4o attains 53% accuracy in the GPQA benchmark (Rein et al., 2023), close to the 57% achieved
by human experts who have or are pursuing Ph.D. degrees. We leverage this large capacity of
knowledge of LLM by designing domain-specific prompts to ask an LLM to enumerate pieces of
knowledge (“ideas”) related to the selected domain. The prompts are designed to encourage LLM
to perform creative knowledge enumeration. For example, LLM is given the question “Enumerate
N chemical reactions that are pedagogical and important.” in the chemical-reactions domain (see
examples of full domain planning prompts in Appendix B.2). We feed the LLM’s response to the
coding agent, FEYNMAN, to program the concepts into diagrams. In cases where we can’t parse the
output format, we try multiple rounds until we reach a maximum number of rounds.

2.3 DIAGRAMMING CODE PLANNING: REASONING FOR CONCEPTUAL DIAGRAMMING

In this stage, the FEYNMAN agent generates a coding plan for each of proposed knowledge compo-
nents. The agent first attempts to organize the knowledge components into visual concepts, aiming
to prepare for translation into PENROSE code. To make the FEYNMAN agent aware of the PEN-
ROSE syntax, we provide the official PENROSE documentation in the prompt, akin to Wu et al.
(2024a). Moreover, for each domain, we provide a few in-context examples for LLM to learn the
syntax for that specific domain. We then instruct FEYNMAN to plan the visual elements that are
described in each knowledge component. This involves listing important steps to write a Substance
program that corresponds to the sampled knowledge component (see full code planning prompts in
Appendix B.4). Note that we do not instruct the model to write runnable code in this step, which is
an explicit design choice. In Section 4, we show that they serve as crucial foundations for successful
and diverse code generation.

2.4 ITERATIVE VISUAL-REFINE WITH A PANEL OF VISUAL JUDGES

After the planning stage, FEYNMAN translates the plan into compilable and correct PENROSE pro-
grams. We found in our preliminary experiments that even though LLMs such as GPT-4o fail to
write the correct program in their first attempt, they can improve if given suitable suggestions in
multi-round conversations. This is close to the interactive self-refine approach (Madaan et al.,
2024), which improves LLM output quality via multi-round self-reflection. The refinement of dia-
grams, which involves visual judgments, posed different challenges. While the prior work adopt tree
search to perform refinement (Belouadi et al., 2023; 2024a), their refinement process primarily aims
to achieve better compilation success rate. Without visual judgments and feedback, the generated
visual artifacts might include incorrect representation of knowledge.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To address this challenge, FEYNMAN utilizes a panel of visual judges to provide the visual feedback,
which we term it as Iterative Visual-Refine. The process is illustrated in Figure 3. In the first round,
FEYNMAN receives the plans from the previous planning steps and attempts to generate the first
code sample. If the code is successfully compiled into a diagram, then FEYNMAN run PENROSE to
generate variations of this diagram and send them to a panel of visual judges to assess its quality.
Each visual judge is a vision-language model asked to provide critical feedback to the diagramming
agent based on a set of criteria on various aspects of diagram qualities. To keep the task simple,
we prompt the judges to answer in boolean values, which are then collected and aggregated. For
cost-saving purposes, we set a threshold of scores above which we accepts the output as a valid
diagram. We provide an aggregated feedback message and move to the next iteration if the program
generated arrives at any of these states: a) cannot be extracted from the LLM response; b) fail to
compile to diagrams or c) receive scores below the set threshold. The formal algorithm is presented
in Algorithm 1.

Algorithm 1 Iterative Visual-Refine

Require: Prompt S, Maximum iterations Nmax,
Quality threshold θ, Number of Judges K

1: Initial Message: S0 ← S
2: n← 0 {Initialize iteration counter}
3: while n ≤ Nmax do
4: Agent response R← FEYNMAN(S)
5: Parse R into PENROSE program C
6: if Parsing returns no program then
7: continue
8: Compile C to diagrams dk, ∀k ∈ [K]
9: if Compilation Failure then

10: Error: e← error traceback
11: Message: S ← e
12: continue
13: for each k ∈ [K] do
14: Scoring: s(k) ← Vk(dk)
15: Suggestions: S(k) ← Vk(dk)
16: Average scores: sn+1 ← Avg(s(k))
17: Average suggestions: Sn+1 ← Avg(S(k))
18: if sn+1 ≥ θ then
19: Exit the algorithm, returns C
20: n← n+ 1
21: return C

De-duplication. LLM sometimes duplicate
their responses given similar prompts, result-
ing in a lack of diversity of knowledge in dia-
grams. Specifically, we focus on de-duplicating
the Substance code, which PENROSE uses to
synthesize diagrams. We use a statement-wise
Levenshtein distance (Levenshtein, 1966) to fil-
ter programs that contain too many duplicate
statements. The detail is presented in Ap-
pendix B.6.

2.5 GROUNDED
QUESTION-ANSWER PAIR GENERATION

For each Substance code FEYNMAN generated,
we generate grounded captions from their code
programs, while diversifying its visual repre-
sentation through the PENROSE optimization-
based layout engine. We created a multiple-
choice question-answering (QA) data genera-
tion pipeline. First, we generate image captions
by translating the concepts and relations in Sub-
stance to natural language. Then, we prompt an
LLM to select one of five visual reasoning skill
categories (Appendix B.7) for the problem. To
ensure problem diversity and quality, we ask the
model to provide rationales before QA genera-
tion in a chain-of-thought fashion. Finally, after
a QA pair is generated, the model self-verify by checking if the question can be answered without
an image and if the answer is correct given both image and question.

2.6 BENCHMARK CURATION: THE DIAGRAMMA BENCHMARK

We curated DIAGRAMMA, a visual reasoning benchmark using diagrams FEYNMAN synthesized.
These diagrams are completely unseen and do not exist on the internet. DIAGRAMMA is a scientific
benchmark that contains 1,058 multiple choice questions of visual understanding and reasoning.
We manually filtered a synthetic test dataset generated by FEYNMAN to create DIAGRAMMA. We
went through a meticulous filtering process to ensure that the selected images had accurate labels,
correct knowledge representation, and sufficiently challenging questions. As shown in Table 1, DI-
AGRAMMA contains 6 subjects, each of which contains multiple subdomains e.g., sorting algorithms
in computer science. Diagram counts for all subjects are listed in Table 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Comparison of different diagramming approaches: We select the best image out of
three attempts using Flux-Pro and AUTOMATIKZ, compared with those generated by our agent. We
provide them with the same prompt for each column. Flux-Pro produces visually diverse diagrams,
however none of them contains legible text that matches the intent. AutomaTikZ, on the other hand,
only successfully compiled for 3 out of 5 of all prompts.

3 EXPERIMENTS

3.1 SCALING DIAGRAM-CAPTION PAIRS

Source metadata
Subdomain 108
Substance 1058

Subjects
Math 401 (37.9%)
CS 342 (32.3%)
Science 241 (22.8%)
Chart 30 (2.8%)
Common Sense 22 (2.1%)
Statistics 22 (2.1%)

Unique Style 52
Unique Domain 38

Table 1: Metadata of DIAGRAMMA.

With the FEYNMAN agent, we conduct a preliminary
dataset scaling experiment. By effectively enumerating
knowledge in each subject and their subdomains, FEYN-
MAN produced 10693 unique Substance programs, repre-
senting diverse conceptual relationships. We used a total
of 1470.4 million input tokens and 46.6 million output
tokens on GPT-4o-mini to generate these Substance pro-
grams. Each program is further independently rendered
by the optimization-based layout engine to produce 10
unique variations, resulting in overall 106930 diagrams.
See Figure 6 for examples of diagram variations and their
visual diversity. For each rendered variation, we further
produce a caption according to both the image and the
corresponding Substance program. The scalability of the
pipeline is tested in this experiment. In Appendix D.3,
we provide more detailed studies to assess the knowledge
and visual diversity of generated images.

3.2 DIAGRAMMA EVALUATION

We evaluated DIAGRAMMA on state-of-the-art open- and closed-source MLLMs. Evaluations were
conducted in a zero-shot setting, with a uniform template provided to each model. Detailed evalua-
tion setup can be found in Appendix C.

Results. We present the evaluation results of DIAGRAMMA for a set of 17 models in Table 2. We
observe three pieces of evidence validating our benchmark curation in the results: 1) as the sizes of
models increase, their accuracy consistently improves, confirming the validity of our data for mea-
suring the capabilities of MLLMs; 2) the computer science subject, which primarily involves graph

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Name All Math CS Science Chart Commonsense Statistics

Claude-3.5-Sonnet 59.64 64.59 42.98 74.69 53.33 77.27 54.55
GPT-4o (OpenAI (2024a)) 57.28 63.09 50.58 60.17 53.33 50.00 36.36
Claude3-Opus (Anthropic (2024)) 49.15 54.11 40.35 55.60 33.33 45.45 50.00
Gemini-1.5-Flash (Reid et al. (2024)) 47.54 55.36 40.06 45.64 50.00 54.55 31.82
Claude3-Sonnet (Anthropic (2024)) 47.54 50.62 38.01 58.92 46.67 36.36 27.27
GPT-4o-mini (OpenAI (2024a)) 44.42 47.63 36.55 53.53 26.67 45.45 31.82
Gemini-1.5-pro (Reid et al. (2024)) 44.23 49.13 41.23 42.74 30.00 59.09 22.73
Claude3-Haiku (Anthropic (2024)) 42.53 46.63 31.58 54.77 30.00 36.36 27.27

Qwen2-VL-72B* (Yang et al. (2024a)) 50.85 59.10 42.69 51.45 46.67 31.82 45.45
LLama3.2-VL-90B* (Dubey et al. (2024b)) 46.88 50.37 41.23 53.53 26.67 40.91 31.82
LLama3.2-VL-11B (Dubey et al. (2024b)) 46.22 48.38 40.06 56.02 30.00 50.00 13.64
Pixtral-12b* 44.71 50.62 40.06 44.81 43.33 36.36 18.18
LLava-OneVision-Qwen2-7b (Li et al. (2024b)) 42.91 48.13 35.38 44.40 53.33 45.45 31.82
Qwen2-vl-7B (Yang et al. (2024a)) 42.16 48.63 35.38 40.66 43.33 45.45 40.91
InternVL2-8B (Chen et al. (2024)) 41.02 47.38 35.09 39.83 40.00 40.91 31.82
Phi-VL-3.5 (Abdin et al. (2024)) 38.19 42.64 33.04 40.66 30.00 40.91 18.18
Minicpm-2.6 (Yao et al. (2024)) 35.44 41.65 29.82 36.51 26.67 27.27 18.18

Table 2: Accuracy results of DIAGRAMMA on state-of-the-art MLLMs on 1058 samples. Models
marked with (*) are evaluated through the OpenRouter API. Claude-3.5-Sonnet achieved the high-
est overall accuracy, with notable performance on science and commonsense diagrams.

reasoning, remains the most difficult for current models, which corroborates with the observations by
Li et al. (2024d); Rahmanzadehgervi et al. (2024). An notable observation is that Gemini-1.5 Flash,
which is considerably cheaper than Gemini-1.5 Pro outperformed Gemini-1.5 Pro on DIAGRAMMA,
a trend also seen in the reasoning category in LIVEBENCH (White et al., 2024). We conjecture this
correlation is attributed to that DIAGRAMMA share the same “freshness” as the reasoning questions
in LIVEBENCH. We find that Gemini 1.5 Pro declined to answer over 100 questions, contributing
to a more than 10% drop in accuracy, which might indicates high rejection rates of answering out-
of-distribution questions. In Appendix C.4, we present a qualitative analysis of how most MLLMs
struggled in reasoning.

4 ANALYSIS

4.1 BASELINE COMPARISON

We show in Figure 7 a preliminary comparison study on 5 attempts to generate diagrams correspond-
ing to specific prompts. We compare FEYNMAN to two competitors AUTOMATIKZ and diffusion
model FLUX-Pro (fal.ai, 2024) as baselines. Each attempt of baseline was ran 3 times and we se-
lect the best result. The caption is provided in Appendix E.2. The diffusion model FLUX-Pro has
difficulty generating clean scientific diagrams that conveys the concepts, but instead hallucinates
many low-level details not mentioned in the caption. AUTOMATIKZ (Belouadi et al., 2023), which
trained a Llama-2 model to generate TikZ code, fails to produce correct TikZ programs that match
the captions. We hypothesize that their failure in our setting if because 1) complex diagrams require
great precision to draw than natural images, and 2) TikZ programs cannot separate knowledge or-
ganization and visual production, which made the code synthesis task overly difficult. We provide
further explorations of using o1-mini and o1-preview (OpenAI, 2024b) to generate TikZ code in
Appendix E.2. However, even when powerful LLMs like o1-preview can write TikZ code roughly
correctly, TikZ still makes it hard to diversify the layout.

4.2 PRODUCTION-TO-SCALE ANALYSIS

We conducted an ablation experiment shown in Fig. 8 highlights the scalability of FEYNMAN. In
knowledge-dense domains, the agent scales its knowledge linearly as the number of tokens increases.
Even in knowledge-sparse domains, we observe an upward trend in token generation, though at a
reduced rate. This demonstrates the robustness of FEYNMAN ’s performance across varying levels
of domain.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Tokens used (10e5)

Input

Output

Number
of

programs

Molecules Chemical reactions Euler diagramsSequence diagrams

Figure 8: Scaling behavior of input/output tokens versus generated image samples across four sub-
domains. The figure illustrates two distinct trends: linear scaling in knowledge-dense domains, and
decaying trends in knowledge-sparse domains. These trends highlight the impact of domain knowl-
edge diversity and scalability on the performance of FEYNMAN.

The results of our production-to-scale experiment on four selected subdomains are illustrated in
Fig. 8. The plots show the total input/output tokens versus the number of generated images after
de-duplication. Across the domains, we observe two distinct scaling patterns: a linear trend and a
decaying trend. The linear trend suggests the potential for further scaling within a specific domain as
the number of tokens increases further. In contrast, the decaying trend indicates diminishing returns
in the generation of images as token counts continue to rise. We attribute these differing trends to
two main factors: (1) the base model’s knowledge within the specific domain, and (2) the scalability
of the domain for diagramming. Additionally, domains can be classified as either knowledge-dense
or knowledge-sparse: for instance, enumerating knowledge about chemical reactions is likely easier
than for a domain composed solely of complementary triangles.

4.3 ABLATIONS FOR AGENT WORKFLOW

To provide quantitative insights into the effectiveness of FEYNMAN, we evaluate our pipeline on
two metrics: the final yield rate is percentage of successfully complied images after de-duplication;
the visual judge scores is an average of rule-based critic score given by MLLM judges for de-
duplicated images at the end of the generation. We perform an ablation study on 10 subdomains that
encompass wide range of knowledge. As shown in Table 3, we ablate key components of FEYNMAN:
(1) explicit knowledge planing (KP, Section 2.2), (2) explicit code planning (CP, Section 2.3), and
(3) early stop mechanism based on judge scores (S, Section 2.4).

We discuss three notable findings from our ablation results. First, the pipeline with all components
(KP + CP + S) achieves the best average judge score. Second, code planning (CP), together with
use score to early stop, helps the generation pipeline end in much lower number of rollout rounds.
Finally, when knowledge planning (KP) is present, the gap between compiled success rate and final
yield rate is very low. The observations above suggest that knowledge planning (KP) is essential for
generating diverse scientific diagrams. Additionally, code planning (CP) improves the scalability
of the data generation pipeline. When combined with early-stop, CP helps generate better-quality
figures with fewer iterations and reduce the overall cost. Combing both steps achieves our goal of
generating scalable and diverse diagrams.

5 RELATED WORK

Multi-modal LLMs and agents Vision-language models (Alayrac et al., 2022; Yang et al., 2023;
Li et al., 2023a; Zhu et al., 2023) gained remarkable capability of following instructions through
visual instruction tuning (Li et al., 2022; Liu et al., 2024b;a). This capability enabled wide range of
applications, such as visual reasoning(Yue et al., 2024; Lu et al., 2023), and interact with human as

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ablations Avg PR LT SP NR CR Compile % Yield % Rounds

KP + CP + S 65.4 69.7 30.9 60.4 91.8 74.2 82.5 82.5 2.63
CP + S 65.0 65.9 32.1 59.9 95.0 72.2 97.0 87.5 2.44
KP + S 62.8 63.9 35.6 56.8 91.3 66.2 87.0 86.5 6.69
S 63.2 64.3 31.5 57.6 90.6 71.8 96.5 84.0 6.29

KP + CP 61.5 67.9 25.9 52.1 89.7 71.9 81.5 81.5 8.00
CP 61.8 69.3 23.6 52.5 92.3 71.1 96.5 92.5 8.00
KP 63.9 66.6 32.1 59.5 91.2 70.2 87.5 87.5 8.00

Table 3: The table shows a break down of critic scores in five categories (see Appendix D.1, PR:
proper element relationship; LT: legible text; NR: non-redundancy; CR: correct representation; SP:
simplicity), diagram compilation rate (Compile %), final yield rate (Yield %), and total number of
rounds in the iterate step (Rounds). The combination of explicit knowledge planning (KP), code
planning (CP), and early stop based on scoring results (S) received the best judge critic score.

visual chatbots OpenAI (2024a). Meanwhile, agents built with LLMs can interact with environments
(Wang et al., 2024c) to play games, perform web navigation, and write computer programs (Wang
et al., 2023; Yao et al., 2022; Romera-Paredes et al., 2024; Yang et al., 2024c; Xia et al., 2024;
Wu et al., 2024b). MLLM agents have more perception modalities and are more grounded in real-
world scenarios (Hong et al., 2024; Sun et al., 2022; Li et al., 2024a; Wang et al., 2024a; Bonatti
et al., 2024; Koh et al., 2024; Li et al., 2024e). Agents are also important collectors of data, but the
efficiency of data collection depends on the domain of choice (Putta et al., 2024).

Synthetic data generation The success of large AI models depends primarily on the scaling law of
model size and training data (Kaplan et al., 2020; Hoffmann et al., 2022), which stimulated efforts
to curate datasets (Gao et al., 2020; Soboleva et al., 2023; Li et al., 2024c). For domains where
data collection is expensive, synthesizing data has become the dominant approach (Haluptzok et al.,
2022; Zelikman et al., 2022; Yang et al., 2024b; Li et al., 2023b; Wang et al., 2022; Peng et al., 2023).
Synthetic data have long existed in the vision domain (Little & Verri, 1989). For multi-modal AI
models, teaching the model to harness their visual reasoning capabilities also relies on synthetic data
(Li et al., 2022; Liu et al., 2024b;a). One work that tackled similar problems to ours is by Zhang
et al. (2024b), who synthesized charts and figures via LLM knowledge and program synthesis, but
their approach is limited by the tool of choice and lack of agentic ability such as iterative refinement.

Vision-language benchmarks Sustainable progress of AI research relies on the continuous de-
velopment of benchmarks to measure the capabilities of AI systems. Benchmarks like HellaSwag
(Zellers et al., 2019; Hendrycks et al., 2020; Cobbe et al., 2021; Zheng et al., 2023) contributed sig-
nificantly to the progress measurement of building state-of-the-art LLMs. Vision-language bench-
marks serve the same role for the visual understanding and reasoning abilities of MLLMs. For exam-
ple, benchmarks like VQA-v2 (Antol et al., 2015), GQA (Hudson & Manning, 2019) and MMMU
(Yue et al., 2024) measure the visual knowledge of MLLMs comprehensively. Other benchmarks
like (Methani et al., 2020; Lu et al., 2021b;a; Masry et al., 2022; Lu et al., 2024; Wang et al., 2024b)
measure domain-specific capabilities like chart understanding and math visual reasoning.

6 CONCLUSION

In this paper, we presented FEYNMAN, a diagramming agent that authors conceptual diagrams at
scale. FEYNMAN decouples knowledge elicitation from visual production of diagrams to achieve
scalability of diagram synthesis. Grounded by a knowledge-infused diagramming language, FEYN-
MAN produces text-image pairs to scale up the synthetic data across multiple subjects, such as com-
puter science and mathematics. We conducted systematic ablation of key design choices for FEYN-
MAN, and showed the production-to-scale curves to demonstrate the scalability of our pipeline.
Additionally, we released a new benchmark DIAGRAMMA with question-answer pairs generated
by FEYNMAN and curated to ensure correctness, further contributing to research in diagram-based
reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024. URL https:
//www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_
Claude_3.pdf.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. Automatikz: Text-guided synthesis of scientific
vector graphics with tikz. arXiv preprint arXiv:2310.00367, 2023.

Jonas Belouadi, Steffen Eger, and Simone Paolo Ponzetto. Detikzify: Synthesizing graphics pro-
grams for scientific figures and sketches with tikz. arXiv preprint arXiv:2405.15306, 2024a.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. AutomaTikZ: Text-Guided Synthesis of Scientific
Vector Graphics with TikZ, 2024b. arXiv: cs.CL/2310.00367.

Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. DeTikZify: Synthesizing Graphics Pro-
grams for Scientific Figures and Sketches with TikZ, May 2024c. URL http://arxiv.org/
abs/2405.15306. arXiv:2405.15306 [cs].

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Justin Wa-
gle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to com-
mercial multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024a.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024b.

Aryaz Eghbali and Michael Pradel. Crystalbleu: precisely and efficiently measuring the similarity
of code. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, pp. 1–12, 2022.

fal.ai. Flux-pro. https://fal.ai/models/fal-ai/flux-pro, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
http://arxiv.org/abs/2405.15306
http://arxiv.org/abs/2405.15306
https://fal.ai/models/fal-ai/flux-pro

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. arXiv preprint arXiv:2207.14502, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Yamashita Hiroshi and Takahito Tanabe. A Primal-Dual Exterior Point Method for Nonlinear
Optimization. http://dx.doi.org/10.1137/060676970, 20(6):3335–3363, November 2010. ISSN
10526234. doi: 10.1137/060676970. URL https://epubs.siam.org/doi/abs/10.1137/
060676970. Publisher: Society for Industrial and Applied Mathematics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Jill H. Larkin and Herbert A. Simon. Why a Diagram is (Sometimes) Worth Ten Thou-
sand Words. Cognitive Science, 11(1):65–100, January 1987. ISSN 0364-0213. doi: 10.
1016/S0364-0213(87)80026-5. URL http://www.sciencedirect.com/science/article/
pii/S0364021387800265.

V Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Proceedings
of the Soviet physics doklady, 1966.

A. S. Lewis and M. L. Overton. Nonsmooth optimization via BFGS. SIAM J. Optimiz, pp. 1–35,
2009.

Binxu Li, Tiankai Yan, Yuanting Pan, Zhe Xu, Jie Luo, Ruiyang Ji, Shilong Liu, Haoyu Dong, Zihao
Lin, and Yixin Wang. Mmedagent: Learning to use medical tools with multi-modal agent. arXiv
preprint arXiv:2407.02483, 2024a.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024b.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
Etash Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of
training sets for language models. arXiv preprint arXiv:2406.11794, 2024c.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference
on machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

12

https://epubs.siam.org/doi/abs/10.1137/060676970
https://epubs.siam.org/doi/abs/10.1137/060676970
http://www.sciencedirect.com/science/article/pii/S0364021387800265
http://www.sciencedirect.com/science/article/pii/S0364021387800265

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023b.

Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang, Longyue Wang, and Min Zhang. VisionGraph:
Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context, May 2024d.
URL https://arxiv.org/abs/2405.04950v1.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Liqiang Nie. Optimus-
1: Hybrid multimodal memory empowered agents excel in long-horizon tasks. arXiv preprint
arXiv:2408.03615, 2024e.

JJ Little and A Verri. Analysis of differential and matching methods for optical flow. In [1989]
Proceedings. Workshop on Visual Motion, pp. 173–180. IEEE, 1989.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
arXiv preprint arXiv:2105.04165, 2021a.

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual
language reasoning. arXiv preprint arXiv:2110.13214, 2021b.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating Mathematical Reasoning
of Foundation Models in Visual Contexts, January 2024. URL http://arxiv.org/abs/2310.
02255. arXiv:2310.02255 [cs].

Dor Ma’ayan, Wode Ni, Katherine Ye, Chinmay Kulkarni, and Joshua Sunshine. How Domain
Experts Create Conceptual Diagrams and Implications for Tool Design. Conference on Human
Factors in Computing Systems - Proceedings, 20, April 2020. doi: 10.1145/3313831.3376253.
Publisher: Association for Computing Machinery ISBN: 9781450367080.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A Bench-
mark for Question Answering about Charts with Visual and Logical Reasoning, March 2022.
URL http://arxiv.org/abs/2203.10244. arXiv:2203.10244 [cs].

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, Anton Belyi, Haotian Zhang, Karanjeet
Singh, Doug Kang, Ankur Jain, Hongyu Hè, Max Schwarzer, Tom Gunter, Xiang Kong, Aonan
Zhang, Jianyu Wang, Chong Wang, Nan Du, Tao Lei, Sam Wiseman, Guoli Yin, Mark Lee,
Zirui Wang, Ruoming Pang, Peter Grasch, Alexander Toshev, and Yinfei Yang. MM1: Methods,
Analysis & Insights from Multimodal LLM Pre-training, April 2024. URL http://arxiv.org/
abs/2403.09611. arXiv:2403.09611 [cs].

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1527–1536, 2020.

13

https://arxiv.org/abs/2405.04950v1
http://arxiv.org/abs/2310.02255
http://arxiv.org/abs/2310.02255
http://arxiv.org/abs/2203.10244
http://arxiv.org/abs/2403.09611
http://arxiv.org/abs/2403.09611

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

OpenAI. Gpt-4o system card, 2024a. URL https://openai.com/index/gpt-4o-system-card/.

OpenAI. Learning to reason with llms, 2024b. URL https://openai.com/index/
learning-to-reason-with-llms.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Pooyan Rahmanzadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen.
Vision language models are blind, July 2024. URL http://arxiv.org/abs/2407.06581.
arXiv:2407.06581 [cs].

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, 2023.
URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
vision-centric exploration of multimodal llms. arXiv preprint arXiv:2406.16860, 2024.

Barbara Tversky. Diagrams. In Information Design. Routledge, 2017. ISBN 978-1-315-58568-0.
Num Pages: 12.

14

https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
http://arxiv.org/abs/2407.06581
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, and Hongsheng Li. Measuring
multimodal mathematical reasoning with math-vision dataset. arXiv preprint arXiv:2402.14804,
2024b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024c.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging,
contamination-free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. IconShop: Text-Guided Vector Icon Synthesis
with Autoregressive Transformers. ACM Trans. Graph., 42(6):230:1–230:14, December 2023.
ISSN 0730-0301. doi: 10.1145/3618364. URL https://dl.acm.org/doi/10.1145/3618364.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 36, 2024a.

Yue Wu, Yewen Fan, So Yeon Min, Shrimai Prabhumoye, Stephen McAleer, Yonatan Bisk, Ruslan
Salakhutdinov, Yuanzhi Li, and Tom Mitchell. Agentkit: Flow engineering with graphs, not
coding. arXiv preprint arXiv:2404.11483, 2024b.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-sql data from weak and strong llms. arXiv preprint arXiv:2408.03256, 2024b.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024c.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

15

https://dl.acm.org/doi/10.1145/3618364

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich, Joshua Sun-
shine, and Keenan Crane. Penrose: From Mathematical Notation to Beautiful Diagrams. ACM
Transactions on Graphics, 39(4):144:144:1–144:144:16, July 2020. ISSN 0730-0301. doi:
10.1145/3386569.3392375. URL https://doi.org/10.1145/3386569.3392375.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
Why Vision-Language Models Behave like Bags-Of-Words, and What to Do About It? Septem-
ber 2022. URL https://openreview.net/forum?id=KRLUvxh8uaX.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Peng Gao, et al. Mathverse: Does your multi-modal llm truly see the
diagrams in visual math problems? arXiv preprint arXiv:2403.14624, 2024a.

Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna Wang, Yongliang Shen, Zeqi Tan, Guiyang
Hou, Mingqian He, Yanna Ma, Weiming Lu, and Yueting Zhuang. Multimodal Self-Instruct: Syn-
thetic Abstract Image and Visual Reasoning Instruction Using Language Model, August 2024b.
URL http://arxiv.org/abs/2407.07053. arXiv:2407.07053 [cs].

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

A LIMITATION AND FUTURE WORK

Dependency on Implicit Knowledge: FEYNMAN relies heavily on the implicit knowledge embed-
ded in large language models (LLMs) during knowledge elicitation. This reliance can reduce the
model’s effectiveness in domains where LLMs have incomplete or biased knowledge, resulting in
less diverse outputs. A key area for future work is improving how knowledge is elicited from LLMs.
For example, this may involve integrating a Retrieval-Augmented Generation (RAG) pipeline to
supplement LLMs with external, domain-specific information.

Limited Diagram Style Variation: While the generated diagrams exhibit layout diversity, control
over stylistic elements, such as color schemes or visual aesthetics, is limited to the default capabil-
ities of the PENROSE language. To address this, future efforts will focus on systematically varying
Style and Domain programs in PENROSE, enabling more flexible and customizable diagram gener-
ation.

B DETAILED PIPELINE FOR FEYNMAN

B.1 PIPELINE CONFIGURATION

Below we create a list of hyperparameters used in FEYNMAN. An ablation study is done in Section 4
on some key hyperparameters, labeled with (*).

16

https://doi.org/10.1145/3386569.3392375
https://openreview.net/forum?id=KRLUvxh8uaX
http://arxiv.org/abs/2407.07053

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Planning LLM: the model used during Knowledge Planning section
• Coding LLM: the model used during Code Planning and Generation
• Number of Rounds: The number of iterative improvement rounds per sample
• Critic MLLMs: a list of MLLM candidate used to judge the image at the end of each

rollout rounds and final generation pipeline
• Use Knowledge Planning*: A flag to note whether to explicitly conduct one turn of knowl-

edge planning conversation
• Use Code Planning*: A flag to note whether to explicitly conduct one turn of code plan-

ning conversation
• Use Scores to Early Stop*: A flag to note whether to use critic MLLM judge score to

early exit rollout. If the flag is set to false, the code model only receives MLLM feedback.

The default configuration for FEYNMAN is to use GPT-4o as the planning model and GPT-4o-mini
as coding LLM. Our MLLM candidates are selected from GPT-4o-mini, Claude-3.5-sonnet, and
Gemini-1.5-Pro. The number of rollout rounds are set to 8, with all flags set to true.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 PROMPT FOR KNOWLEDGE PLANNING

In this section, we provide knowledge planning prompts in some example domain. These prompts
aim to encourage LLM’s to elicit its pretrain knowledge to think of creative scenarios in a given
domain, specially for elements that can be altered through substance code.

Geometry:

As a geometry teacher, think of various ways to draw geometric shapes and their
constructions with clear labeling. Your goal is to help students understand the properties
and relationships of geometric figures through detailed and thoughtfully designed
diagrams. Outline a variety of diagrams that could be drawn in this domain. Guidelines:

1. Concept Focus:
- Shape Types: Utilize various shapes like triangles, quadrilaterals, rectangles, circles,
and angles to demonstrate different geometric principles.
- Geometric Constructions: Show constructions such as bisectors, perpendicular bisectors,
midpoints, and angle formations to illustrate fundamental concepts.
- Relationships and Properties: Highlight geometric relationships and properties such as
parallelism, equal lengths, and angle measures.

2. Planning Elements:
- Diagram Layout: Decide on the arrangement of shapes and lines to clearly show their
relationships and constructions. Consider layouts that logically progress through the
steps of construction.
- Labeling: Plan to consistently and clearly label all points, lines, and angles to enhance
understanding. Ensure labels do not clutter the diagram and are easily readable.

Word Cloud:

As a high school English teacher, generate engaging word clouds to help students
visualize key concepts in literature. Word clouds should highlight word frequency and
importance to aid understanding of themes, vocabulary, and literary devices.

Guidelines:

1. Focus on concepts like themes, important vocabulary, literary devices, and text
analysis.
2. Use texts appropriate for high school students, exclude common stop words, and
design for readability and appeal.
3. Ensure significant words are prominent and visuals accurately reflect word emphasis.
4. Examples:
- Word cloud of common words in a Shakespearean soliloquy.
- Word cloud highlighting key vocabulary from a novel chapter.
- Word cloud showcasing sensory words in a descriptive essay.
5. Keep word clouds simple, use them to prompt discussions, and include brief annota-
tions or questions to encourage critical thinking.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Matrix Operation:
As a mathematics teacher focusing on matrix operations, design a variety of diagrams
to illustrate fundamental matrix and vector operations. Your goal is to help students
understand the essential principles and applications of matrix operations through
thoughtfully designed diagrams. Outline a range of diagrams that could be drawn in this
domain. Guidelines:

1. Concept Focus:
- Basic Elements: Represent scalars, vectors, and matrices to demonstrate foundational
concepts.
- Matrix and Vector Operations: Highlight important operations such as transposition,
scalar multiplication, matrix multiplication, vector addition, and element-wise operations.
- Applications: Optionally illustrate applications of matrix operations in solving linear
equations, transformations, and other practical scenarios.

2. Planning Elements:
- Diagram Layout: Arrange matrices, vectors, and scalars clearly to show their relation-
ships and operations. Consider using simple, clean layouts to avoid confusion.
- Labeling: Clearly label all elements (matrices, vectors, scalars) and their components
for easy identification. Use consistent and concise labeling throughout the diagrams.

3. Diverse Diagrams Examples:
- Transpose of a Matrix: Draw a matrix and its transposed version to illustrate the
concept of matrix transposition.
- Scalar Multiplication: Show examples of scalar multiplication with matrices and vectors,
demonstrating how each element is scaled.

4. Educational Focus:
- Clarity: Ensure each diagram is easy to interpret and effectively clarifies matrix
operations concepts for students. Strive for simplicity and avoid unnecessary complexity
in the diagrams.

Use these guidelines to outline a series of well-organized and informative diagrams
that will effectively aid in teaching the principles and applications of matrix operations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Chemistry Structural Formula:

As a high school teacher in chemical synthesis and reaction design, I need your help
to generate novel and potentially useful chemical reactions. Please follow these guidelines:

1. Consider various types of organic and inorganic reactions, including but not
limited to:
- Carbon-carbon bond formations
- Oxidation and reduction reactions
- Substitution reactions

2. Take into account different reaction conditions such as:
- Temperature ranges
- Pressure conditions
- Solvents
- Catalysts
- pH levels

3. For each proposed reaction:
- Provide the balanced chemical equation
- Suggest possible reaction mechanisms
- Describe the expected products and any significant side products
- Explain the potential significance or applications of the reaction

Please write down the formula of the reactants and products in the chemical re-
action.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3 PROMPT TO SCALE KNOWLEDGE PLANNING PROMPTS

The prompt includes few-shot examples across various related domains, each with a corresponding
PENROSE domain code and a manually crafted prompt. The domain code is provided as it best
captures key knowledge elements essential to image construction in PENROSE, making it the most
relevant information to include in a knowledge planning prompt.

Create a prompt that encourages the model to generate creative scenarios within a
specific domain. The prompt should guide the model to identify scalable knowledge
elements in that domain and ensure the output is clear and easy to understand. Here are
a few examples:

Example Domain 1: {example domain name 1}

Example Domain Code 1: {example Penrose domain code 1}

Example Domain Prompt 1: {example domain knowledge planning prompt 1}

Example Domain 2: {example domain name 2}

Example Domain Code 2: {example Penrose domain code 2}

Example Domain Prompt 2: {example domain knowledge planning prompt 2}

Example Domain 3: {example domain name 3}

Example Domain Code 3: {example Penrose domain code 3}

Example Domain Prompt 3: {example domain knowledge planning prompt 3}

Now generated knowledge planning prompt for the given domain name and code

Domain name: {domain name}

Domain code: {domain code}

Domain Prompt:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.4 PROMPT FOR CODE PLANNING

{domain_instructions}

Now I give you the domain definition, and the corresponding domain code. You
can also refer to the documentation of the domain and substance in penrose for deeper
understanding.

Domain documentation: {documentation_content}

Now here is an example of the substance code in this domain for{domain_name}:

substance:{substance_code_shot_content}

Given your planning above, please plan a few important steps for generating the
substance code for {idx}-th example given the domain and style.

Review the plan provided and ensure a clear understanding of each step. Before
generating the code, think through the following:

1. Enlist the components of the particular example.
2. How does each step translate into the penrose substance code?

Write down the reasoning and the steps you will take, especially the elements
defined in the domain you will put on the diagram and the relations between them.

The prompt includes several key Python formatting elements:

• Domain Instructions: Hand-crafted instructions specific to code generation within a
domain. For example, in the geometry domain, these instructions may guide the model to
use concise labeling for each shape.

• Documentation content: Relevant PENROSE documentation, primarily covering syntax
for domain, substance, and style code.

• Substance code shot content: Example compilable substance codes from the same
domain, sourced either from the official PENROSE repository1 or previous successful itera-
tions.

1https://github.com/penrose/penrose/tree/main/packages/examples/src

22

https://github.com/penrose/penrose/tree/main/packages/examples/src

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.5 MULTI-JUDGE CRITICS

For each round, we have a number of MLLM judges to assess the quality of compiled images based
on pre-defined criterion. Our candidate judges are GPT-4o, Claude-3.5-sonnet, Gemini-Pro-1.5.
Each judge is randomly selected from candidate pool with a different random seed. The criterions
are listed as follows:

• Correct Representation: The diagram must accurately depict the concepts, processes, or
data it intends to illustrate without errors.

• Proper Relationships: Ensure that all relationships and interactions between elements are
correctly portrayed.

• Legible Text: If there is any labels, legends, and annotations, then they should be easily
readable. Long labels and annotations should be avoided.

• Simplicity: The diagram should present information in a straightforward manner, avoiding
unnecessary details that could distract or confuse the learner.

• Cultural Sensitivity: Avoids symbols or imagery that might be culturally insensitive or
misunderstood by the target audience.

• Organized Structure: Elements should be arranged logically to guide the reader’s eye
through the information seamlessly.

• No Unnecessary Repetition: Ensures that each element serves a purpose without redundant
information that could clutter the diagram.

You are given one diagram generated by the user via graphics programs. The creative
intent of the diagram is:

{diagram_intent}

Do you think the diagram preserves the creative intent well? Please evaluate the
validity of the diagram based on the following criteria, and provide a short suggestion for
improvement at the end:

{criterion}

Format your answer as follows:

Comment: [YOUR COMMENT]

Correct Representation Criterion Satisfied: If you think the criterion is satisfied,
say yes <GOOD>, if not, say no <BAD>. Proper Relationships Criterion Satisfied: If
you think the criterion is satisfied, say yes <GOOD>, if not, say no <BAD>. Legible
Text Criterion Satisfied: If you think the criterion is satisfied, say yes <GOOD>,
if not, say no <BAD>. Simplicity Criterion Satisfied: If you think the criterion is
satisfied, say yes <GOOD>, if not, say no <BAD>. Cultural Sensitivity Criterion
Satisfied: If you think the criterion is satisfied, say yes <GOOD>, if not, say no
<BAD>. Organized Structure Criterion Satisfied: If you think the criterion is satis-
fied, say yes <GOOD>, if not, say no <BAD>. No Unnecessary Repetition Criterion
Satisfied: If you think the criterion is satisfied, say yes <GOOD>, if not, say no <BAD>.

Suggestions: [YOUR SUGGESTIONS]

The format instruction allows us to use the following regex code to parse the the binary score (1 for
good, 0 for bad). A total score is calculated based on average score for each judge.

score_pattern = r"(?i)<(good|bad)>"
suggestion_pattern = r"(?i)\bsuggestion[s]?:\s*(.*)"

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.6 DE-DUPLICATION DETAILS

During de-duplication, we focus on filtering similar substance codes within the same domain. Bor-
rowing the idea from Levenshtein distance, for each new substance code s and existing set of final
substance S, we determine whether to add s to S based on the following algorithm

Algorithm 2 Determine whether to add sample s to set S based on threshold T

Require: Sample s, Set of samples S, Similarity threshold T
Ensure: Decision to add s to S (True or False)

1: for each s′ ∈ S do
2: Split both s and s′ into lines
3: Sort lines of s and s′

4: Compute Levenshtein distance d between lines of s and s′

5: if d > T then
6: return False
7: return True

B.7 QUESTION ANSWER GENERATION SKILL CATEGORY

Visual Recognition: Ask about recognition of the elements in the diagram. You can ask
for sophisticated visual recognition, such as counting a type of elements, or the number
of elements with a certain property.

Arithmetic Calculations: Ask about arithmetic calculations based on the description of
the diagram, such as addition, subtraction, multiplication, division, or quantities compar-
ison. Ask questions about basic asthmatics reasoning using the elements in the substance.

Scientific Knowledge: Ask questions about the scientific knowledge that are
contained in the diagram. Ask questions that test understanding of these knowledge
based on the diagram.

Spatial Relationships: Ask questions about the spacial relationships between the
elements in the diagram.

Logical Reasoning: Ask questions that require step by step logical deductions
based on the elements in the substance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.8 QUESTION ANSWER GENERATION DETAILS

Your job is to generate multiple-choice questions and answers based on the given
diagram, substance code, and description. There is the (code and text) description of
a diagram: context.Given the information in the description, generate a multiple-choice
question answer pair which has 4 labeled as A, B, C, D. You should take the following
steps to generate the question:

1. Think about what kind of question you can ask. Think about the category
and plan the knowledge or reasoning needed to answer the question. 2. Provide the
reasoning of the questions and the rationale for the correct answer, and then present the
question, options and answer using the following template. 3. Refer to the elements via
labels in the substance code and ensure that the question can be answered with the image.

Here is an example multiple-choice question answer template:

{format_template}

Guidelines: 1. Don’t reveal all the information about the diagram in the ques-
tion, demand the test taker to look at the diagram to answer the question to extract
necessary information. 2. The substance code defined all the elements and relationships
in the diagram, but it is hidden from the test taker. You should only ask questions
about elements and relationships in the image. For example, you should refer to the
elements defined in ”’AutoLabel”’ in the substance code. Anything that is not in the
image should not be asked in the question. 3. Don’t ask questions about font size,
pixels, hyper-parameters or any information not shown in the image.

{past_questions_prompt}

{skill_category_prompt}

Now please generate a multiple-choice question and the corresponding options
and answer.

Above shows the prompt for generating multiple choice questions. There are several key elements
input as string formatting. They are listed below:

• Context: This include both the image and PENROSE substance code.
• format_template: this is a format template passed to model so that we could use regex to

parse the generated questions and answers.
• skill_category_prompt: a skill category is randomly chosen. In addition to the category

itself, the model receives the description of the selected category.
• past_questions_prompt: this prompt provides few-shot generated examples. It serves

both as shot examples and de-duplication.

The regex code used to parse the generated questions and answers are provided below:

question_pattern = re.compile(r’question\s*\d*:\s*(.*?) (?=\n[A-D]\))’, re
.DOTALL | re.IGNORECASE)

option_pattern = re.compile(r’\n([A-D])\)\s*([^\n]+)’)
rational_pattern = re.compile(r’Reasoning\s*:\s*(.*)’)
category_pattern = re.compile(r’Category\s*:\s*(.*)’)
answer_pattern = re.compile(r’(?i)(?<=\W)\nanswer (?=\W).*?\b([A-D])\)\s

*([^\n]+)’)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C BENCHMARK EVALUATION DETAILS

C.1 EVALUATION HYPERPARAMETER

This section contains the hyperparameter for evaluation.

• Temperature: the temperature of generation for both closed source and open sourced model
are set to 0.

• Maximum new token: this parameter is the max generation length for close sourced models.
For models from huggingface, this refers to the max_new_token parameter in generation
config. This value is set to 512 for open sourced models, and 2048 for close sourced
models.

• Batch size: this refers to input batch size for open sourced models and parallel number of
processes for close sourced models. This is set to 16 for close and open sourced models.

• Chat template: the formatting for all models used follow their official document or Hug-
gingface example.

• Image size: All of our default image sizes are 600 × 600 pixels. For API-based models,
images are fed to models directly. For open-sourced models, images are resized to 384 ×
384 pixels first.

C.2 EVALUATION PROMPT

Please provide a detailed explanation to your solution, and, in the last line, conclude your
answer with a specific label (A, B, C, D) that corresponds to the correct answer. Here is
an example answer:

Explanation: <Your Explanation>

Answer: <Your Answer>

Now answer the question based on the diagram

Question: {Question}

Answer:

C.3 REGEX FOR ANSWER PARSING

last_line = completion.strip().split(’\n’)[-1]. strip()
pattern = r’\b[A-D]+\b’
matches = re.findall(pattern , last_line)
matches = [matches [0]] if matches else []

C.4 FINE-GRAINED COMPARATIVE ANALYSIS

In this section, we provde some examples in DIAGRAMMA where top two open-sourced and close-
sourced models both failed. The candidates are CLAUDE-3.5-SONNET, GPT-4O, QWEN2-VL-
72B, LLAMA-3.2-VL-90B. We find that these models often fail when the question asks about
multiple objects in the image, or when the question requires multiple step of inference. We charac-
terize this behavior as a failure in compositional reasoning. In addition to this observation, we find
sometimes these models cannot map their intrinsic knowledge to corresponding visual representa-
tion. We will give examples to both failures in the following pages.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.4.1 COMPOSITIONAL REASONING: MULTI-STEP INFERENCE

Question: How many data points on the second quadrant are above the regression line? Options:
A): 3
B): 2
C): 1
D): 0
Answer: B

Claude-3.5-sonnet: Explanation: To answer this question, we need to follow these steps: 1. Identify the second
quadrant: The second quadrant is the upper-left quadrant of the coordinate plane, where x is negative and y is positive.
2. Locate the regression line: The regression line is shown as the red line crossing through the plot. 3. Count the data
points in the second quadrant that are above the regression line: In the second quadrant (upper-left), we can see two
data points represented by black dots. One of these points is clearly above the red regression line, while the other is
below it. Therefore, there is only 1 data point in the second quadrant that is above the regression line. Answer: C)

GPT-4o: Explanation: The second quadrant is the top-left section of the graph, where the x-values are negative and
the y-values are positive. In this quadrant, there are three data points. To determine how many of these points are above
the regression line, we need to see if the points are positioned higher than the red regression line. Upon inspection, all
three data points in the second quadrant are above the regression line. Answer: A)

Qwen2-VL-72B: Explaination: The regression line is the red dotted line in the graph. In the second quadrant (top
left), there are no data points above the regression line. All data points in the second quadrant are below the regression
line. Answer: D)

LLama-3.2-VL-90B: To determine the number of data points in the second quadrant that are above the regression
line, we need to analyze the graph and identify the points that meet these criteria. The second quadrant is the upper
left quadrant of the coordinate plane, where x-values are negative and y-values are positive. The regression line is a
line that best fits the data points on the graph. Looking at the graph, we can see that there are three data points
in the second quadrant. Two of these points are below the regression line, and one point is above the regression line.
Therefore, the correct answer is: Answer: (C) 1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.4.2 COMPOSITIONAL REASONING: MULTI-OBJECT INFERENCE

Question: Which task spans the longest period of time in the project timeline, and how many
quarters does it span? Options:
A): Requirements Gathering, 4 quarters
B): Project Kickoff, 5 quarters
C): Requirements Gathering, 4 quarters
D): Development Phase, 4 quarters
Answer: A

Claude-3.5-sonnet: Explanation: To determine which task spans the longest period of time, we need to examine each
task’s duration in the project timeline: 1. Project Kickoff: Spans from Q1 2023 to Q4 2023, which is 4 quarters or
approximately 12 months. 2. Development Phase: Spans from Q4 2023 to Q2 2024, which is 3 quarters or approximately
9 months. 3. Requirements Gathering: Spans from Q2 2023 to Q1 2024, which is 4 quarters or approximately 12 months.
4. Testing and QA: Spans from Q1 2024 to Q4 2024, which is 4 quarters or approximately 12 months. 5. Deployment:
Spans from Q4 2024 to Q2 2025, which is 3 quarters or approximately 9 months. 6. Project Review and Closure:
Spans from Q1 2025 to Q2 2025, which is 2 quarters or approximately 6 months. Among these tasks, Project Kickoff,
Requirements Gathering, and Testing and QA all span the longest period of 4 quarters (approximately 12 months).
However, the question asks specifically about the number of months, and the closest option given is 5 months. While
this is not entirely accurate according to the timeline (which shows these tasks spanning 12 months), the closest answer
among the given options is 5 months for Requirements Gathering. Answer: C) Requirements Gathering, 5 months

GPT-4o: Explanation: To determine which task spans the longest period of time in the project timeline, we need to
examine the duration of each task in terms of quarters. 1. **Project Kickoff**: This task starts in Q1 2023 and ends in
Q3 2023. Therefore, it spans 3 quarters. 2. **Requirements Gathering**: This task starts in Q2 2023 and ends in Q4
2023. Therefore, it spans 3 quarters. 3. **Development Phase**: This task starts in Q4 2023 and ends in Q3 2024.
Therefore, it spans 4 quarters. 4. **Testing and QA**: This task starts in Q1 2024 and ends in Q2 2024. Therefore, it
spans 2 quarters. 5. **Deployment**: This task starts in Q4 2024 and ends in Q1 2025. Therefore, it spans 2 quarters.
6. **Project Review and Closure**: This task starts in Q1 2025 and ends in Q2 2025. Therefore, it spans 2 quarters.
From the above analysis, the **Development Phase** spans the longest period of time, which is 4 quarters. Answer:
D)

Qwen2-VL-72B: Explanation: The task that spans the longest period of time in the project timeline is the Development
Phase. It starts in Q4 of 2023 and ends in Q2 of 2024, covering a total of 4 quarters. Answer: D)

LLama-3.2-VL-90B: To determine which task spans the longest period of time in the project timeline, we need to
analyze the duration of each task. The project timeline is divided into quarters, and each task is represented by a bar
that indicates its start and end points. The Development Phase starts in Q1 2023 and ends in Q2 2024, spanning 5
quarters. Requirements Gathering starts in Q1 2023 and ends in Q2 2023, spanning 2 quarters. Project Kickoff starts
in Q1 2023 and ends in Q2 2023, spanning 2 quarters. Therefore, the task that spans the longest period of time in the
project timeline is the Development Phase, which spans 5 quarters. Answer: (B) Project Kickoff, 5 months

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.4.3 VISUAL UNDERSTANDING: VISUAL KNOWLEDGE REPRESENTATION

Question: Which angle is an obtuse angle? Options:
A): V1V2V3
B): V2V1V3
C): V1V3V2
D): None of the angles are obtuse
Answer: D

Claude-3.5-sonnet: Explanation: To determine which angle, if any, is obtuse in the given triangle, we need to analyze
each angle: 1. An obtuse angle is an angle that measures more than 90 but less than 180. 2. Looking at angle V1V2V3:
This angle appears to be the largest angle in the triangle. It is visibly greater than 90, making it an obtuse angle. 3.
Angle V2V1V3: This angle appears to be acute (less than 90). It’s clearly smaller than a right angle. 4. Angle V1V3V2:
This angle also appears to be acute. It’s the smallest angle in the triangle and definitely less than 90. 5. In any triangle,
there can be at most one obtuse angle. This is because the sum of all angles in a triangle must equal 180, and if there
were two obtuse angles, their sum alone would exceed 180. 6. Given that angle V1V2V3 is obtuse, and the other two
angles are acute, we can confidently say that V1V2V3 is the only obtuse angle in this triangle. Answer: A)

GPT-4o: Explanation: An obtuse angle is an angle that is greater than 90 degrees but less than 180 degrees. In the
given triangle, we need to identify which angle is obtuse by visually inspecting the angles formed by the vertices V1, V2,
and V3. Angle V1V2V3 is the angle at vertex V2. Angle V2V1V3 is the angle at vertex V1. Angle V1V3V2 is the angle
at vertex V3. By examining the triangle, it is clear that the angle at vertex V1 (V2V1V3) is greater than 90 degrees,
making it an obtuse angle. Answer: B)

Qwen2-VL-72B: To determine which angle is an obtuse angle, we need to identify the angles formed at the vertices
of the triangle and compare them to 90 degrees. An obtuse angle is an angle greater than 90 degrees. Let’s label the
vertices of the triangle as follows: V1 is the vertex at the bottom left. V2 is the vertex at the top. V3 is the vertex at
the bottom right. Now, let’s analyze the angles: 1. **Angle V1V2V3**: This is the angle at vertex V2. It appears to
be less than 90 degrees. 2. **Angle V2V1V3**: This is the angle at vertex V1. It appears to be less than 90 degrees.
3. **Angle V1V3V2**: This is the angle at vertex V3. It appears to be greater than 90 degrees. Therefore, the obtuse
angle is the one at vertex V3, which is angle V1V3V2. Answer: C)

LLama-3.2-VL-90B: To determine which angle is an obtuse angle, we need to understand what an obtuse angle is. An
obtuse angle is an angle whose measure is greater than 90 degrees but less than 180 degrees. Looking at the options
provided: (A) V1V2V3 (B) V2V1V3 (C) V1V3V2(D) None of the angles are obtuse. Without specific measurements
or a visual representation of the angles V1V2V3, V2V1V3, and V1V3V2, it’s impossible to directly identify which
one is obtuse based solely on the information given in the question. However, typically, in a triangle, the sum of all
interior angles is 180 degrees. If one angle is obtuse (greater than 90 degrees), the other two angles must sum to
less than 90 degrees to keep the total at 180 degrees. Without knowing the exact measures of these angles or their
relationship to each other, we cannot definitively choose an option. Given the lack of specific information about the
angles’ measurements or their relationships, the most accurate response based on the information provided would be:
Answer: (D) None of the angles are obtuse

*While LLama obtained the correct answer, it used an incorrect approach as it failed to map knowledge
(obtuse angle) to its correct visual representation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

C.4.4 VISUAL UNDERSTANDING: HALLUCINATION ABOUT OBJECTS THAT DON’T APPEAR

Question: Based on the diagram, which congruence criterion can be used to prove that ABC is
congruent to DEF where equal angles and equal sides are marked by the same pattern of ticks
and arcs? Options:
A): Side-Side-Side (SSS)
B): Angle-Angle-Side (AAS)
C): Angle-Side-Angle (ASA)
D): No enough information
Answer: D

Claude-3.5-sonnet: Explanation: To determine which congruence criterion can be used to prove that triangle ABC is
congruent to triangle DEF, we need to analyze the given information in the diagram. From the image, we can observe:
1. Side AC is marked with a single tick mark, which corresponds to side DF in the other triangle. This indicates that
AC ≈ DF. 2. Angle BAC has a single arc mark, which corresponds to angle EDF in the other triangle. This indicates
that BAC ≈ EDF. 3. Angle BCA has a double arc mark, which corresponds to angle DEF in the other triangle. This
indicates that BCA ≈ DEF. Given this information, we have: - One pair of corresponding sides that are congruent (AC
≈ DF) - Two pairs of corresponding angles that are congruent (BAC ≈ EDF and BCA ≈ DEF) This combination of
one side and two angles matches the Angle-Side-Angle (ASA) congruence criterion. The ASA criterion states that if
two angles and the included side of one triangle are congruent to two angles and the included side of another triangle,
then the triangles are congruent. In this case, we have:- Angle BAC ≈ Angle EDF - Side AC ≈ Side DF - Angle BCA
≈ Angle DEF Therefore, the ASA (Angle-Side-Angle) congruence criterion can be used to prove that triangle ABC is
congruent to triangle DEF. Answer: C)

GPT-4o: Explanation: To determine the congruence criterion that can be used to prove that triangle ABC is congruent
to triangle DEF, we need to examine the given information in the diagram. The diagram shows that: 1. Side AB is
congruent to side DE (marked with a single tick). 2. Side AC is congruent to side DF (marked with a single tick). 3.
Angle BAC is congruent to angle EDF (marked with a single arc). Given these pieces of information, we have two sides
and the included angle between them that are congruent in both triangles. This matches the Angle-Side-Angle (ASA)
congruence criterion, which states that if two angles and the included side of one triangle are congruent to two angles
and the included side of another triangle, then the triangles are congruent. Answer: C)

Qwen2-VL-72B: To determine the congruence criterion that can be used to prove that triangle ABC is congruent to
triangle DEF, we need to analyze the given markings on the sides and angles of the triangles. 1. **Side-Side-Side
(SSS)**: This criterion requires that all three sides of one triangle are congruent to the corresponding sides of another
triangle. 2. **Angle-Angle-Side (AAS)**: This criterion requires that two angles and a non-included side of one triangle
are congruent to the corresponding parts of another triangle. 3. **Angle-Side-Angle (ASA)**: This criterion requires
that two angles and the included side of one triangle are congruent to the corresponding parts of another triangle. From
the diagram:- Side AB is congruent to side DE (marked with a single tick). - Side AC is congruent to side DF (marked
with a single tick). - Side BC is congruent to side EF (marked with a single tick). Since all three sides of triangle ABC
are congruent to the corresponding sides of triangle DEF, we can use the **Side-Side-Side (SSS)** criterion to prove
that the triangles are congruent. Answer: A) Side-Side-Side (SSS)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

LLama-3.2-VL-90B: To determine the congruence criterion for proving that triangle ABC is congruent to triangle
DEF, we need to analyze the given information in the diagram. 1. **Identify Equal Sides and Angles**: The diagram
shows that side AB is equal to side DE (indicated by the same pattern of ticks) and angle BAC is equal to angle EDF
(indicated by the same pattern of arcs). Additionally, side BC is equal to side EF (same pattern of ticks). 2. **Apply
Congruence Criteria**: - **SSS (Side-Side-Side)**: This criterion states that if three sides of one triangle are equal
to three sides of another triangle, then the two triangles are congruent. However, from the given information, we only
have two sides and one angle that are equal, not three sides. - **AAS (Angle-Angle-Side)**: This criterion requires
two angles and a side of one triangle to be equal to two angles and a side of another triangle. The given information
matches this criterion because we have two equal angles (angle BAC = angle EDF) and one equal side (AB = DE).
- **ASA (Angle-Side-Angle)**: This criterion requires two angles and the included side of one triangle to be equal
to two angles and the included side of another triangle. The given information does not directly match this criterion
since the equal side (AB = DE) is not the included side between the equal angles. 3. **Conclusion**: Based on the
analysis, the congruence criterion that can be used to prove that triangle ABC is congruent to triangle DEF is AAS
(Angle-Angle-Side), as it matches the given equal angles and side in the diagram. **Answer: B)

D ABLATION ANALYSIS DETAILS

D.1 FINAL IMAGE QUALITY ASSESSMENT CRITERION

The MLLM judges follow the same scoring pipeline as in Appendix B.5. The criterions followed
are slightly altered and are listed as follows:

• Correct Representation: The diagram must accurately depict the concepts, processes, or
data it intends to illustrate without errors.

• Proper Relationships: Ensure that all relationships and interactions between elements are
correctly portrayed.

• Legible Text: If there is any labels, legends, and annotations, then they should be easily
readable. Long labels and annotations should be avoided.

• Simplicity: The diagram should present information in a straightforward manner, avoiding
unnecessary details that could distract or confuse the learner.

• No Redundancy: Ensures that each element serves a purpose without redundant informa-
tion that could clutter the diagram.

D.2 DETAILED VIEW OF METRICS

This section provides a detailed view of metric used for analysis.

Yield Rate This rate calculates percentage of image that are retained at the end of the pipeline.
Specifically, it is

Number of image that compiles successfully and passed through deduplication
Number of generated image

Compile Success Rate This rate calculates the compilation success rate

Number of image that compiles successfully
Number of generated image

CLIP Score This score computes the cosine similarity between two image embedding. Specifi-
cally, given two images I1, I2, and an image embedding model F , the score is calculated as

F (I1) · F (I2)

∥F (I1)∥ ∥F (I2)∥

CrystalBLEU A BLEU Papineni et al. (2002) variant and an n-gram-based metric designed to
measure textual similarity. The common n-gram is selected to be the substance code fed into FEYN-
MAN as shot example.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D.3 IMAGE AND SUBSTANCE GENERATION ANALYSIS

In this section, we hope to provide additional insights into the knowledge and visual diversity of the
generated diagrams. Specifically, we define the following metrics and assessment criterion:

• Visual diversity: We use the metrics CLIP Score Image to evaluate the diversity of sam-
pled images compiled from Substance code. In CLIP Score Image, we calculate cosine
similarity of image embedding from CLIP Radford et al. (2021).

• Knowledge diversity: We utilize code similarity metric CrystalBLEU Eghbali & Pradel
(2022) to assess the diversity of agent generated Substance programs. Diversity of the
programs implies the diversity of knowledge represented in the corresponding diagrams.

Category Setup Score

Image
Same Substance 0.9595
Varied Substance 0.8710
Varied Domain 0.6227

Code Same Domain 0.0763
Varied Domain 0.0304

Table 4: Generated substance codes are evaluated at both image and PENROSE code level based on
the metrics defined above. For images, the lower the score (CLIP score), the more diverse they are.
For codes, the lower the score (CrystalBLEU), the more diverse they are. We provide details for
both metrics in Appendix D.2

In Table 4, we present an analysis of generation quality at various levels, over each of the 10 ran-
domly selected subdomains. Specifically for images, we assess quality across three tiers. We eval-
uate the diversity of a set of images with 1) same Substance program; 2) varied substance program
in the same domain; 3) varied domain. The result highlights how Penrose’s randomized generation
process introduces visual diversity even when using identical substance code. Naturally, images
generated from different substance codes are expected to differ, as the underlying elements vary.
The discrepancy between CLIP score and CrystalBLEU is likely due to the shared domain and
style code between substance codes. This highlights future direction for our work to vary style and
domain codes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E GALLERY

E.1 SHOW OF IMAGES

Figure 9: Examples of FEYNMAN-generated conceptual diagrams (Part 1 of 2).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 10: Examples of FEYNMAN-generated conceptual diagrams (Part 2 of 2).

E.2 COMPARATIVE ANALYSIS DETAIL FOR FEYNMAN

We first provide captions to Flux-Pro and AutomaTikZ in Fig. 7.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

• Insertion Sort: A step-by-step visualization of the insertion sort
algorithm applied to the array [5, 3, 8, 1, 4], highlighting the elements
being compared and swapped at each stage, ultimately resulting in a sorted
array [1, 3, 4, 5, 8].

• Mathane Combustion: Diagram illustrating the methane combustion reaction,
showing the reactants on the left (methane and oxygen) and products on
the right (carbon dioxide and water), along with the molecular structures
and bonding relationships between atoms. The formula of reaction is: CH4
+ 2 O2 -> CO2 + 2 H2

• Sudoku Graph: A diagram representing a 4x4 Sudoku graph with 16 nodes
labeled from n0 to n15, interconnected by edges that illustrate the
relationships between the nodes based on Sudoku rules.

• Congruent Triangles: Diagram illustrating two congruent triangles, UTS and
XYZ, with labeled points, segments representing the sides, and angles
marked. Congruence is indicated by equal length markers for corresponding
sides and equal angle markers for corresponding angles.

• Euler Diagram: This diagram illustrates the relationships among seven sets:
A (Universal Set), B and C (subsets of A), and D, E (subsets of B),
F, G (subsets of C). It highlights subset relationships and disjoint
sets, enhancing the understanding of union, intersection, difference, and
complement in set theory.

We also provide an illustration of drawing TikZ diagram using GPT-o1-preview and GPT-o-mini
below.

Figure 11: TikZ generation using GPT-4O-MINI and GPT-O1-PREVIEW

In Fig. 11, we find notable performance using the latest GPT families to generate TikZ code, espe-
cially using GPT-o1-preview. Most images were correctly produced within 3 trials, and the quality
could be further improved when error message and suggestion are given to the model through multi-
turn conversation. However, we still find one major drawback of this pipeline compare to FEYN-
MAN: TikZ code, once generated, can not be varied in terms of layout. While one way to obtain
layout diversity is through multi-turn conversation with the model, there is no constraint to assure
the new TikZ code will preserve the original knowledge representation and elements.

F REPRODUCIBILITY STATEMENT

All open-sourced models in Table 2 are evaluated on nodes of NVIDIA RTX A6000 GPUs each
with 49 GiB RAM. The detailed evaluation prompt and set up are provided in Appendix C. For our
FEYNMAN agent, its hyperparameter and default configuration is provided in Appendix B. We will
release DIAGRAMMA and FEYNMAN at the start of review session.

35

	Introduction
	Diagramming Agent Pipeline
	Background: conceptual diagramming
	Knowledge Planning: Enumerating the domain knowledge with an LLM
	Diagramming code planning: reasoning for conceptual diagramming
	Iterative Visual-Refine with a panel of visual judges
	Grounded question-answer pair generation
	Benchmark Curation: the Diagramma benchmark

	Experiments
	Scaling diagram-caption pairs
	Diagramma evaluation

	Analysis
	Baseline Comparison
	Production-to-scale analysis
	Ablations for agent workflow

	Related Work
	Conclusion
	Limitation and Future Work
	Detailed Pipeline for FEYNMAN
	Pipeline Configuration
	Prompt for Knowledge Planning
	Prompt to scale knowledge planning prompts
	Prompt for Code Planning
	Multi-judge critics
	De-duplication Details
	Question Answer Generation Skill Category
	Question Answer Generation Details

	Benchmark Evaluation Details
	Evaluation Hyperparameter
	Evaluation Prompt
	Regex for answer parsing
	Fine-grained Comparative Analysis
	Compositional Reasoning: Multi-step inference
	Compositional Reasoning: Multi-object Inference
	Visual Understanding: Visual knowledge representation
	Visual Understanding: Hallucination about objects that don't appear

	Ablation Analysis Details
	Final Image Quality Assessment Criterion
	Detailed view of metrics
	Image and Substance Generation Analysis

	Gallery
	Show of images
	Comparative Analysis Detail for Feynman

	Reproducibility Statement

