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Abstract

Medical images are acquired at high resolutions with large fields of view in order to cap-
ture fine-grained features necessary for clinical decision-making. Consequently, training
deep learning models on medical images can incur large computational costs. In this work,
we address the challenge of downsizing medical images in order to improve downstream
computational efficiency while preserving clinically-relevant features. We introduce Med-
VAE, a family of six large-scale 2D and 3D autoencoders capable of encoding medical
images as downsized latent representations and decoding latent representations back to
high-resolution images. We train MedVAE autoencoders using a novel two-stage training
approach with 1,052,730 medical images. Across diverse tasks obtained from 20 medical
image datasets, we demonstrate that (1) utilizing MedVAE latent representations in place
of high-resolution images when training downstream models can lead to efficiency benefits
(up to 70x improvement in throughput) while simultaneously preserving clinically-relevant
features and (2) MedVAE can decode latent representations back to high-resolution images
with high fidelity. Our work demonstrates that large-scale, generalizable autoencoders can
help address critical efficiency challenges in the medical domain.1

Keywords: computer-aided detection and diagnosis, variational autoencoders, efficiency

1. Introduction

Medical images (e.g. X-rays, computed tomography (CT) scans) are essential diagnostic
tools in clinical practice. Since medical conditions are often characterized by the presence
of subtle features, images are generally acquired with high spatial resolution and large
fields of view in order to capture the required level of diagnostic detail for interpretation
by radiologists (Huda and Abrahams, 2015). However, high-resolution medical images,
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Figure 1: We introduce MedVAE, a suite of large-scale autoencoders capable of downsizing
medical images to latent representations and decoding latent representations back to images.

especially volumetric (3D) images, can result in large data storage costs and increased
or even intractable computational complexity for downstream computer-aided diagnosis
(CAD) models (Freire et al., 2022; Tan and Le, 2019). This is likely to become a significant
concern in the near future due to the rapid growth of medical imaging volumes stored by
hospitals (Mesterhazy et al., 2020), the expanding use of CAD tools in clinics (Dikici et al.,
2020; Najjar, 2023), and paradigm shifts towards large-scale foundation models (Bommasani
et al., 2022; Chen et al., 2024; Blankemeier et al., 2024). Many existing CAD models address
this challenge by interpolating images to lower resolutions, despite the lower performance
of models trained on interpolated data (Sabottke and Spieler, 2020; Huang et al., 2023).

A promising solution lies in powerful autoencoder methods, which are capable of encod-
ing images as downsized latent representations and decoding latent representations back to
images. Recent works, particularly in the context of latent diffusion models, have demon-
strated that downsized latent representations can capture relevant spatial structure from
high-resolution input images while simultaneously improving efficiency on tasks such as im-
age generation (Rombach et al., 2022). These findings suggest that autoencoders may hold
potential for addressing the aforementioned storage and efficiency challenges in the medical
domain by encoding high-resolution images as downsized latent representations, which can
be used to develop downstream CAD models at a fraction of the computational cost.

Several large-scale autoencoders have been introduced in recent years (Rombach et al.,
2022; Lee et al., 2023); however, directly applying these models to the medical domain is
challenging since medical images include a diverse range of clinically-relevant features (e.g.
tumors, lesions, fractures), anatomical regions of focus (e.g. head, chest, knee), and modal-
ities (e.g. 2D and 3D images). An effective generalizable autoencoding approach in the
medical image domain must operate across a wide range of medical images and preserve
clinically relevant features in both downsized latents as well as decoded reconstructions.
However, existing autoencoder models are either (a) developed for natural images (Rom-
bach et al., 2022), which represent a significant domain shift from medical images, or (b)
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developed for a focused set of medical images (e.g. chest X-rays) (Lee et al., 2023) and are
not explicitly trained to preserve clinically-relevant features across diverse medical images.

In this work, we address these limitations by introducing MedVAE, a family of 6 large-
scale, generalizable 2D and 3D autoencoder models developed for the medical image domain.
We first curate a large-scale training dataset with over one million 2D and 3D images, and
we perform model training using a novel two-stage training scheme designed to optimize
quality of latent representations and decoded reconstructions.

We evaluate the quality of latent representations (using 8 CAD tasks) and reconstructed
images (using both automated and manual perceptual quality evaluations) with respect
to the preservation of clinically-relevant features. Evaluations are derived from 20 multi-
institutional, open-source medical datasets with 4 imaging modalities (X-ray, full-field dig-
ital mammograms, CT, and MRI) and 8 anatomical regions. We measure the extent to
which MedVAE latent representations and reconstructed images can contribute to down-
stream storage and efficiency benefits while simultaneously preserving clinically-relevant
features. Ultimately, our results demonstrate that (1) downsized MedVAE latent represen-
tations can be used as drop-in replacements for high-resolution images in CAD pipelines
while maintaining or exceeding performance; (2) downsized latent representations reduce
storage requirements (up to 512x) and improve downstream efficiency of CAD model train-
ing (up to 70x in model throughput) when compared to high-resolution input images; and
(3) decoded reconstructions effectively preserve clinically-relevant features as verified by
an expert reader study. Our results also demonstrate that MedVAE models outperform
existing natural image autoencoders.

Ultimately, we demonstrate the potential that large-scale, generalizable autoencoders
hold in addressing the critical storage and efficiency challenges currently faced by the med-
ical domain. Utilizing MedVAE latent representations instead of high-resolution images in
training pipelines can improve model efficiency while preserving clinically-relevant features.

2. Methods

We now present our approach for training generalizable autoencoders for the medical im-
age domain. Autoencoding methods are capable of encoding high-resolution images as
downsized latent representations. For a given 2D input image with dimensions H × W
with B channels, an autoencoding method will output a downsized latent representation
of size H/(

√
f) × (W/

√
f) × C. Here, f represents the downsizing factor applied to the

2D area of the image and C represents a pre-specified number of latent channels. 3D au-
toencoding methods follow a similar formulation, where input images are 3D in nature
with dimensions H × W × S with B channels. Here, the downsizing factor f is applied
to the 3D volume of the image; as a result, the latent representation will have dimensions
(H/( 3

√
f)× (W/ 3

√
f)× (S/( 3

√
f)× C. Autoencoding methods are also capable of decoding

latent representations back to reconstructed high-resolution images.

We aim to develop large-scale, generalizable medical image autoencoders capable of
preserving diverse clinically-relevant features in both latent representations and reconstruc-
tions. To this end, we first collect a large-scale training dataset with 1,021,356 2D images
and 31,374 3D images curated from 19 multi-institutional, open-source datasets (Johnson
et al., 2019; Feng et al., 2021; Jeong et al., 2022; Sorkhei et al., 2021; RSNA, 2023; Nguyen
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et al., 2022; Moreira et al., 2012; Cai et al., 2023; Jack Jr et al., 2008; Dagley et al., 2017; In-
sel et al., 2020; LaMontagne et al., 2019; Bien et al., 2018; Hooper et al., 2021; Chilamkurthy
et al., 2018; Wasserthal et al., 2023; Ji et al., 2022; Armato III et al., 2011; Stanford Center
for Artificial Intelligence in Medicine & Imaging (AIMI), 2024). Images are obtained from
two chest X-ray datasets, six full-field digital mammogram (FFDM) datasets, four T1- and
T2-weighted head magnetic resonance imaging (MRI) datasets, one knee MRI dataset, two
head/neck CT datasts, two whole-body CT datasets, and two chest CT datasets.

We utilize this dataset to train a family of generalizable autoencoders for medical im-
ages. Motivated by prior work on natural images (Rombach et al., 2022), we utilize vari-
ational autoencoders (VAEs) as the model backbone. We perform model training using a
novel two-stage training scheme designed to optimize quality of latent representations and
decoded reconstructions. Specifically, the first stage involves training base autoencoders
using 2D images (Fig. 1a); we maximize the perceptual similarity between input images
and reconstructed images using a perceptual loss (Zhang et al., 2018), a patch-based ad-
versarial objective (Isola et al., 2018), and a domain-specific embedding consistency loss.
Whereas existing works on autoencoders train using only this stage, the medical image do-
main introduces the added complexity of subtle, fine-grained features required for clinical
interpretation; thus, we introduce a second stage of training, which aims to further refine
the latent space such that clinically-relevant features are preserved across various modali-
ties (Fig. 1b). Specifically, in the context of 2D modalities (e.g. X-ray, FFDM), the second
training stage leverages the embedding space of BiomedCLIP, a recently-developed medical
foundation model (Zhang et al., 2023), to enforce feature consistency between input images
and latent representations. In the context of 3D modalities (e.g. CT, MRI), the second
training stage involves lifting the 2D autoencoder architecture to 3D and performing contin-
ued fine-tuning with 3D images. In total, the MedVAE family includes 4 2D autoencoders
and 2 3D autoencoders trained with various downsizing factors f and latent channels C.
Extended methods and implementation details are provided in Appendix A.

3. Results

In order to evaluate MedVAE (Fig. 1c), we assess (1) whether downsized latent representa-
tions can effectively replace high-resolution images in CAD pipelines while maintaining per-
formance (Section 3.1); (2) whether latent representations can reduce storage requirements
and improve downstream efficiency (Section 3.2); and (3) whether decoded reconstructions
effectively preserve features necessary for radiologist interpretation (Section 3.3). Extended
results and analysis are provided in Appendix B.

3.1. Latent representation quality

We first evaluate whether clinically-relevant features are preserved in MedVAE latent rep-
resentations. To this end, we measure the extent to which latent representations can serve
as drop-in replacements for high-resolution input images in CAD pipelines without any
customization or modifications to CAD model architectures.

We evaluate latent representation quality using the following 8 CAD tasks: malignancy
detection on 2D FFDMs (Cai et al., 2023), calcification detection on 2D FFDMs (Cai et al.,
2023), BI-RADS prediction on 2D FFDMs (Nguyen et al., 2022), bone age prediction on
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AUROC ↑
Method f C Malignancy Calcification BI-RADS Bone Age Wrist Fracture Average

(FFDM) (FFDM) (FFDM) (X-ray) (X-ray)

High-Resolution 1 1 66.1±0.5 62.4±0.6 63.4±0.1 80.2±0.1 73.7±0.0 69.2

Nearest 16 1 65.5±0.1 59.7±0.3 62.4±0.1 81.6±0.1 70.5±0.0 67.9
Bilinear 16 1 65.5±0.1 58.1±0.3 61.1±0.2 81.6±0.0 71.2±0.1 67.5
Bicubic 16 1 65.5±0.4 58.5±0.5 61.1±0.0 81.8±0.2 71.1±0.1 67.6
KL-VAE 16 3 59.7±0.2 59.1±0.3 58.5±0.1 74.3±0.1 64.5±0.1 63.2
VQ-GAN 16 3 57.4±0.3 58.2±0.4 62.3±0.1 79.1±0.2 65.8±0.1 64.6
2D MedVAE 16 1 63.6±0.6 63.9±0.4 65.3±0.2 84.6±0.1 70.3±0.1 69.5
2D MedVAE 16 3 66.1±0.2 61.7±0.2 62.3±0.1 82.1±0.1 70.6±0.1 68.6

Nearest 64 1 63.0±0.1 58.8±0.2 60.0±0.2 72.1±0.0 65.1±0.1 63.8
Bilinear 64 1 61.5±0.3 56.9±0.4 61.3±0.1 72.8±0.5 67.9±0.1 64.1
Bicubic 64 1 61.2±0.5 57.6±0.4 61.1±0.1 72.8±0.2 67.9±0.2 64.1
KL-VAE 64 4 62.2±0.7 55.8±0.4 56.8±0.1 65.7±0.0 58.8±0.0 59.9
VQ-GAN 64 4 64.5±0.5 57.3±0.3 56.6±0.1 67.6±0.1 61.6±0.2 61.5
2D MedVAE 64 1 59.0±0.3 59.4±0.7 60.7±0.1 73.5±0.2 64.3±0.1 63.4
2D MedVAE 64 4 64.9±0.2 58.5±0.3 60.6±0.0 73.0±0.2 66.7±0.1 64.7

AUROC ↑
Method f C Spine Fractures Skull Fractures Knee Injury Average

(CT) (CT) (MRI)

High-Resolution 1 1 82.9±2.2 63.9±6.3 69.9±0.6 72.2

Bicubic 64 1 77.3±4.1 64.8±4.0 66.4±2.3 69.5
KL-VAE 64 3 68.8±2.1 40.7±9.1 63.9±8.2 57.8
VQ-GAN 64 3 73.2±2.0 75.5±14.8 63.6±10.5 70.8
3D MedVAE 64 1 83.7±2.8 87.0±7.3 68.4±2.4 79.7

Bicubic 512 1 72.3±2.2 38.4±24.5 59.4±2.5 56.7
KL-VAE 512 4 67.7±3.9 42.6±4.0 50.9±5.1 53.7
VQ-GAN 512 4 68.9±7.0 30.6±12.5 57.4±5.0 52.3
3D MedVAE 512 1 72.0±3.8 49.1±19.8 58.2±1.7 59.8

Table 1: Evaluating latent representation quality with CAD tasks. We evaluate
2D MedVAE on five 2D CAD tasks (Top) and 3D MedVAE on three 3D CAD tasks
(Bottom). We report the mean AUROC and standard deviation across three random
seeds. Methods that perfectly preserve clinically-relevant features (i.e. performance equals
or exceeds performance when training with high-resolution images) are in blue.

2D X-rays (Halabi et al., 2019), fracture detection on 2D wrist X-rays (Nagy et al., 2022),
fracture detection on 3D spine CTs (Löffler et al., 2020), fracture classification on 3D head
CTs (Chilamkurthy et al., 2018), and anterior cruciate liagment (ACL) and meniscal tear
detection on 3D sagittal knee MRIs (Bien et al., 2018). In order to perform each of these
CAD tasks, a model must rely on fine-grained, clinically-relevant features.

For each CAD task, we train a classifier (HRNet (Wang et al., 2020) in 2D settings and
SEResNet (Hu et al., 2018) in 3D settings) on a training set consisting of latent representa-
tions. We then measure the difference in classification performance between models trained
directly on latent representations and models trained using original, high-resolution images;
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this serves as an indicator of latent representation quality (e.g. a small performance dif-
ference indicates that the downsizing approach preserves diagnostic features). We compute
AUROC for binary tasks and macro AUROC for multi-class tasks. We train each classifier
with three random seeds, and we report results as mean AUROC ± standard deviation.

We compare MedVAE with two categories of image downsizing methods: (1) interpo-
lation methods (nearest, bilinear, and bicubic), which are the de-facto gold standard for
medical image downsizing as demonstrated by the quantity of prior work leveraging this
approach (Wantlin et al., 2023; Varma et al., 2019; Zhang et al., 2022a; Huang et al.,
2021), and (2) recently-introduced large-scale natural image autoencoders (KL-VAE and
VQ-GAN) (Rombach et al., 2022). Due to the fact that prior work on developing large-
scale 3D autoencoders has been limited, we compare our 3D MedVAE models with 2D
methods by stitching 2D latent representations together across slices such that the size of
the 2D latent representation matches those generated by 3D models.

We provide results for 2D and 3D CAD tasks in Table 1. Our results demonstrate that
the MedVAE training approach yields high-quality latent representations for both 2D and
3D images. At a downsizing factor of f = 16, 2D MedVAE perfectly preserves clinically-
relevant features on four out of five 2D classification tasks. Similarly, at a downsizing factor
of f = 64, 3D MedVAE perfectly preserves relevant clinical information on two out of three
3D classification tasks (spine and skull CT fracture detection). In these cases, performance
equals or exceeds performance when training with original, high-resolution images. We also
observe that MedVAE consistently outperforms the natural image autoencoders KL-VAE
and VQ-GAN on all classification tasks, including the two musculoskeletal tasks (bone age
prediction and wrist fracture detection) despite the fact that no musculoskeletal radiographs
are used during MedVAE training; this suggests effective generalization capabilities. Our
findings also show that 3D training of autoencoders leads to high-quality latent represen-
tations due to preservation of volumetric information (e.g. fractures spanning multiple
slices), particularly at f = 64. In summary, we demonstrate that our MedVAE training
procedure yields downsized latent representations that can be used as drop-in replacements
for high-resolution input images in CAD pipelines.

3.2. Storage and efficiency benefits of latent representations

Next, we evaluate the extent to which downsized MedVAE latent representations can reduce
storage requirements and improve downstream efficiency of CAD pipelines. Using a 2D high-
resolution network and 3D squeeze-excitation network as our base CAD architectures, we
report latency, throughput, and maximum batch size. Latency is the time (in milliseconds)
to perform a forward pass of the network on one batch. Throughput is the number of samples
that can be evaluated by the network in one second. Finally, we report the maximum batch
size (in powers of 2) for a forward pass that will fit on a single A100 GPU (2D) and an
A6000 GPU (3D). We assume a high-resolution image size of 1024 × 1024 with 1 channel
for 2D settings and a volume size of 256× 256× 256 with 1 channel for 3D settings.

Results are provided in Figure 2. We demonstrate that training CAD models directly on
downsized latent representations can lead to large improvements in model efficiency. In the
2D setting, we observe that as the downsizing factor increases to f = 64, latency decreases
by 69x, throughput increases by 70x, and the maximum batch size increases by 32x. In
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Figure 2: CAD model efficiency. We compare the efficiency of CAD models trained with
downsized latent representations to CAD models trained with high-resolution images.

Method f C FFDMs (2D) MSK X-rays (2D) Brain MRIs (3D) Abdomen CTs (3D)

PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑

Bicubic 16 1 31.69 0.961 30.18 0.974 29.27 0.975 33.81 0.989
KL-VAE 16 3 36.11 0.989 38.29 0.992 33.23 0.994 43.51 0.998
VQ-GAN 16 3 35.55 0.986 36.41 0.990 32.72 0.992 40.85 0.997
2D MedVAE 16 1 32.34 0.969 33.97 0.973 29.48 0.980 33.45 0.983
2D MedVAE 16 3 37.57 0.993 39.41 0.994 33.99 0.994 44.95 0.999
3D MedVAE 64 1 – – – – 29.52 0.983 36.61 0.993

Table 2: Evaluating reconstruction quality. We evaluate reconstruction quality using
perceptual metrics. Here, f represents the downsizing factor applied to the 2D area or 3D
volume of the input image and C represents the number of latent channels.

the 3D setting, as the downsizing factor increases to f = 512, latency decreases by 62x,
throughput increases by 55x, and the maximum batch size increases by 512x. Storage costs
decrease proportionally with the downsizing factor (i.e. 64x for 2D and 512x for 3D).

3.3. Reconstructed image quality

We evaluate whether clinically-relevant features are preserved in reconstructed images using
both automated and manual perceptual quality evaluations. These evaluations quantify the
extent to which the encoding and subsequent decoding processes retain relevant features.

For automated evaluations, we use perceptual metrics to compare reconstructed images
with the original inputs. We report peak signal-to-noise ratio (PSNR) and the multi-scale
structural similarity index measure (MS-SSIM). For 2D evaluations, we measure perceptual
quality on X-rays (Feng et al., 2021; Johnson et al., 2019); FFDMs (Jeong et al., 2022;
Sorkhei et al., 2021; RSNA, 2023; Nguyen et al., 2022; Moreira et al., 2012; Cai et al., 2023);
and musculoskeletal X-rays (Nagy et al., 2022). For 3D evaluations, we compute metrics on
brain MRIs (Jack Jr et al., 2008; Dagley et al., 2017; Insel et al., 2020; LaMontagne et al.,
2019); head CTs (Chilamkurthy et al., 2018); abdomen CTs (Ji et al., 2022); CTs from a
wide range of anatomies (Wasserthal et al., 2023); lung CTs (Armato III et al., 2011); and
knee MRIs (Bien et al., 2018). Results are in Table 2 and Appendix Tables 5 and 6.
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We find that 2D MedVAE achieves the highest perceptual quality across all evaluated
image types. In particular, our evaluations with musculoskeletal X-rays, brain MRIs, and
abdomen CTs explore generalization of 2D MedVAE to unseen anatomical features; notably,
2D MedVAE achieves the highest scores on these task, despite the fact that 2D MedVAE
was not trained on musculoskeletal X-rays, MRI, or CT slices. We also note a general
trend that increasing the number of latent channels C improves perceptual quality of the
reconstructed image. We also observe that 3D MedVAE achieves competitive performance,
despite utilizing a significantly higher downsizing factor than comparable 2D methods (i.e.
downsizing across all three dimensions rather than just two).

We supplement our automated evaluations of reconstructed image quality with a manual
reader study. Three radiologists are each presented with 50 pairs of chest X-rays containing
fractures (Feng et al., 2021). Each pair consists of an original high-resolution image on
the left and a reconstructed image on the right. The reconstructed images are scored on
a 5-point Likert scale ranging from -2 to 2 based on three main criteria: image fidelity,
preservation of diagnostic features, and the presence of artifacts. Readers rated image
fidelity for 2D MedVAE to be 2.8 points higher than bicubic interpolation averaged across
the two downsizing factors. 2D MedVAE also better preserved clinically-relevant features
(2.8 points). Artifacts (e.g. blurring, hallucinations) were more frequent in interpolated
images (2.6 points), which severely suffered from blurring artifacts.
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Figure 3: Reader evaluations. We report scores from three expert readers on fidelity,
preservation of relevant features, and artifacts. Bars represent 95% confidence intervals.

4. Discussion

In this work, we introduced MedVAE, a family of 6 large-scale autoencoders developed us-
ing a novel two-stage training procedure. We demonstrate with extensive evaluations that
(1) downsized latent representations can effectively replace high-resolution images in CAD
pipelines while maintaining or exceeding performance, (2) downsized latent representations
reduce storage requirements (up to 512x) and improve downstream efficiency (up to 70x in
model throughput) when compared to high-resolution input images, and (3) reconstructed
images effectively preserve relevant features necessary for clinical interpretation by radiol-
ogists. Our work demonstrates the potential that large-scale, generalizable autoencoders
hold in addressing critical storage and efficiency challenges in the medical domain.
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Appendix A. Extended Methods

A.1. Background

In this section, we provide background information on autoencoders.
2D autoencoding methods can be formulated as follows. We begin with a training

dataset D = {xi}Ni=1 consisting of N high-resolution input images xi ∈ X . Each high-
resolution image xi has dimensions H × W with B channels, which can be expressed as
xi ∈ RH×W×B. An autoencoding method learns an encoding function g : X → Z, where
Z represents a low-dimensional latent space and zi ∈ Z represents the downsized latent
representation corresponding to the input xi. Let f represent the downsizing factor applied
to the 2D area of the image; then, the latent representation zi can be expressed as zi ∈
R(H/(

√
f)×(W/

√
f)×C , where C is a pre-specified number of latent channels. Autoencoding

methods also learn a decoding function h : Z → X̂ , which reconstructs the image x̂i from
the latent representation zi. The encoding and decoding functions g and h are optimized
in an end-to-end manner with the goal of maximizing perceptual similarity between xi and
x̂i.

3D autoencoding methods follow a similar formulation, where each image xi represents
a 3D volume with dimensions H ×W × S with B channels. Here, the downsizing factor f
is applied to the 3D volume of the image; as a result, the latent representation zi can be
expressed as zi ∈ R(H/( 3√f)×(W/ 3√f)×(S/( 3√f)×C , where C is a pre-specified number of latent
channels.

A.2. Curating a large-scale training dataset

We first collect a large-scale, open-source training dataset D for training medical image
autoencoders. We incorporate diverse modalities and anatomical features in order to en-
sure that trained autoencoders gain proficiency in processing the wide variety of diagnostic
features that occur in medical images. Our dataset consists of 1,021,356 2D images and
31,374 3D images obtained from 19 multi-institutional, open-source datasets.

2D images include chest X-rays and FFDMs, selected because (a) chest X-rays are well-
studied with large amounts of publicly-available data and (b) FFDMs are a challenging
class of images due to large dimensions and the presence of fine-grained features critical
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for diagnoses (e.g. microcalcifications). We collect images from two chest X-ray datasets
and six FFDM datasets (Johnson et al., 2019; Feng et al., 2021; Jeong et al., 2022; Sorkhei
et al., 2021; RSNA, 2023; Nguyen et al., 2022; Moreira et al., 2012; Cai et al., 2023).

3D images include head MRIs, knee MRIs, and high-resolution whole-body (head, neck,
abdomen, chest, lower limb) CTs. We selected these datasets since (a) head MRIs/CTs
are a commonly obtained examination, and (b) high-resolution CTs tend to contain subtle
features and consume large amounts of storage. These images were curated from four T1-
and T2-weighted head MRI datasets (14,296), one knee MRI dataset (3,564), two head/neck
CT datasets (10,156), two whole-body CT datasets (1,434), and two chest CT datasets
(1,924) (Jack Jr et al., 2008; Dagley et al., 2017; Insel et al., 2020; LaMontagne et al., 2019;
Bien et al., 2018; Hooper et al., 2021; Chilamkurthy et al., 2018; Wasserthal et al., 2023; Ji
et al., 2022; Armato III et al., 2011; Stanford Center for Artificial Intelligence in Medicine
& Imaging (AIMI), 2024).

A.3. Training autoencoders for medical images

In this section, we discuss our two-stage approach for training generalizable autoencoders
for medical images. Motivated by prior work on natural images (Rombach et al., 2022), we
elect to use variational autoencoders (VAEs) as our backbone. In the first stage of training,
we optimize for reconstruction quality by maximizing perceptual similarity between the
input image x and the reconstructed image x̂. Whereas existing works train autoencoders
solely using this approach, the medical image domain introduces the added complexity of
subtle, fine-grained features required for clinical interpretation of images; thus, we introduce
a second stage of training, where the latent representation space Z is refined with contin-
ued fine-tuning. Our approach is intended to explicitly preserve diverse clinically-relevant
features in both latent representations and reconstructed images. In total, the Med-VAE
family includes four 2D VAEs and two 3D VAEs trained with various downsizing factors.

Stage 1: Training Base Autoencoders (Fig. 1a). We begin by performing base train-
ing of the autoencoders using the collected 2D images in order to optimize the quality
of reconstructions x̂. In line with prior work (Rombach et al., 2022), each Med-VAE au-
toencoder learns an encoder and decoder (corresponding to functions g and h) end-to-end
using a fully convolutional VAE. Each Med-VAE autoencoder accepts single-channel, high-
resolution medical images xi as input, applies function g to transform the input to a down-
sized latent representation zi, and then applies function h to reconstruct the original image
x̂i. Med-VAE models are characterized by two hyperparameters: f , which represents the
downsizing factor applied to the 2D area of the input image, and C, which describes the
number of channels included in the latent representation. For instance, given an input im-
age xi of size H × W × 1, a Med-VAE model with f = 16 and C = 3 would generate a
latent representation zi of size (H/4) × (W/4) × 3, downsizing the image area by 16x and
adding two additional channels. The reconstructed image x̂i would be of size H ×W × 1.

In order to learn functions g and h, the VAE is trained to maximize the similarity
between xi and x̂i using a perceptual loss term (Zhang et al., 2018) and a patch-based
adversarial objective (Isola et al., 2018). Additionally, in order to ensure preservation of
clinically-relevant features within the reconstructed image, we introduce a domain-specific
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embedding consistency loss based on BiomedCLIP, a pretrained vision-language foundation
model trained on a large corpus of paired medical image-text data (Zhang et al., 2023).
During training, we apply an L2 penalty between BiomedCLIP embeddings corresponding
to the input image xi and the reconstructed image x̂i. This loss function is inspired by prior
work on developing autoencoders for chest X-rays (Lee et al., 2023). Finally, in addition
to the loss functions listed above, a KL-divergence penalty is applied to the latent sample
in order to pull latents towards a standard normal; the penalty is assigned a low weight of
1e-6.

We use the above loss functions and the curated dataset of one million 2D images to
train the following four base autoencoders, trained across various downsizing factors and
latent channels. Implementation details for each base model is described below:

• 2D Base Autoencoder (Stage 1) with f = 16 and C = 1: This autoencoder
yields latent representations zi of size (H/4)×(W/4)×1. Stage 1 training is performed
from scratch. The VAE is trained solely with the perceptual loss, the KL-divergence
penalty, and the BiomedCLIP embedding consistency loss for the first 3125 steps;
then, the patch-based adversarial objective is applied. We train for 100K steps using
8 NVIDIA A100 GPUs and a batch size of 32.

• 2D Base Autoencoder (Stage 1) with f = 16 and C = 3: This autoencoder
yields latent representations zi of size (H/4) × (W/4) × 3. We first initialize the
VAE with weights from a previously-developed natural image autoencoder (KL-VAE)
(Rombach et al., 2022). Then, we perform Stage 1 training using LoRA (Hu et al.,
2021) with rank=4 applied to all 2D convolutional layers. We train with all four loss
functions for 50k steps using 8 A100 GPUs and a batch size of 32.

• 2D Base Autoencoder (Stage 1) with f = 64 and C = 1: This autoencoder
yields latent representations zi of size (H/8)×(W/8)×1. Stage 1 training is performed
from scratch. The VAE is trained solely with the perceptual loss, the KL-divergence
penalty, and the BiomedCLIP embedding consistency loss for the first 3125 steps;
then, the patch-based adversarial objective is applied. We train for 100K steps using
8 NVIDIA A100 GPUs and a batch size of 32.

• 2D Base Autoencoder (Stage 1) with f = 64 and C = 4: This autoencoder
yields latent representations zi of size (H/8) × (W/8) × 4. We first initialize the
VAE with weights from a previously-developed natural image autoencoder (KL-VAE)
(Rombach et al., 2022). Then, we perform Stage 1 training using LoRA (Hu et al.,
2021) with rank=4 applied to all 2D convolutional layers. We train with all four loss
functions for 50k steps using 8 A100 GPUs and a batch size of 32.

Stage 2: Preserving Clinically-Relevant Features Across Modalities (Fig. 1b).
After performing base training of the autoencoders using the collected 2D images, we in-
troduce a second stage of training intended to further refine the latent space such that
clinically-relevant features are preserved across various modalities.

In the context of 2D imaging modalities, the second training stage takes the form of
a lightweight fine-tuning procedure designed to maximize consistency in clinically-relevant
features between the input image and the latent representation. Our key insight here
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is that image embeddings generated by BiomedCLIP (Zhang et al., 2023) can effectively
capture clinically-relevant features in 2D medical images, suggesting utility as a guidance
mechanism during training. We freeze all parameters in the encoder and decoder of the VAE.
During training, the input image xi is passed through the frozen VAE encoder to generate
the latent representation zi; then, zi is passed through a series of lightweight, trainable
projection layers, which yield an output representation z̄i with the same size as zi. Let the
function b(·) represent the BiomedCLIP embedding function. We optimize the projection
layer weights using a domain-specific embedding consistency loss, which takes the form of
an L2 loss between b(xi) and b(z̄i). All downstream evaluations of latent representation
quality are performed with the projected latent z̄i. We perform Stage 2 training using
the curated 2D training dataset with one million images. Our procedure yields four 2D
Med-VAE autoencoders with various downsizing factors and number of latent channels:

• 2D Med-VAE with f = 16 and C = 1: The projection layers generate z̄i of size
(H/4)× (W/4)×1. Stage 2 training is performed for 50K steps using 8 NVIDIA A100
GPUs and a batch size of 32.

• 2D Med-VAE with f = 16 and C = 3: The projection layers generate z̄i of size
(H/4)× (W/4)×3. Stage 2 training is performed for 50K steps using 8 NVIDIA A100
GPUs and a batch size of 32.

• 2D Med-VAE with f = 64 and C = 1: The projection layers generate z̄i of size
(H/8)× (W/8)×1. Stage 2 training is performed for 60K steps using 8 NVIDIA A100
GPUs and a batch size of 32.

• 2D Med-VAE with f = 64 and C = 4: The projection layers generate z̄i of size
(H/8)× (W/8)×4. Stage 2 training is performed for 50K steps using 8 NVIDIA A100
GPUs and a batch size of 32.

In the context of 3D imaging modalities (e.g. CT scans, MRIs), the second training stage
involves lifting the 2D VAE architecture to 3D using a kernel centering inflation strategy
(Zhang et al., 2022b); we then continue training with 3D images. We note here that using
external 2D medical foundation models like BiomedCLIP to enforce feature consistency is
inadequate for 3D settings. As a result, we instead implement a training procedure focused
on maximizing perceptual similarity, analogous to 2D stage 1 training. We train the 3D
autoencoders using random cubic patches of size 64× 64× 64. The perceptual loss and the
patch-based adversarial objective are calculated per-slice, with the final loss term computed
as the mean across all slices in the volume. Following such a training strategy, a 3D Med-
VAE model with f = 64, C = 1, and input image xi of size H ×W × S × 1 would generate
a latent representation zi of size (H/4)× (W/4)× (S/4)× 1, downsizing the volume by 64x.
We perform Stage 2 training using the curated dataset of 31,374 3D images. Our procedure
yields two 3D Med-VAE autoencoders across various downsizing factors:

• 3D Med-VAE with f = 64 and C = 1: The latent representations zi are of
size (H/4) × (W/4) × (S/4) × 1. We initialize the VAE with weights from 2D Base
Autoencoder (Stage 1) with f = 16 and C = 1. We then train the VAE for 35K steps
using 4 NVIDIA A6000 GPUs and a batch size of 32.
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Classification Task Dimensionality Classes Dataset Modality Anatomy Num. Images

Malignancy Detection 2D 2 CMMD FFDM Breast 3744

Calcification Detection 2D 2 CMMD FFDM Breast 5202

BI-RADS Classification 2D 5 VinDR-Mammo FFDM Breast 20,000

Bone Age Prediction 2D 20 RSNA Bone Age X-Ray Hand 14,036

Wrist Fracture Detection 2D 2 GRAZPEDWRI-DX X-Ray Wrist 14,113

Spine Fracture Detection 3D 2 VerSe CT Spine 160

Head Fracture Detection 3D 2 CQ500 CT Head 378

ACL/Meniscal Tear Detection 3D 2 MRNet MRI Knee 1250

Table 3: Summary of CAD tasks used for evaluating latent representation qual-
ity. We report the task name, number of classes associated with the task, the dataset name,
imaging modality, anatomical features, and the number of images after preprocessing (Cai
et al., 2023; Nguyen et al., 2022; Halabi et al., 2019; Nagy et al., 2022; Löffler et al., 2020;
Chilamkurthy et al., 2018; Bien et al., 2018).

• 3D Med-VAE with f = 512 and C = 1: The latent representations zi are of
size (H/8) × (W/8) × (S/8) × 1. We initialize the VAE with weights from 2D Base
Autoencoder (Stage 1) with f = 64 and C = 1. We then train the VAE for 140K
steps using 1 NVIDIA A6000 GPU and a batch size of 8. Both 3D Med-VAEs are
trained for the same number of steps when accounting for batch size.

Appendix B. Extended Results

B.1. Evaluating latent representations

We evaluate the quality of latent representations z with a set of eight clinically-relevant
CAD tasks, which directly evaluate the preservation of clinically-relevant features in 2D
and 3D images (Table 3). For each CAD task, we measure the difference in classification
performance between models trained using latent representations and those trained using
original, high-resolution images; this serves as an indicator of latent quality by directly
measuring the retention of important diagnostic features. These evaluations also provide
insights into potential performance gains afforded by training downstream models directly
on Med-VAE latent representations rather than high-resolution images.

Below, we provide implementation details for each 2D CAD task.

1. Malignancy Detection: We evaluate the quality of FFDM latent representations on
a binary malignancy detection task, which involves predicting the presence or absence
of a malignancy. We use images from the Chinese Mammography Dataset (CMMD),
which includes a total of 5202 deidentified FFDMs from 1775 patients (Cai et al.,
2023; Cui et al., 2021). CMMD includes labels indicating the presence of masses
and calcifications as well as biopsy-confirmed labels indicating benign and malignant
findings. We assigned 80% of patients to the training set (1420 patients with 2982
images) and the remaining 20% to the test set (355 patients with 762 images). The
average size of an FFDM after preprocessing was 1999.2 × 793.9 × 1. In order to
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maintain consistent sizing, we downsized each FFDM to 1024× 512× 1 using bicubic
interpolation.

2. Calcification Detection: We evaluate the quality of FFDM latent representations
on a binary calcification detection task, which involves identifying the presence or
absence of breast calcifications. We use the CMMD dataset, described in detail above
(Cui et al., 2021; Cai et al., 2023). We preprocessed the CMMD dataset by assigning
80% of patients to the training set (1420 patients with 4156 images) and 20% of
patients to the test set (355 patients with 1046 images).

3. BI-RADS Classification: We evaluate the quality of FFDM latent representations
on Breast Imaging Reporting and Data System (BI-RADS) classification. We use
images from the VinDR-Mammo dataset, which includes a total of 20,000 deidenti-
fied FFDMs from 5000 studies collected from Hanoi Medical University Hospital and
Hospital 108 in Vietnam (Nguyen et al., 2022). BI-RADS scores evaluate the like-
lihood of cancer on an integer scale from 0 to 6(Nguyen et al., 2022). We use the
provided data splits for VinDR-Mammo, which assign 16,000 images to the training
set and 4000 images to the test set. There are no images with BI-RADS scores of 0
or 6. The average size of an FFDM after preprocessing was 2607.3 × 948.6 × 1. In
order to maintain consistent sizing across the dataset, we downsized each X-ray to
1024× 512× 1.

4. Bone Age Prediction: We evaluate the quality of musculoskeletal X-ray latent
representations on a bone age prediction task. We use images from the RSNA Bone
Age dataset, which includes 14,036 hand radiographs collected from Children’s Hos-
pital Colorado and Lucile Packard Children’s Hospital at Stanford University (Halabi
et al., 2019). We use the provided data splits for the RSNA Bone Age dataset, which
assign 12,611 images to the training set and 1425 images to the test set. The aver-
age size of a musculoskeletal X-ray after preprocessing was 1665.4 × 1319.8 × 1. In
order to maintain consistent sizing across the dataset, we downsized each X-ray to
1024× 1024× 1.

5. Pediatric Wrist Fracture Detection: We evaluate the quality of musculoskeletal
X-ray latent representations on a binary wrist fracture detection task. We use images
from the GRAZPEDWRI-DX dataset, which includes a total of 20,327 deidentified
images from 6,091 patients collected at University Hospital Graz in Austria (Nagy
et al., 2022). We preprocessed the GRAZPEDWRI-DX dataset by first using pro-
vided labels to remove all samples with metal hardware and casts, which may exhibit
spurious correlations with the target labels. We then assigned 75% of patients to the
training set (4281 patients with 10,511 images) and the remaining 25% to the test set
(1428 patients with 3602 images). The average size of a musculoskeletal X-ray after
preprocessing was 987.8× 537.7× 1. In order to maintain consistent sizing across the
dataset, we resized each X-ray to 1024× 512× 1.

We perform each 2D CAD task listed above using a pretrained HRNet w64 neural net-
work implemented in the timm Python package(Wang et al., 2020; Wightman, 2019). HR-
Nets are a type of convolutional neural network adapted for classification of high-resolution
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images. We preprocess latent representations by applying the mean operation across the
channel dimension if more than one channel is present. We train the HRNet on 2 A100
GPUs using supervised linear probing with one output class. We train for 100 epochs using
a batch size of 256, an AdamW optimizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 1e-4, and cross-entropy loss. Classification performance is measured on the
test set using the final model checkpoint. We report AUROC for binary classification tasks
and Macro AUROC for multi-class classification tasks.

Below, we provide implementation details for each 3D CAD task.

1. Spine Fracture Detection: We evaluate the quality of Spine CT latent representa-
tions on a binary spine fracture detection task. We use images from the VerSe 2019
dataset (Löffler et al., 2020), which includes 160 high-resolution, 1-mm isotropic or
in sagittal 2-mm to 3-mm series of 1-mm in-plane resolution, spine CT images. The
training, validation, and testing split (50/25/25) was maintained from the original
dataset. The final size of a volume after preprocessing was 224× 224× 160.

2. Head Fracture Detection: We evaluate the quality of head CT latent representa-
tions on a binary head fracture detection task. We use images from the CQ500 dataset
(Chilamkurthy et al., 2018), which includes 378 head CT images. This dataset was
curated by the Centre for Advanced Research in Imaging, Neurosciences, and Ge-
nomics (CARING) in New Delhi, India. Images were divided into training and test-
ing sets following an 80/20 split. The final size of a volume after preprocessing was
224× 224× 44.

3. ACL and Meniscal Tear Detection: We evaluate the quality of knee MRI latent
representations on a binary ACL or meniscal tear detection task. We use images from
the MRNet dataset (Bien et al., 2018), which includes 1250 sagittal knee MRI scans
performed at Stanford University Medical Center between 2001-2012. A positive label
in this context may indicate the presence of an ACL tear, a meniscal tear, or both
simultaneously. The dataset was split into a training and test set (95/5). The final
size of a volume after preprocessing was 56× 256× 256.

We perform each 3D CAD task listed above using the MONAI SEResNet-152 (Hu et al.,
2018) architecture. We implemented a weighted sampling strategy for the head fracture de-
tection and ACL and meniscal tear detection tasks due to class imbalance. We trained the
SEResNet-152 on an A6000 GPU using supervised linear probing with 1 output class. We
trained for 100 epochs with a batch size of 20 for latents, a batch size of 10 for the original
images, an AdamW optimizer (Loshchilov and Hutter, 2019) with an initial learning rate of
1e-4, and binary cross-entropy loss. Classification performance (AUROC) is measured on
the test set using the final model checkpoint.

For latent representation evaluations, we report classification performance using AU-
ROC, calculated using the torchmetrics library. We report mean and standard deviations
across three runs with different random seeds.

In Table 4, we compare performance of 2D MedVAE and 3D MedVAE on 3D CAD
tasks. These findings demonstrate that 3D training of autoencoders leads to high-quality
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AUROC ↑

Method f C Spine Fractures Skull Fractures Knee Injury Average

High-Resolution 1 1 82.9±2.2 63.9±6.3 69.9±0.6 72.2

2D Med-VAE 64 1 80.5±4.9 57.4±4.0 67.3±3.6 68.4
2D Med-VAE 64 3 78.6±0.8 50.9±19.5 60.9±4.2 63.5
3D Med-VAE 64 1 83.7±2.8 87.0±7.3 68.4±2.4 79.7

2D Med-VAE 512 1 65.9±8.7 63.0±1.1 55.9±8.3 61.6
2D Med-VAE 512 4 81.9±1.2 17.1±8.6 52.6±1.9 50.5
3D Med-VAE 512 1 72.0±3.8 49.1±19.8 58.2±1.7 59.8

Table 4: Comparing 2D Med-VAE and 3D Med-VAE on 3D CAD tasks. We
compare 3D Med-VAE with 2D Med-VAE models. For 2D Med-VAE, we stitch 2D latent
representations together across slices such that the size of the 2D latent representation
matches those generated by the 3D model. Here, f represents the downsizing factor applied
to the 3D volume of the input image and C represents the number of latent channels.
The best performing models on each task are bolded. We highlight methods that perfectly
preserve clinically-relevant features in blue.

latent representations due to preservation of volumetric information (e.g. fractures spanning
multiple slices), particularly at f = 64.

B.2. Evaluating reconstructed images

We evaluate the quality of reconstructions x̂ using both automated and manual percep-
tual quality evaluations. Perceptual quality assessments measure information loss resulting
from the autoencoding process by comparing the original image to the reconstructed (de-
coded) image. These evaluations quantify the extent to which the encoding and subsequent
decoding process retains relevant features.

For 2D images, we evaluate full-image perceptual quality on chest X-rays, FFDMs, and
musculoskeletal X-rays; we also evaluate fine-grained perceptual quality on musculoskeletal
X-rays. Chest X-rays are obtained from CANDID-PTX (Feng et al., 2021) and MIMIC-CXR
(Johnson et al., 2019); FFDMs are obtained from RSNA Mammography (RSNA, 2023),
VinDR-Mammo (Nguyen et al., 2022), CSAW-CC (Sorkhei et al., 2021), EMBED (Jeong
et al., 2022), CMMD (Cai et al., 2023), and INBreast (Moreira et al., 2012); musculoskele-
tal X-rays are obtained from GRAZPEDWRI-DX (Nagy et al., 2022). We compute two
standard perceptual quality metrics: PSNR and MS-SSIM. For 2D fine-grained perceptual
quality evaluations, we extract 7677 images containing fractures from GRAZPEDWRI-DX,
and we use bounding boxes provided by the authors to isolate the region of the fracture
(Nagy et al., 2022). We then compute PSNR scores on these regions.

For 3D full-volume perceptual quality evaluations, we evaluate full-image perceptual
quality on head MRIs, head CTs, abdomen CTs, whole-body CTs, lung CTs, and knee
MRIs. Head MRIs are obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Jack Jr et al., 2008), Harvard Aging Brain Study (HABS) (Dagley et al., 2017), A4 dataset
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Method f C Mammograms Chest X-rays Musculoskeletal X-rays Wrist X-rays (FG)

PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑

Nearest 16 1 25.95±0.06 0.846±0.00 29.87±0.04 0.942±0.00 24.06±0.02 0.890±0.00 26.11±0.02

Bilinear 16 1 30.18±0.07 0.936±0.00 34.23±0.03 0.981±0.00 28.75±0.02 0.959±0.00 30.92±0.03

Bicubic 16 1 31.69±0.07 0.961±0.00 35.48±0.03 0.989±0.00 30.18±0.02 0.974±0.00 32.65±0.04

KL-VAE 16 3 36.11±0.07 0.989±0.00 41.45±0.04 0.996±0.00 38.29±0.03 0.992±0.00 36.55±0.03

VQ-GAN 16 3 35.55±0.07 0.986±0.00 37.80±0.03 0.995±0.00 36.41±0.02 0.990±0.00 34.19±0.04

2D Med-VAE 16 1 32.34±0.07 0.969±0.00 38.44±0.02 0.990±0.00 33.97±0.03 0.973±0.00 31.97±0.03

2D Med-VAE 16 3 37.57±0.08 0.993±0.00 43.55 ±0.02 0.997±0.00 39.41±0.04 0.994±0.00 37.61±0.02

Nearest 64 1 22.46±0.05 0.669±0.00 26.22±0.03 0.858±0.00 19.93±0.02 0.756±0.00 22.14±0.04

Bilinear 64 1 26.81±0.06 0.837±0.00 31.18±0.03 0.949±0.00 24.89±0.01 0.898±0.00 27.12±0.03

Bicubic 64 1 27.84±0.06 0.874±0.00 32.09±0.03 0.962±0.00 25.92±0.01 0.922±0.00 28.54±0.03

KL-VAE 64 4 31.88±0.07 0.959±0.00 36.37±0.01 0.987±0.00 33.49±0.02 0.966±0.00 31.04±0.03

VQ-GAN 64 4 30.13±0.06 0.938±0.00 34.87±0.02 0.980±0.00 32.00±0.02 0.953±0.0 29.92±0.02

2D Med-VAE 64 1 28.00±0.07 0.872±0.00 31.92±0.04 0.962±0.00 28.27±0.02 0.917±0.00 28.03±0.01

2D Med-VAE 64 4 33.13±0.07 0.969±0.00 38.88±0.03 0.990±0.00 34.73±0.02 0.972±0.00 32.30±0.02

Table 5: Evaluating reconstruction quality on 2D datasets. We evaluate 2D Med-
VAE with perceptual quality metrics on mammograms and chest X-rays, which we classify
as in-distribution, since the Med-VAE training set includes mammograms and chest X-rays.
We also evaluate Med-VAE on musculoskeletal X-rays and wrist X-rays (fine-grained), which
we classify as out-of-distribution. Here, f represents the downsizing factor applied to the
2D area of the input image and C represents the number of latent channels. The best
performing models are bolded. We calculate PSNR and MS-SSIM using a random sample
of 1000 images for each image type; we report mean and standard deviations across four
runs with different random seeds.

(Insel et al., 2020), and Open Access Series of Imaging Studies (OASIS) brain dataset (La-
Montagne et al., 2019); head CTs are obtained from CQ500 (Chilamkurthy et al., 2018);
whole-body CTs are obtained from TotalSegmentator dataset (Wasserthal et al., 2023); ab-
domen CTs are obtained from the Abdominal Multi-Organ Segmentation (AMOS) dataset
(Ji et al., 2022); lung CTs are obtained from LIDC-IDRI (Armato III et al., 2011); and
knee MRIs are obtained from MRNet (Bien et al., 2018). For each volume, a center crop
of volume dimensions 160× 160× 160 was extracted. For the AMOS and CQ500 datasets,
the crop region was expanded to dimensions 320× 320× 160 to include both soft-tissue and
bony features. We compute two standard perceptual quality metrics: PSNR and MS-SSIM.

In Table 5 and Table 6, we provided an extended version of Table 2 with additional
perceptual quality evaluations. In Table 7, we compare 3D Med-VAE with a model re-
ferred to as 2D Med-VAE-Decoder, which has a comparable downsizing factor f . The
2D Med-VAE-Decoder model performs downsizing on individual 2D slices, which are then
stitched and interpolated together to form a latent representation of equivalent size to the
3D Med-VAE model; we then perform fine-tuning of the decoder using our curated dataset
of 3D volumes. The superiority of 3D Med-VAE to the 2D Med-VAE-Decoder approach
demonstrates the utility of 3D training of autoencoders, which enables the model to capture
important volumetric patterns.

For manual evaluations of reconstructed image quality, we perform a reader study with
3 radiologists. Each expert reader is presented with a pair of chest X-rays, consisting of an
original high-resolution image x on the left and a reconstructed image x̂ on the right (Fig. 5).
A total of 50 unique chest X-rays with fractures, randomly sampled from CANDID-PTX,
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Method f C Brain MRIs Head CTs Abdomen CTs TS CTs Lung CTs Knee MRIs

PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑

Bicubic 16 1 29.27 0.975 36.21 0.996 33.81 0.989 27.33 0.972 28.00 0.973 26.37 0.986
KL-VAE 16 3 33.23 0.994 47.65 1.000 43.51 0.998 34.14 0.994 32.62 0.989 31.31 0.998
VQ-GAN 16 3 32.72 0.992 42.87 0.999 40.85 0.997 33.55 0.993 32.20 0.989 30.75 0.997
2D Med-VAE 16 1 29.48 0.980 39.71 0.997 33.45 0.983 29.70 0.983 28.40 0.973 27.38 0.990
2D Med-VAE 16 3 33.99 0.994 48.56 1.000 44.95 0.999 34.83 0.995 33.34 0.989 31.52 0.997
3D Med-VAE 64 1 29.52 0.983 39.03 0.999 36.61 0.993 31.35 0.987 28.79 0.975 28.25 0.994

Bicubic 64 1 26.25 0.911 30.11 0.980 28.84 0.955 24.24 0.914 24.40 0.928 24.11 0.956
KL-VAE 64 3 29.32 0.977 40.95 0.997 38.07 0.995 29.85 0.982 28.83 0.974 27.68 0.993
VQ-GAN 64 3 27.43 0.967 39.02 0.997 36.25 0.991 27.47 0.972 26.66 0.964 25.95 0.990
2D Med-VAE 64 1 25.66 0.920 33.10 0.988 29.51 0.967 24.50 0.922 24.39 0.933 24.48 0.973
2D Med-VAE 64 3 29.34 0.976 41.98 0.999 39.49 0.995 30.35 0.984 29.59 0.977 28.05 0.993
3D Med-VAE 512 1 26.23 0.937 30.85 0.991 29.47 0.960 26.34 0.949 24.76 0.934 24.36 0.977

Table 6: Evaluating reconstruction quality on 3D datasets. We evaluate 3D Med-
VAE with perceptual quality metrics on head MRIs, head CTs, abdomen CTs, various high-
resolution CTs (TS), lung CTs, and knee MRIs. f represents the downsizing factor applied
to the input volume and C represents the number of latent channels. The best performing
models are bolded. We compare 3D Med-VAE with several 2D methods, including 2D Med-
VAE, KL-VAE, and VQ-GAN.

Method f C Brain MRIs Head CTs Abdomen CTs TS CTs Lung CTs Knee MRIs

PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑

2D Med-VAE-Decoder 64 1 28.88 0.978 35.01 0.997 31.47 0.983 29.96 0.981 27.54 0.965 27.04 0.992
3D Med-VAE 64 1 29.52 0.983 39.03 0.999 36.61 0.993 31.35 0.987 28.79 0.975 28.25 0.994

2D Med-VAE-Decoder 512 1 25.85 0.927 18.65 0.824 20.47 0.699 25.26 0.929 23.33 0.909 23.92 0.969
3D Med-VAE 512 1 26.23 0.937 30.85 0.991 29.47 0.960 26.34 0.949 24.76 0.934 24.36 0.977

Table 7: Comparisons of 3D Med-VAE and 2D Med-VAE Decoder. The 2D Med-
VAE-Decoder model performs downsizing on individual 2D slices, which are then stitched
and interpolated together to form a latent representation of equivalent size to the 3D Med-
VAE model; we then perform fine-tuning of the decoder using our curated dataset of 3D
volumes. We compare perceptual quality of reconstructed volumes across six 3D image
types. Here, f represents the downsizing factor applied to the 3D volume of the input
image and C represents the number of latent channels. The best performing models on
each task are bolded.

are selected and presented in a randomized order (Feng et al., 2021). The reader study poses
three distinct questions on image fidelity, preservation of clinically-relevant features, and
the presence of artifacts. Each question is scored based on a 5-point Likert scale ranging
between -2 and 2. Below, we provide additional details on each of these questions:

1. Image Fidelity: This question aims to assess how closely the reconstructed CXR
image resembles the original image in terms of image fidelity considering the overall
similarity, level of detail preservation, and visual quality. A higher rating indicates
a closer resemblance to the original image, while a lower rating implies a greater
deviation or degradation.

2. Preservation of clinically-relevant features: This question evaluates the extent
to which the reconstructed chest X-rays image preserves the diagnostic information
present in the original image given the clarity and visibility of anatomical structures,
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High-Resolution Bicubic (f=64, C=1) KL-VAE (f=64, C=4) 2D Med-VAE (f=64, C=4)

High-Resolution Bicubic (f=16, C=1) KL-VAE (f=16, C=3) 3D Med-VAE (f=64, C=1)

Figure 4: Qualitative examples of reconstructed medical images. The top section
provides qualitative examples of a reconstructed chest X-ray. The bottom section provides
qualitative examples of a reconstructed brain MRI slice. Residual figures show pixel-level
differences between reconstructed images and original, high-resolution images; brighter col-
ors represent larger differences.

abnormalities, and other important diagnostic features. A higher rating indicates a
greater preservation of diagnostic information, while a lower rating suggests a signifi-
cant loss that may affect the accuracy of diagnosis.

3. Presence of Artifacts: This question focuses on the presence and impact of arti-
facts in the reconstructed chest X-ray. Artifacts can include image distortions, noise,
blurring, or other visual anomalies (ie. hallucinations) that are not present in the
original image. A higher rating suggests less or no interference from artifacts, while a
lower rating suggests a greater occurrence of artifacts.
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Figure 5: Reader study user interface. Expert readers score each reconstructed chest
x-ray with respect to image fidelity, preservation of clinically-relevant features, and the
presence of artifacts. Each expert reader is presented with a pair of chest X-rays, consisting
of an original high-resolution image x on the left and a reconstructed image x̂ on the right.
Readers are blinded to both the method and the downsizing factor used to generate the
reconstructed image.

For automated perceptual quality evaluations on 2D images, we calculate PSNR and
MS-SSIM on a random sample of 1000 images for each image type; we report mean and
standard deviations across four runs with different random seeds. For automated perceptual
quality evaluations on 3D images, we calculate PSNR and MS-SSIM on a single random
sample of 100 images for each image type. For manual perceptual quality evaluations with
expert readers, we report mean scores and 95% confidence intervals across three readers.

In Figure 4, we provide qualitative examples of reconstructed medical images.

B.3. Ablations

We analyze the effects of each stage of training on latent representation quality in Table 8
and Table 9.

Appendix C. Extended Discussion

High-resolution medical images can result in large data storage costs and increased or in-
tractable computational complexity for trained models. As the volume of data stored by
hospitals continues to increase and large-scale foundation models become more common-
place, methods for inexpensively storing and efficiently processing high-resolution medical
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AUROC ↑

Method f C Malignancy Calcification BI-RADS Bone Age Wrist Fracture Avg.

High-Resolution 1 1 66.1 62.4 63.4 80.2 73.7 69.2

2D Base Autoencoder (Stage 1) 16 3 58.7 60.5 58.0 72.0 64.3 62.7
2D Med-VAE (Stage 2) 16 3 66.1 61.7 62.3 82.1 70.6 68.6

2D Base Autoencoder (Stage 1) 64 4 63.4 54.4 58.6 65.7 61.9 60.8
2D Med-VAE (Stage 2) 64 4 64.9 58.5 60.6 73.0 66.7 64.7

Table 8: Effect of each autoencoder training stage on 2D Med-VAE latent rep-
resentation quality. We evaluate the effects of each stage of 2D Med-VAE training on
latent representation quality using five 2D CAD tasks.

AUROC ↑

Method f C Spine Fractures Skull Fractures Knee Injury Avg.

High-Resolution 1 1 82.9 63.9 69.9 72.2

2D Base Autoencoder (Stage 1) 64 1 76.1 36.6 65.0 59.2
3D Med-VAE (Stage 2) 64 1 83.7 87.0 68.4 79.7

2D Base Autoencoder (Stage 1) 512 1 72.5 45.4 68.8 62.2
3D Med-VAE (Stage 2) 512 1 72.0 49.1 58.2 59.8

Table 9: Effect of each autoencoder training stage on 3D Med-VAE latent rep-
resentation quality. We evaluate the effects of each stage of 3D Med-VAE training on
latent representation quality using three 3D CAD tasks. Since Stage 1 training exclusively
involves 2D images, we evaluate this model on 3D tasks by stitching 2D latent representa-
tions together across slices such that the size of the 2D latent representation matches those
generated by 3D models.

images become a critical necessity. In this work, we aim to address this need by introducing
Med-VAE, a family of 6 large-scale autoencoders for medical images developed using a novel
two-stage training procedure. Med-VAE encodes high-resolution medical images as down-
sized latent representations. We demonstrate with extensive evaluations that (1) downsized
latent representations can effectively replace high-resolution images in CAD pipelines while
maintaining or exceeding performance, (2) downsized latent representations reduce stor-
age requirements (up to 512x) and improve downstream efficiency (up to 70x in model
throughput) when compared to high-resolution input images, and (3) reconstructed images
effectively preserve relevant features necessary for clinical interpretation by radiologists.

Several prior works have introduced powerful autoencoders capable of generating down-
sized latents for images. In particular, recent work on latent diffusion models has involved
the development of several large-scale autoencoders, such as VQ-GANs and VAEs, trained
on eight million natural images (Rombach et al., 2022; Kingma and Welling, 2013; Esser
et al., 2021; Krasin et al., 2017); downsized latents generated by these models were shown
to capture relevant spatial structure as well as improve efficiency of downstream diffu-
sion model training (Rombach et al., 2022). However, recent works have demonstrated
that models trained on natural images often generalize poorly to medical images due to
significant distribution shift (Guan and Liu, 2022; Van der Sluijs et al., 2023; Chambon
et al., 2022), suggesting that existing natural image autoencoders may not be well-suited
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for the complexity of the medical image domain. Our evaluations on both latent representa-
tions and reconstructed images support this point, demonstrating that existing large-scale
natural image autoencoders consistently underperform our domain-specific medical image
autoencoders. These findings demonstrate the need for domain-specific models capable
of understanding complex and fine-grained patterns across diverse imaging modalities and
anatomical regions.

Our work aims to reduce computational costs associated with automated medical image
interpretation by proposing the use of training datasets comprised of downsized Med-VAE
latent representations rather than high-resolution medical images. For instance, given a
chest X-ray training dataset with images of size 1024× 1024 with 1 channel, our 2D Med-
VAE model with f = 64 and C = 1 can generate downsized latent representations of size
128 × 128 with 1 channel, contributing to substantial downstream efficiency and storage
benefits. We demonstrate with eight CAD tasks that latent representations do not result
in the loss of clinically-important information; at a 2D downsizing factor of f = 16 and a
3D downsizing factor of f = 64, we observe equivalent or better performance than high-
resolution images with substantial improvements over multiple existing downsizing methods.
Med-VAE models can also generalize beyond the images included in the training set, as
shown by performance on 2D musculoskeletal X-rays and 3D spine CTs. Importantly, the
efficiency benefits of using latent representations are significant; in particular, using latent
representations can contribute to large increases in batch sizes, which can be particularly
useful in the modern era of self-supervised foundation models that rely heavily on the use
of large batch sizes during training.

The Med-VAE autoencoder family includes two 3D autoencoders that are explicitly
designed to downsize 3D medical imaging modalities (e.g. CT, MRI), a previously under-
researched setting. Our results demonstrate that at a 3D downsizing factor of f = 64, the
volumetric latent representations generated by 3D Med-VAE are substantially higher qual-
ity than those generated by stitching together 2D slices downsized using 2D baselines. This
suggests that 3D autoencoders can better capture clinically-important volumetric patterns,
such as fractures that span multiple slices. Efficiency benefits in the 3D setting are also
notable, particularly since training downstream CAD models on high-resolution 3D volumes
is often computationally expensive or intractable. At significantly higher downsizing factors
(f = 512), we observe the benefits of 3D autoencoder training to be less pronounced, sug-
gesting that users will need to carefully consider the tradeoffs between latent representation
quality and desired downstream efficiency when selecting a Med-VAE model.

In addition to generating high-quality latent representations, Med-VAE models also
include a trained decoder, which can reconstruct the original high-resolution image from
the downsized latent. This is a particularly useful capability in the medical imaging domain,
since high-resolution images are necessary for effective clinical interpretation by radiologists.
We demonstrate with a reader study consisting of three radiologists that reconstructed
images can effectively preserve clinically-relevant signal needed for diagnoses; in this setting,
fine-grained fractures in chest X-rays were preserved through the encoding and decoding
process.

Our study presents several opportunities for future work. First, additional research
into model architectures, data augmentation architectures, and training strategies would be
useful for building effective downstream CAD models that can learn from latent representa-
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tions. In addition, the batch size and efficiency benefits afforded by latent representations
raise the possibility of training large-scale foundation models using downsized latent rep-
resentations. Whereas foundation models traditionally require significant computational
resources and training time, utilizing downsized latent representations that preserve diag-
nostic features can greatly accelerate model training, particularly in resource-constrained
settings. Future work can explore foundation model performance and scaling laws in this
context. Finally, future work can explore additional autoencoder training strategies to
better preserve clinically-relevant features at high downsizing factors.

Overall, our work demonstrates the potential that large-scale, generalizable autoen-
coders hold in addressing critical storage and efficiency challenges in the medical domain.
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