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Abstract
Data imbalance is a common problem in machine
learning that can have a critical effect on the per-
formance of a model. Various solutions exist but
their impact on the convergence of the learning
dynamics is not understood. Here, we elucidate
the significant negative impact of data imbalance
on learning, showing that the learning curves for
minority and majority classes follow sub-optimal
trajectories when training with a gradient-based
optimizer. This slowdown is related to the imbal-
ance ratio and can be traced back to a competition
between the optimization of different classes. Our
main contribution is the analysis of the conver-
gence of full-batch (GD) and stochastic gradient
descent (SGD), and of variants that renormalize
the contribution of each per-class gradient. We
find that GD is not guaranteed to decrease the
loss for each class but that this problem can be ad-
dressed by performing a per-class normalization
of the gradient. With SGD, class imbalance has an
additional effect on the direction of the gradients:
the minority class suffers from a higher direc-
tional noise, which reduces the effectiveness of
the per-class gradient normalization. Our findings
not only allow us to understand the potential and
limitations of strategies involving the per-class
gradients, but also the reason for the effectiveness
of previously used solutions for class imbalance
such as oversampling.

1. Introduction
In supervised classification, as well as other problems in
machine learning, datasets are often affected by data im-
balance. Although the situation can sometimes be solved
or mitigated by changing the data collection method, this
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Figure 1. Training (left) and test (right) recall of the Mod1 on the
Bi60 datasets (see details in Sec. 4.4). Due to the data imbalance,
GD (blue curves) first focuses on the majority class only, while
the minority class stays at zero accuracy. This effect is suppressed
when using the PCNGD algorithm. See Fig. 3 for the related loss
function curves.

might induce an undesirable data shift (Quiñonero-Candela
et al., 2009; Moreno-Torres et al., 2012). Importantly, many
datasets are intrinsically unbalanced (Van Horn and Per-
ona, 2017; Feldman, 2020; D’souza et al., 2021), as in the
case of spam identification (Liu et al., 2017), fraud detec-
tion (Makki et al., 2019), or biodiversity monitoring (Ky-
athanahally et al., 2021).

The problem of data imbalance has already received atten-
tion in the literature and we broadly identify three most
common ways to handle it. These either act on the data
distribution (He and Garcia, 2009; Huang et al., 2016), ad-
just the objective function (Japkowicz, 2000; Huang et al.,
2016; Alshammari et al., 2022) or modify the learning algo-
rithm (Tang et al., 2020; Anand et al., 1993). We provide a
detailed discussion of these methods in App. A. The impor-
tant feature that makes our work depart from prior work is
that we focus our study on the dynamics of gradient-based
learning in the presence of data imbalance. We will for
instance analyze the theoretical convergence guarantees of
these methods, which, to the best of our knowledge, is a
novel contribution.

We start our investigation from the following two empiri-
cal observations: (i) The learning dynamics is delayed for
imbalanced problems. This is especially a problem dur-
ing hyperparameter tuning, since it requires very long runs
to assess the difference between distinct hyperparameter
choices. (ii) While the overall performance improves during
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Figure 2. Diagram explaining the directional noise caused by class imbalance on (PCN)SGD in binary classification. We plot two generic
components of the parameter vector x on the axes (xi, xj). Starting from a given iterate xt at time t, the normalized per-class gradients
associated with individual batches, and the entire dataset are represented in the plots. The gradients of the individual examples that make
them up are also shown. (a) The contribution of each example to the per-class full-batch gradient (FBG). (b) Within a mini batch, instead,
we consider only a randomly selected subset of dataset elements; the mini-batch gradient will therefore come from a random selection in
this subset. (c) We show several mini batches and observe that they are more aligned to the FBG of the majority class than the FBG of the
minority class. We will see this has negative consequences on the dynamics. For more details, see Sec. 5.1.

the dynamics, that of the minority classes quickly deteri-
orates at first. This is shown in Fig. 1 (blue curves) for a
binary unbalanced classification problem. We call this initial
deterioration the minority initial drop (MID).1 One can hy-
pothesize why this happens (we will in fact demonstrate this
rigorously): at the beginning of learning, the gradient steps
are dominated by the majority class, driving the classifier
weights towards configurations that correctly classify the
majority class, regardless of the minority class. In fact, due
to the imbalance, decreasing the loss related to the majority
class outweighs the loss increase coming from the minority
class. The minority classes will only be learned once the
gradient of the majority class examples is small enough. To
gain further insights, it therefore seems logical to express
the loss as a sum over the examples belonging to each class,
and analyze separately the gradient related to each class.

Guided by these observations, we characterize how class
imbalance affects the learning dynamics, and study whether
it is possible to adapt gradient-based algorithms in order to
guarantee the decrease of the loss function of every single
class. These adaptations provide us with a deeper insight
into how class imbalance affects the training dynamics. The
main adaptation that we study is per-class normalization
(PCN), i.e. we normalize the (S)GD steps in such a way
that the magnitude of the signal related to each class is the
same. We name per-class-normalized GD (PCNGD) the
PCN version of GD. For the PCN version of SGD we use
the acronym PCNSGD.

We identify our key contributions as follows:

• Suboptimality of GD and SGD: Expanding on the
observations of (Ye et al., 2021), we provide further ev-
idence for the deceleration caused by class imbalance.
We relate this to the non-monotonicity of the minority

1We show in Fig. S11 that the MID occurs also with SGD and
multiclass classification.

class losses, providing theorems and analytical argu-
ments explaining the slowdown.

• Theoretical study of the PCNGD algorithm: This
algorithm is not completely new as it relates to a variant
that was empirically motivated in (Anand et al., 1993).
We derive a theoretical convergence analysis showing
that, for a suitable step-size, PCNGD is guaranteed
to decrease the loss of all classes 2. In addition, we
also provide empirical evidence that PCNGD performs
better than GD, in terms of both overall and per-class
performance indicators (as shown in Fig. 1).

• Imbalance causes directional noise in SGD: We show
that, while normalizing the per-class gradients is suffi-
cient to counter class imbalance in GD, this is not true
for SGD, since the imbalance influences the direction
of the per-class signal in addition to its norm, and this
suppresses the minority class learning (Fig. 2).

• A framework to understand imbalance: Our analy-
sis also clarifies the effectiveness of other approaches
already used heuristically, such as oversampling, since
they can be interpreted in light of whether they help
counter the directional noise; and shows how class im-
balance should be seen as one of many factors (e.g.
class difficulty) that influence the per-class gradients.

2. Related work
(Ye et al., 2021) noticed empirically that, in imbalanced

SGD dynamics, minority classes are learned later than ma-
jority ones. They call under-fitting phase of minor classes
the initial part of the learning where the minority classes are
not learned. Building on this observation, we provide a the-
ory and didactic experiments, explaining this phenomenon

2More specifically, we will see that GD can also decrease the
per-class loss but only under a restrictive condition on the angle
between the per-class gradients.
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formally and showing how it is qualitatively different be-
tween GD and SGD. We emphasize that this is linked to
an initial deterioration in the minority class recall/loss, so
we prefer to focus on avoiding the effect of the MID on the
model performance, which leads to an under-fitting phase
for the minor classes. Furthermore, (Ye et al., 2021) provide
a method to mitigate the MID, while we show what are the
theoretical requirements to eliminate it.

Noticing that the gradient magnitude of the minority class is
smaller than that of the majority class, (Anand et al., 1993)
proposed an algorithm that takes the bisection between the
per-class gradients to perform the update rule of the model
parameters. The PCN algorithms that we analyze in this
work can be seen as an extension of the bisection algorithm,
where the optimization steps are taken in the same direction
but with a different modulus. Our adaptation allows us to
use the algorithm also in the multiclass and SGD settings,
and to derive convergence guarantees.

Gradient imbalance is also a problem discussed in multi-task
learning. The latter is akin to classification problems; in
fact, learning multiple classes can be thought of as learning
multiple tasks together if each task is assumed to be just
one class vs the rest. The approaches proposed in (Chen
et al., 2018; Yu et al., 2020), beyond some differences in
implementation, are conceptually close to the PCN methods
examined here. However, our work, analyzing separately
the effects induced on GD and SGD, shows how the two
cases, in classification problems, are characterized by sub-
stantial differences. In particular, we show how PCN alone
is effective in the full-batch case, while in the stochastic
case it is necessary to introduce variants to account, not only
for the difference in norms, but also for the difference in
directional noise.

3. Structure of the article
Sec. 4 focuses on full-batch algorithms. GD is analyzed in
Sec. 4.2 where we prove that, while the dynamics converge
to a critical point, the angle between the per-class gradients
must be small to guarantee a monotonic decrease of the per-
class loss functions and avoid the MID. The latter condition
on the gradient angle becomes stronger with increasing im-
balance [see Eq. (1)]. To solve this problem, in Sec. 4.3 we
introduce and study PCNGD, which equalizes the per-class
gradient norms, resulting in a relaxed condition on the an-
gles and removing the MID. We also demonstrate that for a
specific type of loss function (known as gradient-dominated
functions), PCNGD not only ensures a monotonic per-class
loss but also converges to the global minimum (Th. 4.3). In
Sec. 4.4, we validate our conclusions through experiments.
In Sec. 5, we turn our attention to stochastic algorithms.
Sec. 5.1 shows that, unless the batch size is large, PCN is
not sufficient to avoid the MID because imbalance affects
not only the per-class gradient norms but also their direction
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Figure 3. Training (left) and test (right) loss curves for GD and
PCNGD algorithms. The corresponding recall is shown for the
same setup in 1.

(as illustrated in Fig. 2). Sec. 5.2 reaches the same conclu-
sion by showing that the per-class losses in PCNSGD are
not guaranteed to converge monotonically unless the batch
size is large (Th. 5.1). To support our results, Secs. 5.3
and 5.4 experimentally show that using algorithms that take
into account both effects induced by imbalance (the dispro-
portions in the per-class norm and direction) finally avoids
the MID also when using stochastic gradient updates.
The notation used in the article is summarized in App. B.
The theorems formulated in the main paper are in Apps. C
and D. Algorithms are discussed in more detail in App. F.
Model and dataset details used for experiments are in App. G
and further experiments are in App. H. App. I describes the
limitations and ethics of this work.

4. Convergence Guarantees with Full Batch
The loss curves in Fig. 3 are illustrative of the differences
between the loss of GD and PCNGD. In particular, the wide
gap between per-class performances, in the early stage of
GD dynamics, is absent in PCNGD. The absence of the MID
phase at the beginning of the dynamics results in accelerated
growth in the performances (see also Fig. 1). In this section,
we will analyze the differences in the two cases by studying
the conditions that guarantee the decrease in per-class loss.

4.1. Setting
Assume we are in a typical supervised setting where we are
given a training set of samples D = (ξi, yi)

n
i=1 where ξi ∈

Rd are features, yi ∈ {0, 1, . . . L−1} are the corresponding
labels and L is the number of distinct labels. Our goal is
to train a model parametrized by a vector x ∈ Rm that
minimizes a given loss function f : Rm → R as follows:

min
x∈Rm

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
.

We also define the number of samples per class as nk, and
the fraction of samples per class as ρk = nk

n . We will
use the following notation to define the per-class losses:
f (l)(x) := 1

n

∑
i∈Cl

fi(x), Cl = {i | yi = l}, l ∈
{0, 1, . . . L− 1}.

3



A Theoretical Analysis of the Learning Dynamics under Class Imbalance

4.2. Gradient Descent
We start by analyzing the convergence of gradient descent
run for T iterations on the loss corresponding to each class
f (l)(x). For the sake of clarity, we prove our results for
the binary case, where the number of classes L = 2 and
yi ∈ {0, 1}, but we note that these results are extendable to
the case where L > 2. For example, by aggregating classes,
our results are exact for step imbalance3 with any number
of classes. Also, multiclass classifiers can be expressed as a
combination of binary problems. Additionally, in App. E,
we provide a multiclass version of Th. 4.1 and 4.2.

To make our results more accessible, in the main paper we
give an informal version of our theorems. We invite the
reader to check App. C and D for a formal version. In
App. C we also mention literature with similar convergence
analyses. Since we do not assume that the objective function
f is convex, we focus on showing that the gradient norms
decrease with the number of iterations (which is the standard
metric in the optimization literature, see e.g. (Ghadimi and
Lan, 2013)). Specifically, our complexity measure will be
mins∈S ∥∇f (l)(xs)∥2 ≤ ϵ for a given ϵ accuracy and over
an interval S.

We first prove the per-class convergence of GD under imbal-
ance, highlighting the requirements to obtain it. We denote
the angle between two vectors x,y ∈ Rm by ∠(x,y). We

also define Ct :=
∥∇f(1)(xt)∥
∥∇f(0)(xt)∥

.

Theorem 4.1 (Informal). Assume that each f (l)

for l = 0, 1 is L1-Lipschitz and L2-smooth a

and let α(xt) = ∠(∇f (l)(xt),∇f (1−l)(xt)). If
∥∇f (1−l)(xt)∥ ̸= 0 and cos(α(xt)) > −1/Ct for
all iterations t, the iterates of gradient descent with
step size ηt = O

(
1√
T

)
satisfy

min
t∈[0,T−1]

∥∇f (l)(xt)∥2 ≤ O
(

1√
T

)
.

ai.e. ∇f (l) is L2-Lipschitz continuous.

We stress that the upper bound O( 1√
T
) depends on the

imbalance. We show it explicitly in App. C (constant Ct).

Theorem 4.1 requires a restrictive condition on the angle
α(xt) in order to guarantee a decrease of the loss of both
classes; we find that (App. C), in order to have a strictly
decreasing loss for both classes, the angle between the per-
class gradients must meet the condition

1 + cos(α(xt))Ct > 0. (1)

We therefore see that this condition can not be satisfied when
3Step imbalance: There is a set of majority classes each with

n1 elements, and a set of minority classes, all with n2 elements.

considering worst-case guarantees, especially when Ct is
large. While the above result provides an upper bound, we
discuss the tightness of this condition in App. C, effectively
demonstrating that one can not avoid this problem in the
general case: GD can not guarantee monotonic convergence
for each class even for convex functions. Interestingly,
condition (1) has an intuitive meaning. Indeed, one can see
that it depends on the ratio of the norms of the per-class
gradients denoted by Ct, which at least in the initial phases
of learning is proportional to the imbalance ratio. In the case
where the two norms are equal, Eq. (1) is trivially satisfied
almost always if the classes are equally difficult. On the
contrary, if one gradient norm dominates the other, GD will
only minimize the gradient of one class, until it gets to a
point where the two gradient norms start having comparable
values. As we will see in our experimental results, this leads
to a suboptimal behavior if one equally cares about the loss
of each class. Building on this finding, we will now intro-
duce a variant of GD which compensates the asymmetry in
the gradients. Specifically, we will show that the restrictive
condition required in Eq. (1) can essentially be removed.

4.3. Per-Class Normalized Gradient Descent
Algorithmic solutions to class imbalance typically rescale
the contribution of each gradient (Anand et al., 1993). In-
spired by this prior work we present an algorithm named
PCNGD that, starting from an initial guess x0, iteratively
updates the parameter xt as follows,

xt+1 = xt − ηt

(
∇f (0)(xt)

∥∇f (0)(xt)∥
+

∇f (1)(xt)

∥∇f (1)(xt)∥

)
.

(PCNGD)
This algorithm forces the updates to be independent of the
gradient norm related to each class, but it does not act on the
angle between the gradients, so the size of the steps depends
on the angle between the gradients.

We want to study the convergence behavior of the loss cor-
responding to each class. We derive such an analysis in
the broad setting where the loss function is smooth and
non-convex.

Theorem 4.2 (Informal). Assume that each f (l) for
l = 0, 1 is L1-Lipschitz and L2-smooth. Then if
cosα(xt) ̸= −1 for all iterations t, the iterates of

PCNGD with step size ηt = O
(

1√
T

)
satisfy

min
t∈[0,T−1]

∥∇f (l)(xt)∥ ≤ O
(

1√
T

)
.
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Proof sketch for f (0). Since f (0) is L2-smooth, we have

f (0)(xt+1)

≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+ L2

2 ∥xt+1 − xt∥2

≤ f (0)(xt)− ηt(1 + cosα(xt))∥∇f (0)(xt)∥+ 2L2η
2
t ,

where we used the update step of PCNGD in the second
equation.

Let ωmin := mint∈[0,T−1](1 + cosα(xt)). By rearranging
the terms in the equation above, we get

∥∇f (0)(xt)∥ ≤ 1

ηtωmin
[f (0)(xt)− f (0)(xt+1)] +

2L2ηt
ωmin

Taking the minimum over t, we get

min
s∈[0,T−1]

∥∇f (0)(xs)∥ ≤ 1
T

∑T−1

t=0
∥∇f (0)(xt)∥.

We conclude the proof by combining the last two equations
and by choosing the step size stated in the theorem.

The full proof is given in App. D for different step-size
schedules and for randomized iterates (as done in (Ghadimi
and Lan, 2013)). An important feature of the above theo-
rem is that it guarantees that each per-class loss function
f (l)decreases at the same rate. We note that the assump-
tion cosα(xt) ̸= −1 implies that the two gradients are not
allowed to be in completely opposite directions. This con-
dition is a much milder assumption than the one required
for GD in Theorem 4.1 (it is as restrictive as in balanced
learning, Eq. (1)), and does not become more restrictive
when the class imbalance increases.

Note that for a small enough step size, the per-class loss
decrease is monotonic [Eq. (25)]. This is desirable since it
means that the MID is avoided. This does not however guar-
antee convergence to a global minimum, but we can ensure
a per-class monotonous convergence to a global minimizer
under an additional assumption shown next.

Gradient-dominated functions We prove convergence
of PCNGD for a class of gradient-dominated functions (Nes-
terov and Polyak, 2006) which are related to the Polyak-
Łojasiewicz (PL) condition (Karimi et al., 2016) that
has been shown to hold for overparametrized neural net-
works (Liu et al., 2022). Instead of requiring this variant
of the PL condition to hold for f , we require it to hold for
each class separately. Specifically, we say that a function
satisfies the class-GD inequality if the following holds for
each class l,

1

2
∥∇f (l)(x)∥ ≥ µ(l)|f (l)(x)− f (l)(x∗)|, ∀x ∈ Rm,

for some constant µ(l) > 0. For finite-sum objective func-
tions, the class-GD inequality implies the gradient domi-
nated inequality.

Theorem 4.3. Assume that each f (l) for l ∈ {0, 1} is
L2-smooth and µ-class-GD. Then if cosα(xt) ̸= −1
for all iterations t ∈ [0, T −1], the iterates of PCNGD
with a decreasing step satisfy

f (l)(xT )− f
(l)
∗ ≤ O

(
1
T

)
, (2)

for each l ∈ {0, 1}, with f
(l)
∗ = minx∈Rd f (l)(x).

We prove theorem 4.3 in App. D.

4.4. Empirical evidence in favor of PCNGD
We consolidate the findings of our paper with experiments,
and provide our code on GitHub (see also App. G).

In Fig. 1 we compare GD and PCNGD with a 60:1 imbal-
ance. In GD, within the first epoch, the recall of the majority
class goes to 1, and that of the minority class drops to 0. As
shown in Sec. 4.2, the intuition behind this is that with GD
in an unbalanced dataset, the gradient points predominantly
toward the direction dictated by the majority class. Since
the norm of the gradient related to a class scales with its
abundance, in order to appreciate the signal of the minority
class, the majority class gradient needs to become smaller
by an amount that scales with the imbalance ratio ρ.4

With PCNGD, instead, the MID is suppressed, since both
classes are optimized from the beginning of the run. After
the first ∼ 200 epochs, while the model trained with GD is
not yet learning, the PCNGD model already surpasses the
peak performance achieved by GD within the entire 3500
epochs of the experiment.

We confirm these observations over several architectures
and datasets. We used three different architectures, which
we name Mod1, Mod2, Mod3, and five different imbalanced
binary and multiclass datasets: Bi7a , Bi7b , Bi60 , Mul10 ,
Mul100 . In all cases, while the training set is unbalanced,
the test set is balanced. We give full details about the models
in App. G.1 and about the datasets in App. G.2. The results
of the experiments are reported in App. H.1

4.5. On the better generalization of PCN algorithms
In the experiments shown in Figs 1, 3, and S7, PCNGD
not only has a better training performance, but it also has
a better test performance. To rationalize the better general-
ization of PCNGD, we can look at the fixed points of the
dynamics. In GD, fixed points satisfy ∇f

(0)
n0 = −∇f

(1)
n1 .

If the training set is imbalanced and the per-class gradi-
ents are not exactly zero, this will imply that the minor-

4Therefore, we expect that the time required to learn the minor-
ity class scales with ρ.

5
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ity gradients are about a factor ρ larger than the majority
ones, which is not what we would expect from a balanced
dataset. On the contrary, PCNGD allows an infinitely larger
quantity of fixed points, since now the condition becomes
∇f

(0)
n0 = −γ∇f

(1)
n1 , ∀γ > 0. If on one side this makes us ex-

pect a higher variability in the found solutions (which might
be beneficial for ensembling (Kyathanahally et al., 2022) or
stochastic weighted averaging (Izmailov et al., 2018)), on
the other it means that the fixed points are insensitive to the
data imbalance.
Another reason for a better generalization can be taken from
(Ye et al., 2021), who argue that the MID itself induces
overfitting. Therefore, eliminating the MID can on its own
be a reason for an improved test performance.

5. SGD: Data Imbalance affects both intensity
and direction of the signal

To elucidate the effect of imbalance on SGD, we turn our
attention toward a stochastic variant of PCNGD. Perhaps
the most obvious way to adapt Eq. (PCNGD) to a stochastic
setting is to replace the full gradient by a stochastic estimate
computed over a mini-batch, with the condition that at least
one element of each class is present in each minibatch.5

We call the resulting algorithm Per-Class Normalized SGD
(PCNSGD), whose update is defined as

xt+1 = xt − ηt

(
∇ñf

(0)(xt)

∥∇ñf (0)(xt)∥
+

∇ñf
(1)(xt)

∥∇ñf (1)(xt)∥

)
,

(PCNSGD)
where ∇ñf

(l)(xt) is the gradient over a random batch of
size ñ, taking only examples belonging to the class l.

5.1. Imbalance causes directional noise
In contrast to PCNGD, we empirically observed that PC-
NSGD still suffers dramatically from the MID, despite the
correction on the gradient norms (Figs. 4 and 5–orange
curves).

To understand why normalizing the per-class gradient norms
does not have the same benefit as with GD, we take a closer
look at the computation of the stochastic gradients. To
do so, we define ∇f

(l)
∞ (xt) as the mean gradient direction

corresponding to class l on the population loss, and we call
∇f

(l)
nl (xt) the full-batch mean gradient relative to class l.

More generally, given an arbitrary set S of ñl elements, all
belonging to the same generic class l, the notation ∇f

(l)
ñl

(xt)
indicates:

∇f
(l)
ñl

(xt) :=
1
ñl

∑
i∈S

∇fi(xt) (3)

where fi(xt) is the loss function corresponding to element
i ∈ S. If the underlying gradient distribution has a finite

5This can be done in several manners, as long as the batch size
is larger than the number of classes. For example, one possible
approach is to discard the batches that do not contain both classes
and reshuffle the data at every epoch.
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Figure 4. Per-class train recall of PCNSGD and of PCNSGD+R
with Mod1 on the Bi7a dataset. With the rescaling proposed in
Eq. (8), leading to PCNSGD+R, the MID disappears. The macro-
averaged curves are shown in Fig. 5.

variance,6 by the Central Limit Theorem (CLT) the per-
class gradient calculated on ñl examples can be written as
fluctuations around the population gradient,

∇f
(l)
ñl

= ∇f (l)
∞ + 1√

ñl
Z(l) + o

(
1√
ñl

)
, (4)

where Z(l) is a zero-average multivariate Gaussian random
variable whose distribution is fixed by the covariance matrix
associated with the gradients of the lth class.

We now consider a single batch; from now on ñl will denote
the number of elements, belonging to class l, present in the
batch. We want to compare ∇f

(l)
ñl

with the corresponding
full-batch gradient (FBG), in the regime where for both
classes the batch size is much smaller than the size of the
dataset, i.e. ñl ≪ nl′ ∀l, l′ = 0, 1. In this case, we can use
the CLT again, obtaining

∇f
(l)
ñl

≃ ∇f (l)
nl

+ 1√
ñl
Z(l) ≡ G(l) , (5)

where we neglected terms of order 1/
√
nl.

Let us now take the updates in Eq. (PCNSGD), and see
how normalizing the per-class gradients over the minibatch
differs from normalizing them over the full gradient. By
using Eq. (5), the PCNSGD steps can be written as∑

l

∇f
(l)
ñl

∥∇f
(l)
ñl

∥
≃
∑
l

(
∇f(l)

nl

∥G(l)∥ + Z(l)
√
ñl∥G(l)∥

)
, (6)

where the iterator l goes through the different classes. We
want to quantify the projection of the unit vector associated
to a generic class l along the corresponding FBG direc-
tion, for which Theorem 4.2 shows that we can obtain a
monotonous decrease for both classes. The projection of
these steps onto the FBG is (see Sec. D.2 for the derivation)(

∇f
(l)
ñl

∥∇f
(l)
ñl

∥

)
· ∇f

(l)
nl

∥∇f
(l)
nl ∥

= 1− ∥Z(l)∥2(sin(θ)2)
2ñl∥∇f

(l)
nl ∥2

+ o

(
1

ñl

)
,

(7)

6This condition can be relaxed by using a generalized CLT (Dar-
ling, 1956; Lam et al., 2011).
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where θ indicates the angle between Z(l) and ∇f
(l)
nl . Eq. (7)

shows that the larger the number of examples of class l
in the mini-batch, the closer the steps are to the PCNGD
direction. A direct consequence is that, despite the per-class
normalization, the two classes do not have the same signal
towards the optimal direction: the signal of the minority
class is suppressed.

The signal related to each class is attenuated by
∥Z(l)∥2(1−cos(θ)2)

2ñl∥∇f
(l)
nl

∥2
. At the beginning of learning, with ran-

dom initial conditions, we can expect ∥∇f
(0)
ñ0

∥ ≈ ∥∇f
(1)
ñ1

∥,
and we can expect that on average the noise fluctuations
have a similar projection onto ∥∇f

(l)
nl ∥. Consequently, the

attenuation of the minority with respect to the majority sig-
nal is proportional to the imbalance ratio, ñ0

ñ1
. As long as

the gradient of the majority class remains large, the minor-
ity class updates point far from the direction that would
allow the minority class to be optimized. Once the per-class
gradient of the majority class converged, by Eq. (5), we

have
∇f

(l)
ñl

∥∇f
(l)
ñl

∥
≃ Z(l)

∥Z(l)∥ , and the signal of the minority class

can become relevant. In Secs. 5.3 and 5.4 we will confirm
our theory by showing that, if we account for this extra
attenuation, the MID disappears.

5.2. Convergence of PCNSGD
We also derive a new convergence analysis for PCNSGD
under the common assumption of bounded gradient variance,
i.e. E∥∇f (l)(xt)− g(l)(xt)∥2 ≤ σ2

l where we introduced
the shorthand notation g(l)(xt) := ∇ñf

(l)(xt) (with l =
0, 1) to denote the stochastic gradients, and σl > 0 (the
expectation is over the randomness of the algorithm, both in
terms of the choice of x0 and the choice of the mini-batch).
We note that for finite-sum objective functions, one can
precisely characterize σl as a function of the mini-batch size
(using standard concentration arguments such as Bernstein’s
inequality), with σl → 0 as the batch size approaches the
full batch.

Theorem 5.1 (informal). Assume that each f (l) is
L1-Lipschitz and L2-smooth and E∥∇f (l)(xt) −
g(l)(xt)∥2 ≤ σ2

l where σl > 0. Then if cosα(xt) ̸=
−1 for all iterations t ∈ [0, T − 1], the iterates of
PCNSGD with step size ηt = O( 1√

T
) satisfy

min
t∈[0,T−1]

E∥∇f (l)(xt)∥ ≤ O
(

1√
T

)
+O(σl).

Theorem 5.1 shows that the gradient converges at the same
rate as in the deterministic case, but only up to a ball of
radius σl. One way of reducing the size of this ball is to
increase the batch size. Another way is to make sure that
there is no class l for which σl is large. We will later see
that one can re-balance the variance σl of each class using a

simple oversampling technique.

Finally, we note that the monotonicity that characterized
PCNGD is now not recovered unless the batch size is large
[Eq. (54)]. This is consistent with the analysis of Sec. 5.1.

5.3. Balancing the directional noise
As shown in Secs. 5.1 and 5.2, with SGD, the directional
noise induced by class imbalance implies that per-class
normalization is not enough to avoid a suppression of the
minority-class learning, thus not suppressing the MID. To
confirm our theory with experiments, we make use of this
knowledge by showing that remedies that compensate for
this directional noise induced by imbalance suppress the
MID.

Per-class normalization with Rescaling (PCNSGD+R)
We want to enforce that both majority and minority mini-
batch signals project by the same amount onto the FBGs.
This is done by rescaling the minority-class signal by the
appropriate amount, calculated from Eq. (7). The rescaling
factor (we label with 0 the majority and with 1 the minority
class),

α =

(
1− ∥Z(0)∥2 sin(θ0)

2

2ñ0∥∇f
(0)
n0

∥2

)/(
1− ∥Z(1)∥2 sin(θ1)

2

2ñ1∥∇f
(1)
n1

∥2

)
, (8)

relies on the calculation of the FBGs. To alleviate this
burden we only calculate them every 5 steps. The slowness
of this algorithm is not a problem, since it is not meant as an
alternative to SGD, but rather to provide empirical evidence
that the arguments in Sec. 5.1 are correct. Indeed, we show
in Fig. 4 (green lines) that, after this further rescaling, the
MID is prevented: the minority class recall is monotonically
increasing since the beginning of learning, and the majority
and minority classes have a similar evolution. In practice, as
soon as the signals related to each class are balanced (taking
into account all sources of imbalance, including directional
noise), the MID disappears.

Oversampling (O) An alternative way to rebalance the
directional noise in a more computationally efficient manner
is to impose that all minibatches are composed of the same
number of examples from each class. This is similar to
minority class oversampling, with the difference that we
enforce that every batch is exactly split between the classes
(see App. F for more details). Contrary to what we saw at
the end of Sec. 5.1, in this case, ñ0

ñ1
does not scale with the

imbalance ratio, being ñ0 = ñ1.

Per-class normalization with Oversampling (PC-
NSGD+O) The idea of normalizing per-class gradient
contributions can in principle be coupled with other existing
methods that are used to deal with class imbalance. Here,
we check whether there is a gain in combining per-class
normalization with oversampling. In fact, while oversam-
pling equalizes the number of examples per class within
each batch, PCN puts an additional constraint on the per-
class gradients. For some datasets, this could be influential
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Figure 5. Comparison between different stochastic algorithms with
model Mod1 on the Bi7a dataset.

in the initial phases of learning, in the cases in which the
gradients related to one class are larger than others. In fact
the hardness of different classes may vary (some classes are
harder than others, which reflects in the per-class gradients),
and this could cause an effect analogous to class imbalance.
PCNSGD+O should reduce this difference.

5.4. Experiments with Stochastic Gradients
In Fig. 5 we compare the described algorithms. As per
our theory, while SGD and PCNSGD exhibit the MID, PC-
NSGD+R grows steadily since the beginning of learning.
PCNSGD+R is outperformed by SGD+O and PCNSGD+O,
which is partly expected, since in PCNSGD+R we only cal-
culate the FBG every 5 steps, and because PCNSGD+R acts
on the signal of the minority class, but leaves the signal-
to-noise ratio unaltered.7 From Fig. 5 it seems that PC-
NSGD+O outperforms SGD+O, since both the recall at
short times and the final test recall are higher. This advan-
tage of PCNSGD+O is even more visible with higher imbal-
ance (Fig. S8). However, this is not systematic throughout
all the experiments we performed (Tab. 2 and Fig. S9 in
App. H). It is instead systematic that the MID is present
with SGD dynamics, but it is always avoided when using
oversampling. This can be seen from the value of τ in
Tab. 2, which is considerably smaller. Extra runs are shown
in App. H.

6. Discussion
We presented a new analysis of the learning dynamics of
gradient-based algorithms for imbalanced problems, focus-
ing on the learning curves related to each class. Our results
highlight the suboptimal behavior of GD, which becomes
especially acute for high class imbalance. In particular, at
the initial stages of learning, we observe the MID, where the
minority classes are classified worse than random. This is
particularly problematic when many short runs are needed,
such as during hyperparameter tuning. Only in late stages,
at times that increase with the imbalance, are the minority
classes learned, in agreement with observations by (Ye et al.,

7After the rescaling of the minority class through Eq. (7), all the
per-class gradients project equally onto the respective full-batch
direction. However, this rescaling also amplifies the minority-class
signal in the direction orthogonal to the FBG.

2021).

From our analysis, we see that the influence of the imbal-
ance on the dynamics is indirect, and it fades over time. In
fact, we find that the learning is not governed by the imbal-
ance ratio itself, but rather by the ratio Ct between per-class
gradient norms. This highlights a limitation of methods
which renormalize the loss (or the dynamics) in terms of
the number of examples per class. While at the beginning
of learning Ct is reasonably correlated with the imbalance,
it is not so at later stages of learning. This also highlights
that it is not class imbalance per se that causes subopti-
mal dynamics, but rather the disparity between per-class
gradients. While class imbalance does affect this quantity,
there are other sources, e.g. related to the difficulty of each
class, which could have the same effect. It would therefore
be interesting to investigate the relationship between dif-
ferent factors that give rise to a disparity among per-class
gradients.

One of our main contributions is a convergence analysis
of gradient-based algorithms under class imbalance, with a
focus on the per-class losses and their gradients. Further-
more, we studied how imbalance differently affects GD and
SGD, by analyzing their PCN variants. We found funda-
mental differences between the deterministic and stochastic
settings. While, in the former, class imbalance mostly af-
fects the modulus of the per-class gradients, in the latter it
also causes a directional noise, which is stronger with small
batch sizes. Consequently, the approaches effective in deal-
ing with these effects need to be different in the two cases.
While in the full-batch case, PCN is enough to eliminate the
MID, in the stochastic case it is no longer sufficient. Instead,
procedures that also balance the effects of the directional
noise, as e.g. oversampling, allow us to avoid the MID.

Overall, PCN algorithms were successful in addressing the
suboptimal MID behavior of gradient descent under class
imbalance. We proved that, under certain conditions on
learning rate and batch size, they exhibit a monotonous per-
class loss decrease, which results in faster training in the
initial stages of learning. While per-class normalization
directly acts on the dynamical update rule, this is not the
case for most of the typically used methods to counter the
class imbalance. Therefore, it can (and should) be used
in synergy with other methods. We showed this with PC-
NSGD+O. In this regard, we also emphasize that our anal-
ysis is rather general and not related to a specific loss or
architecture. It is possible, therefore, to combine the pro-
posed approaches with loss functions typically employed
for long-tailed datasets (e.g. (Lin et al., 2017; Cao et al.,
2019a; Leng et al., 2022)), or with more complex archi-
tectures. However, we note that larger architectures have
their own potential pitfalls, as evidenced by (Sagawa et al.,
2020) who showed that, in the overparametrized regime, the
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performance of minority groups deteriorates (despite the
performance improving overall).

Finally, there are several extensions of interest regarding the
analysis of our algorithm, including a specialized analysis
to escape saddle points (Jin et al., 2017; Daneshmand et al.,
2018) or analyze the effect of momentum (Nesterov, 2003).
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A. Additional Related Work
We now elaborate more on existing strategies that have been used to mitigate class imbalance. As mentioned in Sec. 1, we
identify three broad classes of methods to handle class imbalance.

First, at the data level, resampling is arguably the most known approach where one either under- or over-samples datapoints
in order to achieve a class-balanced distribution (He and Garcia, 2009; Huang et al., 2016). These two methods have
obvious drawbacks: while undersampling discards training data, oversampling causes longer training time and might lead
to overfitting (Chawla et al., 2004; Johnson and Khoshgoftaar, 2019). Various techniques use more advanced sampling
techniques, such as rebalancing the dataset through synthetic data (Chawla et al., 2002), relying on a K-NN classifier (Mani
and Zhang, 2003) or other distance metrics to select samples near the boundary between classes, or reassigning the labels
favoring minority classes (Chou et al., 2020).

A second class of approaches acts on the loss function. Arguably the simplest approach in this category is class reweighting
(cost-sensitive training), which assigns a larger weight in the loss function to examples from minority classes. This can be
done by rescaling the loss related to each example by the frequency of its class (Japkowicz, 2000), or by making use of an
auxiliary balanced validation dataset (Ren et al., 2018). However, in overparameterized regimes, the reweighting approach
may be ineffective in improving the performance related to minority groups (Sagawa et al., 2020). In addition, it has been
observed that resampling often outperforms reweighting significantly (see (An et al., 2020) and references therein).
Another strategy is to increase the margins of the loss, which was shown to be effective in reducing the imbalance
problem (Huang et al., 2016; Dong et al., 2018; Menon et al., 2020). Other recently successful techniques include tailored
regularizers (Alshammari et al., 2022) or adapting the loss to allow for supervised contrastive learning (Zhu et al., 2022).

A final way to mitigate class imbalance is to rely on algorithmic solutions. This can be done by: acting on the initial
conditions, given empirical evidence that pretraining can be beneficial (Hendrycks et al., 2019); acting on the loss margins,
but doing this dynamically according to a learning schedule (Cao et al., 2019b); perturbing the inputs of the majority
class (Ye et al., 2021); by using an alternative momentum which properly suits imbalance (Tang et al., 2020); or by adapting
the direction of the gradient steps in order to suppress the domination of the majority class (Anand et al., 1993).

As discussed in (Johnson and Khoshgoftaar, 2019), all these methods achieve different levels of performance depending on
a multitude of conditions (classifier, performance metric, . . .). Importantly, these methods do not have well-understood
convergence guarantees (in contrast to the PCN algorithms studied in this paper).

B. Notation
We summarize here some of the notation that is employed in the paper:

• | · | : Absolute value of a scalar. When referred to a set, it denotes instead its cardinality, i.e. the number of elements
that make up the set

• ∥ · ∥ : L2 Norm

• % : Modulo operator

• x · y = ⟨x,y⟩ : inner product between two vectors x,y

• ∠(x,y) : angle between two vectors x,y

• Cl = {i | yi = l} : subgroup of indices belonging to class l

• Ct =
∥∇f(1)(xt)∥
∥∇f(0)(xt)∥

• Cµ,l = mint∈[0,T−1] 2µ
(l)(1 + cosα(xt))

• D = (ξi, yi)
n
i=1 : dataset

• Dl = (ξi, yi)i∈Cl
: Subgroup of D elements belonging to class l

• D
(l)
0 = [f (l)(x0)− f

(l)
∗ ]: in the mini-batch case the same quantity is computed as an expectation value, i.e. D(l)

0 =

E[f (l)(x0)− f
(l)
∗ ]
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• f(xt) ≡ 1
|D|
∑

i∈D fi(xt) : Average loss function calculated over all elements in the dataset.

• f (l)(xt) =
1

|D|
∑

i∈Cl
fi(xt) : contribution to f(xt) from class l

• f
(l)
∗ = minx∈Rd f (l)(x)

• G(l) = ∇f
(l)
nl + 1√

ñl
Z(l)

• g(l)(xt) = ∇ñf
(l)(xt): see ∇ñf

(l)(xt)

• L: total number of classes

• L1 : Lipschitz constant of the generic per-class loss f (l)

• L2 : Smooth constant of the generic per-class loss f (l)

• Ne : total number of simulation epochs

• n : dataset size, i.e. the number of elements that makes up the dataset

• nl : Number of examples in the dataset belonging to class l

• ñ = |γt| : batch size at step t; note that for full-batch algorithms (e.g. GD) |γt| = n

• ñl : Number of examples in the batch belonging to class l

• xt : set of network parameters at time t

• yi ∈ [0, . . . , L− 1] : label ; by convention, label " 0 " identifies the majority class of the dataset

• Z(l): zero-average multivariate Gaussian random variable whose distribution is fixed by the covariance matrix associated
with the gradients of the lth class

• α(xt) = ∠(∇f (0)(xt),∇f (1)(xt)) : angle between the 2 gradients per-class in binary classification problems (in
multi-class problems it is necessary to introduce additional indices to identify the classes considered in the angle
calculation)

• βt = cos(α(xt))

• γt: batch selected at step t

• {γt}e: set of batches defined for the epoch e

• ηt : learning rate

• µ(l) : Per-class gradient dominated constant

• ξi ∈ Rd : input vector

• ρk = nk

n : fraction of elements in the dataset belonging to class k

• σ2
l : finite upper bound for E∥∇f (l)(xt)− g(l)(xt)∥2

• ωmin is defined differently in the various theorems; in each of them the definition is reported before the beginning of
the proof

• ∇ñf
(l)(xt) : is the gradient over a random batch of size ñ, for examples belonging to the class l

• ∇f
(l)
ñl

(xt) =
1
ñl

∑
i∈Cl
i∈γt

∇fi(xt) : Average gradient computed on the elements in the batch belonging to class l. Note

that ∇f
(l)
ñl

(xt) and ∇ñf
(l)(xt) differ by only one factor in particular ∇f

(l)
ñl

(xt) =
ñ
ñl
∇ñf

(l)(xt)

13
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C. Convergence rate GD
In this section, we derive a worst-case convergence analysis of the GD iterates for the per-class loss. Similar analyses
are typically performed on a loss that combines all classes. We refer the reader to (Nesterov, 2003) for convex functions,
to (Ghadimi and Lan, 2013) for non-convex (but smooth) functions, and to (Karimi et al., 2016) for PL functions.

We start by stating a more formal version of Theorem 4.1, followed by its proof. For the sake of clarity, we prove our results
for the binary case, where the number of classes L = 2.

In the following, we denote by f
(l)
∗ = minx∈Rd f (l)(x) the global minimum loss for each class l (assuming each loss f (l) is

lower bounded). Note that we do not require the minimum itself for each class to be unique.

Theorem C.1 (Formal version of Theorem 4.1). Assume that each f (l) is L1-Lipshitz and L2-smooth and let
α(xt) = ∠(∇f (l)(xt),∇f (1−l)(xt)). If ∥∇f (1−l)(xt)∥ ̸= 0 and cos(α(xt)) > − 1

Ct
where Ct :=

∥∇f(1−l)(xt)∥
∥∇f(l)(xt)∥

for

all iterations t ∈ [0, T − 1], the iterates of gradient descent with step size ηt = min
(

1+cos(α(xt))Ct

2(1+C2
t )L2

, c√
T

)
where

c > 0 satisfy

min
s∈[0,T−1]

∥∇f (l)(xs)∥2 ≤ 2(1 + Cmax)L2

(ω
(l)
min)

2T
D

(l)
0 +

1

ω
(l)
minc

√
T
D

(l)
0 ,

for each l ∈ {0, 1}, where D
(l)
0 = [f (l)(x0) − f

(l)
∗ ], ω

(l)
min = mint∈[0,T−1] 1 + cos(α(xt))Ct, and Cmax =

maxt∈[0,T−1] C
2
t .

Proof. We only write the detail for the function f (0) since the proof for f (1) is identical.

Since each function f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2 (9)

= f (0)(xt)− ηt⟨∇f (0)(xt),∇f(xt)⟩+
L2η

2
t

2
∥∇f(xt)∥2

≤ f (0)(xt)− ηt

∥∥∥∇f (0)(xt)
∥∥∥2 − ηt⟨∇f (0)(xt),∇f (1)(xt)⟩+ L2η

2
t

∥∥∥∇f (0)(xt)
∥∥∥2 + L2η

2
t

∥∥∥∇f (1)(xt)
∥∥∥2

= f (0)(xt)− ηt(1− L2ηt)
∥∥∥∇f (0)(xt)

∥∥∥2 − ηt⟨∇f (0)(xt),∇f (1)(xt)⟩+ L2η
2
t

∥∥∥∇f (1)(xt)
∥∥∥2

= f (0)(xt)− ηt(1− L2ηt)
∥∥∥∇f (0)(xt)

∥∥∥2 − ηt cos(α(xt))∥∇f (0)(xt)∥∥∇f (1)(xt)∥+ L2η
2
t

∥∥∥∇f (1)(xt)
∥∥∥2 ,

where the inequality in the third line is simply due to ∥x+ y∥22 ≤ 2∥x∥22 + 2∥y∥22 for any x,y ∈ Rd.

Let Ct :=
∥∇f(1)(xt)∥
∥∇f(0)(xt)∥

. We get

f (0)(xt+1) ≤ f (0)(xt)− ηt
(
1 + cos(α(xt))Ct − L2ηt − L2ηtC

2
t

) ∥∥∥∇f (0)(xt)
∥∥∥2

=⇒ ηt
(
1 + cos(α(xt))Ct − (1 + C2

t )L2ηt
) ∥∥∥∇f (0)(xt)

∥∥∥2 ≤ f (0)(xt)− f (0)(xt+1). (10)

At this point, we see that we need the following condition on the angle α(xt):

cos(α(xt)) > − 1

Ct
. (11)

Taking ηt = min
(

1+cos(α(xt))Ct

2(1+C2
t )L2

, c√
T

)
(where c > 0), we have

ηt(1 + cos(α(xt))Ct)− η2t (1 + C2
t )L2 ≥ ηt

2
(1 + cos(α(xt))Ct),

14
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therefore
ηt
2
(1 + cos(α(xt))Ct)

∥∥∥∇f (0)(xt)
∥∥∥2 ≤ f (0)(xt)− f (0)(xt+1). (12)

Let ωt := 1 + cos(α(xt))Ct, then∥∥∥∇f (0)(xt)
∥∥∥2 ≤ 2

ωtηt
(f (0)(xt)− f (0)(xt+1))

≤
(
max

t

1

ωt

)
2

ηt
(f (0)(xt)− f (0)(xt+1)). (13)

Let ω(0)
min = mint∈[0,T−1] ωt and Cmax := maxt∈[0,T−1] C

2
t . By summing from t = 0 to T − 1,

min
s∈[0,T−1]

∥∇f (0)(xs)∥2 ≤ 1

T

T−1∑
t=0

∥∇f (0)(xt)∥2

≤ 1

ω
(0)
minT

max

(
2(1 + Cmax)L2

ω
(0)
min

,

√
T

c

)
[f (0)(x0)− f (0)(xT )]

≤ 1

ω
(0)
minT

(
2(1 + Cmax)L2

ω
(0)
min

+

√
T

c

)
[f (0)(x0)− f

(0)
∗ ]

≤ 2(1 + Cmax)L2

(ω
(0)
min)

2T
[f (0)(x0)− f

(0)
∗ ] +

1

ω
(0)
minc

√
T
[f (0)(x0)− f

(0)
∗ ], (14)

where f
(0)
∗ denotes the global minimum of f (0)(x). Note that Eq. (14) is related to the imbalance, since both c and ω

(0)
min

depend on Ct, which at least at the beginning of the dynamics depends on the imbalance.

We note that the condition required in the theorem, cos(α(xt)) > −∥∇f(0)(xt)∥
∥∇f(1)(xt)∥

is quite restrictive and might not be satisfied
in practice. We discuss this in more detail next.

Tightness of the upper bound Consider a quadratic function with a constant diagonal Hessian where all eigenvalues are
equal to L, and for which

f (0)(xt+1) = f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f (0)(xt)− ηt⟨∇f (0)(xt),∇f(xt)⟩+
Lη2t
2

∥∇f(xt)∥2

= f (0)(xt)− ηt

∥∥∥∇f (0)(xt)
∥∥∥2 − ηt⟨∇f (0)(xt),∇f (1)(xt)⟩+

Lη2t
2

∥∥∥∇f (0)(xt)
∥∥∥2 + Lη2t

2

∥∥∥∇f (1)(xt)
∥∥∥2

+ Lη2t ⟨∇f (0)(xt),∇f (1)(xt)⟩

= f (0)(xt)− ηt

(
1− Lηt

2

)∥∥∥∇f (0)(xt)
∥∥∥2 − ηt(1− Lηt)⟨∇f (0)(xt),∇f (1)(xt)⟩+

Lη2t
2

∥∥∥∇f (1)(xt)
∥∥∥2 .

Let Ct :=
∥∇f(1)(xt)∥
∥∇f(0)(xt)∥

. We get

f (0)(xt+1) = f (0)(xt)− ηt
(
1− Lηt/2− LηtC

2
t /2 + (1− Lηt) cos(α(xt))Ct

) ∥∥∥∇f (0)(xt)
∥∥∥2 . (15)

We see that in order to decrease f (0), we require the following condition to hold:

1− (1 + C2
t )Lηt/2 + (1− Lηt) cos(α(xt))Ct > 0.

15



A Theoretical Analysis of the Learning Dynamics under Class Imbalance

Taking ηt =
c√
T

, we see that we require the following condition on the step-size:

c ≤ (1 + cos(α(xt))Ct)
√
T

(1 + C2
t )L/2 + L cos(α(xt))Ct

,

which in turns require 1 + cos(α(xt))Ct > 0. We therefore see that this condition can not be avoided when considering
worst-case guarantees.

Alternate step size We also derive a convergence result for the case where the step size does not depend on the total
number of iterations T . This allows us to obtain a faster rate of convergence, but we still observe a severe restriction on the
angle between the gradient of the two classes.

Theorem C.2. Assume that each f (l) is L1-Lipshitz and L2-smooth. There is a choice of step size that such under
restricted conditions on the angle α(xt), we get

min
t≤T

∥∇f (l)(xt)∥2 ≤ f (l)(x0)− f
(l)
∗

ω(T + 1)
, (16)

where ω = mint η(1± |βt|Ct − L2η(1 + C2
t )).

Proof. Since each function f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2 (17)

= f (0)(xt)− η⟨∇f (0)(xt),∇f(xt)⟩+
L2η

2

2
∥∇f(xt)∥2

≤ f (0)(xt)− η
∥∥∥∇f (0)(xt)

∥∥∥2 − η⟨∇f (0)(xt),∇f (1)(xt)⟩+ L2η
2
∥∥∥∇f (0)(xt)

∥∥∥2 + L2η
2
∥∥∥∇f (1)(xt)

∥∥∥2
= f (0)(xt)− η(1− L2η)

∥∥∥∇f (0)(xt)
∥∥∥2 − η⟨∇f (0)(xt),∇f (1)(xt)⟩+ L2η

2
∥∥∥∇f (1)(xt)

∥∥∥2
= f (0)(xt)− η(1− L2η)

∥∥∥∇f (0)(xt)
∥∥∥2 − η cos(α(xt))∥∇f (0)(xt)∥∥∇f (1)(xt)∥+ L2η

2
∥∥∥∇f (1)(xt)

∥∥∥2 .
Let ∥∇f (1)(xt)∥ = Ct∥∇f (0)(xt)∥ for Ct ≥ 0 and βt = cos(α(xt)). Note that Ct depends on time.

Case 1: βt < 0

f (0)(xt+1) ≤ f (0)(xt)− η(1− L2η)
∥∥∥∇f (0)(xt)

∥∥∥2 + η|βt|Ct∥∇f (0)(xt)∥2 + L2η
2C2

t

∥∥∥∇f (0)(xt)
∥∥∥2

= f (0)(xt)− η(1− |βt|Ct − L2η(1 + C2
t ))
∥∥∥∇f (0)(xt)

∥∥∥2 . (18)

We need

(1− |βt|Ct − L2η(1 + C2
t )) > 0 =⇒ η <

1− |βt|Ct

L2(1 + C2
t )

. (19)

We also need Ct <
1

|βt| for the function to decrease.

Case 2: βt ≥ 0

f (0)(xt+1) ≤ f (0)(xt)− η(1− L2η)
∥∥∥∇f (0)(xt)

∥∥∥2 − η|βt|Ct∥∇f (0)(xt)∥2 + L2η
2C2

t

∥∥∥∇f (0)(xt)
∥∥∥2

= f (0)(xt)− η(1 + |βt|Ct − L2η(1 + C2
t ))
∥∥∥∇f (0)(xt)

∥∥∥2 . (20)

16
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We need

(1 + |βt|Ct − L2η(1 + C2
t )) > 0 =⇒ η <

1 + |βt|Ct

L2(1 + C2
t )

. (21)

Function decrease In both cases, we have an equation of the form

f (0)(xt+1) ≤ f (0)(xt)− ωt

∥∥∥∇f (0)(xt)
∥∥∥2 , (22)

where ωt = η(1± |βt|Ct − L2η(1 + C2
t )).

Let ω = mint ωt. We then sum up the above inequality:

ω

T∑
t=0

∥∇f (0)(xt)∥2 ≤ f (0)(x0)− f (0)(xT+1) ≤ f (0)(x0)− f
(0)
∗ , (23)

where f
(0)
∗ is the global minimum loss of class 0.

Finally, we lower bound ∥∇f (0)(xt)∥ by its minimum,

min
t≤T

∥∇f (0)(xt)∥2 ≤ f (0)(x0)− f
(0)
∗

ω(T + 1)
(24)

We see that we are only guaranteed a function decrease if ωt > 0, i.e. βt ≥ 0 or βt ≤ 0 and Ct <
1

|βt| .

D. Convergence rate PCNGD
This section contains the formal version of Theorem 4.2, with a detailed proof.

Theorem D.1 (Formal version of Theorem 4.2). Assume that each f (l) is L1-Lipschitz and L2-smooth. Then if
cosα(xt) ̸= −1 for all iterations t ∈ [0, T − 1], the iterates of PCNGD with step size ηt =

c√
T

where c > 0 satisfy

min
s∈[0,T−1]

∥∇f (l)(xs)∥ ≤ 1

ωmin

√
T

(
D

(l)
0

c
+ 2L2c

)
,

for each l ∈ {0, 1}, where D
(l)
0 = [f (l)(x0)− f

(l)
∗ ] and ωmin := mint∈[0,T−1](1 + cosα(xt)).

Proof. We only write the detail for the function f (0) since the proof for f (1) is identical.

First, since f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2

≤ f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt⟨∇f (0)(xt),
∇f (1)(xt)

∥∇f (1)(xt)∥
⟩

+ L2η
2
t

∥∥∥∥ ∇f (0)(xt)

∥∇f (0)(xt)∥

∥∥∥∥2 + L2η
2
t

∥∥∥∥ ∇f (1)(xt)

∥∇f (1)(xt)∥

∥∥∥∥2
= f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt∥∇f (0)(xt)∥ cosα(xt) + 2L2η

2
t

= f (0)(xt)− ηt(1 + cosα(xt))∥∇f (0)(xt)∥+ 2L2η
2
t . (25)
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Since, at least at the beginning of training, both (1 + cosα(xt)) and ∥∇f (l)(xt)∥ are strictly positive, Eq. 25 implies that,
for a small enough learning rate, the per-class loss at time t+ 1 is smaller than that at time t, so the MID is avoided.

Let ωt := (1 + cosα(xt)) and ωmin := mint∈[0,T−1](1 + cosα(xt)). By rearranging the terms in the equation above, we
get

∥∇f (0)(xt)∥ ≤ 1

ηtωt
[f (0)(xt)− f (0)(xt+1)] +

2L2ηt
ωt

≤ 1

ηt

(
max

t∈[0,T−1]

1

ωt

)
[f (0)(xt)− f (0)(xt+1)] + 2L2ηt

(
max

t∈[0,T−1]

1

ωt

)
≤ 1

ηtωmin
[f (0)(xt)− f (0)(xt+1)] +

2L2ηt
ωmin

. (26)

Taking the minimum over t, we get

min
s∈[0,T−1]

∥∇f (0)(xs)∥ ≤ 1

T

T−1∑
t=0

∥∇f (0)(xt)∥

≤ 1

c ωmin

√
T
[f (0)(x0)− f (0)(xT )] +

2L2c

ωmin

√
T

≤ 1

c ωmin

√
T
[f (0)(x0)− f

(0)
∗ ] +

2L2c

ωmin

√
T

≤ 1

ωmin

√
T

(
1

c
[f (0)(x0)− f

(0)
∗ ] + 2L2c

)
. (27)

Alternate choice of step size We also present a second version of Theorem 4.2 with an alternate choice of step size.

Theorem D.2 (Second formal version of Theorem 4.2). Assume that each f (l) is L1-Lipschitz and L2-smooth. Then if
cosα(xt) ̸= −1 for all iterations t ∈ [0, T − 1], the iterates of PCNGD with step size ηt =

c
(1+cosα(xt))

√
T

where
c > 0 satisfy

min
s∈[0,T−1]

∥∇f (l)(xs)∥ ≤ 1√
T

(
D

(l)
0

c
+

2L2c

ωmin

)
,

for each l ∈ {0, 1}, where D
(l)
0 = [f (l)(x0)− f

(l)
∗ ] and ωmin := mint∈[0,T−1](1 + cosα(xt))

2.

Proof. We only write the detail for the function f (0) since the proof for f (1) is identical.

18
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First, since f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2

≤ f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt⟨∇f (0)(xt),
∇f (1)(xt)

∥∇f (1)(xt)∥
⟩

+ L2η
2
t

∥∥∥∥ ∇f (0)(xt)

∥∇f (0)(xt)∥

∥∥∥∥2 + L2η
2
t

∥∥∥∥ ∇f (1)(xt)

∥∇f (1)(xt)∥

∥∥∥∥2
= f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt∥∇f (0)(xt)∥ cosα(xt) + 2L2η

2
t

= f (0)(xt)− ηt(1 + cosα(xt))∥∇f (0)(xt)∥+ 2L2η
2
t

= f (0)(xt)−
c√
T
∥∇f (0)(xt)∥+ 2L2

c2

T (1 + cosα(xt))2
. (28)

Let ωmin := mint∈[0,T−1](1 + cosα(xt))
2. By rearranging the terms in the equation above, we get

∥∇f (0)(xt)∥ ≤
√
T

c
[f (0)(xt)− f (0)(xt+1)] + max

t∈[0,T−1]

2L2c√
T (1 + cosα(xt))2

≤
√
T

c
[f (0)(xt)− f (0)(xt+1)] +

2L2c√
Tωmin

. (29)

Taking the minimum over t, we get

min
s∈[0,T−1]

∥∇f (0)(xs)∥ ≤ 1

T

T−1∑
t=0

∥∇f (0)(xt)∥

≤ 1

c
√
T
[f (0)(x0)− f (0)(xT )] +

2L2c√
Tωmin

≤ 1

c
√
T
[f (0)(x0)− f

(0)
∗ ] +

2L2c√
Tωmin

≤ 1√
T

(
1

c
[f (0)(x0)− f

(0)
∗ ] +

2L2c

ωmin

)
. (30)

Randomized iterate Next, we use the same randomization technique as in (Ghadimi and Lan, 2013) where we choose an
iterate of SGD at random according to a particular probability distribution.

Theorem D.3 (R-PCNGD). Let the probability mass function PR(·) be defined as

PR(t) = Prob{R = t} =
ωt∑T−1

t=0 ωt

, (31)

where ωt := (1 + cosα(xt)).
Then, for any step size ηt =

c√
T

and cosα(xt) ̸= −1 for all iterations t, we have for l = {0, 1},

E∥∇f (l)(xR)∥ ≤ 1√
T ω̄

[
c−1(f (l)(x0)− f (l)(x∗)) + 2L2c

]
, (32)

where ω̄ = 1
T

∑T−1
t=0 ωt.
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Proof. We only write the detail for the function f (0) since the proof for f (1) is identical.

First, since f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2

≤ f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt⟨∇f (0)(xt),
∇f (1)(xt)

∥∇f (1)(xt)∥
⟩

+ L2η
2
t

∥∥∥∥ ∇f (0)(xt)

∥∇f (0)(xt)∥

∥∥∥∥2 + L2η
2
t

∥∥∥∥ ∇f (1)(xt)

∥∇f (1)(xt)∥

∥∥∥∥2
= f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt∥∇f (0)(xt)∥ cosα(xt) + 2L2η

2
t

= f (0)(xt)− ηt(1 + cosα(xt))∥∇f (0)(xt)∥+ 2L2η
2
t . (33)

Let ωt := (1 + cosα(xt)). By rearranging the terms in the equation above, we get

ωt∥∇f (0)(xt)∥ ≤ 1

ηt
[f (0)(xt)− f (0)(xt+1)] + 2L2ηt (34)

By summing from t = 0 to T − 1 and dividing by
∑T−1

t=0 ωt,∑T−1
t=0 ωt∥∇f (0)(xt)∥∑T−1

t=0 ωt

≤
(
∑T−1

t=0 ηt)
−1∑T−1

t=0 ωt

(f (0)(x0)− f
(0)
∗ ) +

2L2

∑T−1
t=0 ηt∑T−1

t=0 ωt

=
(
∑T−1

t=0 ηt)
−1

T ω̄
(f (0)(x0)− f

(0)
∗ ) +

2L2

∑T−1
t=0 ηt

T ω̄
, (35)

where ω̄ is the average of the sequence {ωt}T−1
t=0 .

Taking ηt = η := c√
T

, we obtain∑T−1
t=0 ωt∥∇f (0)(xt)∥∑T−1

t=0 ωt

≤ 1

cω̄
√
T
(f (0)(x0)− f

(0)
∗ ) +

2L2η

ω̄

≤ 1

cω̄
√
T
(f (0)(x0)− f

(0)
∗ ) +

2L2c√
T ω̄

(36)

Finally, observe that the RHS is an expectation E∥∇f (0)(xr)∥ for an appropriately chosen random variable xR according to
the distribution PR(·), therefore

E∥∇f (0)(xR)∥ ≤ 1√
T ω̄

[
c−1(f (0)(x0)− f

(0)
∗ ) + 2L2c

]
(37)

Convergence under Gradient dominance condition We prove convergence of PCNGD under a gradient-dominated
condition which is a variant of the Polyak-Łojasiewicz (PL) condition that has been shown to hold for overparametrized
neural networks (Liu et al., 2022). Instead of requiring this condition to hold for f , we require it to hold for each class
separately. Specifically, we say that a function satisfies the class-GD inequality if the following holds for each class l,

1

2
∥∇f (l)(x)∥ ≥ µ(l)|f (l)(x)− f (l)(x∗)|, ∀x ∈ Rm, (38)

for some constant µ(l) > 0. For finite-sum objective functions, the class-GD inequality implies the gradient-dominated
inequality.
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We are now ready to state the main convergence result for smooth and class-GD functions.

Theorem D.4 (Formal version of Theorem 4.3). Assume that each f (l) for l ∈ {0, 1} is L2-smooth and µ-class-GD.
Then if cosα(xt) ̸= −1 for all iterations t ∈ [0, T − 1], the iterates of PCNGD with step size ηt =

2t+1
Cµ,l(t+1)2 , we

have

f (l)(xT )− f
(l)
∗ ≤ 8L2

C2
µ,lT

, (39)

for each l ∈ {0, 1}, where Cµ,l := maxt∈[0,T−1] 2µ
(l)(1 + cosα(xt)). Furthermore, we obtain a linear rate of

convergence up to a ball with a constant step size ηt = η = c
Cµ,l

where c ∈ (0, 1):

f (l)(xT )− f
(l)
∗ ≤ (1− c)T−1(f (l)(x0)− f

(l)
∗ ) +

2L2c

C2
µ,l

. (40)

Proof. We again provide a proof for f (0) as the proof for f (1) is identical.

First, since f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2

≤ f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt⟨∇f (0)(xt),
∇f (1)(xt)

∥∇f (1)(xt)∥
⟩

+ L2η
2
t

∥∥∥∥ ∇f (0)(xt)

∥∇f (0)(xt)∥

∥∥∥∥2 + L2η
2
t

∥∥∥∥ ∇f (1)(xt)

∥∇f (1)(xt)∥

∥∥∥∥2
= f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt∥∇f (0)(xt)∥ cosα(xt) + 2L2η

2
t

= f (0)(xt)− ηt(1 + cosα(xt))∥∇f (0)(xt)∥+ 2L2η
2
t . (41)

Using the gradient-dominated condition, and subtracting f
(0)
∗ from both sides,

f (0)(xt+1)− f
(0)
∗ ≤ (1− 2ηtµ

(l)(1 + cosα(xt)))(f
(0)(xt)− f

(0)
∗ ) + 2L2η

2
t . (42)

Note that we need 0 < (1− 2ηtµ
(l)(1 + cosα(xt))) < 1 for all t, i.e.

ηt <
1

2µ(l)(1 + cosα(xt))
<

1

Cµ,l
,

where Cµ,l := maxt∈[0,T−1] 2µ
(l)(1 + cosα(xt)).

Decreasing step size Choose ηt =
2t+1

Cµ,l(t+1)2 , then

f (0)(xt+1)− f
(0)
∗ ≤

(
t2

(t+ 1)2

)
(f (0)(xt)− f

(0)
∗ ) +

2L2(2t+ 1)2

C2
µ,l(t+ 1)4

. (43)

Multiplying both sides by (t+ 1)2, and letting δf (t) = t2(f (0)(xt)− f
(0)
∗ ), we obtain

δf (k + 1) ≤ δf (k) +
2L2(2t+ 1)2

C2
µ,l(t+ 1)2

≤ δf (k) +
8L2

C2
µ,l

, (44)

where the last inequality is due to 2t+1
t+1 ≤ 2
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Summing up this inequality from t = 0 to T − 1, we conclude

δf (T ) ≤ δf (0) +
8L2T

C2
µ,l

(45)

=⇒ T 2(f (0)(xT )− f
(0)
∗ ) ≤ 8L2T

C2
µ,l

(46)

=⇒ f (0)(xT )− f
(0)
∗ ≤ 8L2

C2
µ,lT

. (47)

Constant step size: ηt = η > 0 Choose η = c
Cµ,l

for c ∈ (0, 1), then

f (0)(xt)− f
(0)
∗ ≤ (1− c)t−1(f (0)(x0)− f

(0)
∗ ) + 2L2η

2
t−1∑
i=0

(1− c)i

≤ (1− c)t−1(f (0)(x0)− f
(0)
∗ ) + 2L2η

2
∞∑
i=0

(1− c)i

≤ (1− c)t−1(f (0)(x0)− f
(0)
∗ ) +

2L2η
2

c
(48)

= (1− c)t−1(f (0)(x0)− f
(0)
∗ ) +

2L2c

C2
µ,l

, (49)

where we used the fact that the last term in the second line is a geometric series in the last equation.

D.1. Stochastic algorithms

We will now analyze the convergence property of PCNSGD whose update rule is given by

xt+1 = xt − ηt

(
∇ñf

(0)(xt)

∥∇ñf (0)(xt)∥
+

∇ñf
(1)(xt)

∥∇ñf (1)(xt)∥

)
, (50)

where the subscript ñ indicates gradients that are taken over batches of size ñ. In the following, we will use the shorthand
notation g(l)(xt) := ∇ñf

(l)(xt) (with l = 0, 1) to denote the stochastic gradients.

Theorem D.5 (Formal version of Theorem 5.1). Assume that each f (l) is L1-Lipschitz and L2-smooth and
E∥∇f (l)(xt) − g(l)(xt)∥2 ≤ σ2

l (where σl > 0). Then if cosα(xt) ̸= −1 for all iterations t ∈ [0, T − 1], the
iterates of PCNSGD with step size ηt =

c√
T

(where c > 0) satisfy

min
s∈[0,T−1]

E∥∇f (l)(xs)∥ ≤ 1

ωmax

√
T

(
D

(l)
0

c
+ 2L2c

)
+ σl

(
1 +

2

ωmax

)
,

for each l ∈ {0, 1}, where D
(l)
0 = E[f (l)(x0)− f

(l)
∗ ] and 0 < maxt∈[0,T−1](1 + cosα(xt)) < ωmax.

Proof. We only write the detail for the function f (0) since the proof for f (1) is identical. We also use the shorthand notation
σ := σ0.
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First, since f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2

≤ f (0)(xt)− ηt⟨∇f (0)(xt),
g(0)(xt)

∥g(0)(xt)∥
⟩ − ηt⟨∇f (0)(xt),

g(1)(xt)

∥g(1)(xt)∥
⟩

+ L2η
2
t

∥∥∥∥ g(0)(xt)

∥g(0)(xt)∥

∥∥∥∥2 + L2η
2
t

∥∥∥∥ g(1)(xt)

∥g(1)(xt)∥

∥∥∥∥2
= f (0)(xt)−ηt⟨∇f (0)(xt),

g(0)(xt)

∥g(0)(xt)∥
⟩︸ ︷︷ ︸

:=(A)

−ηt⟨∇f (0)(xt),
g(1)(xt)

∥g(1)(xt)∥
⟩︸ ︷︷ ︸

:=(B)

+2L2η
2
t . (51)

By simple manipulations, term (A) can be bounded as follows,

(A) = −ηt⟨∇f (0)(xt)− g(0)(xt),
g(0)(xt)

∥g(0)(xt)∥
⟩ − ηt

⟨g(0)(xt), g
(0)(xt)⟩

∥g(0)(xt)∥

= −ηt⟨∇f (0)(xt)− g(0)(xt),
g(0)(xt)

∥g(0)(xt)∥
⟩ − ηt∥g(0)(xt)∥

≤ ηt∥∇f (0)(xt)− g(0)(xt)∥ − ηt∥g(0)(xt)∥, (52)

where we used Cauchy-Schwarz in the last inequality.

Similarly for term (B),

(B) = −ηt⟨∇f (0)(xt),
g(1)(xt)

∥g(1)(xt)∥
⟩

≤ ηt∥∇f (0)(xt)− g(0)(xt)∥ − ηt∥g(0)(xt)∥ cosα(xt). (53)

Let ωmax > maxt∈[0,T−1](1 + cosα(xt)). Combining the last three equations and taking the expectation (over initial
conditions and batches) yields

E[f (0)(xt+1)− f (0)(xt)] ≤ 2ηtE∥∇f (0)(xt)− g(0)(xt)∥ − ηtE[∥g(0)(xt)∥(1 + cosα(xt))] + 2L2η
2
t

≤ 2ηt

√
E∥∇f (0)(xt)− g(0)(xt)∥2 − ηtωmaxE[∥g(0)(xt)∥] + 2L2η

2
t

≤ 2ηtσ − ηtωmaxE[∥g(0)(xt)∥] + 2L2η
2
t . (54)

From Eq. (54) we see that if σ is finite the loss function is not monotonic on average. In order to have a per-class loss
function which is monotonic on average and avoid the MID, σ needs to be small, which corresponds to a large batch size.

Since cos(αt) ̸= −1, we can rearrange the terms in Eq (54), getting

E∥g(0)(xt)∥ ≤ 1

ωmax

(
2σ +

1

ηt
E[f (0)(xt)− f (0)(xt+1)] + 2L2ηt

)
, (55)

therefore

E∥∇f (0)(xt)∥ ≤ E∥g(0)(xt)∥+ E∥∇f (0)(xt)− g(0)(xt)∥

≤ 2σ

ωmax
+

1

ωmaxηt
E[f (0)(xt)− f (0)(xt+1)] +

2L2ηt
ωmax

+
√

E∥∇f (0)(xt)− g(0)(xt)∥2

≤ 2σ

ωmax
+

1

ωmaxηt
E[f (0)(xt)− f (0)(xt+1)] +

2L2ηt
ωmax

+ σ. (56)

Taking the minimum over t, and using ηt =
c√
T

, we get
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min
s∈[0,T−1]

E∥∇f (0)(xs)∥ ≤ 1

T

T−1∑
t=0

E∥∇f (0)(xt)∥

≤ 1

c ωmax

√
T
E[f (0)(x0)− f (0)(xT )] +

2L2c

ωmax

√
T

+
2σ

ωmax
+ σ

≤ 1

c ωmax

√
T
E[f (0)(x0)− f

(0)
∗ ] +

2L2c

ωmax

√
T

+
2σ

ωmax
+ σ

≤ 1

ωmax

√
T

(
1

c
E[f (0)(x0)− f

(0)
∗ ] + 2L2c

)
+

2σ

ωmax
+ σ, (57)

where we used f
(0)
∗ ≤ f (0)(xT ) by definition of f (0)

∗ .

D.2. Projection of the PCNSGD steps onto the full-batch gradient

Here, we elicit more explicitly how Eq. (7) is obtained. On the left hand side we write the projection of the per-batch
gradients on the full batch. Then we use Eq. 6 for the per-batch gradients, and keep the leading orders:

(
∇f

(l)
ñl

∥∇f
(l)
ñl

∥

)
· ∇f

(l)
nl

∥∇f
(l)
nl ∥

=

(
∇f

(l)
nl

∥∇f
(l)
nl ∥

−
∇f

(l)
nl

(
∇f

(l)
nl · Z(l)

)
√
ñl∥∇f

(l)
nl ∥3

− ∇f
(l)
nl ∥Z(l)∥2

2ñl∥∇f
(l)
nl ∥3

+

+
3∇f

(l)
nl

(
∇f

(l)
nl · Z(l)

)2
2ñl∥∇f

(l)
nl ∥5

+
Z(l)

√
ñl∥∇f

(l)
nl ∥

−
Z(l)

(
∇f

(l)
nl · Z(l)

)
ñl∥∇f

(l)
nl ∥3

+ o

(
1

ñl

))
· ∇f

(l)
nl

∥∇f
(l)
nl ∥

= 1− ∥Z(l)∥2(1− cos(θ)2)

2ñl∥∇f
(l)
nl ∥2

+ o

(
1

ñl

)
.

(58)

Here, θ indicates the angle between Z(l) and ∇f
(l)
nl .

E. Multi-class analysis
In the following, we demonstrate how the analysis derived in previous sections can be adapted to multi-class problems. We
only derive the proof for the deterministic case (full-batch) with one choice of step-size, but the analysis can be adapted
similarly to other settings.

Gradient descent analysis The update is

xt+1 = xt − ηt∇f(xt) (59)

= xt − ηt

L−1∑
i=0

∇f (i)(xt). (60)
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Theorem E.1 (Formal, multiclass, version of Theorem 4.1 - multi-class). Assume that each f (l) is L1-Lipshitz and L2-
smooth and let α(l)(xt) = ∠(∇f (l)(xt),

∑
i ̸=l ∇f (i)(xt)). If ∥

∑
i ̸=l ∇f (i)(xt))∥ ̸= 0 and cos(α(l)(xt)) > − 1

C
(l)
t

where C
(l)
t :=

∥
∑

i̸=l ∇f(i)(xt)∥
∥∇f(l)(xt)∥

for all iterations t ∈ [0, T − 1], the iterates of gradient descent with step size

ηt = min

 1+cos(α(l)(xt))C
(l)
t

2

(
1+

(
C

(l)
t

)2
)
L2

, c√
T

 where c > 0 satisfy

min
s∈[0,T−1]

∥∇f (l)(xs)∥2 ≤ 2(1 + C
(l)
max)L2

(ω
(l)
min)

2T
D

(l)
0 +

1

ω
(l)
minc

√
T
D

(l)
0 ,

for each l ∈ {0, 1}, where D
(l)
0 = [f (l)(x0) − f

(l)
∗ ], ω(l)

min = mint∈[0,T−1] 1 + cos(α(l)(xt))C
(l)
t , and C

(l)
max =

maxt∈[0,T−1]

(
C

(l)
t

)2
.

Proof. We only write the detail for the function f (0) since the proof for the generic f (l) is identical. We use the shorthand
notation α := α(0), Ct := C

(0)
t .

Since each function f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2 (61)

= f (0)(xt)− ηt⟨∇f (0)(xt),∇f(xt)⟩+
L2η

2
t

2
∥∇f(xt)∥2

≤ f (0)(xt)− ηt

∥∥∥∇f (0)(xt)
∥∥∥2 − ηt⟨∇f (0)(xt),

∑
i ̸=0

∇f (i)(xt)⟩+ L2η
2
t

∥∥∥∇f (0)(xt)
∥∥∥2 + L2η

2
t

∥∥∥∥∥∥
∑
i ̸=0

∇f (i)(xt)

∥∥∥∥∥∥
2

= f (0)(xt)− ηt(1− L2ηt)
∥∥∥∇f (0)(xt)

∥∥∥2 − ηt⟨∇f (0)(xt),
∑
i̸=0

∇f (i)(xt)⟩+ L2η
2
t

∥∥∥∥∥∥
∑
i ̸=0

∇f (i)(xt)

∥∥∥∥∥∥
2

= f (0)(xt)− ηt(1− L2ηt)
∥∥∥∇f (0)(xt)

∥∥∥2 − ηt cos(α(xt))∥∇f (0)(xt)∥∥
∑
i̸=0

∇f (i)(xt)∥+ L2η
2
t

∥∥∥∥∥∥
∑
i̸=0

∇f (i)(xt)

∥∥∥∥∥∥
2

,

where the inequality in the third line is simply due to ∥x+ y∥22 ≤ 2∥x∥22 + 2∥y∥22 for any x,y ∈ Rd.

Let Ct :=
∥
∑

i̸=0 ∇f(i)(xt)∥
∥∇f(0)(xt)∥

. Note that, in the presence of only two classes, this definition reduces to the same as the one
used in other sections. We get

f (0)(xt+1) ≤ f (0)(xt)− ηt
(
1 + cos(α(xt))Ct − L2ηt − L2ηtC

2
t

) ∥∥∥∇f (0)(xt)
∥∥∥2

=⇒ ηt(1 + cos(α(xt))Ct − (1 + C2
t )L2ηt)

∥∥∥∇f (0)(xt)
∥∥∥2 ≤ f (0)(xt)− f (0)(xt+1). (62)

At this point, we see that, in order to have a monotonic decrease of the loss related to class 0, we need the following condition
on the angle α(xt):

cos(α(xt)) > − 1

Ct
. (63)
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Taking ηt = min
(

1+cos(α(xt))Ct

2(1+C2
t )L2

, c√
T

)
, we have

ηt(1 + cos(α(xt))Ct)− η2t (1 + C2
t )L2 ≥ ηt

2
(1 + cos(α(xt))Ct),

therefore
ηt
2
(1 + cos(α(xt))Ct)

∥∥∥∇f (0)(xt)
∥∥∥2 ≤ f (0)(xt)− f (0)(xt+1). (64)

Let ωt := 1 + cos(α(xt))Ct, then ∥∥∥∇f (0)(xt)
∥∥∥2 ≤ 2

ωtηt
(f (0)(xt)− f (0)(xt+1)). (65)

Let ω(0)
min = mint∈[0,T−1] ωt and Cmax := maxt∈[0,T−1] C

2
t . By summing from t = 0 to T − 1,

min
s∈[0,T−1]

∥∇f (0)(xs)∥2 ≤ 1

T

T−1∑
t=0

∥∇f (0)(xt)∥2

≤ 1

ω
(0)
minT

max

(
2(1 + Cmax)L2

ω
(0)
min

,

√
T

c

)
[f (0)(x0)− f (0)(xT )]

≤ 1

ω
(0)
minT

(
2(1 + Cmax)L2

ω
(0)
min

+

√
T

c

)
[f (0)(x0)− f

(0)
∗ ]

≤ 2(1 + Cmax)L2

(ω
(0)
min)

2T
[f (0)(x0)− f

(0)
∗ ] +

1

ω
(0)
minc

√
T
[f (0)(x0)− f

(0)
∗ ], (66)

where f
(0)
∗ denotes the global minimum of f (0)(x). Note that Eq. (66) is related to the imbalance, since both c and ω

(0)
min

depend on Ct, which at least at the beginning of the dynamics depends on the imbalance.

We now want to get an intuition on the meaning of Th. E.1 and how condition (63) varies with imbalance and number
of classes. Since the numerator of Ct is the norm of a sum of vectors, the value of Ct depends on the mutual angles
between the per-class gradients. This these are a priori not known, we will use the worst-case scenario to elucidate the
role of condition (63). The worse-case scenario for the optimization of class 0 is when all the (L − 1) gradient vectors{
∇f (i)(xt)

}
i ̸=0

are collinear and pointing in the same direction (and, in the case of imbalance, class 0 is the minority class).

Using the extensivity of the gradient, we can write ∥∇f (i)(xt)∥ ∼ niMi where ni indicates the number of elements inside
the class i, and Mi the typical gradient norm (we are assuming that fluctuations have a finite variance). In the case of a
balanced dataset, ni = n̂ ∀i. If all classes are equivalent, we can write ∥∇f (i)(xt)∥ ∼ n̂M . Under these assumptions, we
will have, in the worst-case scenario for a balanced dataset

Ct = (L− 1) , (67)

where we see that condition (63) is increasingly restrictive with the number of classes.

Let us now relax the hypothesis of balanced dataset to consider imbalance. If, again, different classes have similar gradient
norms, the difference between per-class gradients reduce to the imbalance between classes. For the worst-case scenario

Ct =

∑
i ̸=0 ni

n0
. (68)

Comparing the condition in case of imbalance with the balanced case (Eq. (67)) we can see how, if class 0 is a minority
class (which is the case we are interested in), the worst-case scenario become more restrictive; the imbalance condition
implies, in fact,

∑
i̸=0 ni

n0
> (L− 1).
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Example We now show a simple example where the worst-case scenario value derived above represent a good estimation
of the general case, i.e. the limit where the value of Ct is not influenced by the angles between the set of vectors{
∇f (i)(xt)

}
i ̸=0

. Let us consider a problem with L classes with a big gap between the population of the majority one and
all the others. We say there are N examples in total, the majority class, L, has nL examples, and minority classes have
ϵ ≪ nL

L examples. In this case, there is no significant difference induced by the interference between the (L− 1) vectors
and Eq. (68) becomes

Ct ∼
N

ϵ
≫ 1 , (69)

where we remind the reader that the least restrictive value for Ct is Ct = 1, and the bigger Ct, the more stringent
condition (63) becomes.

PCNGD We now turn to the analysis of PCNGD in the multi-class scenario. We study the following variant for the
multi-class case:

xt+1 = xt − ηt

L−1∑
i=0

∇f (i)(xt)

∥∇f (i)(xt)∥
, (70)

which recovers the binary update for L = 2:

xt+1 = xt − ηt

(
∇f (0)(xt)

∥∇f (0)(xt)∥
+

∇f (1)(xt)

∥∇f (1)(xt)∥

)
. (71)

Theorem E.2 (Formal version of Theorem 4.2). Assume that each f (l) is L1-Lipschitz and L2-smooth and let
α(l)(xt) = ∠(∇f (l)(xt),

∑
i ̸=l

∇f(i)(xt))
∥∇f(i)(xt))∥

). Then if cosα(l)(xt) ̸= −1 for all iterations t ∈ [0, T − 1], the iterates
of PCNGD with step size ηt =

c√
T

where c > 0 satisfy

min
s∈[0,T−1]

∥∇f (l)(xs)∥ ≤ 1

ω
(l)
min

√
T

(
D

(l)
0

c(K − 1)
+ L2c

)
,

for each l ∈ {0, . . . L− 1}, where D
(l)
0 = [f (l)(x0)− f

(l)
∗ ] and ω

(l)
min := mint∈[0,T−1](1 + cosα(l)(xt)).

Proof. We only write the detail for the function f (0) since the proof for any f (l) is identical. We use the shorthand notation
α := α(0).

First, since f (0) is L2-smooth, we have

f (0)(xt+1) ≤ f (0)(xt) + ⟨∇f (0)(xt),xt+1 − xt⟩+
L2

2
∥xt+1 − xt∥2

≤ f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt⟨∇f (0)(xt),
∑
i ̸=0

∇f (i)(xt)

∥∇f (i)(xt)∥
⟩+ L2

2
η2t

∥∥∥∥∥
K−1∑
i=0

∇f (i)(xt)

∥∇f (i)(xt)∥

∥∥∥∥∥
2

= f (0)(xt)− ηt∥∇f (0)(xt)∥ − ηt

∥∥∥∥∥∥
∑
i̸=0

∇f (i)(xt)

∥∇f (i)(xt)∥

∥∥∥∥∥∥ ∥∇f (0)(xt)∥ cosα(xt) +
L2

2

∥∥∥∥∥
L−1∑
i=0

∇f (i)(xt)

∥∇f (i)(xt)∥

∥∥∥∥∥
2

η2t

= f (0)(xt)− ηt

1 +

∥∥∥∥∥∥
∑
i ̸=0

∇f (i)(xt)

∥∇f (i)(xt)∥

∥∥∥∥∥∥ cosα(xt)

 ∥∇f (0)(xt)∥+
L2

2

∥∥∥∥∥
L−1∑
i=0

∇f (i)(xt)

∥∇f (i)(xt)∥

∥∥∥∥∥
2

η2t . (72)

Taking a sufficiently small ηt the monotonicity condition for the per-class loss function (considering only first-order term in
ηt) is:

cosα(l)(xt) > − 1

C̃t

(73)
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Figure S6. Comparison between GD (left schemes) and PCNGD (right schemes) for both balcanced (upper schemes) and imbalanced
cases (bottom scheme). All diagrams represent the L per-class gradient vectors (normalized vectors in the PCNGD cases); all vectors are
centered on the same point, 0. From Eq. (73) and Eq. (63), we know that the convergence condition depends on Ct (and C̃t respectively )
which, in turns, depends on the norms of the gradient contribution coming from classes different from 0 (red vectors in the diagram). In
particular, fixed ∥∇f (0)(xt)∥, the bigger the norm of the red vector is (with respect to the norm of the purple vector), the more restrictive
the condition becomes. Here we report a visual low-dimensional representation of the worst-case scenario.

with C̃t = C̃
(0)
t ≡

∥∥∥∑i ̸=0
∇f(i)(xt)

∥∇f(i)(xt)∥

∥∥∥. Similarly as done for GD we can, also in this case, starting from the set of per-class

norms, get C̃t in the worst-case scenario, i.e.
Ct = (L− 1) (74)

Note that this is identical to the one derived for GD in the balanced case. Now, however the interval does not change with
imbalance, i.e. for PCNGD in the imbalanced case, we get the same condition for GD in the balanced case (see Fig. S6).
Finally, we note that although the condition on the angle does not depend on imbalance, is still does depend on the number
of classes, in PCNGD as for GD.

Since, at least at the beginning of training, both (1 + cosα(xt)) and ∥∇f (l)(xt)∥ are strictly positive, Eq. 72 implies that,
for a small enough learning rate, the per-class loss at time t+ 1 is smaller than that at time t, so the MID is avoided.

Let ωmin := mint∈[0,T−1](1 + cosα(xt)). By rearranging the terms in the equation above, we get

∥∇f (0)(xt)∥ ≤ 1

ηt(L− 1)ωmin
[f (0)(xt)− f (0)(xt+1)] +

K2L2ηt
2(L− 1)ωmin

. (75)

Taking the minimum over t, we get

min
s∈[0,T−1]

∥∇f (0)(xs)∥ ≤ 1

T

T−1∑
t=0

∥∇f (0)(xt)∥

≤ 1

c ωmin(L− 1)
√
T
[f (0)(x0)− f (0)(xT )] +

K2L2c

2(L− 1)ωmin

√
T

≤ 1

c ωmin(L− 1)
√
T
[f (0)(x0)− f

(0)
∗ ] +

K2L2c

2(L− 1)ωmin

√
T

≤ 1

ωmin(L− 1)
√
T

(
1

c
[f (0)(x0)− f

(0)
∗ ] +

L2

2
L2c

)
. (76)
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F. Algorithms
In this section we give a summary presentation (with pseudo-codes) of the various variants of (S)GD introduced in the study.

F.1. PCNGD

Algorithm 1 PCNGD
1: Initialize x0

2: Split D into subgroups {Dl}
3: for epoch e ∈ [1, . . . , Ne] do
4: for l ∈ [0, . . . , L− 1] do
5: Calculate ∇f (l)(xt) and ∥∇f (l)(xt)∥
6: end for
7: xt+1 = xt − ηt

(∑
l

∇f(l)(xt)
∥∇f(l)(xt)∥

)
{Update the set of parameters}

8: end for

After initializing the network weights, x0 , (line 1 in Algorithm 1) we split the examples of the dataset according to their
class (line 2 in Algorithm 1). For each epoch we calculate the gradient associated with the individual classes and the
corresponding norm (line 4 in Algorithm 1). Finally, we use the calculated quantities to perform the update rule (line 5 in
Algorithm 1).

F.2. PCNSGD

Algorithm 2 PCNSGD
1: Initialize x0

2: Split D into subgroups {Dl}
3: for epoch e ∈ [1, . . . , Ne] do
4: Shuffle {Dl}
5: Group {Dl} into {γ(l)

t }e
6: for i ∈ [1, . . . , Nb] do
7: for l ∈ [0, . . . , L− 1] do
8: Select γ(l)

t

9: Calculate ∇ñf
(l)(xt) and ∥∇ñf

(l)(xt)∥
10: end for
11: xt+1 = xt − ηt

(∑
l

∇ñf
(l)(xt)

∥∇ñf(l)(xt)∥

)
{Update the set of parameters}

12: end for
13: end for

After initializing the network weights, x0 , (line 1 in Algorithm 2) we split the examples of the dataset according to their
class (line 2 in Algorithm 2). At the beginning of each epoch we shuffle the elements of each subgroup (line 4 in Algorithm
2) and group them into per-class batches (line 5 in Algorithm 2). Note that the per-class batch sizes are set by the imbalance
ratio; consequently the number of per-class batches is the same ∀l, i.e. |{γ(l)

t }| = N
(l)
b = Nb.

We then begin to iterate over the batch index (line 6 in Algorithm 2); at each step we then select a per-class batch (line 8 in
Algorithm 2) and calculate the gradient associated with it and its norm (line 9 in Algorithm 2). Finally, we use the calculated
quantities to apply the update rule on the network weights (line 11 in Algorithm 2).

F.3. PCNSGD+O

After initializing the network weights, x0 , (line 1 in Algorithm 3) we split the examples of the dataset according to their
class (line 2 in Algorithm 3). At the beginning of each epoch we shuffle the elements of each subgroup (line 4 in Algorithm
3) and group them into per-class batches using the same per-class batch size, |γ(l)

t | = |γt| ∀l (line 5 in Algorithm 3). We
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Algorithm 3 PCNSGD+O
1: Initialize x0

2: Split D into subgroups {Dl}
3: for epoch e ∈ [1, . . . , Ne] do
4: Shuffle {Dl}
5: Group {Dl} into {γ(l)

t }e {" 0 " is the label of the majority class}
6: for i ∈ [1, . . . , N

(0)
b ] do

7: for l ∈ [0, . . . , L− 1] do
8: if i%N

(l)
b = 0 then

9: Regroup Dl into per-class batches
10: end if
11: Select γ(l)

t

12: Calculate ∇ñf
(l)(xt) and ∥∇ñf

(l)(xt)∥
13: end for
14: xt+1 = xt − ηt

(∑
l

∇ñf
(l)(xt)

∥∇ñf(l)(xt)∥

)
{Update the set of parameters}

15: end for
16: end for

then begin to iterate over the majority class batch index (line 6 in Algorithm 3). Note that since different classes have
a different number of elements, |Dl|, we will get a different number of batches for each of them: |{γ(l)

t }| = N
(l)
b , with

N
(0)
b = maxl N

(l)
b (" 0 " is the label of the majority class).

At each step we iterate along the classes. For each of them we check that per-classes batches are still available to use as
input; if the per-class batches associated with a class l are finished we shuffle the elements into the subgroup Dl and define a
new set of per-class-batches {γl} (line 9 in Algorithm 3) as done (for each class) at the beginning of the epoch. After this
check we then select a per-class batch γl (line 11 in Algorithm 3). We calculate the gradient associated with it and its norm
(line 12 in Algorithm 3). Finally, we use the calculated quantities to apply the update rule on the network weights (line 14 in
Algorithm 3).

F.4. SGD+O

Algorithm 4 SGD+O
1: Initialize x0

2: Split D into subgroups {Dl}
3: for epoch e ∈ [1, . . . , Ne] do
4: Shuffle {Dl}
5: Group {Dl} into {γ(l)

t }e {" 0 " is the label of the majority class}
6: for i ∈ [1, . . . , N

(0)
b ] do

7: for l ∈ [0, . . . , L− 1] do
8: if i%N

(l)
b = 0 then

9: Regroup Dl into per-class batches
10: end if
11: Select γ(l)

t

12: Calculate ∇ñf
(l)(xt)

13: end for
14: xt+1 = xt − ηt

(∑
l ∇ñf

(l)(xt)
)

{Update the set of parameters}
15: end for
16: end for

After initializing the network weights, x0 , (line 1 in Algorithm 4) we split the examples of the dataset according to their
class (line 2 in Algorithm 4). At the beginning of each epoch we shuffle the elements of each subgroup (line 4 in Algorithm
4) and group them into per-class batches using the same per-class batch size, |γ(l)

t | = |γt| ∀l (line 5 in Algorithm 4). We
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then begin to iterate over the majority class batch index (line 6 in Algorithm 4). Note that since different classes have
a different number of elements, |Dl|, we will get a different number of batches for each of them: |{γ(l)

t }| = N
(l)
b , with

N
(0)
b = maxl N

(l)
b (" 0 " is the label of the majority class).

At each step we iterate along the classes. For each of them we check that per-classes batches are still available to use as
input; if the per-class batches associated with a class l are finished we shuffle the elements into the subgroup Dl and define a
new set of per-class-batches {γl} (line 9 in Algorithm 4) as done (for each class) at the beginning of the epoch. After this
check we then select a per-class batch γl (line 11 in Algorithm 4). We calculate the gradient associated with it (line 12 in
Algorithm 4). Finally, we use the calculated quantities to apply the update rule on the network weights (line 14 in Algorithm
4).

F.5. PCNSGD+R

Algorithm 5 PCNSGD+R
1: Initialize x0

2: Split D into subgroups {Dl}
3: for epoch e ∈ [1, . . . , Ne] do
4: Shuffle {Dl}
5: Group {Dl} into {γ(l)

t }e.
6: for i ∈ [1, . . . , Nb] do
7: for l ∈ [0, . . . , L− 1] do
8: Select γ(l)

t

9: Calculate ∇ñf
(l)(xt) and ∥∇ñf

(l)(xt)∥
10: Calculate ∇f (l)(xt) and ∥∇f (l)(xt)∥
11: Compute pl =

(
∇ñf

(l)(xt)
∥∇ñf(l)(xt)∥

)
·
(

∇f(l)(xt)
∥∇f(l)(xt)∥

)
12: end for
13: xt+1 = xt − ηt

(∑
l

∇ñf
(l)(xt)

pl∥∇ñf(l)(xt)∥

)
{Update the set of parameters}

14: end for
15: end for

After initializing the network weights, x0 , (line 1 in Algorithm 5) we split the examples of the dataset according to their
class (line 2 in Algorithm 5). At the beginning of each epoch we shuffle the elements of each subgroup (line 4 in Algorithm
5) and group them into per-class batches (line 5 in Algorithm 5). Note that Per-class batch sizes are set by the imbalance
ratio; consequently the number of per-class batches |{γ(l)

t }| = N
(l)
b = Nb is the same ∀l.

We then begin to iterate over the batch index (line 6 in Algorithm 5); at each step, for each class, we then select a per-class
batch (line 8 in Algorithm 5) and calculate the gradient associated with it and its norm (line 9 in Algorithm 5). Next, we
calculate the per-class gradient associated with the entire dataset and its norm (line 10 in Algorithm 5). We then calculate
the projections of the normalized mini-batch gradients along the corresponding full-batch directions (line 11 in Algorithm
5). Finally, we use the calculated quantities to apply the update rule on the network weights (line 13 in Algorithm 5).
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G. Models and data
The codes needed to reproduce the experiments presented are available in the following link:
https://github.com/EmanueleFrancazi/PCNGD-Algorithms file, included in the repository, includes some details
regarding the structure and operation of the scripts (how to set parameters, how seed initialization takes place, and so on).

G.1. Network architecture

We provide here more extended information about the network architectures. Before doing that, for the sake of clarity,
we introduce some notation. To define a convolutional layer (as well as a pooling one) it is necessary to specify some
parameters:

• in channels: Number of channels in the input originating from the preceding layer

• out channels: Number of channels produced by the convolution

• stride: Stride of the convolution

• padding: Padding added to all four sides of the input

• kernel : Size of the convolving kernel

We used three architectures for the simulations. In particular, we propose a simple network prototype (Mod1 ), and a two
deeper ones as a prototype for more articulated models (Mod2 and Mod3 ).

• Simple-CNN (Mod1 ): As first architecture we chose a convolutional neural network, whose architecture was fixed as
follows:

– Input data
– Convolutional layer: in channels=3, out channels =16, kernel =5, stride=1, padding=2
– activation function: ReLU
– Max Pooling: kernel =2, stride=2
– Convolutional layer: in channels=16, out channels =32, kernel =5, stride=1, padding=2
– activation function: hyperbolic tangent
– Average pooling: kernel =2, stride=2
– Output: Fully connected linear layer
– Loss function: Cross Entropy

Before starting the network training, learning rate (LR) and batch size (BS)8 values need to be fixed through hyperpa-
rameter tuning.

• ResNet (Mod2 ): as a second architecture we adopted ResNet18 (He et al., 2016). The output of each convolutional
layer is regularized by means of group normalization (Wu and He, 2018). The latter procedure, as opposed to the
canonical batch normalization (Ioffe and Szegedy, 2015) is independent of the batch size. This aspect on the one hand
poses no performance limitation for particular batch size choices (as pointed out in (Wu and He, 2018)). On the other it
does not place an explicit dependence on the batch size parameter and thus allows, for example, gradient accumulation
to be used. Indeed, such a technique is useful if one wants to forward a batch whose overall size saturates the memory
of the machine, or even if one wants to split the batch for reasons of efficiency. In our case, the separation concerned
elements belonging to different classes, so as to efficiently collect the gradient at associated with each of them. Group
normalization needs an additional parameter to fix the number of blocks within which to group features (GF).

• VGG (Mod3 ): as a third architecture we adopted VGG16 (Simonyan and Zisserman, 2014). Here, each convolutional
layer is followed by a dropout layer. before passing through the dropout (DO) layer, the output of each convolutional
layer is regularized by means of group normalization (Wu and He, 2018). Compared to Mod1 we thus have in Mod3
two additional HPs to be fixed through the HP validation process (DO rate and GF).

8The batch size HO is not present in GD runs
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The HP tuning involved the optimization of batch size and learning rate, by exhaustive grid search. The optimal hyperparam-
eters were chosen based on the macro-averaged recall.

G.2. Dataset and Hyper-parameters

The runs in this work were performed using data from the CIFAR10 and CIFAR100 datasets (Krizhevsky et al., 2009).
Working only with CIFAR images allows us to attribute possible discrepancies between results to the imbalance choice,
instead of the nature of the dataset. In order to create different imbalanced classification settings, we preprocessed the
dataset in several ways:

• Simple classes (Bi7a , Bi7b): We selected two classes and discarded the others. We chose pairs of classes representing
similar target items. The training dataset was composed of 5000 images belonging to the majority class and 714 to the
minority one, so it had a 7:1 imbalance ratio. The test set was balanced, with 150 images per class. In particular, 2
different pairs of classes were analyzed:

– Bi7a dataset: truck (majority class) and car (minority class),

– Bi7b dataset: horse (majority class) and deer (minority class).

• Cifar10 Super-classes (Bi60): In order to have a dataset of larger size and imbalance, we created two super classes,
animals and vehicles. The first comprises the bird, cat, deer, dog, frog and horse labels (with an equal
distribution), and the second encompasses airplane, automobile, ship and truck (with an equal distribution).
The animals class contained 30000 elements, and the vehicles class contained 500 elements (60:1 imbalance).
The testing data consisted of 600 elements per superclass. We called this the Bi60 dataset.

• Cifar10 Multi-class (Mul10): We use the 10 classes of the CIFAR10 dataset. The number of images associated with
each class, Ni, is set by the relation:

Ni = Nmax

(
3

5

)i

(77)

where Nmax = 5000 and i is the label associated with the class, i.e. a number between 0 and 9 that identifies the
classes in alphabetical order (0: airplane, 1: car, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8:
ship, 9: truck). We called this the Mul10 dataset. The value of the base ( 35 ) was chosen so as to have a ρ = 100
imbalance (N0 ∼ 100N9), without excessively reducing the number of images in the least represented classes.

• Cifar100 Multi-class (Mul100): Analogously to Mul10 the number of images associated with each class, Ni, is set by
the relation:

Ni = Nmax (0.955)
i (78)

with Nmax = 500 and i ∈ [0 . . 99] in this case. We called this the Mul100 dataset. Also for Mul100 the imbalance
ratio is ρ = 100 (N0 ∼ 100N99).

For each of the datasets described above, the validation set was constructed similarly to the test set (same criteria for the
composition and same size) but using a different subset of images.

In choosing the combination of datasets and architectures for the experiments, we used simple (complex) models for simple
(complex) datasets to limit the number of experiments to a reasonable number.

A note on the meaning of the imbalance ratio We note that although the ratio ρ = 100 between number of examples in
the majority and minority classes is the same as in the Mul10 dataset and in the Mul100 , in the latter contiguous classes
have a very similar number of examples. This renders the Mul100 dataset effectively less imbalanced. The learning problem
remains hard because of the very small number of images per class, but this is unrelated to the dynamical effects induced by
class imbalance that we are investigating in this paper. In general, the same value of ρ indicates a smaller imbalance when
the number of classes is large.

33



A Theoretical Analysis of the Learning Dynamics under Class Imbalance

Table 1. Summary of experiments with (PCN)GD dynamics. We report test recall and characteristic time τ (see main text in App. H.1), as
well as the imbalance ratio ρ, and the threshold recall R∗ used to calculate τ . We highlight in bold the best values of recall and τ . Details
on the runs are in Sec. G, and the full learning curves for these runs are shown in Sec. H.

Models+Dataset GD PCNGD # iterations ρ R∗

Recall [%] τ [steps] Recall [%] τ [steps]

Mod1 + Bi7a 80.4± 0.4 272± 6 82.8 ± 0.4 16.8 ± 0.3 3000 7 0.7
Mod1 + Bi7b 79.8± 0.7 280± 10 83.8 ± 0.4 12.5 ± 0.2 3000 7 0.7
Mod1 + Bi60 73.3± 0.1 2200± 100 87.6 ± 0.5 122 ± 4 3500 60 0.7
Mod3 + Bi7a 81.0± 0.5 580± 20 88.8 ± 0.5 200 ± 5 1500 7 0.7
Mod1 + Mul10 41.6± 0.5 170± 6 50.4 ± 0.4 15.5 ± 0.2 1500 100 0.3
Mod2 + Mul100 13.5± 0.2 640± 60 14.4 ± 0.2 310 ± 50 1500 100 0.3

G.3. Execution times

Simulations were run on different servers. The code we provide allows the choice of using either the CPU or the GPU; for
the experiments presented, either one or the other was used, depending on availability. The models of the GPUs mounted on
the servers used are:

• GeForce- RTX 2080 Ti

• GP104GL Quadro P4000

• GM 200 GeForce GTX TitanX

Run times varied depending on the specific device model used and the level of occupancy (if multiple simulations are run in
parallel on the same device). For all simulations run on GPUs, a single GPU was always used for each run. Other factors
may cause the execution time to vary, such as the used batch size. A rigorous comparison of algorithm execution times
should be made by setting same conditions for the various algorithms analyzed. This type of comparison is outside the scope
of our analysis.
Instead, we report below a rough estimate of the order of magnitude of the execution times of the simulations performed.
We try in this way to give an idea of the differences between the various algorithms. The values below refer to the average
run time (expressed in seconds) normalized by the number of iterations ( sec

iteration units) .
In the case of Mod1 the times are lower. For the deterministic case GD and PCNGD proceed with similar speeds when run
on the same devices. In particular we have an execution time that varies between ∼ 5 sec

iteration for Bi7b to ∼ 30 sec
iteration for

Mul10 .
In the stochastic case we have a large gap between execution times of PCNSGD+R and the rest of the algorithms.
PCNSGD+R runs with a speed of ∼ 4 sec

iteration . The remaining algorithms, on the other hand, with a speed of ∼ 0.2 sec
iteration .

Execution time increases considerably by moving to a more complex architecture. For example, for the Mod3 architecture
we have an execution time of ∼ 60 sec

iteration for the deterministic algorithms and ∼ 1.5 sec
iteration for the stochastic ones. For

future use, the code records the execution times of the simulations on file.

H. Additional experiments
This section reports the results of additional experiments performed on the data sets described in App. G.2. The loss
curves are reported together with the corresponding recall, since it is a clearly interpretable metric of interest for practical
applications. Unless specified otherwise, we report the macro-averaged curves, which is the average of the per-class ones.
All shown curves are averaged over between 4 and 30 random seeds (standard error bars are shown as a shading), depending
on how demanding the run was. For the dynamics we used a further different random seed.

H.1. Deterministic optimization

Here, we show more plots on the comparison between GD and PCNGD.

Fig. S7 shows the recall and loss for several combinations of the models and datasets presented in G.2. The careful reader
can remark that the learning curves for PCNGD are not strictly monotonic as one could expect from Theorem 4.2. The
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Figure S7. Recall and Loss function for GD and PCNGD algorithms.

reason is that the monotonous decrease of the loss is only guaranteed for sufficiently small learning rates. For some of our
runs, the HP tuning yielded larger learning rates, for which the per-class loss is non-monotonic. This reveals a trade-off
between a strictly monotonic decrease of the loss and a larger step size.

In Fig. S10 we show an example of the per-class curves in a multiclass problem. As in the binary setting, the GD dynamics
exhibit the MID, which is instead not there with PCNGD.

We summarize the results of these experiments in Tab. 1, where we show the peak test recall after a fixed number of iterations,
and the number of time steps, τ 9, that the model requires before the test recall reaches a value R∗, also reported on the table.
While the test recall is an indicator of the performance at convergence, τ is an indicator of the speed of convergence, which
is particularly relevant when one needs to assess performance over a limited number of iterations, as in hyperparameter
tuning or when training is especially expensive. We also indicate the total number of iterations performed in each run,
and the imbalance ratio, ρ, defined as the ratio between the number of examples of majority and minority classes.10 From
Tab. 1, we see that PCNGD systematically outperforms GD in terms of convergence speed, in agreement with our theory. In
addition, also the test recall is consistently higher: we elaborate on this in Sec. 4.5.

H.2. Stochastic optimization

Here we show additional experiments regarding stochastic optimization algorithms, as described in the main part of the
paper. In Fig. S8, the recall and loss curves are shown for the Model: Mod1 , dataset: Bi60 . In Fig. S9 we show macro
averaged recalls and loss functions for stochastic algorithms. We do not always show the curves for PCNSGD+R for all
the experiments because they are computationally expensive. In most of the cases presented, PCNSGD+O outperforms all
the other solutions. The initial spike in the loss for the SGD+O algorithm can be reduced by decreasing the learning rate,
but at the expense of a worse final performance. The improvement of PCNSGD+O with respect to the other algorithms is
more marked when the data imbalance is increased, as we show in Fig. S8, where there is a significant gain with respect to
SGD+O along the entire dynamics. Similar to the deterministic case, the results of the various experiments are summarized

9Since measurements during the dynamics are not taken at every time step, errors on the quantity τ are the min between the standard
error and the interval between measurements.

10We use this definition because it is the one usually adopted in the literature. However, with this definition, the same value of ρ
indicates a larger imbalance when the number of classes is small, than when it is large.
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Figure S8. Recall and Loss function for GD and PCNGD algorithms. Model: Mod1 , dataset: Bi60 . The SGD per-class curves clearly
display the MID, while those related to the two oversampled algorithms follow closely the macro-averaged trends.
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Figure S9. Recall and Loss function for SGD and PCNSGD algorithms.

in Tab. 2. We do not report PCNSGD+R on Tab. 2 because of its high computational cost, but we still show some extra
PCNSGD+R runs in Fig S9.

The effect of PCNSGD+R on the single classes In Fig. S11 we show a comparison of the per-class learning curves
of SGD and PCNSGD+R. The improvement in class-averaged performance reflects, as in the deterministic case, a more
balanced growth in single-class performance. In SGD, the beginning of the dynamics is characterized by a sudden growth of
the majority classes and a degrowth of the minority ones, analogously to the minority initial drop we showed in Fig. 1 in the
case of binary classification. After the initial boost, the growth of the majority classes’ recall slows down and the remaining
classes gradually begin to grow following the order set by the imbalance of the data. In the case of PCNSGD+R, on the
contrary, a more regular growth is observed among the various classes. Note that, while in SGD the fastest classes are the
majority ones, with PCNSGD+R the fastest are the minority, but the majority class is not the slowest.
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Table 2. Same as Tab. 1, but for (PCN)SGD dynamics.

Models+Dataset SGD SGD+O PCNSGD+O # iterations ρ R∗

Recall τ Recall τ Recall τ

Mod1 + Bi7a 77.0± 0.8 1400± 300 84.9± 0.2 20.3± 0.4 90.9 ± 0.2 14.5 ± 0.2 10000 7 0.7
Mod1 + Bi7b 78.4± 0.5 2200± 100 90.3± 0.5 24± 1 92.3 ± 0.2 14.9 ± 0.6 10000 7 0.7
Mod1 + Bi60 81± 1 1540± 60 89.3± 0.1 10.8± 0.2 94.2 ± 0.1 5.4 ± 0.1 80000 60 0.7
Mod3 + Bi7a 88.3± 0.3 2400± 100 93.5± 0.2 410± 20 95.1 ± 0.3 111 ± 6 25000 7 0.7
Mod1 + Mul10 44.6± 0.5 5300± 500 71.1± 0.7 250± 10 71.8 ± 0.4 62 ± 4 18000 100 0.4
Mod2 + Mul100 15.2± 0.1 420± 30 39.2 ± 0.2 140 ± 20 38.0± 0.2 210± 30 18000 100 0.1
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Figure S10. Comparison GD (top) and with PCNGD (bottom) Model: Mod1 , dataset: Mul10 . The majority class is class 0, the minority
class is class 9.
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Figure S11. Comparison SGD (top) and with PCNSGD+R (bottom) Model: Mod1, dataset: Mul10 . The majority class is class 0, the
minority class is class 9.

I. Limitations and Ethics
Limitations We can identify the following limitations to our work:

• Our theory does not cover dropout, but it could probably be extended by trying to include the averaging effect of
Dropout. Alternatively, one could use the formulation of (Arora et al., 2020) that shows that the Dropout objective
is a regularized version of the original objective. In addition, we did run experiments on a VGG network (which has
dropout), the Mod3 model, and found results that are consistent with the rest of the architectures.

• Our theory does not cover non-differentiable activations: There are various standard ways to deal with non-differentiable
functions in optimization, e.g. subgradients, smoothing techniques, etc. We expect that all these techniques are
applicable to PCN(S)GD, and that the convergence theorems can be adapted accordingly. Furthermore, note that the
models Mod1 and Mod2 have ReLU activations (which is non-differentiable at a single point), so at least empirically
we see that our results also hold with ReLUs.
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Ethics Class imbalance, often present in real datasets used to train neural networks, not only impacts performance but
also brings with it a number of ethical questions related to representative discrimination and fairness (Mehrabi et al., 2021;
Buolamwini and Gebru, 2018; Danks and London, 2017; De Vries et al., 2019; Yapo and Weiss, 2018).

The CIFAR datasets, are subsets of the 80 million tiny images, which is formally withdrawn since it contains some derogatory
terms as categories and offensive images (http://groups.csail.mit.edu/vision/TinyImages/). However, note that none of the
experiments described in the paper was performed on the overall tiny images dataset: the said derogatory images are not
present in CIFAR10 and CIFAR100.
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