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ABSTRACT

Recently, as an effective way of learning latent representations, contrastive learn-
ing has been increasingly popular and successful in various domains. The success
of contrastive learning in single-label classifications motivates us to leverage this
learning framework to enhance distinctiveness for better performance in multi-
label image classification. In this paper, we show that a direct application of
contrastive learning can hardly improve in multi-label cases. Accordingly, we
propose a novel framework for multi-label classification with contrastive learning
in a fully supervised setting, which learns multiple representations of an image
under the context of different labels. This facilities a simple yet intuitive adaption
of contrastive learning into our model to boost its performance in multi-label im-
age classification. Extensive experiments on two benchmark datasets show that
the proposed framework achieves state-of-the-art performance in the comparison
with the advanced methods in multi-label classification.

1 INTRODUCTION

Multi-label image classification is a fundamental and practical computer vision task, where the goal
is to predict a set of labels (e.g., objects or attributes) associated with an input image. It is an
essential component in many applications such as recommendation systems (Jain et al., 2016; Yang
et al., 2015), medical image diagnosis (Ge et al., 2018b), and human attribute recognition (Li et al.,
2016b). Compared to single-label cases, multi-label classification is usually more complex and
challenging.

Recently, contrastive learning (CL) (Chen et al., 2020; He et al., 2020; Li et al., 2020; Caron et al.,
2020; Bachman et al., 2019) has been shown as an effective pretext approach to learn latent rep-
resentations an unsupervised way, which can be further used for supervised tasks. In general, CL
aims to pull together an anchor and a similar (or positive) sample in embedding space and push apart
the anchor from many dissimilar (or negative) samples. Therefore, the choice of the positive and
negative samples of an anchor is a key to achieving good performance with CL. In self-supervised
CL (Chen et al., 2020), the positive sample is defined as those augmented from the same image with
the anchor, while the negative samples are all the other images in the minibatch. More recently,
supervised CL (Khosla et al., 2020; Sun et al., 2021; Yuan et al., 2021; Huynh, 2021) has been pro-
posed, where all the images with the same label as the anchor are considered as the positive samples
and vice versa for the negative ones. Supervised CL has shown improvements in single-label image
classifications than the self-supervised counterpart. With the above successful examples, CL has
drawn significant research attention and has been applied in other tasks including image segmenta-
tion (Wang et al., 2021), adversarial training (Kim et al., 2020), and text to image learning (Radford
et al., 2021).

Given the appealing properties and promising results of CL in single-label classification, it is natural
to adapt it into multi-label cases to boost performance. However, this adaptation is non-trivial. In
single-label cases, an image usually contains one salient object, thus, the label of the object can
also be viewed as the unique label of the image. Therefore, it is reasonable to use one image-level
representation of an image and to push the representation of the anchor close to its positive samples
(e.g, augmentations of the anchor or images with the same label as the anchor), as done in self-
supervised and supervised CL. However, with a single image-level representation for an image, it
is hard to define the positive or negative samples for an anchor image by its multiple labels in the
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multi-label classification. For example, it would not be reasonable to assume that the image-level
representations of images containing apples must always be close to each other, as apple is just one
of many objects in those images and an apple may only take a small area of an image. As a result,
this setting hinders the application of existing CL methods to multi-label classification.

To bridge this gap, we in this paper propose a novel end-to-end framework for multi-label image
classification that leverages the contrastive learning principle, termed MulCon or Multi-label Clas-
sification with Contrastive Loss. Instead of using image-level representations as in previous CL
methods, we introduce a new module that learns multiple label-level representations of an image,
which are generated with the attention from the globally class-specific embeddings to the image
features learned by a convolutional neural network (CNN). Each label-level embedding of an image
corresponds to the image’s representation in the context of a specific label. With these definitions,
the supervised CL loss can be applied. Specifically, if we look at one specific label and view a label-
level embedding of an image as the anchor in our proposed CL framework, it is straightforward to
define the positive samples of an anchor, which are the label-level embeddings of the other images
in the minibatch with the same label and vice versa for the negative samples. For example, instead
of sharing an image-level representation with other objects, the apple object of an image has its own
embedding and the embeddings of the apples of all the images in a minibatch are pushed close to
each other. Therefore, our framework is intuitive in the multi-label setting. In this way, the CL loss
can enforce the coherence and consistency of the label-level representations of images, which further
provides more discriminative power of the prediction procedure based on these representations.

The main contributions can be summarized as follows: 1) Contrastive learning has been shown
successful in many single-label classification problems, however, it is non-trivial to apply it in multi-
label classification. We propose an intuitive and conceptually simple framework that encompasses
contrastive learning. 2) Along with the proposed framework, we also introduce a practical training
scheme of contrastive learning for multi-label classification. 3) We conduct extensive experiments
on large-scale benchmark datasets, showing that the proposed framework achieves the state-of-the-
art performance in multi-label image classification.

2 PROPOSED METHOD

In this section, we first discuss about the background knowledge and relevant notations and then
elaborate on the details of the proposed framework, MulCon.

2.1 BACKGROUND AND NOTATIONS

Multi-label Classification Following the standard setting of multi-label image classification, we
denote a minibatch of input images by X ∈ RN×W×H×3, where N is the batch size, H and W are
the height and width of the images. Each image xi ∈ X is associated with multiple labels selected
from a set of L labels in total, which are denoted by a multi-hot binary vector yi ∈ {0, 1}L. For an
active label j of xi, yij = 1 and vice versa. Our task is to build an end-to-end model that takes xi to
predict its labels yi.

Attention The Attention mechanism (Luong et al., 2015; Xu et al., 2015) has been widely used
in various areas of computer vision and natural language processing, which enhances the important
parts of the data of interest and fades out the rest. Assume that nq query vectors of size dq denoted
as Q ∈ Rnq×dq , and nv key-value pairs denoted as K ∈ Rnv×dq , V ∈ Rnv×dv . The attention
function maps the query vectors Q to outputs using the key-value pairs as follows:

Att(Q,K, V ) = ω(QKT )V (1)

where the dot product (QKT ) ∈ Rnq×nv and ω(·) is softmax function. The dot product returns the
similarity of each query and key value. The output ω(QKT )V ∈ Rnq×dv is the weighted sum over
V , where larger weight corresponds to larger similarity between query and key.

A powerful extension to the above (single-) attention mechanism is the multi-head attention in-
troduced in (Vaswani et al., 2017), which allows the model to jointly attend to information from
different representation subspaces at different positions. Instead of computing a single attention
function, this method first projects Q,K, V onto h different vectors, respectively. An attention
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function Att(·) is applied individually to these h projections. The output is a linear transformation
of the concatenation of all attention outputs:

MultiAtt(Q,K, V ) = concat(O1, O2, · · · , Oh)W
o,

Oi′ = Att(QW q
i′ ,KW

k
i′ , V W

v
i′) for i′ ∈ 1, · · · , h, (2)

whereW o,W q
i′ ,W

k
i′ ,W

v
i′ are learnable parameters of some linear layers. QW q

i′ ∈ Rnq×dh
q ,KW k

i′ ∈
Rnv×dh

q , VW v
i′ ∈ Rnv×dh

v are vectors projected from Q,K, V respectively. dhq = dq/h and dhv =
dv/h.

Following the architecture of the transformer (Vaswani et al., 2017; Lee et al., 2019), we define the
following multi-head attention block:

MultiAttBlock(Q,K, V ) = LayerNorm(Q′ +Q′W q′), (3)

Q′ = LayerNorm(concat(QW q
1 , · · · , QW

q
h) + MultiAtt(Q,K, V ))

where W q′ ∈ Rdq×dq is a learnable linear layer. Base on the multi-head attention block, we further
define a self-attention block as follows:

SA(X) = MultiAttBlock(X,X,X) (4)

Contrastive Learning Contrastive learning (CL) has been an increasingly popular and effective
representation learning approach (Chen et al., 2020; He et al., 2020; Khosla et al., 2020). As the first
proposed CL approach, self-supervised CL (Chen et al., 2020) is proposed to learn presentations in
an unsupervised manner. Specifically, a mini-batch is constructed from the original input images
and their augmented versions. Given a minibatch of 2N instances I = {1...2N} and an anchor
instance i ∈ I , the augmented version of i, denoted as ia ∈ I is considered the positive sample,
and the other 2(N − 1) instances within the mini-batch are considered negative examples. The loss
function of self-supervised CL is defined as follows:

Lself = −
∑
i∈I

log
exp(zi · zia/τ)∑

za∈A(i)

exp(zi · za/τ)
(5)

where zi is the image embedding, zi · zia denotes the inner dot product between two embeddings,
τ ∈ R+ is a scalar temperature parameter, and A(i) = I\zi. It can be seen that self-supervised CL
pushes the embeddings of the samples augmented from the same image close to each other. More re-
cently, the supervised CL (Khosla et al., 2020) adapts CL into the supervised settings, which utilizes
the label information to select positive and negative samples. For supervised CL, the embeddings of
the samples with the same labels are pushed close to each other, which achieves better performance
in classification tasks. For more details of CL, we refer to Liu et al. (2021b). To our knowledge, CL
has not been applied in solving multi-label classification yet.

2.2 PROPOSED METHOD

Unlike previous CL methods for single-label classification that use image-level representations, we
propose to learn multiple label-level representations for each image, which facilitates the application
of CL in multi-label classification. We introduce MulCon, which consists of three main neural
network modules: the label-level embedding network, the contrastive learning projection network,
and the classification networks as shown in Figure 1.

Label-Level Embedding Network As the key module of our framework, the label-level embedding
network takes an image xi as input and outputs its label-level representations, denoted by gi ∈
RL×D, where each row of gi corresponds to the embedding of the image under the context of
a specific label. Specifically, the label-level embedding network consists of two components: 1)
The encoder block. We first adopt an encoder network that learns the image-level embedding as
the backbone model as the backbone model: ri = Enc(xi) ∈ RC×H×W , where C,H,W are the
number of channels, height, and width of the output. The backbone model can be implemented
with an arbitrary model that learns good image features, e.g., a convolutional neural network (CNN)
such as ResNet (He et al., 2016) or visual transformer (Dosovitskiy et al., 2020). We then reshape
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Figure 1: Left: Overall structure of our MulCon framework. It consists of three main components:
label-level embedding network that uses a label-wise attention block with an Encoder (Enc(·)) for
extracting label-level embeddings gi from input images, a set of independent classifiers fc for multi-
label prediction, and a projector (Proj(·)) to map label-level embeddings to a latent space for con-
trastive learning. Right: Detail of the label-wise attention block. It takes image features ri from
(Enc(·)) as input and returns label-level embedding gi as output. The module contains several self-
attention blocks, a multi-headed attention block and a set of learnable label embedding.

ri ∈ RWH×C for the next step’s processing. 2) The label-wise attention block. In this block, we
introduce a set of vectors U ∈ RL×C , each row of which is to be learned as the global embedding
for a specific label. To generate an image’s label-level embeddings gi, we propose a cascade of
several self-attention blocks and a multi-head attention block to capture the interactions between ri
and U as follows:

ri = SA(ri); gi = MultiAttBlock(U, ri, ri); gi = SA(gi). (6)

To summarise, given an image xi, we first learn its representation ri ∈ RWH×C by the encoder,
each row of which captures the feature of a location in the image. We then pass ri to a self-attention
block that captures the interactions between the features of the image. Next, we feed ri to the multi-
head attention block, where the global label embeddings U is the query and ri is the key and value.
As the sizes of the input and output channels of the multi-head attention are C and D, respectively,
we have nq = nv = C and dq = nq = D for Eq. 2. With the multi-head attention block, our model
can learn the “importance” (attention weight) of the image feature to a specific label. For example,
if an image contains an apple, the corresponding embedding is expected to be associated with a
large attention weight from the apple label. The multi-headed attention can also help a label pay
its attention to multiple objects in an image, i.e., each of the attention heads can generate attention
scores for a class-specific embedding over all the image-level embeddings. In this case, if an image
consists of multiple apples, each of the apples receives a specific attention score from the apple
label. Following up the multi-head attention is a self-attention block that implicitly helps improve
label correlation. With the attention from all the labels, we can derive the label-level embeddings gi
of the image from its image-label embedding ri.

Contrastive Learning Projection Network After obtaining gi ∈ RL×D, we use gij ∈ RD to
denote the label-level embedding of the input image i under the context of a specific label j (j ∈
{1, · · · , L}). Following Chen et al. (2020); Khosla et al. (2020), our framework includes a projection
network Proj(·) that maps gij to a vector in another embedding space: zij = Proj(gij) ∈ Rdz , where
the contrastive learning is performed.

Classification Network Recall that the label-level embedding gij captures the input image i’s fea-
ture under the context of the label j. Thus, it can be used to predict whether j is active in i. Accord-
ingly, we introduce a fully connected layer as a classifier f jc to predict the probability of the label j
being active. Specifically, for each label j ∈ L the prediction score is sij = σ(f jc (gij)) ∈ (0, 1).
We further denote si ∈ (0, 1)L.

2.3 LEARNING MULCON WITH CONTRASTIVE LOSS

After introducing the framework, we describe the learning process of MulCon by showing the loss
function first. Based on the label-level embeddings of the image i, i.e., gi, we introduce a loss

4



Under review as a conference paper at ICLR 2022

function with two terms: the classification loss and contrastive loss. The overall training process is
illustrated in Figure 2.

Classification Loss For the classification loss, given the predictive probabilities output from the
classification network si and the ground-truth multi-hot label vector yi, we apply the binary cross-
entropy (BCE) loss, which has been widely used for multi-label classification:

LBCE =

L∑
j=1

yij log sij + (1− yij)log(1− sij) (7)

It is noteworthy that other multi-label classification losses than BCE can also be used in our frame-
work, e.g., in Ben-Baruch et al. (2020); Lin et al. (2017).

Label-level Contrastive Loss In addition to the classification loss, we introduce the label-level
contrastive loss (LLCL) for multi-label classification, which is one of the key contributions of this
paper. Because an image is associated with multiple labels, it is hard to directly apply CL as we
analyzed before. However, in MulCon, after learning the label-level embeddings for an image, we
show that the multi-label problem can be transformed into a single-label one, where CL can be
adapted in a straightforward way.

As LLCL works in the projected space, hereafter, we also call zi the label-level embeddings for
image i, which is projected from gi. Given a minibatch of N images, we first forward-pass them
through the label-level embedding network and contrastive learning projection network and then
aggregate the label-level embeddings of all the images into setZ = {zij ∈ Rdz |i ∈ {1, · · · , N}; j ∈
{1, · · · , L}}. Similarly, we define the set of the ground-truth labels of the minibatch: Y = {yij ∈
{0, 1}|i ∈ {1, · · · , N}; j ∈ {1, · · · , L}}. If we view an image’s label-level embedding zij as an
instance instead of the image itself, zij is associated with a single ground-truth label yij . We further
define I = {zij ∈ Z|yij = 1} as the set that contains the label-level embeddings with active
ground-truth labels and A(i, j) = I \ zij as the set contains the embeddings in I with zij excluded.

In the minibatch, we now consider zij ∈ I as the anchor, which presents the feature of im-
age i under active label j. With LLCL, we aim to push zij closer to the embeddings un-
der the same active label j of other images in the minibatch, i.e., the positive set, defined as
P (i, j) = {zkj ∈ A(i, j)|ykj = yij = 1}. With above notations and inspired by the supervised
CL, we define the contrastive loss for the anchor zij as:

Lij
LLCL =

−1
|P (i, j)|

∑
zp∈P (i,j)

log
exp(zij · zp/τ)∑

za∈A(i,j) exp(zij · za/τ))
, (8)

The loss for the whole minibatch is: LLLCL =
∑

zij∈I L
ij
LLCL. Together with the classification

loss, we show the overall training loss of MulCon:

L = LBCE + γLLLCL. (9)

where the parameter γ controls the trade-off between the two losses.

Why and How does Contrastive Loss Help? Now we would like to answer why contrastive loss
helps in multi-label classification, by showing that it serves as an important complementary to the
classification loss. Specifically, with the BCE classification loss applied in many multi-label classi-
fication problems, each label can be viewed to be classified independently with a specific classifier
as discussed in Section 2.2. That is to say, each classifier focuses on the classification of a spe-
cific label and cares less about the distinctiveness of the features of different labels. Distinctiveness
in classification means that we expect features of the instances with the same label to be close to
each other, which has been known as an important factor for achieving good classification accuracy.
Similar to single-label problems, the label-level contrastive loss in MulCon is designed to enforce
distinctiveness of the label-level embeddings. To demonstrate this, we show the t-SNE (Van der
Maaten & Hinton, 2008) visualization of the (active) label-level embeddings of 1,000 randomly
sampled images of the COCO dataset (Lin et al., 2014) in Figure 3. These embeddings are from
MulCon trained by the BCE loss (i.e., Eq. 7) and the combined loss of BCE and LLCL (i.e., Eq. 9),
respectively. Each dot represents one label-level embedding under the context of a specific label and
each color represents one class. It can be seen that compared with the loss with BCE only, the ad-
ditional contrastive loss makes the label-level embeddings of the same label fall into more compact
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Figure 2: MulCon has two steps during training: pretrain-
ing and contrastive finetuning. The first step is to train the
label-level embedding network with binary cross-entropy
loss (LBCE) to effectively decompose an input image into
several semantic components so that the first component
corresponds to the first label, etc. The second step is to
finetune the previously trained network with contrastive loss
(LLLCL) and LBCE to improve the quality of label-level
embedding.

Figure 3: t-SNE visualization for
image components trained with
only LBCE (top) and with the
combination of LBCE and LLLCL

(down).

clusters, which are better separated from the clusters of other labels. This clearly shows the enforced
distinctiveness of the embeddings with the contrastive loss.

However, unlike in single-label classification, being over distinct in the embedding space is not
always a good thing in multi-label classification. Specifically, label correlations are important in
multi-label classification (Chen et al., 2019c; You et al., 2020). For example, when we see a cup in
an image, the probability of a table existing below the cup in the image can be assumed to high. In
this case, we actually do not want the embeddings of cups and tables are too far or too separated from
each other. Therefore, the enforced distinctiveness with the contrastive loss needs to be judiciously
controlled. We propose a simple training strategy to tackle this task, which consists of two steps:
the pre-training step and the contrastive learning step. In the pre-training step (Step 1), we pretrain
the backbone and label-level embedding network and the classification network of MulCon with the
BCE loss only. In the contrastive learning step (Step 2), we then plug in the contrastive projection
network with LLCL but also keep the BCE loss. In the first step, the BCE loss learns the label-
level embeddings freely and implicitly obtains semantic structure by the effect of several attention
blocks. After the embeddings are learned, we finetune them with LLCL to enforce distinctiveness
of the embeddings. The network is fintuned with small learning rate which helps improve feature
distinctiveness without breaking the label semantic structure. We empirically find that the propose
training policy works well in practice.

3 RELATED WORK ON MULTI-LABEL IMAGE CLASSIFICATION

Our paper mainly focuses on two things: contrastive learning and multi-label classification. To
our knowledge, most of the works in contrastive learning are for single-label classification. Thus,
although there is an emerging literature of contrastive learning, the details are omitted as our paper
solves a different problem. Multi-label classification has been a challenging and important problem
in computer vision, where many methods have been proposed. We mainly consider two lines of
multi-label methods as our close works.

Methods capturing label/class correlations For example, (Wang et al., 2016; Yang et al., 2016;
Liu et al., 2017; Chen et al., 2018a) explicitly capture the class correlation by a CNN-based model
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followed by a Recurrent Neural Network (RNN) (Medsker & Jain, 2001). Moreover, there are also
approaches based on on probabilistic graphical model (Li et al., 2016a; 2014), which model label
dependencies in the covariance of probabilistic distributions. Finally, as label correlations can be
formulated into graphs, some approaches apply Graph Convolutional Network (GCN) (Zhou et al.,
2020) or leverage graph structures to learn label presentations such as in Yang et al. (2016); Chen
et al. (2019c); You et al. (2020).(Li et al., 2019) proposes to align image feature with label feature.
Compared with these methods, ours is a different approach that controls label distinctiveness and
correlation via contrastive loss.

Methods with attentions Another research line close to ours is using visual attention for multi-
label classification, such as in Guo et al. (2019); Chen et al. (2018b;a); Wang et al. (2017); Ba et al.
(2015); Huynh & Elhamifar (2020); Yazici et al. (2020). In addition, attention mechanisms are also
introduced in Chen et al. (2019a); Ye et al. (2020) to capture label correlation. Recently, vision
transformers (Dosovitskiy et al., 2020) has been a new paradigm of computer vision tasks and there
emerges new works that use vision transformers for multi-label classification (Liu et al., 2021a;
Lanchantin et al., 2021; Cheng et al., 2021), where attention mechanisms are naturally used. In our
method, we use the attention mechanism for a different purpose, i.e., to assist contrastive learning.
Specifically, the attention is used to derive an image’s label-level embeddings from its image-level
embeddings and the global-label embeddings. Moreover, our framework is flexible to also use vision
transformers as the backbone model.

4 EXPERIMENTS

In this section, we compare our proposed model with the state-of-the-art multi-label classification
methods. More results are shown in the appendix. we use the two most popular benchmark datasets:
MS-COCO (Lin et al., 2014) and NUS-WIDE (Chua et al., 2009). To evaluate the classification
performance, we use the standard metrics for multi-label classification including the mean average
precision (mAP) mean average precision (mAP), overall precision (OP), recall (OR), F1-measure
(OF1) and per-category precision (CP), recall (CR), and F1-measure (CF1), computed over all pre-
diction scores and top-3 highest prediction scores. As F1 is a comprehensive metric computed by
precision and recall, we consider mAP, CF1, and OF1 as more important metrics. The formulas of
the metrics are shown in the appendix. For a fair comparison, we adopt ResNet-101 (He et al., 2016)
as the backbone for our method to extract image-level features, which is the same for the other com-
pared methods, unless otherwise specified. The implementation and training details of our methods
are shown in the appendix.

4.1 EXPERIMENTS ON MS-COCO

In the standard setting for multi-label classification, MS-COCO contains 122,218 images with 80
different categories, where every image is associated with 2.9 labels on the average. The dataset is
divided into 82,081 images for training and 40,137 images for validation. For a fair comparison, we
choose state-of-the-art methods that use Resnet101 as backbone network, and further divide them
into two groups. Group 1 uses input image size 448×448 such as Multi Evidence (Ge et al., 2018a),
CADM (Chen et al., 2019b), ML-GCN (Chen et al., 2019c), KSSNet (Liu et al., 2018), MS-CMA
(You et al., 2020) and MCAR (Gao & Zhou, 2021). Group 2 uses larger input image size such as
SSGRL (Chen et al., 2019a), C-Trans (Lanchantin et al., 2021) and ADD-GCN (Ye et al., 2020).

The results on MS-COCO are reported in Table 1. The numbers of the compared methods are taken
from the best reported results in their papers. It can be seen that our approach achieves the state-
of-the-art results especially on mAP, CF1 and OF1. For example, in the 448× 448 input resolution
with all prediction scores, ours outperforms the second best (MS-CMA and MCAR) by 1.1% on
mAP and 0.8% on CF1. With the resolution increased to 576× 576, ours surpasses the second best
(ADD-GCN) by 1.1% on mAP and 0.7% on CF1. Although our method may not always achieve
better results on precision (CR and OR), it consistently obtains better performance on F1, which is
a more comprehensive metric covering both precision and recall.
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Method Resolution All Top-3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

Multi Evidence 448× 448 - 80.4 70.2 74.9 85.2 72.5 78.4 84.5 62.2 70.6 89.1 64.3 74.7
CADM 448× 448 82.3 82.5 72.2 77.0 84.0 75.6 79.6 87.1 63.6 73.5 89.4 66.0 76.0

ML-GCN 448× 448 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
KSSNet 448× 448 83.7 84.6 73.2 77.2 87.8 76.2 81.5 - - - - - -

MS-CMA 448× 448 83.8 82.9 74.4 78.4 84.4 77.9 81.0 86.7 64.9 74.3 90.9 67.2 77.2
MCAR 448× 448 83.8 85.0 72.1 78.0 88.0 73.9 80.3 88.1 65.5 75.1 91.0 66.3 76.7

MulCon (Ours) 448× 448 84.9 84.0 74.8 79.2 85.6 78.0 81.6 87.8 65.9 75.3 90.5 67.9 77.6
SSGRL 576× 576 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2
C-Trans 576× 576 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6

ADD-GCN 576× 576 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9
MulCon (Ours) 576× 576 86.3 84.7 77.3 80.8 85.9 79.9 82.8 88.6 67.2 76.5 91.0 68.8 78.4

Table 1: Results on the COCO dataset. The best scores are highlighted in boldface. More important
metrics including mAP, CF1, and OF1 are highlighted in grey.

Method mAP CF1 OF1
FitsNet 57.4 54.9 70.4

attention-transfer 57.6 55.2 70.3
s-CLs 60.1 58.7 73.3

MS-CMA 61.4 60.5 73.8
SRN 62.0 58.5 73.4

MulCon (Ours) 63.9 61.8 74.8

Table 2: Results on NUS-WIDE
dataset. The best scores are high-
lighted in boldface.

Method mAP CF1 OF1
R101 + BCE 80.8 76.2 79.2

R101 + BCE + SCL 80.8 76.0 79.1
LLEN + BCE 83.8 78.8 81.1

LLEN + BCE + LLCL 83.7 78.8 81.1
MulCon 84.9 79.2 81.6

Table 3: Ablation study of different variants and train-
ing policies of MulCon.

4.2 RESULTS ON NUS-WIDE

The NUS-WIDE dataset originally contained 269,648 images from Flicker and has been manually
annotated with 81 visual concepts. Since some URLs have been deleted, we follow (Ben-Baruch
et al., 2020) to obtain 200,000 images with 2.4 labels per image on average. We use the same
hyperparameter setting as MS-COCO for training and testing on this dataset. We also select the
state-of-the-art methods that report the results on NUS-WIDE, including FitsNet (Romero et al.,
2014), attention-transfer (Zagoruyko & Komodakis, 2016), s-CLs (Liu et al., 2018), CMA (You
et al., 2020) and SRN (Zhu et al., 2017). Following the standard and convention of many other
works, we report mAP, CF1, OF1 computed with all prediction scores. The results on NUS-WIDE
are shown in Table 2. It can be seen that MulCon achieves the best results in all the three metrics.
For example, it our performs SRN (the second best on mAP) by a significant margin, i.e., nearly 2%.

4.3 ABLATION STUDY

To fully understand the modules and training policies of MulCon, we provide a comprehensive
ablation study in this section. Specifically, we are interested in the following variants of our method.
1) R101 + BCE: The backbone model, Resnet101, trained with the BCE loss (i.e., Eq. 7). This is
a standard multi-label classification baseline. 2) R101 + BCE + SCL: Resnet101 trained with the
BCE and supervised-CL (Khosla et al., 2020) (SCL) losses (i.e., Eq. 9). This is a variant where the
supervised CL loss is directly applied on the image-level features. Note that for this variant, each
image is an anchor, and thus we need to define the positive/negative sets for each anchor. Following
the spirit of (Khosla et al., 2020), we consider other images in the minibatch that have at least one
common active label with the anchor as its positive samples and the others as the negative ones.
3) LLEN + BCE: The label-level embedding network (LLEN) with R101 as the backbone trained
with BCE, which corresponds the MulCon framework trained in Step 1 described in Section 2.3. 4)
LLEN + BCE + LLCL: The variant where we train MulCon with the BCE and LLCL losses from
the beginning, i.e., the second contrastive learning step described in Section 2.3. 5) MulCon: The
complete model of MulCon trained with the two-step policy described in Section 2.3.
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Table 3 shows the results for the ablation study for our method in MS-COCO. We have the follow-
ing remarks: 1) By comparing between R101+BCE and R101+BCE+SCL, we can see that unlike
in single-label classification, directly applying SCL on the image-level features cannot improve the
performance in multi-label cases (80.8 vs 80.8 mAP). 2) It can be observed that by using the pro-
posed label-level embedding network instead of R101 (R101+BCE V.S. LLEN+BCE), we can can
significantly improve the mAP score (80.8 vs 83.8 mAP). 3) Note that the difference between LLEN
+ BCE + LLCL and MulCon is on the training policies: The former is trained with BCE and LLCL
from the beginning while the later is first pretrained with BCE (Step 1) and then futhur trained by
BCE + LLCL (Step 2). We observe that if the LLCL loss is applied from the beginning of the
training, it can barely improve the performance. This is because LLCL may excessively enforce
distinctiveness which makes the model care less about label correlations, as analyzed in Section 2.3.
It can be seen that our proposed two-step training policy improves significantly.

4.4 QUALITATIVE ANALYSIS

To qualitatively study our method, we first exam the semantics captured by the label-level embed-
dings learned with MulCon by conducting an image retrieval experiment. Specifically, given an
input image xi, we do a forward-pass to get its label-level embeddings gi. With the ground-truth
labels of xi, we can specify a specific active label j, pick its embedding gij from gi and use it as the
query for image retrieval. By comparing the Euclidean distance between the query embedding with
the label-level embeddings of other images, we can retrieve the closest images to our query image
and label. Figure 4 shows the image retrieval results of MulCon and its variant with BCE only. More
qualitative analysis is provided in the appendix.

apple apple apple apple apple tie teddy bear book dining table

book book book book book book book dining table book

tie apple tie tie tie teddy bear teddy bear book book

teddy bear teddy bear teddy bear teddy bear teddy bear tie teddy bear cat bed

Query Model with contrastive loss Model without contrastive loss

Figure 4: Top-4 related images retrieved given an query image and label on COCO dataset. The
results for our full model (MulCon) are on the left, and the results for our model without contrastive
loss (MulCon with BCE only) are on the right. The label under each retrieved image is the one
corresponding to the embedding closest to the picked query embedding.

5 CONCLUSION

In this paper, we have introduced an end-to-end multi-label image classification framework, Mul-
Con, which leverages contrastive learning in multi-label classification. It has been shown that CL is
not directly applicable in this domain, due to the fact that it is hard to define the positive/negative
samples for an anchor with multiple labels. To tackle this issue, we have introduced to learn label-
level embeddings for an image with the multi-head attention mechanism. With label-level embed-
dings, we transform the multi-label classification into a single case for each label-level embedding,

9



Under review as a conference paper at ICLR 2022

which facilities a straightforward adaption of supervised CL. We have provided analytical and em-
pirical study of why CL helps in multi-label learning and proposed a simple training policy to control
the distinctiveness enforced by CL. Extensive experimental results and visualization show the effec-
tiveness of our approach and its ability to achieve the state-of-the-art performance in multi-label
image classification.
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A APPENDIX

In this section, we provide more details on the following subjects:

• Implementation Details of MulCon

• Evaluation Metrics

• More Qualitative Analysis

A.1 IMPLEMENTATION DETAILS OF MULCON

Projector Following other contrastive learning methods (Chen et al., 2020; Khosla et al., 2020), the
projector Proj(·) has two linear layers with ReLU(·) activation.

Step 1: Pretraining with BCE We use Adam optimizer (Kingma & Ba, 2015) and 1-cycle policy
with the maximum learning rate is 2e-4. The training batch size is set to 64, and the dimension of
the label-level feature, i.e., D, is 1024.

Step 2: Finetuning with LLCL We use Stochastic Gradient Descent (SGD) optimizer with mo-
mentum 0.9 and weight decay is 1e-4. The learning rate is initialized as 0.01 and then reduced by
a factor of 10 for every 20 epochs. The batch size for this step is 32. The temperature τ is 0.2,
and γ is 0.1. The number of head in multi-head attention is empirically set to 4, which gives us the
best results. Following Ben-Baruch et al. (2020), we also employ Cutout (DeVries & Taylor, 2017)
with factor 0.5 as reguralization. During training, exponential moving average (EMA) is applied to
model’s parameters with decay factor 0.9997.

Augmentations in Step 2 It has been known that augmentations are important for contrastive learn-
ing. Following previous methods (Chen et al., 2020; Khosla et al., 2020), we have an augmentation
module to transform each training image before feeding them to the network. Specifically, for the
augmentation, we first resize the input image to 448 × 448, and then apply random horizontal flip,
and a Random Augmentation module (Cubuk et al., 2020). Note that for the second step training
with batch size 32, the actual batch size becomes 64 after data augmentation.

Note that we apply contrastive loss on label-level embeddings, not on images. For a batch size of 32
images, on average we have 94 label-level embeddings (with the active labels for each image). After
augmentation,the batch size of the label-level embeddings is 188 already, which is the maximum
batch size that we can run with our computational resource. We will consider larger batch size in
future.

A.2 EVALUATION METRICS

Beyond mean average precision (mAP), the standard metrics reported in the experimental section
are: overall precision (OP), recall (OR), F1-measure (OF1) and per-category precision (CP), recall
(CR), F1-measure (CF1). These metrics are computed as follows:

OP =

∑
i TPi∑

i TPi + FPi
OR =

∑
i TPi∑

i TPi + FNi

CP =
1

C

∑
i

TPi

TPi + FPi
CR =

1

C

∑
i

TPi

TPi + FNi

OF1 =
2×OP ×OR
OP +OR

CF1 =
2× CP × CR
CP + CR

where TPi is true positive of class i, FPi is false positive of class i, FNi is false negative of class i.

A.3 MORE RESULTS ON VOC AND VG500

Experiments with VOC 2007.

We compare our method with RDAL(Wang et al., 2017), RARL(Chen et al., 2018b),
MCAR(You et al., 2020), SSGRL(Chen et al., 2019a) and ASL (Ben-Baruch et al., 2020) on
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VOC2007(Everingham et al., 2015) dataset. Following other works, we also use pretrained back-
bone on COCO and fine-tune on VOC 2007. Overall, our method has a comparable results with
other methods. We also try to use TResnet and ASL loss combine with our Contrastive framework,
but we do not observe any improvement. Figure 4

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
RDAL 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9
RARL 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0
MCAR 99.7 99.0 98.5 98.2 85.4 96.9 97.4 98.9 83.7 95.5 88.8 99.1 98.2 95.1 99.1 84.8 97.1 87.8 98.3 94.8 94.8
SSGRL 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0

ASL 99.9 98.4 98.9 98.7 86.8 98.2 98.7 98.5 83.1 98.3 89.5 98.8 99.2 98.6 99.3 89.5 99.4 86.8 99.6 95.2 95.8
MulCon 99.8 98.3 99.3 98.6 83.3 98.4 98.0 98.3 85.8 98.3 90.5 99.3 98.9 96.6 98.8 86.3 99.8 87.3 99.8 96.1 95.6

Table 4: Results on VOC07. Best results are highlighted in boldface.

Experiments with VG 500.

We compare the performance on VG 500 (Krishna et al., 2017) with other methods such as R101(He
et al., 2016), R101-SRN(Zhu et al., 2017), SSGRL(Chen et al., 2019a) and C-Trans(Lanchantin
et al., 2021) in Table 5. Our method also achieve a better results compare to other methods.

Method mAP
R101 30.9

R101-SRN 33.5
SSGRL 36.6
C-Trans 38.4
MulCon 38.5

Table 5: Results on VG 500.

A.4 CLASS EMBEDDING RETRIEVAL

We compute the precision@k (P@k) and recall@k (R@k) of class embedding retrieval between our
method and Q2L (Liu et al., 2021a) in Table 6. We use the first 1000 images in MS-COCO for this
experiment. We extract all the class embedding to create the set X ∈ RN×d, N is the total number
of embeddings and d is the embedding’s dimension. Then for an embedding xi, we construct a
groundtruth label vector yi such that yij = 1 if xi and xj has the same label, yij = 0 otherwise.
Then we have the ground truth set Y ∈ RN×N . Given X , we can compute the pair-wise cosine
similarity C ∈ RN×N , cij = cossim(xi, xj). Given C and Y , the P@k and R@k is computed as
follows:

P@k =
TP@k

TP@k + FP@k

R@k =
TP@k

min(k, TP@k + FN@k)

where TP@K,FP@k, FN@k are true positive, false positive and false negative at top k predic-
tions.

Method P@3 P@5 P@10 P@15 P@20 R@3 R@5 R@10 R@15 R@20
MulCon 87.6 84.7 80.6 76.9 73.1 87.7 84.7 80.7 77.4 74.8

Q2L 77.7 73.7 69.5 66.3 62.6 77.8 73.8 69.6 66.7 64.1

Table 6: Quanntitative results of class embedding retrieval on a subset of MS-COCO.
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Query Closest labels
person handbag cellphone chair

fork oven knife sink
donut hotdog pizza sandwich

Table 7: Label correlations on COCO.

Figure 5: Top-4 related images retrieved given an query image and multiple labels on COCO dataset.

A.5 MORE QUALITATIVE ANALYSIS

Multi-label Image Retrieval To further demonstrate the intuitive meanings of the learned label-
level embeddings in the multi-label setting, we provide an additional retrieval experiment where
instead of using a single query label, we select multiple ones and concatenate their label-level em-
beddings as the query vector. That is to say, given an image, we can retrieve the images with
multi-label labels of interest. Figure 5 shows the multi-label retrieval results.

Visualisation of Attention Maps We now show a visualization for the attention maps in terms of
the active labels of an image produced by the multi-head attention used in the label-level embedding
network. As illustrated in the top row of Figure 6, the attention maps can precisely highlight the
regions of the image in terms of each of its ground-truth labels. In the bottom row of Figure 6, we
show the attention maps of the heads of one label “person”. It can be observed that the heads tend
to capture the multiple instances of “person” in the image. Figure 7 presents more attention maps
visualization. Here we visualize the mean attention map computed from 4 heads.

Analysis on the Global Label Embeddings A row of U is the embedding vector of a specific
label, encoding the semantic information of the label. Although randomly initialised, the embedding
vectors are learned by minimising the loss function via gradient backpropogation. In Table 7, we
have computed the pairwise Euclidean distances between label embeddings and the closest 3 labels
retrieved with minimum distances. It can be seen that the label correlations are quite meaningful.
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Figure 6: Visualization of attention maps. The top row includes the input image and the selected
attention map for the ground-truth labels. The bottom row includes the multi-headed attention maps
for class “person”.
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Figure 7: Visualization of attention maps. In each row, the left most image is input image, and the
remains are the mean attention maps (from 4 head) for its ground truth classes.
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