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Abstract

While grammatical error correction (GEC) has
improved in its correction performance, one of
the key challenges in GEC research still re-
mains in evaluation. Specifically, all errors
are equally treated in the conventional perfor-
mance measures despite the fact that some er-
rors are more difficult to correct than others.
Ideally, difficult errors should be regarded to
be more important than easy ones in evalua-
tion. This leads to the following ultimate re-
search question — Can even human experts
estimate correction difficulty well? In this pa-
per, we explore questions about correction dif-
ficulty centering on this research question. For
this purpose, we first introduce a method for
estimating agreement rates in correction diffi-
culty judgements based on pairwise compar-
ison. With the annotation of 2,025 instances
using this method, we show that human ex-
perts exhibit a moderate agreement rate of
66.39% (Cohen’s-x: 0.42) in judging correc-
tion difficulty. We also show that the agree-
ment between this human-based difficulty and
an automatically induced difficulty is compa-
rable (64.50% and x = 0.35 on average).
We further look into the annotation results to
reveal the insights of the human-judged and
machine-judged correction difficulties, report-
ing on following three findings: (i) where
the human-judged and machine-judged diffi-
culties are strong and weak; (ii) based on (i),
correction difficulty can be GEC-algorithm-
and training-corpus-dependent; (iii) human-
judged and machine-judged correction diffi-
culties complement each other.

1 Introduction

Recent progress in grammatical error correction
(GEC) makes it possible to correct a wide vari-
ety of grammatical errors as can be seen in the
work by, for example, Omelianchuk et al. (2020);
Rothe et al. (2021); Stahlberg and Kumar (2021),
to name a few. Such errors range from easy ones to

correct (e.g., It is *more easy — easier.) to more
difficult ones (e.g., It is difficult for *the — ¢ stu-
dents.).

One of the key challenges in research in GEC
remains in evaluation. Namely, all errors are
equally treated in the conventional performance
measures such as Fp 5 and GLEU (Napoles et al.,
2015) despite the fact that some errors are more
difficult to correct than others. Ideally, difficult
errors should be regarded to be more important
than easy ones in evaluation. Nevertheless, there
is almost no method satisfying this requirement.
An exception is a difficulty-weighted performance
measure for GEC proposed by Gotou et al. (2020).
Their method automatically estimates correction
difficulty based on the success rate of the cor-
rection, that is, the proportion of GEC systems
that successfully correct the target error to the
entire system set in question. What is missing
in their method is whether or not the correction
difficulty defined in their work reflects well the
human judgement of correction difficulty (here-
after, the former and latter will be referred to as
machine-judged correction difficulty and human-
judged correction difficulty, respectively).

This leads to the following ultimate research
question — Can even human experts estimate
correction difficulty well in the first place?
Cases can easily be found where it is not straight-
forward at all to determine their correction diffi-
culty by a psychometric scale such as the Likert
scale (e.g., very difficult, difficult, standard, easy,
or very easy). For instance, it is not trivial at all to
determine the rating of the above first example: I¢
is *more easy — easier.; it could be rated as stan-
dard or very easy. Similarly, the same argument
applies to the second example: It is difficult for
*the — ¢ students., which can be any of standard
to very difficult.

The above ultimate research question brings out
further questions related to correction difficulty.




For example, if human experts estimate correction
difficulty well, is the machine-judged correction
difficulty associated with the human-judged cor-
rection difficulty well? Are there any differences
between them? If yes, where and how?

In this paper, we explore these questions about
correction difficulty centering on the above ulti-
mate research question. To overcome the prob-
lem of judging correction difficulty manually,
we introduce a method for estimating correction
difficulty based on pairwise comparison. This
method facilitates the judgement by exploiting the
machine-judged correction difficulty. We apply
this method to 2,025 error pairs sampled from the
CoNLL-2014 shared task test set (Ng et al., 2014)
to estimate the agreement rate of the correction
difficulty judgement by human experts. We also
investigate how well the human-judged correction
difficulty agrees with the machine-judged correc-
tion difficulty, which in turn reveals advantages
and disadvantages of the two.

The contributions of this work are summarized
as follows. First, with the proposed method,
we show that human experts can indeed esti-
mate correction difficulty to some extent. To
be precise, we show that two human experts
achieve an agreement rate of 66% (kappa 0.42);
the agreement rate rises up to 96% as differ-
ence in correction difficulty increases. We then
show that the human-machine agreement rate
slightly lower, but comparable to the human-
human agreement rate (64%; kappa 0.35 on av-
erage). We further investigate the judgement re-
sults to reveal the following three findings: (i)
where the human-judged correction and machine-
judged correction difficulties are strong and weak;
(ii) based on (i), correction difficulty can be GEC-
algorithm- and training-corpus-dependent; (iii)
human-judged and machine-judged correction dif-
ficulties complement each other.

2 Related Work

With the advent of the deep neural network tech-
niques, GEC has dramatically improved in cor-
rection performance. Examples include the work
by Omelianchuk et al. (2020); Rothe et al. (2021);
Stahlberg and Kumar (2021), to name a few.

In GEC, Fj 5 (based on recall and precision) and
GLEU are widely used as performance measures.
In addition, evaluation tools including the Max-
Match (M?) scorer (Dahlmeier and Ng, 2012) and

ERRANT (Bryant et al., 2017; Felice et al., 2016)
are available to the public. These measures and
tools have contributed to progress in GEC. None
of these conventional measures nor tools, however,
do not consider correction difficulty.

The measure proposed by Gotou et al. (2020)
takes correction difficulty into account. Their
measure is based on the success rate of GEC. For
this purpose, system outputs are first aligned to
the corresponding reference sentences. Then, the
number of successful corrections are counted to
calculate the success rate. Finally, each error is
weighted according to its success rate; basically,
the lower the success rate is, the more difficult
the error is considered to be. Gotou et al. (2020)
demonstrate that the weights based on the success
rate can be interpreted as correction difficulty. We
exploit this correction difficulty to facilitate pair-
wise comparison.

Numerous corpora are available for GEC eval-
vation. These include the CoNLL-2013 (Ng
et al, 2013) and CoNLL-2014 (Ng et al,
2014) datasets, Cambridge ESOL First Certifi-
cate in English (FCE) (Yannakoudakis et al.,
2011), JHU FLuency-Extended GUG Corpus (JF-
LEG) (Napoles et al., 2017), Konan-JIEM Learner
Corpus (KJ) (Nagata et al., 2011). These cor-
pora differ in many aspects: proficiency levels and
mother tongues of the writers, essay topics, and
error rates.

3 Method and Conditions
3.1 Method

The main purpose of this paper is to answer the
research question: can even human experts esti-
mate correction difficulty well? As described in
Sect. 1, the major obstacle to this goal is that it is
not straightforward at all to determine correction
difficulty by a psychometric scale such as the Lik-
ert scale.

To overcome this problem, we propose a
method based on pairwise comparison. This is
because we found in a pre-experiment that it was
much easier to determine which was more difficult
given a pair of error instances than to rate individ-
ual errors on a Likert scale. For example, one can
tell that the first example in Sect. 1 is easier to cor-
rect than the second example. For this reason, we
adopt pairwise comparison as our basis.

The procedure of the method based on pairwise
comparison is summarized in the following three



Error 1 Result  Error 2

It is *more easy — easier to... < It is difficult for *the — ¢ ...

*A — The doctor said ... > The number *coresponds — corresponds ...
It can be *improve — improved . .. = It can be *explain — explained ...

*Some how — Somehow I must find ... ? *May be — Maybe I goto...

Table 1: Examples of pairwise comparison.

steps:
Step 1 Create pairs to be judged

Step 2 Judge correction difficulty by pairwise
comparison

Step 3 Estimate agreement rate

In Step 1, we create pairs of two errors. As
a simple way of creating pairs, we can ran-
domly sample two sentences containing errors
from learner corpora annotated with grammatical
errors such as the CoNLL-2014 shared task test
set (Ng et al., 2014). Since a sentence can con-
tain multiple errors, we highlight the target errors
to be compared as shown in the example sentences
in Table 1.

Although this simple way enables us to create
pairs for evaluation, it is far from efficient. The
resulting pairs should vary in terms of the differ-
ence in correction difficulty between each pair. In
other words, it is better to include various correc-
tion difficulties in the pairs, for example, a pair
consisting of very difficult and very easy, very dif-
ficult and easy, and so on. Random sampling does
not satisfy this requirement unless the distribution
of correction difficulty pairs is not uniform.

To improve the efficiency, we exploit the
method for automatically estimating correction
difficulty introduced by Gotou et al. (2020), that
is the machine-judged correction difficulty. With
this method, we can assign a (tentative) correction
difficulty rating to each error in a learner corpus.
We can then sample an error in one rating category
and another in another rating category and make
them a pair instead of randomly sampling two er-
rors from the entire set. Doing so, we control the
variety of the difference in correction difficulty in
the pairs for evaluation.

One might argue that we cannot use the auto-
mated method because it has not yet been proven
to correlate to the human-judged correction diffi-
culty. However, even in the worst case (i.e., the
automated method does not estimate correction

difficulty well at all, and thus randomly outputs
one of the correction difficult ratings), it would
only result in the situation where all errors are
sampled randomly as in the simple way described
above. Besides, we can tell if this is the case or
not by looking at the judgement results. In this
worst case, the human-machine agreement should
greatly deviate from the human-human agreement.

In Step 2, the obtained pairs are displayed to
human experts, who judge correction difficulty by
either the first error is more difficult to correct, the
second is more difficult, equally difficult, or cannot
judge, which are denoted by >, <, =, and ? in
Table 1.

Before we actually judged correction difficulty
in the above manner, we had conducted a trial ses-
sion to make judgement criteria. They are summa-
rized as follows:

C1 Amount of context
C2 Lexicality
C3 Multiple errors

C1 refers to the amount of context required to
correct the error in question; the wider the con-
text is, the more difficult the error is considered to
be. For example, although the following two er-
ror instances fall into the same error category (i.e.,
subject-verb agreement), the former requires a
wider context (five words to the subject students),
and thus it is considered to be more difficult to cor-
rect: The students in the new class *likes — like
their teacher. vs. The students *likes — like read-
ing. The amount of context is calculated based on
the number of words (to the clue). If the clue is
beyond the sentence boundary, it is considered to
be more difficult than those inside the sentence in
question. Likewise, if the clue is extra-textual, the
amount of context required is regarded as infinite
(and thus more difficult than the other two cases).

C2 concerns the lexicality of the correction. Er-
rors involving lexical choice tend to be more diffi-
cult. For example, the error Can you *teach — tell



me the way to the station. involves lexical choice
and thus is expected to be more difficult than the
error He *tell — tells me what to do. Note that C2
is often associated with C1; errors involving lexi-
cal choice require a wider context. For example,
the first error requires almost the whole sentence
to correct teach to tell whereas the second can be
corrected by just looking at He tell.

C3 is used when other errors appear around the
error in question. To be precise, it is considered
to be more difficult if correcting the error in ques-
tion is influenced by other errors. For example, the
error A students *likes — like it. would be much
easier to correct without the other error as in Stu-
dents *likes — like it.

All these criteria are of course not the gold stan-
dard rules and have room for interpretation. Multi-
ple criteria may sometimes apply to the same error
simultaneously, in which case one has to decide
which one is superior. We let human experts de-
cide the final choice based on these criteria.

Finally, in Step 3, we estimate the agreement
rate based the obtained judgements. We simply
define it as the number of pairs whose judgement
results are agreed by two human experts (exclud-
ing cannot-judge cases) divided by the total num-
ber of pairs. We also use Cohen’s-x (Cohen, 1960)
as another estimate.

It should be emphasized here that as well as the
agreement rate between human experts, we can
estimate human-machine agreement rates in the
same manner. In the above case, the agreement
is determined based on the human judgements. In
contrast, in this case, it is determined whether the
machine judgement agrees with its human coun-
terpart. Recall that pairs are created according to
the machine-judged correction difficulty (and thus
it tells which is difficult).

3.2 Conditions

We use the widely used CoNLL-2014 shared task
test set (Ng et al., 2014) as our base learner corpus.
We only use the first annotation, which contains
2,379 errors.

To create error pairs (i.e., Step 1 in Sect.3.1),
we need to automatically estimate correction dif-
ficulty of the above errors (i.e., to implement the
Gotou et al. (2020)’s method). We in turn need
to obtain error correction results for the corpus,
which are used to implement their method. We
choose the same eight systems used in their work:

specifically, a phrase-based statistical machine
translation-based system (Junczys-Dowmunt and
Grundkiewicz, 2016), three deep neural network-
based systems (Junczys-Dowmunt et al., 2018; Ge
et al., 2018; Kiyono et al., 2019), and four base-
line systems, which are introduced by Mita et al.
(2019), based on statistical machine translation-
based or deep neural networks. Note that the use
of the eight systems provides nine levels of correc-
tion difficulty. Table 2 shows their distribution. In
Table 2, higher values denote more difficult errors.

We use a subset of all pairs obtained by using
the method described in Sect. 3.1. Specifically, we
randomly choose 50 pairs for each combination of
different difficulty levels. The nine levels of cor-
rection difficulty make 36 combinations of them
and thus it makes 1,800 pairs of error instances.
We also include pairs whose difficulty levels are
the same. Simply, we randomly choose 25 pairs
from each difficulty level, which amounts to 225
pairs. Accordingly, we use 2,025 error pairs in to-
tal. The resulting pair contain 1,412 unique errors;
note that the same errors are inevitably used mul-
tiple times because the number of errors differ de-
pending on the difficulty level.

The second and third authors conduct the dif-
ficulty judgement. They have been engaged on
GEC research for more than 20 years and five
years, respectively and have developed a num-
ber of GEC systems. They independently con-
duct pairwise comparison (i.e., Step 2 in Sect. 3.1)
for the resulting pairs. After the first round, they
recheck the results (again, independently) to re-
duce annotation mistakes.

Difficulty level Frequency

0 110
1 80
2 104
3 107
4 109
5 111
6 154
7 208
8 1,396

Total 2,379

Table 2: Distribution of machine-judged correction dif-
ficulty.



Evaluator pair Agreement rate (%) Cohen’s-x
H, - Hy 65.38 0.41
H -M 59.36 0.32
Hy-M 58.37 0.28
H, - Hy 66.39 0.42
H-M 64.72 0.37
Hy-M 64.28 0.33

Table 3: Simple agreement rate and Cohen’s-x in pairwise comparison. Upper block: results for all 2,025 pairs;
Lower block: results excluding equivalent pairs; H1: human expert 1; Hs: human expert 2; M: machine-judged

correction difficulty.

Judgement
Evaluator | < = > 7
H, 922 256 846 1
H 938 167 920 O

Table 4: Distribution of difficulty judgements.

4 Result

Table 3 shows the simple agreement rates and
Cohen’s-x; Table 4 shows the distribution of the
judgments (pairwise comparison). In both tables,
Hy, Hy, and M denote the first, second human
experts, and the machine-judged correction diffi-
culty, respectively. The upper and lower blocks
in Table 3 correspond to the results excluding and
including the error pairs whose difficulty is equiv-
alent, respectively.

According to Table 3, the human judgements
exhibit moderate agreement. This agreement rate
of 65.38% is significantly higher than the ma-
jority baseline (44.44%) (two-proportion z-test;
p < 0.01). At the same time, Table 3 suggests
that there are cases on which even human ex-
perts disagree, which will be discussed in detail
in Sect.5.1.

Table 3 also shows that the human-machine
agreements are slightly lower than, but compara-
ble to the human-human agreements especially in
the results excluding the 225 difficulty-equivalent
pairs. This implies that human experts can judge
correction difficulty with a finer grade. Namely,
they can tell the difference even in cases where the
automated method cannot.

A closer look at the results reveal insights of the
human and machine judgements. Figure 1 shows
the relationship between the difference in cor-
rection difficulty and the simple agreement rate.
The horizontal and vertical axes correspond to the
difference in correction difficulty and the simple

1.0

—— Human 1 vs Human 2
Human 1 vs Machine

—— Human 2 vs Machine
0.8

0.6 4

0.4 4

Agreement Rate

0.2 4

0.0 1— . ‘ ‘ . ‘ ‘ . .
0 1 2 3 4 5 6 7 8
Difficulty Difference

Figure 1: Relationship between difference in correction
difficulty and simple agreement rate.

agreement rate, respectively. The overall trend is
that the agreement rate goes higher in all pairwise
comparison as the difference in correction diffi-
culty increases. In particular, for the error pairs
with the largest difficulty difference (i.e., differ-
ence 8), the corresponding agreement rates exceed
90%. The plots at the difference 0 in Figure 1 also
confirm the previous argument that human experts
can judge correction difficulty with a finer grade.

The results are summarized as follows. The ob-
tained simple agreement rates and Cohen’s-x gives
(at least to some extent) yes to the research ques-
tion — can even human experts estimate correction
difficulty well in the first place? The machine-
judged correction difficulty is expected to be com-
parable to the human-judged correction difficulty
especially when the difference in correction diffi-
culty are relatively large.

5 Discussion

5.1 Sources of Disagreements

In Sect.4, we have seen that the human judge-
ments exhibit moderate agreement. We also have



seen that the human-machine agreements are com-
parable to the human-human agreements. Unfor-
tunately, however, both cases do not achieve per-
fect agreement.

We now turn to the question where the disagree-
ments come from and why. To discuss this point,
let us first look at the simple agreement rates by
error types, which are shown in Table 5. Here, the
error types are those automatically obtained by us-
ing ERRANT (Bryant et al., 2017); see their paper
for the error type definition. Note that the 225 er-
ror pairs whose correction difficulty is equivalent
are excluded from Table 5. Also note that OTHER
(other type) and error types whose occurrences are
less than ten are excluded.

To our surprise, both human-human and human-
machine agreement rates exhibit similar values in
most of the error types. This may reflect the fact
that ambiguous, subtle cases that are difficult to
judge according to the machine-judged correction
difficulty are also difficult for the human experts,
and vice versa. At both extremes, for example,
the first two error types exhibit a very high agree-
ment rate in all three combinations; the first (ADJ)
tends to be judged as more difficult to correct
whereas the second is the opposite case. Most of
the other cases such as VERB:TENSE (tense er-
ror) and DET (determiner errors) also exhibit sim-
ilar values across the three, but their values are
much lower, suggesting that there are cases that
are difficult to judge for both human experts and
the automated method. More generally, the judge-
ment of correction difficulty can be highly difficult
for even human experts in some cases.

Interestingly, there are error types whose
agreement rates considerably differ in the
three.  The most typical case is found in
ORTH, specifically, errors concerning white
spaces (e.g.,  *thefamily — the family  and
*some how — somehow). Although its agreement
rate between one of the human experts and the
machine-judged correction difficulty is as high
as 70%, the human-human agreement reaches
only 30%. The first expert tends to rate this
type of error as easier to correct because the rule
for correcting this type of error is rather simple
and clear. The other expert, however, favors the
opposite considering that modern systems based
on neural networks or even statistical machine
translations do not normally take account of such
a rule. This implies that correction difficulty can

Simple Agreement Rate
Error Type H{-M | Hy-M | Hy - Hy
ADJ 0.92 0.85 0.92
VERB:INFL 0.90 1.00 0.90
WO 0.88 0.75 0.69
CONJ 0.87 0.73 0.73
PUNCT 0.75 0.80 0.81
NOUN 0.73 0.72 0.58
ADV 0.72 0.72 0.72
VERB 0.72 0.68 0.70
PART 0.70 0.63 0.59
ADJ:FORM 0.69 0.46 0.54
VERB:FORM 0.69 0.65 0.68
PRON 0.67 0.72 0.72
VERB:TENSE | 0.67 0.70 0.69
PREP 0.66 0.64 0.70
VERB:SVA 0.64 0.62 0.65
NOUN:INFL 0.64 0.64 0.50
MORPH 0.63 0.58 0.60
DET 0.62 0.61 0.62
NOUN:NUM 0.59 0.58 0.61
NOUN:POSS 0.56 0.56 0.69
SPELL 0.54 0.61 0.77
ORTH 0.45 0.70 0.30

Table 5: Simple agreement rates for each error type
(excl. 225 equivalent pairs).

be (at least partially) GEC algorithm-dependent,
which should be one of the factors that makes
human judgement difficult.

The differences in the simple agreement rates
is also large in SPELL (spelling errors). The
agreement rate between the two human experts is
relatively high compared to the human-machine
agreement. They frequently judge spelling errors,
which appear 211 times in the data, to be eas-
ier than their counterpart (the error for compari-
son). This is only natural if we consider the cri-
terion C1 that the wider context an error requires
to be corrected, the more difficult it is considered
to be. It should be emphasized that most spelling
errors can be corrected without any context (by
the word itself). An actual example is: --- it is
a good practice not to Fintesively — intensively
use social media all the time. Humans can al-
most immediately correct the error by just look-
ing at the target word intesively. In the pair-
wise comparison experiment, this error instance
is paired with the following error in subject-verb
agreement: - -- with the function of social media




sites that *connects — connect the people, - - - . In
order to correct this error, one needs to recognize
that the target word is a verb and that its subject
is social media sites (and not function nor that).
The former case is much simpler as a correction
procedure than the latter. Nevertheless, none of
the eight GEC systems successfully corrects the
former (spelling error) while half of them succeed
in the latter (subject-verb agreement error). Ac-
cordingly, the former is judged to be easier in the
machine-judged correction difficulty, which dis-
agrees with the human judgements. This is the
major source of the human-machine disagreement.
For instance, 19 spelling errors are successfully
corrected by only two or less of the eight GEC
systems and are judged to be more difficult than
their counterpart. Out of 19, 17 are judged as the
opposite by both human experts.

These observations about spelling errors imply
that correction difficulty can be training-corpus-
dependent as well as GEC algorithm-dependent.
Even spelling errors that are easy to correct for hu-
mans can be very difficult for corpus-based GEC
systems if they never appear in the training cor-
pus. Admittedly, recent deep neural network-
based systems are based on subwords and are in-
fluenced less by unseen spellings. That said, it
would be very hard to correct unseen spelling
errors with standard deep neural network-based
GEC systems. This exemplifies that correction
difficulty can be training-corpus-dependent. The
same argument can partly apply to the above or-
thographic errors. Of course, unseen spelling and
orthographic errors can mostly be corrected with
neural network-based GEC systems if they are
equipped with specialized functions. This reflects
a GEC algorithm-dependent aspect of correction
difficulty.

So far, we have observed that judgements
of correction difficulty can be very difficult
for both human experts and the automated
method in some cases. This is partly ascribed
to the training-corpus-dependent and the GEC
algorithm-dependent aspects of correction diffi-
cult, which are sources of disagreement in judge-
ments.

5.2 Advantages and disadvantages of
human-judged and machine-judged
correction difficulties

The results shown in Sect.4 suggest that the
human-judged correction difficulty exhibits a
slightly higher agreement rate and is finer-graded
than the machine-judged correction difficulty. At
the same time, it is highly costly and time-
consuming to manually annotate grammatical er-
rors with their correction difficulty even with the
pairwise comparison adopted in this paper. It often
requires human experts to conduct pairwise com-
parison accurately. For this reason, the human-
judged correction difficulty is more suitable for
deep analysis of grammatical errors in terms of
correction difficulty.

In contrast, the machine-judged correction dif-
ficulty has an advantage over the human-judged
correction difficulty in terms of cost and time. In
other words, it enables us to assign correction dif-
ficulty ratings to a large number of error instances
with a much shorter time, which is preferable or
even necessary in certain situations such as evalu-
ation in GEC shared tasks where a number of sys-
tems are involved and/or where the test set is large.

In Subsect. 5.1, we have observed that in some
cases, the machine-judged correction difficulty re-
veals insights of GEC systems that even human
experts are not aware of. Specifically, it has re-
vealed that there exist rather simple errors (sim-
ple in terms of error correction) that even sophis-
ticated, state-of-the-art GEC systems cannot cor-
rect, suggesting that it will be useful to strengthen
manual analysis of correction difficulty.

This nice property also suits the machine-
judged correction difficulty evaluation in GEC
shared tasks. The reasons for this are (i) the per-
formance measure based on the machine-judged
correction difficulty gives higher weights to errors
that are not corrected by other systems in evalu-
ation as Gotou et al. (2020) (and also the above
discussion) demonstrate; (ii) this means that re-
searchers in the domain of GEC have to tackle
such challenging errors to achieve a better perfor-
mance; (iii) this in turn brings a diversity of GEC
systems.

The reader might be wondering how many GEC
systems are required to achieve a stable difficulty
judgment in the machine-judged correction diffi-
culty; we used eight GEC systems in this work,
which is not so cost- and time- effective although
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Figure 2: Relationship between the number of GEC
systems used and human-machine agreement rates.

we can use already-implemented systems repeat-
edly in practice.

Figure 2 partly answers this question. The hor-
izontal and vertical axes of the figure indicate
the number of GEC systems used to calculate the
machine-judged correction difficulty and the aver-
age of corresponding simple agreement rates. The
average is taken over the possible combination of
used systems (28 combinations when two systems
are used, for example) and the two experts.

As expected, the average human-machine
agreement rate improves as the number of GEC
systems used increases. More importantly, the fig-
ure shows a saturation point comes at around five
or six systems. In other words, the more system
used, the better. At the same time, we can obtain
comparable results with five or six systems. Of
course, this only applies to this dataset (i.e., the
CoNLL-2014 shared task test set) with the eight
GEC systems. The tendency might greatly change
depending on datasets and GEC systems. It will
be interesting to explore the relationship in detail.

6 Conclusions

In this paper, we have explored research questions
about correction difficulty in GEC. To answer the
questions, we first introduced a method for esti-
mating correction difficulty efficiently. With the
annotation of 2,025 instances, we showed that
human experts exhibit moderate agreement rate
of 66.39% (Cohen’s-x: 0.42) while the human-
machine agreement rate is comparable (64.50%
and k = 0.35 on average). We further looked
into the annotation results to reveal insights of

human-judged and machine-judged correction dif-
ficulties. Specifically, we reported on the follow-
ing three findings: (i) where the human-judged
and machine-judged difficulties are strong and
weak; (ii) based on (i), correction difficulty can be
GEC-algorithm- and training-corpus-dependent;
(iii) human-judged and machine-judged correction
difficulties complement each other.
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