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Abstract

While grammatical error correction (GEC) has001
improved in its correction performance, one of002
the key challenges in GEC research still re-003
mains in evaluation. Specifically, all errors004
are equally treated in the conventional perfor-005
mance measures despite the fact that some er-006
rors are more difficult to correct than others.007
Ideally, difficult errors should be regarded to008
be more important than easy ones in evalua-009
tion. This leads to the following ultimate re-010
search question — Can even human experts011
estimate correction difficulty well? In this pa-012
per, we explore questions about correction dif-013
ficulty centering on this research question. For014
this purpose, we first introduce a method for015
estimating agreement rates in correction diffi-016
culty judgements based on pairwise compar-017
ison. With the annotation of 2,025 instances018
using this method, we show that human ex-019
perts exhibit a moderate agreement rate of020
66.39% (Cohen’s-κ: 0.42) in judging correc-021
tion difficulty. We also show that the agree-022
ment between this human-based difficulty and023
an automatically induced difficulty is compa-024
rable (64.50% and κ = 0.35 on average).025
We further look into the annotation results to026
reveal the insights of the human-judged and027
machine-judged correction difficulties, report-028
ing on following three findings: (i) where029
the human-judged and machine-judged diffi-030
culties are strong and weak; (ii) based on (i),031
correction difficulty can be GEC-algorithm-032
and training-corpus-dependent; (iii) human-033
judged and machine-judged correction diffi-034
culties complement each other.035

1 Introduction036

Recent progress in grammatical error correction037

(GEC) makes it possible to correct a wide vari-038

ety of grammatical errors as can be seen in the039

work by, for example, Omelianchuk et al. (2020);040

Rothe et al. (2021); Stahlberg and Kumar (2021),041

to name a few. Such errors range from easy ones to042

correct (e.g., It is *more easy → easier.) to more 043

difficult ones (e.g., It is difficult for *the → ϕ stu- 044

dents.). 045

One of the key challenges in research in GEC 046

remains in evaluation. Namely, all errors are 047

equally treated in the conventional performance 048

measures such as F0.5 and GLEU (Napoles et al., 049

2015) despite the fact that some errors are more 050

difficult to correct than others. Ideally, difficult 051

errors should be regarded to be more important 052

than easy ones in evaluation. Nevertheless, there 053

is almost no method satisfying this requirement. 054

An exception is a difficulty-weighted performance 055

measure for GEC proposed by Gotou et al. (2020). 056

Their method automatically estimates correction 057

difficulty based on the success rate of the cor- 058

rection, that is, the proportion of GEC systems 059

that successfully correct the target error to the 060

entire system set in question. What is missing 061

in their method is whether or not the correction 062

difficulty defined in their work reflects well the 063

human judgement of correction difficulty (here- 064

after, the former and latter will be referred to as 065

machine-judged correction difficulty and human- 066

judged correction difficulty, respectively). 067

This leads to the following ultimate research 068

question — Can even human experts estimate 069

correction difficulty well in the first place? 070

Cases can easily be found where it is not straight- 071

forward at all to determine their correction diffi- 072

culty by a psychometric scale such as the Likert 073

scale (e.g., very difficult, difficult, standard, easy, 074

or very easy). For instance, it is not trivial at all to 075

determine the rating of the above first example: It 076

is *more easy → easier.; it could be rated as stan- 077

dard or very easy. Similarly, the same argument 078

applies to the second example: It is difficult for 079

*the → ϕ students., which can be any of standard 080

to very difficult. 081

The above ultimate research question brings out 082

further questions related to correction difficulty. 083
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For example, if human experts estimate correction084

difficulty well, is the machine-judged correction085

difficulty associated with the human-judged cor-086

rection difficulty well? Are there any differences087

between them? If yes, where and how?088

In this paper, we explore these questions about089

correction difficulty centering on the above ulti-090

mate research question. To overcome the prob-091

lem of judging correction difficulty manually,092

we introduce a method for estimating correction093

difficulty based on pairwise comparison. This094

method facilitates the judgement by exploiting the095

machine-judged correction difficulty. We apply096

this method to 2,025 error pairs sampled from the097

CoNLL-2014 shared task test set (Ng et al., 2014)098

to estimate the agreement rate of the correction099

difficulty judgement by human experts. We also100

investigate how well the human-judged correction101

difficulty agrees with the machine-judged correc-102

tion difficulty, which in turn reveals advantages103

and disadvantages of the two.104

The contributions of this work are summarized105

as follows. First, with the proposed method,106

we show that human experts can indeed esti-107

mate correction difficulty to some extent. To108

be precise, we show that two human experts109

achieve an agreement rate of 66% (kappa 0.42);110

the agreement rate rises up to 96% as differ-111

ence in correction difficulty increases. We then112

show that the human-machine agreement rate113

slightly lower, but comparable to the human-114

human agreement rate (64%; kappa 0.35 on av-115

erage). We further investigate the judgement re-116

sults to reveal the following three findings: (i)117

where the human-judged correction and machine-118

judged correction difficulties are strong and weak;119

(ii) based on (i), correction difficulty can be GEC-120

algorithm- and training-corpus-dependent; (iii)121

human-judged and machine-judged correction dif-122

ficulties complement each other.123

2 Related Work124

With the advent of the deep neural network tech-125

niques, GEC has dramatically improved in cor-126

rection performance. Examples include the work127

by Omelianchuk et al. (2020); Rothe et al. (2021);128

Stahlberg and Kumar (2021), to name a few.129

In GEC, F0.5 (based on recall and precision) and130

GLEU are widely used as performance measures.131

In addition, evaluation tools including the Max-132

Match (M2) scorer (Dahlmeier and Ng, 2012) and133

ERRANT (Bryant et al., 2017; Felice et al., 2016) 134

are available to the public. These measures and 135

tools have contributed to progress in GEC. None 136

of these conventional measures nor tools, however, 137

do not consider correction difficulty. 138

The measure proposed by Gotou et al. (2020) 139

takes correction difficulty into account. Their 140

measure is based on the success rate of GEC. For 141

this purpose, system outputs are first aligned to 142

the corresponding reference sentences. Then, the 143

number of successful corrections are counted to 144

calculate the success rate. Finally, each error is 145

weighted according to its success rate; basically, 146

the lower the success rate is, the more difficult 147

the error is considered to be. Gotou et al. (2020) 148

demonstrate that the weights based on the success 149

rate can be interpreted as correction difficulty. We 150

exploit this correction difficulty to facilitate pair- 151

wise comparison. 152

Numerous corpora are available for GEC eval- 153

uation. These include the CoNLL-2013 (Ng 154

et al., 2013) and CoNLL-2014 (Ng et al., 155

2014) datasets, Cambridge ESOL First Certifi- 156

cate in English (FCE) (Yannakoudakis et al., 157

2011), JHU FLuency-Extended GUG Corpus (JF- 158

LEG) (Napoles et al., 2017), Konan-JIEM Learner 159

Corpus (KJ) (Nagata et al., 2011). These cor- 160

pora differ in many aspects: proficiency levels and 161

mother tongues of the writers, essay topics, and 162

error rates. 163

3 Method and Conditions 164

3.1 Method 165

The main purpose of this paper is to answer the 166

research question: can even human experts esti- 167

mate correction difficulty well? As described in 168

Sect. 1, the major obstacle to this goal is that it is 169

not straightforward at all to determine correction 170

difficulty by a psychometric scale such as the Lik- 171

ert scale. 172

To overcome this problem, we propose a 173

method based on pairwise comparison. This is 174

because we found in a pre-experiment that it was 175

much easier to determine which was more difficult 176

given a pair of error instances than to rate individ- 177

ual errors on a Likert scale. For example, one can 178

tell that the first example in Sect. 1 is easier to cor- 179

rect than the second example. For this reason, we 180

adopt pairwise comparison as our basis. 181

The procedure of the method based on pairwise 182

comparison is summarized in the following three 183
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Error 1 Result Error 2
It is *more easy → easier to. . . < It is difficult for *the → ϕ . . .
*A → The doctor said . . . > The number *coresponds → corresponds . . .
It can be *improve → improved . . . = It can be *explain → explained . . .
*Some how → Somehow I must find . . . ? *May be → Maybe I go to . . .

Table 1: Examples of pairwise comparison.

steps:184

Step 1 Create pairs to be judged185

Step 2 Judge correction difficulty by pairwise186

comparison187

Step 3 Estimate agreement rate188

In Step 1, we create pairs of two errors. As189

a simple way of creating pairs, we can ran-190

domly sample two sentences containing errors191

from learner corpora annotated with grammatical192

errors such as the CoNLL-2014 shared task test193

set (Ng et al., 2014). Since a sentence can con-194

tain multiple errors, we highlight the target errors195

to be compared as shown in the example sentences196

in Table 1.197

Although this simple way enables us to create198

pairs for evaluation, it is far from efficient. The199

resulting pairs should vary in terms of the differ-200

ence in correction difficulty between each pair. In201

other words, it is better to include various correc-202

tion difficulties in the pairs, for example, a pair203

consisting of very difficult and very easy, very dif-204

ficult and easy, and so on. Random sampling does205

not satisfy this requirement unless the distribution206

of correction difficulty pairs is not uniform.207

To improve the efficiency, we exploit the208

method for automatically estimating correction209

difficulty introduced by Gotou et al. (2020), that210

is the machine-judged correction difficulty. With211

this method, we can assign a (tentative) correction212

difficulty rating to each error in a learner corpus.213

We can then sample an error in one rating category214

and another in another rating category and make215

them a pair instead of randomly sampling two er-216

rors from the entire set. Doing so, we control the217

variety of the difference in correction difficulty in218

the pairs for evaluation.219

One might argue that we cannot use the auto-220

mated method because it has not yet been proven221

to correlate to the human-judged correction diffi-222

culty. However, even in the worst case (i.e., the223

automated method does not estimate correction224

difficulty well at all, and thus randomly outputs 225

one of the correction difficult ratings), it would 226

only result in the situation where all errors are 227

sampled randomly as in the simple way described 228

above. Besides, we can tell if this is the case or 229

not by looking at the judgement results. In this 230

worst case, the human-machine agreement should 231

greatly deviate from the human-human agreement. 232

In Step 2, the obtained pairs are displayed to 233

human experts, who judge correction difficulty by 234

either the first error is more difficult to correct, the 235

second is more difficult, equally difficult, or cannot 236

judge, which are denoted by >, <, =, and ? in 237

Table 1. 238

Before we actually judged correction difficulty 239

in the above manner, we had conducted a trial ses- 240

sion to make judgement criteria. They are summa- 241

rized as follows: 242

C1 Amount of context 243

C2 Lexicality 244

C3 Multiple errors 245

C1 refers to the amount of context required to 246

correct the error in question; the wider the con- 247

text is, the more difficult the error is considered to 248

be. For example, although the following two er- 249

ror instances fall into the same error category (i.e., 250

subject-verb agreement), the former requires a 251

wider context (five words to the subject students), 252

and thus it is considered to be more difficult to cor- 253

rect: The students in the new class *likes → like 254

their teacher. vs. The students *likes → like read- 255

ing. The amount of context is calculated based on 256

the number of words (to the clue). If the clue is 257

beyond the sentence boundary, it is considered to 258

be more difficult than those inside the sentence in 259

question. Likewise, if the clue is extra-textual, the 260

amount of context required is regarded as infinite 261

(and thus more difficult than the other two cases). 262

C2 concerns the lexicality of the correction. Er- 263

rors involving lexical choice tend to be more diffi- 264

cult. For example, the error Can you *teach → tell 265

3



me the way to the station. involves lexical choice266

and thus is expected to be more difficult than the267

error He *tell → tells me what to do. Note that C2268

is often associated with C1; errors involving lexi-269

cal choice require a wider context. For example,270

the first error requires almost the whole sentence271

to correct teach to tell whereas the second can be272

corrected by just looking at He tell.273

C3 is used when other errors appear around the274

error in question. To be precise, it is considered275

to be more difficult if correcting the error in ques-276

tion is influenced by other errors. For example, the277

error A students *likes → like it. would be much278

easier to correct without the other error as in Stu-279

dents *likes → like it.280

All these criteria are of course not the gold stan-281

dard rules and have room for interpretation. Multi-282

ple criteria may sometimes apply to the same error283

simultaneously, in which case one has to decide284

which one is superior. We let human experts de-285

cide the final choice based on these criteria.286

Finally, in Step 3, we estimate the agreement287

rate based the obtained judgements. We simply288

define it as the number of pairs whose judgement289

results are agreed by two human experts (exclud-290

ing cannot-judge cases) divided by the total num-291

ber of pairs. We also use Cohen’s-κ (Cohen, 1960)292

as another estimate.293

It should be emphasized here that as well as the294

agreement rate between human experts, we can295

estimate human-machine agreement rates in the296

same manner. In the above case, the agreement297

is determined based on the human judgements. In298

contrast, in this case, it is determined whether the299

machine judgement agrees with its human coun-300

terpart. Recall that pairs are created according to301

the machine-judged correction difficulty (and thus302

it tells which is difficult).303

3.2 Conditions304

We use the widely used CoNLL-2014 shared task305

test set (Ng et al., 2014) as our base learner corpus.306

We only use the first annotation, which contains307

2,379 errors.308

To create error pairs (i.e., Step 1 in Sect. 3.1),309

we need to automatically estimate correction dif-310

ficulty of the above errors (i.e., to implement the311

Gotou et al. (2020)’s method). We in turn need312

to obtain error correction results for the corpus,313

which are used to implement their method. We314

choose the same eight systems used in their work:315

specifically, a phrase-based statistical machine 316

translation-based system (Junczys-Dowmunt and 317

Grundkiewicz, 2016), three deep neural network- 318

based systems (Junczys-Dowmunt et al., 2018; Ge 319

et al., 2018; Kiyono et al., 2019), and four base- 320

line systems, which are introduced by Mita et al. 321

(2019), based on statistical machine translation- 322

based or deep neural networks. Note that the use 323

of the eight systems provides nine levels of correc- 324

tion difficulty. Table 2 shows their distribution. In 325

Table 2, higher values denote more difficult errors. 326

We use a subset of all pairs obtained by using 327

the method described in Sect. 3.1. Specifically, we 328

randomly choose 50 pairs for each combination of 329

different difficulty levels. The nine levels of cor- 330

rection difficulty make 36 combinations of them 331

and thus it makes 1,800 pairs of error instances. 332

We also include pairs whose difficulty levels are 333

the same. Simply, we randomly choose 25 pairs 334

from each difficulty level, which amounts to 225 335

pairs. Accordingly, we use 2,025 error pairs in to- 336

tal. The resulting pair contain 1,412 unique errors; 337

note that the same errors are inevitably used mul- 338

tiple times because the number of errors differ de- 339

pending on the difficulty level. 340

The second and third authors conduct the dif- 341

ficulty judgement. They have been engaged on 342

GEC research for more than 20 years and five 343

years, respectively and have developed a num- 344

ber of GEC systems. They independently con- 345

duct pairwise comparison (i.e., Step 2 in Sect. 3.1) 346

for the resulting pairs. After the first round, they 347

recheck the results (again, independently) to re- 348

duce annotation mistakes. 349

Difficulty level Frequency
0 110
1 80
2 104
3 107
4 109
5 111
6 154
7 208
8 1,396

Total 2,379

Table 2: Distribution of machine-judged correction dif-
ficulty.
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Evaluator pair Agreement rate (%) Cohen’s-κ
H1 - H2 65.38 0.41
H1 - M 59.36 0.32
H2 - M 58.37 0.28
H1 - H2 66.39 0.42
H1 - M 64.72 0.37
H2 - M 64.28 0.33

Table 3: Simple agreement rate and Cohen’s-κ in pairwise comparison. Upper block: results for all 2,025 pairs;
Lower block: results excluding equivalent pairs; H1: human expert 1; H2: human expert 2; M : machine-judged
correction difficulty.

Judgement
Evaluator < = > ?

H1 922 256 846 1
H2 938 167 920 0

Table 4: Distribution of difficulty judgements.

4 Result350

Table 3 shows the simple agreement rates and351

Cohen’s-κ; Table 4 shows the distribution of the352

judgments (pairwise comparison). In both tables,353

H1, H2, and M denote the first, second human354

experts, and the machine-judged correction diffi-355

culty, respectively. The upper and lower blocks356

in Table 3 correspond to the results excluding and357

including the error pairs whose difficulty is equiv-358

alent, respectively.359

According to Table 3, the human judgements360

exhibit moderate agreement. This agreement rate361

of 65.38% is significantly higher than the ma-362

jority baseline (44.44%) (two-proportion z-test;363

p < 0.01). At the same time, Table 3 suggests364

that there are cases on which even human ex-365

perts disagree, which will be discussed in detail366

in Sect. 5.1.367

Table 3 also shows that the human-machine368

agreements are slightly lower than, but compara-369

ble to the human-human agreements especially in370

the results excluding the 225 difficulty-equivalent371

pairs. This implies that human experts can judge372

correction difficulty with a finer grade. Namely,373

they can tell the difference even in cases where the374

automated method cannot.375

A closer look at the results reveal insights of the376

human and machine judgements. Figure 1 shows377

the relationship between the difference in cor-378

rection difficulty and the simple agreement rate.379

The horizontal and vertical axes correspond to the380

difference in correction difficulty and the simple381

Figure 1: Relationship between difference in correction
difficulty and simple agreement rate.

agreement rate, respectively. The overall trend is 382

that the agreement rate goes higher in all pairwise 383

comparison as the difference in correction diffi- 384

culty increases. In particular, for the error pairs 385

with the largest difficulty difference (i.e., differ- 386

ence 8), the corresponding agreement rates exceed 387

90%. The plots at the difference 0 in Figure 1 also 388

confirm the previous argument that human experts 389

can judge correction difficulty with a finer grade. 390

The results are summarized as follows. The ob- 391

tained simple agreement rates and Cohen’s-κ gives 392

(at least to some extent) yes to the research ques- 393

tion – can even human experts estimate correction 394

difficulty well in the first place? The machine- 395

judged correction difficulty is expected to be com- 396

parable to the human-judged correction difficulty 397

especially when the difference in correction diffi- 398

culty are relatively large. 399

5 Discussion 400

5.1 Sources of Disagreements 401

In Sect. 4, we have seen that the human judge- 402

ments exhibit moderate agreement. We also have 403
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seen that the human-machine agreements are com-404

parable to the human-human agreements. Unfor-405

tunately, however, both cases do not achieve per-406

fect agreement.407

We now turn to the question where the disagree-408

ments come from and why. To discuss this point,409

let us first look at the simple agreement rates by410

error types, which are shown in Table 5. Here, the411

error types are those automatically obtained by us-412

ing ERRANT (Bryant et al., 2017); see their paper413

for the error type definition. Note that the 225 er-414

ror pairs whose correction difficulty is equivalent415

are excluded from Table 5. Also note that OTHER416

(other type) and error types whose occurrences are417

less than ten are excluded.418

To our surprise, both human-human and human-419

machine agreement rates exhibit similar values in420

most of the error types. This may reflect the fact421

that ambiguous, subtle cases that are difficult to422

judge according to the machine-judged correction423

difficulty are also difficult for the human experts,424

and vice versa. At both extremes, for example,425

the first two error types exhibit a very high agree-426

ment rate in all three combinations; the first (ADJ)427

tends to be judged as more difficult to correct428

whereas the second is the opposite case. Most of429

the other cases such as VERB:TENSE (tense er-430

ror) and DET (determiner errors) also exhibit sim-431

ilar values across the three, but their values are432

much lower, suggesting that there are cases that433

are difficult to judge for both human experts and434

the automated method. More generally, the judge-435

ment of correction difficulty can be highly difficult436

for even human experts in some cases.437

Interestingly, there are error types whose438

agreement rates considerably differ in the439

three. The most typical case is found in440

ORTH, specifically, errors concerning white441

spaces (e.g., *thefamily → the family and442

*some how → somehow). Although its agreement443

rate between one of the human experts and the444

machine-judged correction difficulty is as high445

as 70%, the human-human agreement reaches446

only 30%. The first expert tends to rate this447

type of error as easier to correct because the rule448

for correcting this type of error is rather simple449

and clear. The other expert, however, favors the450

opposite considering that modern systems based451

on neural networks or even statistical machine452

translations do not normally take account of such453

a rule. This implies that correction difficulty can454

Simple Agreement Rate
Error Type H1 - M H2 - M H1 - H2

ADJ 0.92 0.85 0.92
VERB:INFL 0.90 1.00 0.90
WO 0.88 0.75 0.69
CONJ 0.87 0.73 0.73
PUNCT 0.75 0.80 0.81
NOUN 0.73 0.72 0.58
ADV 0.72 0.72 0.72
VERB 0.72 0.68 0.70
PART 0.70 0.63 0.59
ADJ:FORM 0.69 0.46 0.54
VERB:FORM 0.69 0.65 0.68
PRON 0.67 0.72 0.72
VERB:TENSE 0.67 0.70 0.69
PREP 0.66 0.64 0.70
VERB:SVA 0.64 0.62 0.65
NOUN:INFL 0.64 0.64 0.50
MORPH 0.63 0.58 0.60
DET 0.62 0.61 0.62
NOUN:NUM 0.59 0.58 0.61
NOUN:POSS 0.56 0.56 0.69
SPELL 0.54 0.61 0.77
ORTH 0.45 0.70 0.30

Table 5: Simple agreement rates for each error type
(excl. 225 equivalent pairs).

be (at least partially) GEC algorithm-dependent, 455

which should be one of the factors that makes 456

human judgement difficult. 457

The differences in the simple agreement rates 458

is also large in SPELL (spelling errors). The 459

agreement rate between the two human experts is 460

relatively high compared to the human-machine 461

agreement. They frequently judge spelling errors, 462

which appear 211 times in the data, to be eas- 463

ier than their counterpart (the error for compari- 464

son). This is only natural if we consider the cri- 465

terion C1 that the wider context an error requires 466

to be corrected, the more difficult it is considered 467

to be. It should be emphasized that most spelling 468

errors can be corrected without any context (by 469

the word itself). An actual example is: · · · it is 470

a good practice not to *intesively → intensively 471

use social media all the time. Humans can al- 472

most immediately correct the error by just look- 473

ing at the target word intesively. In the pair- 474

wise comparison experiment, this error instance 475

is paired with the following error in subject-verb 476

agreement: · · · with the function of social media 477
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sites that *connects → connect the people , · · · . In478

order to correct this error, one needs to recognize479

that the target word is a verb and that its subject480

is social media sites (and not function nor that).481

The former case is much simpler as a correction482

procedure than the latter. Nevertheless, none of483

the eight GEC systems successfully corrects the484

former (spelling error) while half of them succeed485

in the latter (subject-verb agreement error). Ac-486

cordingly, the former is judged to be easier in the487

machine-judged correction difficulty, which dis-488

agrees with the human judgements. This is the489

major source of the human-machine disagreement.490

For instance, 19 spelling errors are successfully491

corrected by only two or less of the eight GEC492

systems and are judged to be more difficult than493

their counterpart. Out of 19, 17 are judged as the494

opposite by both human experts.495

These observations about spelling errors imply496

that correction difficulty can be training-corpus-497

dependent as well as GEC algorithm-dependent.498

Even spelling errors that are easy to correct for hu-499

mans can be very difficult for corpus-based GEC500

systems if they never appear in the training cor-501

pus. Admittedly, recent deep neural network-502

based systems are based on subwords and are in-503

fluenced less by unseen spellings. That said, it504

would be very hard to correct unseen spelling505

errors with standard deep neural network-based506

GEC systems. This exemplifies that correction507

difficulty can be training-corpus-dependent. The508

same argument can partly apply to the above or-509

thographic errors. Of course, unseen spelling and510

orthographic errors can mostly be corrected with511

neural network-based GEC systems if they are512

equipped with specialized functions. This reflects513

a GEC algorithm-dependent aspect of correction514

difficulty.515

So far, we have observed that judgements516

of correction difficulty can be very difficult517

for both human experts and the automated518

method in some cases. This is partly ascribed519

to the training-corpus-dependent and the GEC520

algorithm-dependent aspects of correction diffi-521

cult, which are sources of disagreement in judge-522

ments.523

5.2 Advantages and disadvantages of 524

human-judged and machine-judged 525

correction difficulties 526

The results shown in Sect. 4 suggest that the 527

human-judged correction difficulty exhibits a 528

slightly higher agreement rate and is finer-graded 529

than the machine-judged correction difficulty. At 530

the same time, it is highly costly and time- 531

consuming to manually annotate grammatical er- 532

rors with their correction difficulty even with the 533

pairwise comparison adopted in this paper. It often 534

requires human experts to conduct pairwise com- 535

parison accurately. For this reason, the human- 536

judged correction difficulty is more suitable for 537

deep analysis of grammatical errors in terms of 538

correction difficulty. 539

In contrast, the machine-judged correction dif- 540

ficulty has an advantage over the human-judged 541

correction difficulty in terms of cost and time. In 542

other words, it enables us to assign correction dif- 543

ficulty ratings to a large number of error instances 544

with a much shorter time, which is preferable or 545

even necessary in certain situations such as evalu- 546

ation in GEC shared tasks where a number of sys- 547

tems are involved and/or where the test set is large. 548

In Subsect. 5.1, we have observed that in some 549

cases, the machine-judged correction difficulty re- 550

veals insights of GEC systems that even human 551

experts are not aware of. Specifically, it has re- 552

vealed that there exist rather simple errors (sim- 553

ple in terms of error correction) that even sophis- 554

ticated, state-of-the-art GEC systems cannot cor- 555

rect, suggesting that it will be useful to strengthen 556

manual analysis of correction difficulty. 557

This nice property also suits the machine- 558

judged correction difficulty evaluation in GEC 559

shared tasks. The reasons for this are (i) the per- 560

formance measure based on the machine-judged 561

correction difficulty gives higher weights to errors 562

that are not corrected by other systems in evalu- 563

ation as Gotou et al. (2020) (and also the above 564

discussion) demonstrate; (ii) this means that re- 565

searchers in the domain of GEC have to tackle 566

such challenging errors to achieve a better perfor- 567

mance; (iii) this in turn brings a diversity of GEC 568

systems. 569

The reader might be wondering how many GEC 570

systems are required to achieve a stable difficulty 571

judgment in the machine-judged correction diffi- 572

culty; we used eight GEC systems in this work, 573

which is not so cost- and time- effective although 574
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Figure 2: Relationship between the number of GEC
systems used and human-machine agreement rates.

we can use already-implemented systems repeat-575

edly in practice.576

Figure 2 partly answers this question. The hor-577

izontal and vertical axes of the figure indicate578

the number of GEC systems used to calculate the579

machine-judged correction difficulty and the aver-580

age of corresponding simple agreement rates. The581

average is taken over the possible combination of582

used systems (28 combinations when two systems583

are used, for example) and the two experts.584

As expected, the average human-machine585

agreement rate improves as the number of GEC586

systems used increases. More importantly, the fig-587

ure shows a saturation point comes at around five588

or six systems. In other words, the more system589

used, the better. At the same time, we can obtain590

comparable results with five or six systems. Of591

course, this only applies to this dataset (i.e., the592

CoNLL-2014 shared task test set) with the eight593

GEC systems. The tendency might greatly change594

depending on datasets and GEC systems. It will595

be interesting to explore the relationship in detail.596

6 Conclusions597

In this paper, we have explored research questions598

about correction difficulty in GEC. To answer the599

questions, we first introduced a method for esti-600

mating correction difficulty efficiently. With the601

annotation of 2,025 instances, we showed that602

human experts exhibit moderate agreement rate603

of 66.39% (Cohen’s-κ: 0.42) while the human-604

machine agreement rate is comparable (64.50%605

and κ = 0.35 on average). We further looked606

into the annotation results to reveal insights of607

human-judged and machine-judged correction dif- 608

ficulties. Specifically, we reported on the follow- 609

ing three findings: (i) where the human-judged 610

and machine-judged difficulties are strong and 611

weak; (ii) based on (i), correction difficulty can be 612

GEC-algorithm- and training-corpus-dependent; 613

(iii) human-judged and machine-judged correction 614

difficulties complement each other. 615
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