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ABSTRACT

Causal inference seeks to estimate the causal effect given a treatment such as a
kind of medicine or the dosage of a medication. To address the issue of con-
founding bias caused by the non-randomized treatment assignment on samples,
most existing methods reduce the covariate shift between subpopulations receiv-
ing different values of treatment. However, these methods split training samples
into smaller groups, which cuts down the number of samples in each group, while
precise distribution estimation and alignment highly rely on a sufficient number
of training data. In this paper, we propose a distribution alignment paradigm
that involves all the training samples without data splitting, which can be natu-
rally applied in the settings of binary and continuous treatments. To this end, we
characterize the distribution shift by considering different probability measures of
the same set including all the training samples, and reduce the shift between the
marginal covariate distribution and the conditional covariate distribution given a
treatment value. By doing this, data reduction caused by splitting is avoided, and
the outcome prediction model trained on samples receiving one treatment value
can be generalized to the entire population. In specific, we exploit the optimal
transport theory built on probability measures to analyze the confounding bias
and the outcome estimation error, which motivates us to propose a balanced rep-
resentation learning method for causal inference of binary and continuous treat-
ments. The experimental results on both binary and continuous treatment settings
demonstrate the effectiveness of the proposed method.

1 INTRODUCTION

Causal inference aims to estimate the causal effects of treatments for supporting decision-making,
where the treatments are usually binary (Shalit et al., 2017) or continuous (Schwab et al., 2020). The
gold standard for estimating causal effects is to conduct randomized control trials (RCTs) (Fisher,
1936), in which the assignment of treatment for samples is completely random without relying on
the covariates of samples. However, it is usually infeasible to conduct RCTs, and the effects are
estimated from observational data involving confounding bias, which means that the data distribu-
tion of a subpopulation receiving one value of treatment differs from the distribution of the entire
population (Hammerton & Munafò, 2021), i.e., p(x|t) ̸= p(x), where x is the covariates and t is the
treatment value.

To address the confounding bias, most existing methods adopt a data-splitting strategy to partition
samples into smaller subpopulations according to the treatment values, and then reduce the dis-
tribution shift between different subpopulations. For binary treatments, one usually splits training
samples to the treated group receiving treatment and the control group without receiving treatment,
and then reduces the distribution shift between the two groups (Kuang et al., 2017; Shalit et al.,
2017). For continuous treatments, the natural and widely used strategy is to split samples into mul-
tiple groups based on their received treatments. After that, the distribution shift reduction approach
for binary treatments can be applied by considering the shift between each pair of groups (Wang
et al., 2022). However, data splitting cuts down the number of samples in each subpopulation, and
only a part of the samples are leveraged in distribution estimation and alignment. This decreases
the performance of distribution estimation and confounding bias reduction, which highly relies on a
sufficient number of training samples.
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In this paper, we propose a distribution alignment paradigm involving all the training samples with-
out data splitting, which can be naturally applied to effect estimation of binary and continuous
treatments. Rather than reducing the distribution shift between subpopulations receiving different
treatment values in existing methods, we characterize the distribution shift by different probability
measures of the same set including all the samples. In other words, we model the conditional distri-
bution p(x|t) by all the samples, instead of only a subpopulation receiving t which is widely used in
existing works (Shalit et al., 2017; Wang et al., 2022). By doing this, data splitting is avoided and
all the samples can be leveraged to improve the performance of distribution alignment.

In specific, we establish the connection between the treatment effect estimation and optimal trans-
port built on probability measures involving all the samples (Villani, 2008; Peyré & Cuturi, 2017).
We show that for the marginal covariate distribution and the conditional covariate distribution given
a treatment value, both the bias of covariates and the bias of outcome estimation errors can be upper
bounded by the Wasserstein distances between these two distributions. Motivated by our theoreti-
cal results, we propose a method named Optimal transport for Reducing bIas in Causal inference
(ORIC), which learns balanced representations to reduce the confounding bias and outcome esti-
mation error jointly. As a result, the outcome prediction model trained on samples receiving one
treatment value can be generalized to the entire population. Our theoretical results and algorithm
can be naturally applied to both binary and continuous treatments. We conduct experiments on syn-
thetic and semi-synthetic datasets under the binary and continuous treatment settings, and the results
demonstrate the effectiveness of our proposed method compared with existing methods.

The principal contributions are summarized as follows:

• To address the confounding bias in causal inference, we propose to characterize the dis-
tribution shift by considering different probability measures of all the training samples
without data splitting.

• We construct the theoretical connection between the estimation error of treatment outcomes
and optimal transport, which measures the distribution shift between the marginal covariate
distribution and the conditional covariate distribution given a treatment value.

• Motivated by our theoretical results, we propose a balanced representation learning algo-
rithm to reduce confounding bias and outcome estimation error jointly, and conduct exper-
iments under different settings to demonstrate the effectiveness of the method.

2 RELATED WORKS

2.1 CAUSAL EFFECT ESTIMATION

Causal inference has been widely used in real-world applications, such as economics (Davis &
Heller, 2020; Kreif et al., 2021; Cockx et al., 2023), healthcare (Sanchez et al., 2022; Karboub &
Tabaa, 2022; Van Goethem et al., 2021), and advertising (Chen et al., 2020; Liu et al., 2021; Wei
et al., 2021). Due to the confounding bias, the data distribution of a subpopulation receiving one
value of treatment differs from the distribution of the entire population (Hammerton & Munafò,
2021). For example, in the treatment of a disease, the group receiving surgery usually has more
severe conditions compared with the group receiving medication, the patients receiving higher doses
of drugs usually have more severe conditions compared with the patients receiving lower doses,
resulting in a distribution discrepancy between a subpopulation and the entire population.

Most existing works consider the binary and continuous treatment settings. The binary setting only
considers whether the treatment is conducted or not (Shalit et al., 2017; Shi et al., 2019; Zhang et al.,
2020), and the continuous treatment setting considers the outcome of the dosage of the treatment to
estimate the dose-response function (Schwab et al., 2020; Nie et al., 2021; Wang et al., 2022).

Binary Treatment. Causal effect estimation of binary treatments considers only two groups, i.e.,
the one receiving the treatment the one not receiving the treatment (Chipman et al., 2010; Dis-
muke & Lindrooth, 2006; Yoon et al., 2018; Zhang et al., 2020). To address the confounding bias
between the two groups, one class of methods is to create a pseudo-balanced group by learning
weights for samples. Kuang et al. (2017) proposed to reweight samples by reducing the distribu-
tion discrepancy between the two groups, where the discrepancy is measured by the difference of
the moments. The other class of methods is to learn balanced representations for the two groups
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(Johansson et al., 2016). Shalit et al. (2017); Johansson et al. (2022) proposed to learn represen-
tations with the minimized distribution discrepancy between two groups, where the discrepancy is
measured by the integral probability metric and a theoretical analysis regarding the effect estimation
error is provided.

Our proposed learning model can be naturally applied in the binary treatment setting. Actually,
distribution alignment between two groups split training samples into two subsets, also cutting down
the number of samples in each group. By modeling a distribution as a probability measure of all the
samples, we avoid data splitting and obtain more samples for learning.

Continuous Treatment. Causal effect estimation of continuous treatments considers that the treat-
ment lies in an interval, e.g., the dosage of a medication (Imbens, 2000). The natural strategy is to
partition training samples into multiple groups, each of which receives a similar dose of the treat-
ment. By doing this, the existing methods for binary treatments can be applied. Schwab et al. (2020)
adopted a multi-head architecture to deal with multiple intervals of treatment separately. Wang et al.
(2022) calculated the discrepancy between each pair of two groups and reduced the largest discrep-
ancy to learn balanced representations. The strategy of data splitting cuts down the training samples
in each group, highly affecting the performance of distribution estimation and alignment. Different
from them, we characterize the distribution discrepancy by different probability measures of all the
samples, avoiding data reduction in splitting.

There are also a few works of continuous treatments without data splitting. Nie et al. (2021) pro-
posed a varying coefficient model to estimate the effects of continuous treatment and apply a targeted
regularization paradigm for estimation. Different with it, we explicitly reduce the confounding bias
and theoretically reveal the connection between the confounding bias and the generalization error of
the outcome estimation, which are missing in (Nie et al., 2021). Kazemi & Ester (2024) measured
the distribution discrepancy based on the Kullback-Leibler (KL) divergence and employed an ad-
versarial learning paradigm to learn the representations. However, the KL divergence suffers from
the issue of gradient vanish when the distribution discrepancy is too large (Arjovsky et al., 2017),
and the adversarial architecture is usually difficult to train (Gulrajani et al., 2017). Different from it,
we measure the discrepancy by the Wasserstein distance to avoid the issue of gradient vanish, which
can be easily estimated by the Sinkhorn algorithm (Cuturi, 2013).

2.2 OPTIMAL TRANSPORT

Optimal transport studies how to move mass from one distribution to another with a minimal trans-
port cost (Monge, 1781; Kantorovitch, 1958; Villani, 2008). Beneficial from the powerful ability
to model probability distributions and exploit geometry, optimal transport has been widely applied
in many applications (Peyré & Cuturi, 2017), such as computer vision (Rubner et al., 2000), do-
main adaptation (Courty et al., 2014; 2017), data generation (Arjovsky et al., 2017; Tolstikhin et al.,
2018), graph data analysis (Peyré et al., 2016; Titouan et al., 2019), etc.

Optimal transport has also been introduced into causal effect estimation of binary treatments re-
cently (Yan et al., 2024a;b; Wang et al., 2024). Li et al. (2021) proposed to transport the factual dis-
tribution to the counterfactual distribution for estimating counterfactual outcomes. Dunipace (2021)
employed optimal transport to learn an intermediate distribution by reweighting samples. Different
from the above studies that only consider binary treatments, we address the confounding bias in the
setting of continuous treatments. Besides, in the above methods, a distribution usually considers
only a subpopulation, while our model represents a distribution by involving all the training samples
and a probability measure, improving the number of training samples for distribution estimation and
alignment.

3 PROBLEM STATEMENT

We assume a dataset of the form {(xi, ti, yi)}ni=1, where (x, t, y) is a realization of random vector
(X,T, Y ). Here xi ∈ X denotes the covariates of the i-th sample, ti ∈ T is the treatment value that
the sample i received which can be binary or continuous, and yi ∈ Y denotes the outcome of interest
for the sample i after receiving treatment ti. Under Neyman-Rubin potential outcome framework
(Rubin, 1974; Rosenbaum & Rubin, 1983), the observed outcome Y is the potential outcome Y (t)
corresponding to the actually received treatment T = t.

3
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Given input covariates X = x and the treatment T = t, our goal is to derive an estimator h(x, t) for
the ground-truth individual response function µ(x, t) as follow:

µ(x, t) = E[Y (t)|X = x]. (1)

For simplicity, we will use the shorthand µt(x) = µ(x, t) and ht(x) = h(x, t). The following
assumptions have been made to ensure that µt(x) is identifiable from observational data.

Assumption 1 (Stable Unit Treatment Value Assumption) The potential outcomes for any sam-
ple do not vary with the treatments assigned to other samples, and for each sample, there are no
different forms or versions of each treatment value which leads to different potential outcomes.

Assumption 2 (Ignorability) Conditional on covariates, the treatment assignment is independent
of potential outcomes: T ⊥⊥ Y (t)|X .

Assumption 3 (Positivity) Conditional on covariates, the treatment assignment is not determinis-
tic: 0 < p(T = t|X = x) < 1.

With these assumptions, µt(x) can be rewritten as follows, and we can estimate it as :

µt(x) = E[Y (t)|X = x] = E[Y |X = x, T = t]. (2)

Without ambiguity, we omit the random variables to write p(X = x) as p(x) for simplicity.

4 METHODOLOGY

In this section, we first characterize the confounding bias by considering different probability mea-
sures of all the samples, in which data will not be split into subpopulations. After that, we provide
theoretical results regarding the confounding bias and the generalization error of the outcome esti-
mation from the perspective of optimal transport, which is built on probability measures of all the
samples. Based on the theoretical analysis, we propose a balanced representation learning algorithm
to reduce the confounding bias and outcome estimation error jointly.

4.1 CONFOUNDING BIAS IN CAUSAL EFFECT ESTIMATION

Given the set of Radon measures M(X ), let the marginal covariate distribution be the probability
measure q ∈ M(X ), and the conditional covariate distribution given a treatment value t ∈ T be the
probability measure qt ∈ M(X ). The corresponding probability density functions can be written as
q(x) = p(x), qt(x) = p(x|t). According to Assumption 3, for each sample x and treatment value
t, we have qt(x) = p(x|t) = p(x)p(t|x)/p(t) > 0, which means all the samples could be drawn
from the distribution qt. Motivated by this, we model qt as a probability measure involving all the
training samples, which is different from data splitting that only samples receiving t are involved
(Shalit et al., 2017; Wang et al., 2022).

In specific, for the treatment value t, based on the loss function ℓ : Y×Y → R+, we aim to minimize
the following estimation error on the marginal distribution q(x)

εq(ht) = εq(ht, µt) = Ex∼qℓ(ht(x), µt(x)) =
∫
X
ℓ(ht(x), µt(x))q(x)dx, (3)

and achieve a small average mean squared error (AMSE) considering all the possible values of
treatment which is defined as

AMSE = Et∼p(t)εq(ht) =
∫
T
εq(ht)p(t)dt. (4)

Nevertheless, given the observational data, we can only minimize the following factual error on the
conditional distribution qt(x)

εqt(ht) = εqt(ht, µt) = Ex∼qt(x)ℓ(ht(x), µt(x)) =
∫
X
ℓ(ht(x), µt(x))qt(x)dx. (5)

4
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The principal challenge in causal effect estimation comes from the confounding bias, i.e., q(x) ̸=
qt(x),∀t ∈ T . As a result, the model trained to minimize εqt cannot be well generalized to mini-
mize εq . To measure the level of confounding bias between qt(x) and q(x), given a function (e.g.,
balancing score)m(·) and a norm ∥·∥, we define the balancing error between these two distributions
as

ξ(m, t) = ∥Ex∼qt(x)m(x)− Ex∼q(x)m(x)∥

=
∥∥∥∫

X
qt(x)m(x)dx−

∫
X
q(x)m(x)dx

∥∥∥. (6)

We consider all the possible treatment values t ∈ T , and define the total balancing error as follows

ξ(m) =

∫
T
ξ(m, t)p(t)dt

=

∫
T

∥∥∥∫
X
qt(x)m(x)dx−

∫
X
q(x)m(x)dx

∥∥∥p(t)dt. (7)

We do not restrict the specific form of the function m(·) as long as it can capture information from
samples, enabling the balancing error ξ(·) to characterize the degree of confounding bias.

In the following, we establish the connection between the treatment effect estimation and optimal
transport, which motivates us to propose a balanced representation learning algorithm for reducing
confounding bias and outcome estimation error.

4.2 THEORETICAL ANALYSIS

To analyze the confounding bias and outcome estimation error, we exploit the theory of optimal
transport built on probability measures. Optimal transport aims to find the optimal plan to move
mass from one distribution to another with a minimal transport cost (Villani, 2008; Peyré & Cuturi,
2017). Formally, for the samples from two spaces α ∈ A, β ∈ B, let M(A) and M(B) be
the sets of Radon measures. Consider two distributions α ∈ M(A), β ∈ M(B), and a distance
function c : A× B → R+ with the corresponding norm ∥ · ∥, the Wasserstein distance between two
distributions W(c, α, β) is defined by the following Kantorovich Problem

W(c, α, β) = KP (α, β) = inf
π∈Π(α,β)

∫
A×B

c(a, b)dπ(a, b), (8)

where π is a transport plan, and Π(α, β) is the set of all joint probability couplings whose marginal
distributions are α and β, respectively. π(a, b) indicates how many masses are moved from α to β,
and the transport cost between them is measured by the distance c(a, b). The minimized transport
cost calculated by the optimal plan is the Wasserstein distance to measure the discrepancy between
two distributions.

Given the pair of continuous functions (f, g) satisfying the constraint f(a) + g(b) ≤ c(a, b), the
above Kantorovich problem admits the following Dual Problem (Villani, 2021)

DP (α, β) = sup
f(a)+g(b)≤c(a,b)

∫
A
f(a)dα(a) +

∫
B
g(b)dβ(b). (9)

The following theorem shows that the confounding bias can be upper bounded by the Wasserstein
distances between the marginal covariate distribution and the conditional covariate distributions
given a value of treatment.

Theorem 1 Let q be the marginal covariate distribution, and qt be the conditional covariate dis-
tribution given the treatment value t, i.e., q(x) = p(x) and qt(x) = p(x|t). Given a pair of the
functions (m, c) satisfying the condition m(xi)−m(xj) ≤ c(xi, xj). We have the following result

ξ(m) ≤
∫
T
W(c, qt, q)p(t)dt. (10)

This theorem presents that the confounding bias characterized by the balancing error can be upper
bounded by the Wasserstein distances based on an underlying cost function c(·, ·) and the probability
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measures qt and q, where the cost function c(·, ·) can be implemented by a distance measured on a
representation space.

However, only focusing on confounding bias reduction may lead to a trivial solution that loses out-
come information, hampering the performance of outcome prediction. For the outcome estimation
error, we can only train a prediction model ht on the training data to minimize εqt(ht) in Eq. (5),
while the objective is to minimize εq(ht) in Eq. (3). The bias of the outcome estimation errors
εqt(ht) and εq(ht) is characterized by the following theorem

Theorem 2 Assume that the cost function c(x, x′) = ∥ϕ(x)− ϕ(x′)∥H, where H is a Reproducing
Kernel Hilbert Space (RKHS) induced by ϕ : X → H. Assume further that ht, µt ∈ F where F is a
unit ball in the RKHS H, and the loss function ℓ(ht(x), µt(x)) is convex, symmetric, bounded, obeys
the triangular inequality and has the parametric form |ht(x) − µt(x)|χ for some χ > 0. Assume
also that kernel k in the RKHS H is square-root integrable with respect to X and 0 ≤ k(x, x′) =
⟨ϕ(x), ϕ(x′)⟩ ≤ K. Then the following holds.

∫
T
εq(ht)p(t)dt−

∫
T
εqt(ht)p(t)dt ≤

∫
T
W(c, qt, q)p(t)dt. (11)

This theorem shows that given an outcome prediction model ht, the Wasserstein distances between
the distributions q and qt provide an upper bound for the bias between the outcome estimation errors
of ht on q and qt. The theorem also indicates that it is not sufficient to reduce W(c, qt, q) only,
since a small W(c, qt, q) cannot guarantee to obtain a model ht with good performance. Even a
model ht with poor prediction performance can perform similarly on qt and q, which happens when
the information about the outcome is missing during distribution alignment. Therefore, in order to
minimize AMSE that is the estimation error on q defined in Eq. (4), we propose to minimize the
estimation error on the conditional distributions qt and the Wasserstein distances between q and qt
simultaneously, as shown in the following

AMSE =

∫
T
εq(ht)p(t)dt ≤

∫
T
εqt(ht)p(t)dt+

∫
T
W(c, qt, q)p(t)dt, (12)

which can be obtained from Eq. (11) immediately.

For the probability measures qt and q, a convenient property of optimal transport is that either
continuous or discrete measures can be handled within the same framework, and the probabilities
qt(x) and q(x) can be easily represented as the sample weights for empirical distributions (Peyré
& Cuturi, 2017). In practice, given training samples {xi}ni=1, let δxi

be the Dirac function at the
location xi, q̂t(xi) and q̂(xi) are the probability masses of the sample xi in the distributions qt and
q, respectively, which satisfy the simplex constraints

n∑
i=1

q̂t(xi) = 1,

n∑
i=1

q̂(xi) = 1. (13)

The corresponding empirical distributions q̂t and q̂ can be represented as

q̂t =

n∑
i=1

q̂t(xi)δxi
, q̂ =

n∑
i=1

q̂(xi)δxi
. (14)

Here, all the training samples are involved in the empirical distributions, which avoids the issue of
data splitting and enhances the performance of distribution estimation.

Based on this, the relation between the outcome estimation error and the Wasserstein distances
measured on the empirical discrete distributions is provided in the following theorem.

Theorem 3 Let n be the number of samples, q̂, q̂t be the empirical distributions of q, qt, respectively.
With the probability of at least 1− δ, we have:

AMSE ≤
∫
T
εqt(ht)p(t)dt+

∫
T
W(c, q̂t, q̂)p(t)dt+O

(
1/
√
δn
)
. (15)
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4.3 ALGORITHM

According to the above theoretical analysis, we propose to minimize the outcome prediction error on
the observational distribution qt and the Wasserstein distances between the empirical distributions
q̂t and q̂ with t ∈ T . The first part of the right side of Inequality (15) is defined as

L =

∫
T
εqt(ht)p(t)dt

=

∫
X×T

ℓ(ht(x), µt(x))p(t)p(x|t)dxdt

=

∫
X×T

ℓ(ht(x), µt(x))p(x, t)dxdt. (16)

By implementing the hypothesis as ht(x) = ψ(ϕ(x), t), where ϕ(·) is a model for representation
learning, and ψ(·) is for outcome prediction, the above loss can be written based on the empirical
distribution of training samples by the following

L̂ =
1

n

n∑
i=1

(
yi − ψ(ϕ(xi), ti)

)2
. (17)

The second part of the right side of Inequality (15) is to minimize the Wasserstein distances on the
empirical distributions W(c, q̂t, q̂), where the cost function is measured in the embedding space,
i.e., c(xi, xj) = cϕ(xi, xj) = ∥ϕ(xi) − ϕ(xj)∥, and the Wasserstein distance is estimated by the
following

W(cϕ, q̂t, q̂) =

n∑
i=1

n∑
j=1

cϕ(xi, xj)π̃
t
ij , (18)

where π̃t is the solution of the following optimization problem

π̃t = arg min
πt∈Πt

n∑
i=1

n∑
j=1

cϕ(xi, xj)π
t
ij + γΩ(πt)

s.t. Πt = {πt ∈ Rn×n+ |
n∑
j=1

πtij = q̂t(xi) ∀ i,
n∑
i=1

πtij = q̂(xj) ∀ j}, (19)

where the entropic regularization Ω(πt) =
∑n
i=1

∑n
j=1 π

t
ij log π

t
ij is the negative entropy, γ is the

trade-off hyper-parameter, and the Sinkhorn algorithm can be applied to solve the problem efficiently
(Cuturi, 2013).

The probability mass q̂(xi) is approximated as 1
n . For the probability mass q̂t(xi), since qt(xi) =

p(xi|t) = p(xi)
p(t) p(t|xi) ∝ p(t|xi), we approximate p(t|xi) by p̂(t|xi) = θ(ϕ(xi)), which is esti-

mated by the generalized propensity score (Imbens, 2000) based on the model θ(·). As a result,
q̂t(xi) is approximated by the normalized value q̂t(xi) = 1

Z θ(ϕ(xi)), where Z =
∑n
i=1 θ(ϕ(xi)) is

the normalized factor, so that the simplex constraint in Eq. (13) is satisfied.

In practice, similar to q̂t and q̂ that only consider the empirical discrete samples, we consider a set
T̂ including discrete values of the treatment. For binary treatments, we have T̂ = {0, 1}. For
continuous treatments, it brings a high computational cost to consider all the discrete treatments
received by the samples. To alleviate this, we adopt some sampled values evenly distributed in T
to construct the set T̂ . It is worth mentioning that for each t ∈ T̂ , all the samples are assigned by
the weights q̂t(x) and taken into consideration for distribution alignment, avoiding the issue of data
splitting. Finally, we achieve the following optimization problem

min
ϕ,ψ,θ

L̂+ λ
∑
t∈T̂

W(cϕ, q̂t, q̂), (20)

where λ is the trade-off hyper-parameters between the outcome prediction loss and the distribution
discrepancies, ϕ, ψ, and θ are implemented by neural networks. Figure 1 illustrate the framework
of our propose method ORIC, and Algorithm 1 summarizes the major procedure of ORIC.

7
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Algorithm 1 Optimal transport for Reducing bIas in Continuous treatment (ORIC).

Input: Training samples {xi, ti, yi}ni=1.
Initialize: Representation learning model ϕ, potential outcome prediction model ψ, generalized

propensity score estimator θ.
1: repeat
2: Calculate the cost cϕ(xi, xj) = ∥ϕ(xi)− ϕ(xj)∥2.
3: for all t ∈ T̂ do
4: Calculate the outcome prediction loss according to Eq. (17).
5: Estimate q̂t(xi) based on the normalized generalized propensity scores θ(ϕ(xi)).
6: Obtain the optimal transport plans π̃t by solving Problem (19).
7: Calculate the Wasserstein discrepancies based on π̃t according to Eq. (18).
8: end for
9: Update ϕ, ψ, and θ based on the gradient of Eq. (20).

10: until Convergence.

… …𝑥 𝜙(𝑥)

𝑡

𝑦

Representation Learning Outcome Prediction

𝑝(𝑥)

𝑞!(𝑥)

ℎ!(𝑥)

ℒ%

𝑊(𝑐!, 𝑞&", 𝑝̂)

Loss Function

Figure 1: Overview of our proposed method ORIC.

5 EXPERIMENTS

In this section, we present experimental settings and results of continuous and binary treatments.
The detailed experiments are provided in Appendix D and E.

5.1 CONTINUOUS TREATMENTS

Dataset. For the experiments of continuous treatments, we evaluate the performance of the proposed
method using one synthetic dataset and two semi-synthetic datasets: IHDP (Hill, 2011) and News
(Newman, 2008). The synthetic dataset consists of 500 training samples and 200 testing samples,
with the parameter β adjusted to simulate various confounding biases. IHDP contains 747 subjects,
with 25 covariates for each sample to capture the aspects of children and their mothers. News
contains 3,000 news items randomly sampled from Newman (2008), which simulates the opinions
of a media consumer when exposed to multiple news items. We follow a similar approach in Nie
et al. (2021) to generate continuous treatments and outcomes, and randomly divide the samples
into a training set (67%) and a testing set (33%). The detailed synthesis protocols can be found in
Appendix D.

Compared methods. We conduct comparison of our ORIC model with several compared meth-
ods, including the traditional statistical and machine learning method BART (Chipman et al., 2010),
KNN (Peterson, 2009), GPS (Imbens, 2000), and modern neural network based methods MLP, DR-
Net (Schwab et al., 2020), ADMIT (Wang et al., 2022), ACFR (Kazemi & Ester, 2024), and VCNet
(Nie et al., 2021). Specifically, for GPS, in order to enhance the traditional statistical learning ap-
proach, we incorporate a Multilayer Perceptron Network for optimization (GPS+MLP). For VCNet,
we consider the naive version of VCNet (VCNet) and VCNet with the target regularization (VC-
Net+TR).
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Evaluation Metrics. Following Nie et al. (2021), we adopt the Average Dose-Response Function
(ADRF) curve and

√
AMSE as metrics. ADRF curve is the expected potential outcome under

the treatment value t, which is defined as µt = E[Y (t)]. And AMSE is defined in Eq. (4). We
repeatedly carry out 100 trials on the simulated and the IHDP datasets, 20 trials on the News dataset,
and report the mean and standard deviation of the results on the test set.

Results and Discussions. Table 1 presents the results of ORIC and the compared algorithms. Over-
all, the results indicate that ORIC consistently outperforms other methods on both synthetic and
semi-synthetic datasets, showing the effectiveness of the proposed method. Typically, compared
with traditional statistical method (i.e., KNN, BART, GPS), neural network-based methods usually
achieve performance improvement across a variety of datasets. Among the neural network meth-
ods, we observe that VCNet+TR outperforms other methods, showing the advantage the doubly
robust property obtained by the targeted regularization. However, it lacks an explicit mechanism
of distribution alignment to address confounding bias. ADMIT and DRNet split training samples
into multiple smaller groups for training, suffering from the issue of data reduction for distribution
alignment. Compared with them, ORIC involves all the training samples without data splitting for
distribution alignment, and reduces the confounding bias and the outcome estimation error jointly,
achieving the best performance in different kinds of datasets. In addition, ORIC obtains promising
performance with different values of β, which demonstrates the robustness of the proposed method
for different levels of confounding bias. Furthermore, from the ADRF curve in Figure 2, we observe
that compared to VCNet, which achieves the best

√
AMSE performance among other models,

ORIC exhibits a significant improvement in fitting from left to right across synthetic(β = 0.25),
IHDP, and News datasets.

Methods Synthetic IHDP News
β = 0.25 β = 0.5 β = 0.75 β = 1

KNN 0.2339± 0.0294 0.2234± 0.0296 0.2211± 0.0235 0.2361± 0.0209 0.8364± 0.0917 0.6104± 0.4117

BART 0.2205± 0.0248 0.2108± 0.0312 0.2177± 0.0259 0.2238± 0.0212 0.6825± 0.0715 0.5639± 0.3125

GPS 0.2103± 0.0319 0.2056± 0.0345 0.2063± 0.0264 0.2219± 0.0238 0.7247± 0.0582 0.4422± 0.2033

MLP 0.2083± 0.0275 0.2042± 0.0311 0.2044± 0.0252 0.2185± 0.0202 0.6566± 0.0710 0.4355± 0.2098

MLP+GPS 0.2077± 0.0238 0.2028± 0.0203 0.2022± 0.0210 0.2161± 0.0157 0.6303± 0.0826 0.4255± 0.2115

DRNet 0.1992± 0.0303 0.2033± 0.0226 0.1967± 0.0172 0.2046± 0.0195 0.5714± 0.0211 0.2380± 0.0141

ADMIT 0.1542± 0.0325 0.1729± 0.0467 0.1856± 0.0345 0.1645± 0.0279 0.5222± 0.0375 0.1832± 0.0394

ACFR 0.1428± 0.0259 0.1651± 0.0325 0.1654± 0.0334 0.1567± 0.0248 0.5134± 0.0523 0.1719± 0.0767

VCNet 0.1233± 0.0328 0.1577± 0.0460 0.1543± 0.0536 0.1395± 0.0369 0.4656± 0.0476 0.1905± 0.1072

VCNet+TR 0.1155± 0.0305 0.1361± 0.0439 0.1442± 0.0512 0.1257± 0.0381 0.3712± 0.0465 0.1675± 0.0566

ORIC 0.1098 ± 0.0273 0.1234 ± 0.0388 0.1313 ± 0.0464 0.1168 ± 0.0316 0.3595 ± 0.0304 0.1507 ± 0.0406

Table 1: Comparison of ORIC with baseline algorithms of related networks. The ± denotes the
mean and standard deviation of

√
AMSE.
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Figure 2: Presented from left to right are the ADRF results for the Synthetic, IHDP, and News
datasets. The yellow line illustrates the true results, while the blue points represent the estimates
synthesized by VCNet, and the red points correspond to the estimates produced by ORIC.
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5.2 BINARY TREATMENTS

Dataset. We conduct experiments on two semi-synthetic datasets, IHDP (Brooks-Gunn et al., 1992)
and News (Newman, 2008). For the IHDP dataset, we randomly select 100 datasets from the IHDP-
1000 version and follow (Shalit et al., 2017) to split training and testing sets. In the News dataset,
we assign the first 3,500 samples to the training set and 1,000 samples as the test set (Johansson
et al., 2016). Furthermore, experiments on synthetic data are provided in Appendix E.

Compared methods. We evaluate the proposed method in the binary treatment setting with several
baselines, including non-neural network methods BART, kNN, OLS, and neural network methods
MLP, CFR (Shalit et al., 2017), GANITE (Yoon et al., 2018), Dragonnet (Shi et al., 2019), DKLite
(Zhang et al., 2020),CausalOT (Li et al., 2021), ESCFR (Wang et al., 2024).

Evaluation Metrics. For the synthetic dataset, we adopt mean absolute errors(MAE) (De-
hejia & Wahba, 1999) as metric, which is defined as MAE = |ÂTE − ATE| be-
tween predicted average treatment effect and ground truth. For semi-synthetic datasets,
besides MAE, we adopt

√
PEHE (Hill, 2011) and

√
AMSE to evaluate the proposed

method. Precision in Estimation of Heterogeneous Effect (PEHE) is defined as
√
PEHE =√

1
n

∑n
i=1[(h1(xi)− h0(xi))− (µ1(xi)− µ0(xi))]2. The definition of AMSE is the same as Eq.(4),

with T ∈ {0, 1}.

Results and Discussions. Tables 2 demonstrate the result across two semi-synthetic datasets in the
binary setting. We draw similar observations from the results of the binary treatment setting to the
continuous treatment setting. Benefit from the mechanism that involves all the samples for training
to avoid data splitting, ORIC achives the best or highly competitive performance compared with
other methods. This observation demonstrates that ORIC not only can handle continuous treatment,
but also obtain promising performance in binary treatment, indicating the capability of generaliza-
tion in different kinds of treatment settings.

Methods IHDP News√
PEHE MAE

√
AMSE

√
PEHE MAE

√
AMSE

BART 13.8853± 9.3630 9.1204± 3.0154 10.0374± 7.2281 7.3663± 2.2189 5.6858± 1.7925 5.6355± 1.6655

OLS 14.3736± 11.3114 8.8191± 2.5947 9.7246± 6.9604 8.0871± 2.3580 5.7820± 1.6172 6.3790± 1.8565

MLP 15.3081± 11.2789 8.9105± 3.1171 11.0619± 8.5434 8.2535± 2.4681 5.3473± 1.6470 6.0092± 1.7761

KNN 3.1108± 3.8114 0.4104± 0.6477 9.7638± 7.4574 7.0048± 2.3408 5.1976± 2.0301 5.5409± 1.7343

CFRNet 1.2809± 1.7304 0.1582 ± 0.1986 1.2739± 1.7038 2.0527± 0.6464 0.3080± 0.2224 2.4187± 0.6538

Dragonnet 1.4305± 1.8883 0.2672± 0.4576 1.3229± 1.7893 1.7916± 0.5652 0.3531± 0.1724 3.8169± 1.6722

GANITE 5.0500± 1.3205 4.2490± 0.6251 13.4438± 6.7216 2.6473± 0.6873 2.6375± 0.6867 6.1070± 1.1409

DKLite 5.3315± 7.0602 0.5472± 0.7026 5.7984± 7.1115 1.8172± 0.5182 0.2328± 0.1272 1.9610 ± 0.5701
ESCFR 1.2443± 2.1300 0.4112± 0.5902 1.3498± 2.1298 2.7671± 0.8924 0.8651± 0.6514 2.9547± 0.8822

CausalOT 13.8269± 13.5417 2.4498± 0.8065 7.3281± 6.2416 9.1213± 2.0943 2.3308± 0.4832 4.1533± 1.0084

ORIC 1.1129 ± 1.4290 0.2134± 0.3488 1.1976 ± 1.3822 1.7183 ± 0.5488 0.1624 ± 0.1587 2.3972± 0.5678

Table 2: Comparison of ORIC with baseline algorithms of related neural-network and non-neural-
network on semi-synthetic dataset. Specifically, we perform over 100 trials on the IHDP dataset,
and 50 trials on the News dataset.

6 CONCLUSION

In this paper, we estimate the effect of binary and continuous treatments by reducing the confounding
bias from non-RCTs. We characterize the confounding bias by different probability measures of the
same set of all the samples, and analyze the confounding bias and outcome prediction error based
on optimal transport built on probability measures. Motivated by this, we propose to learn balanced
representations to reduce the outcome estimation error and the confounding bias simultaneously.
By doing this, we avoid data reduction from splitting which is commonly used in existing methods,
and enhance the generalization ability of the model. We conduct experiments on both binary and
continuous settings and synthetic and semi-synthetic datasets are adopted. The experimental results
demonstrate the effectiveness of the proposed method.
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A IMPLEMENTATION OF θ

The implementation of θ is based on (HiranoK, 2004) and described as follows. Assuming that the
conditional distribution of treatment given covariates is Gaussian, i.e., P (t | xi) ∼ N (θ(ϕ(xi)), σ

2).
We can estimate the parameters by maximizing the likelihood:

max
θ,σ

L(θ̂, σ̂; t, x) :=

n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(ti − θ(ϕ(xi)))

2

)
. (21)

After that, the estimated generalized propensity score is given by:

p̂(t | xi) =
1√
2πσ̂2

exp

(
− 1

2σ̂2
(t− θ̂(ϕ(xi)))

2

)
. (22)

B THEORETICAL ANALYSIS REGARDING PEHE

We use binary treatment as an example to illustrate that our theoretical results can be applied to
PEHE. Based on the assumptions in Theorem 2, we first decompose PEHE for the true causal effect
τ(x) = µ1(x)− µ0(x) as follows:

εPEHE = Ex∼q(x)[ℓ(h1(x)− h0(x), µ1(x)− µ0(x))]

≤ Ex∼q(x)[ℓ(h1(x), µ1(x))] + Ex∼q(x)[ℓ(h0(x), µ0(x))]

= εq(h1) + εq(h0) (23)

where ℓ is the Lp-norm based loss function and has the triangle inequality property.

And we define the estimation error of the potential outcome function µ1(x) and µ0(x) in treatment
and control groups, respectively:

εq1(h1) = Ex∼q1(x)ℓ(h1(x), µ1(x)) (24)

εq0(h0) = Ex∼q0(x)ℓ(h0(x), µ0(x)) (25)

According to Eq. 12, we have

εPEHE ≤ εq(h1) + εq(h0) ≤ εq1(h1) + εq0(h0) +W(c, q1, q) +W(c, q0, q) (26)

C PROOFS OF THEOREMS

C.1 PROOF OF THEOREM 1

According to the definition of ξ(m, t), we have:

ξ(m, t) = ∥Ex∼qt(x)m(x)− Ex∼q(x)m(x)∥

=
∥∥∥ ∫

X
m(x)dqt(x)−

∫
X
m(x)dq(x)

∥∥∥ (27)

≤ sup
m(x)−m(x′)≤c(x,x′)

∫
X
m(x)dqt(x)−

∫
X
m(x)dq(x) (28)

≤ inf
π∈Π(qt,q)

∫
X×X

c(x, x′)dπ(x, x′) (29)

= W(c, qt, q). (30)

Under the assumption of Theorem 1, Eq. (28) is the the worst-case of Eq. (27), and Eq. (29)
holds because of the property of the dual problem, which just corresponding to the definition of the
Wasserstein distance. As a result, we obtain ξ(m, t) ≤ W(c, qt, q), which finishes the proof by
integrating p(t) on both sides of the inequality.
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C.2 PROOF OF THEOREM 2

According to (Saitoh, 2020), ℓ(ht(x), µt(x)) also belongs to the RKHS H since it is a convex loss-
function defined on ht, µt ∈ F . As a result, ℓ has the reproducing property and the norn ∥ℓ∥ is
bounded. For simplicity, we assume that ∥ℓ∥ is bounded by 1, which is easily extendable to the case
when ∥ℓ∥ ≤M by scaling (Redko et al., 2017). Now, the estimation error can be expressed in terms
of the inner product in the corresponding Hilbert space ,

εq(ht) = Ex∼q(x)ℓ(ht(x), µt(x)) = Ex∼q(x)[⟨ϕ(x), ℓ⟩H], (31)

εqt(ht) = Ex∼qt(x)ℓ(ht(x), µt(x)) = Ex∼qt(x)[⟨ϕ(x), ℓ⟩H]. (32)

With εq(ht) = εq(ht) + εqt(ht)− εqt(ht) and the above definitions, we have :
εq(ht)− εqt(ht) = Ex′∼q(x)[⟨ϕ(x′), ℓ⟩H]− Ex∼qt(x)[⟨ϕ(x), ℓ⟩H]

= ⟨Ex′∼q(x)[ϕ(x
′)]− Ex∼qt(x)[ϕ(x)], ℓ⟩H

≤ ∥ℓ∥H∥Ex′∼q(x)[ϕ(x
′)]− Ex∼qt(x)[ϕ(x)]∥H

≤ ∥
∫
X
ϕd(qt(x)− q(x))∥H. (33)

The first line is obtained by the reproducing property of ℓ, and the last line is due to ∥ℓ∥ ≤ 1. Now
using the definition of the joint distribution we have:

∥
∫
X
ϕd(qt(x)− q(x))∥H = ∥

∫
X×X

(ϕ(x)− ϕ(x′))dπ(x, x′)∥H

≤
∫
X×X

∥ϕ(x)− ϕ(x′)∥Hdπ(x, x′)

≤ inf
π∈Π(qt,q)

∫
X×X

∥ϕ(x)− ϕ(x′)∥Hdπ(x, x′) (34)

= W(c, qt, q), (35)
where x ∼ qt(x) and x′ ∼ q(x). As a result, we get εp(ht)− εqt(ht) ≤ W(c, qt, q), which finishes
the proof by integrating p(t) on both sides of the inequality.

C.3 PROOF OF THEOREM 3

With the triangular inequality of the Wasserstein metric, we have:
W(c, qt, q) ≤ W(c, qt, q̂t) +W(c, q̂t, q)

≤ W(c, qt, q̂t) +W(c, q̂t, q̂) +W(c, p̂, q)

= W(c, qt, q̂t) +W(c, q, q̂) +W(c, q̂t, p̂) (36)

Next, we present Lemma 1 showing the convergence of the empirical measure µ̂ to its true µ w.r.t.
the Wasserstein metric, which allows us to propose a generalization bound based on the Wasserstein
distance for finite samples rather than true population measures:

Lemma 1 ((Bolley et al., 2007), Theorem 1.1). Let µ be a probability measure in Rd satisfying
T1(zeta) inequality, and µ̂ = 1

n

∑n
i=1 δxi

be its associated empirical measure with n units. Then for
any d′ > d and ζ ′ < ζ, there exists some constant n0 depending on d′ and some square exponential
moment of µ such that for any ϵ > 0 and n ≥ n0 max(ϵ−(d′+2), 1)

P [W1(µ, µ̂) > ϵ] ≤ exp

(
−ζ

′nϵ2

2

)
, (37)

where d′, ζ ′ can be calculated explicitly.

The Hoeffding inequality in Lemma 1 gives the following inequality which holds with the probabil-
ity at least 1− δ:

W(c, qt, q̂t) ≤

√
2 log

(
1

δ

)
/ζ ′n, W(c, q̂, q) ≤

√
2 log

(
1

δ

)
/ζ ′n. (38)
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Combining Eq. (36) and Eq. (38) together, we have:

W (c, qt, p) ⩽

√
2 log

(
1

δ

)
/ζ ′n+

√
2 log

(
1

δ

)
/ζ ′n+W (c, q̂t, p̂)

=W (c, q̂t, p̂) + 2

√
2 log

(
1

δ

)
/ζ ′n

:=W (c, q̂t, p̂) +O
(
1/
√
δn
)
, (39)

which finishes the proof.

D EXPERIMENTS OF CONTINUOUS TREATMENTS

D.1 EXPERIMENTAL SETTINGS

Synthetic. We synthesize data as follows: xj
i.i.d.∼ Unif [0, 1], where xj is the j-th dimension of

x ∈ R6, and generate treatment and outcome as:

t̃ | x =
10 sin (max (x1, x2, x3)) + max (x3, x4, x5)

3

1 + (x1 + x5)
2 + sin (βx3) (1 + exp (x4 − βx3))

+ x23 + 2 sin (x4) + 2x5 − 6.5 +N (0, 0.25)

y | x, t =cos(2π(t− β))

(
t2 +

4max (x1, x6)
3

1 + 2x23
sin (x4)

)
+N (0, 0.25)

where t = (1 + exp(−t̃))−1,β = {0.25, 0.5, 0.75, 1}. It is noteworthy that π(t | x) only is contin-
gent upon x1, x2, x3, x4, x5 while Q(t, x) only is contingent upon x1, x3, x4, x6.

IHDP. The original semi-synthetic IHDP dataset from Hill (2011) includes binary treatments, com-
prising 747 observations across 25 covariates. To facilitate comparisons using continuous treat-
ments, we randomly synthesize both treatment and response variables as follows:

t̃ | x =
2x1

(1 + x2)
+

2max (x3, x5, x6)

2 + min (x3, x5, x6)
+ 2 tanh

(
5

∑
i∈Sdis,2

(xi − c2)

|Sdis,2|

)
− 4 +N (0, 0.25)

y | x, t = sin(3πt)

1.2− t

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp (2 (x1 − x6))

0.5 + 5min (x2, x3, x5)

)
+N (0, 0.25)

where t = (1 + exp(−t̃))−1, Scon = {1, 2, 3, 5, 6} is the index set of continuous features,
Sdis ,1 = {4, 7, 8, 9, 10, 11, 12, 13, 14, 15}, Sdis ,2 = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25} and

Sdis ,1 ∪ Sdis ,2 = [25] −Scon . Here c1 = E
∑

i∈Sdis ,1
xi

|Sdis ,1| , c2 = E
∑

i∈Sdis ,2
xi

|Sdis ,2| . It is noteworthy that all
continuous features are advantageous for π(t | x) and Q(t, x) but only Sdis ,1 is advantageous for Q
and only Sdis,2 is advantageous for π. Following Hill (2011), covariates are standardized to have a
mean of 0 and a standard deviation of 1, while the synthesized treatment values are normalized to
the range [0, 1]. Furthermore, we applied denoising techniques to the error data produced during the
construction of the IHDP dataset.

News. The News dataset comprises 3,000 randomly sampled news items from the NY Times corpus
(Newman, 2008), originally introduced as a benchmark for binary treatment settings (Johansson
et al., 2016). We synthesize the treatment and outcome variables similarly to the method outlined in
Bica et al. (2020). We first synthesize v′1, v

′
2 and v′3 from N (0, 1) and then set vi = v′i/ ∥v′i∥2 for

i = {1, 2, 3}. Given x, we synthesize t from Beta
(
2,
∣∣∣ v⊤3 x2v⊤2 x

∣∣∣). And we synthesize the outcome by
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y′ | x, t = exp

(
v⊤2 x

v⊤3 x
− 0.3

)
y | x, t = 2

(
max (−2,min (2, y′)) + 20v⊤1 x

)
∗
(
4(t− 0.5)2 ∗ sin

(π
2
t
))

+N (0, 0.5)

D.2 SENSITIVITY ANALYSIS

To empirically study the effect of the hyper-parameter λ in Eq. (20) which trades off between
the outcome prediction loss and the Wasserstein discrepancies, we conduct experiments on syn-
thetic dataset(β = 0.25) with varying values of λ in the range [0.5, 1.3], and present the results
of

√
AMSE in Figure 3(a). We observe that ORIC is able to achieve good performance with a

wide range of the values of λ, which verifies the sensitivity of ORIC with respect to λ. Besides,
we conduct experiments on synthetic dataset with different numbers of sampled treatment values in
the discrete set T̂ , and report the results of

√
AMSE in Figure 3(b). We observe that ORIC stably

achieves promising performance when the number of discrete values of the treatment is greater than
50, since more values of the treatment provide finer-grained estimation for the conditional marginal
distribution q̂t(x).
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Figure 3: Figure (a) demonstrates the trade-off of the hyperparameter λ between the outcome predic-
tion loss and the Wasserstein discrepancies with the variation of λ values range from [0.5, 1.3], and
present the results of

√
AMSE. Figure (b) demonstrates the trade-off of the entropy regularization

hyperparameter γ values range from [0.0001, 0.1], and present the results of
√
AMSE. Figure (c)

illustrates the experiment on synthetic dataset with different numbers of sampled treatment values
in the discrete set T̂ , and report the results of

√
AMSE.

E EXPERIMENTS OF BINARY TREATMENTS

E.1 EXPERIMENT SETTINGS

Synthetic. Following the similar protocols in (Yao et al., 2018; Hatt & Feuerriegel, 2021), We
generate a synthetic dataset in binary treatment setting as follow:

We employ a Gaussian mixture model consisting of two distributions: N1 =
N
(
0.510×1, 0.5× Σ1Σ

T
1

)
,N2 = N

(
110×1, 0.5× Σ2Σ

T
2

)
, where Σ1 ∼ U

(
(0, 0.5)10×10

)
,Σ2 ∼

U
(
(0, 1)10×10

)
. We then synthesize 1,500 treated and control samples from xt ∼

αtN1 + (1− αt)N2, xc ∼ αcN1 + (1− αc)N2, fix αt to 0.5 and vary the value of αc to simulate
different confounding bias. The outcomes are defined as y = sin

(
w⊤

1 x
)
+cos

(
w⊤

2 (x⊙ x)
)
+ t+ϵ,

where w. ∼ U
(
(0, 1)10×1

)
, ϵ ∼ N (0, 0.1).

E.2 RESULTS AND DISCUSSIONS

E.2.1 CONTINUOUS TREATMENT SETTING

Table 3 illustrates ORIC ablation study on the loss function involving Wasserstein distances.
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Methods Synthetic IHDP News
β = 0.25 β = 0.5 β = 0.75 β = 1

ORIC without wass 0.2083± 0.0275 0.2042± 0.0311 0.2044± 0.0252 0.2185± 0.0202 0.6566± 0.0710 0.4355± 0.2098

ORIC without wass and gps 0.2077± 0.0238 0.2028± 0.0203 0.2022± 0.0210 0.2161± 0.0157 0.6303± 0.0826 0.4255± 0.2115

ORIC 0.1098 ± 0.0273 0.1234 ± 0.0388 0.1313 ± 0.0464 0.1168 ± 0.0316 0.3595 ± 0.0304 0.1507 ± 0.0406

Table 3: Ablation study on the loss function involving Wasserstein distances. The ± denotes the
mean and standard deviation of

√
AMSE.

Table 4 presents the computational time for one realization of ORIC on the synthetic(β = 0.25)
dataset.

Methods ORIC VCNet+TR VCNet ADMIT ACFR DRNet GPS+MLP MLP GPS BART KNN

Times 135s 23s 17s 47s 24s 26s 25s 18s 9s 7s 8s

Table 4: Execution time results on synthetic(β = 0.25) dataset.

E.2.2 BINARY TREATMENT SETTING

Tables 5 illustrate the result of synthetic data in different bias situation, which has a similar ob-
servation as in continuous setting. ORIC outperforms other methods and achieve the best result in
different levels of confounding bias, indicating the superior performance of robustness.

Methods Synthetic
αc = 0.2 αc = 0.4 αc = 0.6 αc = 0.8

BART 0.0622± 0.0374 0.0484± 0.0194 0.0255± 0.0206 0.0397± 0.0207

OLS 0.0568± 0.0420 0.0471± 0.0361 0.0387± 0.0234 0.0412± 0.0259

MLP 0.0862± 0.0813 0.0803± 0.0600 0.4992± 0.0422 0.0621± 0.0388

KNN 0.0229± 0.0196 0.0276± 0.0198 0.0306± 0.0184 0.0296± 0.0259

CFRNet 0.0328± 0.0063 0.0326± 0.0065 0.0383± 0.0326 0.0475± 0.0345

Dragonnet 0.0351± 0.0104 0.0323± 0.0092 0.04778± 0.0061 0.0482± 0.0067

GANITE 0.1883± 0.0530 0.1779± 0.0672 0.3219± 0.0574 0.3916± 0.0581

DKLite 0.0599± 0.0338 0.0432± 0.0158 0.0302± 0.0344 0.0753± 0.0463

ORIC 0.0052 ± 0.0089 0.0282 ± 0.0048 0.0235 ± 0.0166 0.0291 ± 0.0186

Table 5: Comparison of ORIC with baseline algorithms of related neural-network and non-neural-
network on synthetic dataset. Specifically, we conducted over 10 trials on a synthetic dataset, adopt-
ing MAE as the evaluation metric.

Table 6 presents the computational time for one realization of ORIC on the IHDP-1000 dataset.
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Methods ORIC CFRNet DragonNet DKLITE ESCFR CausalOT GANITE BART OLS KNN

Times 76s 47s 41s 4s 165s 4s 4s 0.2s 0.2s 0.3s

Table 6: Execution time results on IHDP-1000 dataset.
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