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Can Graph Neural Networks Go Deeper Without
Over-Smoothing? Yes, With a Randomized

Path Exploration!
Kushal Bose and Swagatam Das , Senior Member, IEEE

Abstract—Graph Neural Networks (GNNs) have emerged as one
of the most powerful approaches for learning on graph-structured
data, even though they are mostly restricted to being shallow in
nature. This is because node features tend to become indistin-
guishable when multiple layers are stacked together. This phe-
nomenon is known as over-smoothing. This paper identifies two
core properties of the aggregation approaches that may act as
primary causes for over-smoothing. These properties are namely
recursiveness and aggregation from higher to lower-order neigh-
borhoods. Thus, we attempt to address the over-smoothing issue
by proposing a novel aggregation strategy that is orthogonal to the
other existing approaches. In essence, the proposed aggregation
strategy combines features from lower to higher-order neighbor-
hoods in a non-recursive way by employing a randomized path
exploration approach. The efficacy of our aggregation method is
verified through an extensive comparative study on the benchmark
datasets w.r.t. the state-of-the-art techniques on semi-supervised
and fully-supervised learning tasks.

Index Terms—Aggregation, convolution, graph neural networks,
message passing, over-smoothing.

I. INTRODUCTION

AMIDST the rise of Geometric Deep Learning [1], [2],
it is no wonder that the graph structure draws ade-

quate attention for analyzing data beyond the conventional Eu-
clidean domain. The milestone work on Graph Neural Networks
(GNNs) [3] is crowned as one of the go-to tools to facilitate
learning on graph-structured data. Consequently, application
of deep learning techniques on graphs significantly enhances
the performances of various downstream learning tasks such
as node classification [4], [5], link prediction [6], [7], graph
classification [8], [9], [10], and biological networks [11], [12].

However, the commendable performance of GNNs may
be considered restrictive to their full potential, given the
shallower architecture. Even though models like GCN [5],
GAT [13], and GraphSage [14] exhibit impressive perfor-
mance by using a limited number of hidden layers, they are
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still not capable of learning from the higher-order neighbor-
hoods. One way to alleviate these restrictions is to aggre-
gate features from the multi-hop neighbors using a deeper
architecture.

Unfortunately, stacking multiple layers similar to Convolu-
tional Neural Networks (CNNs) such as ResNet [15] in GNN
is not so straightforward. This is because the increased number
of successive features aggregation in a deeper architecture may
make the combined node features almost indistinguishable. This
phenomenon is known as Over-smoothing [16], which has been
shown to degrade the performance of node classification tasks
as well as the expressive power of the GNN models [17].

The features of the nodes belonging to a connected component
become indistinguishable due to the effect of over-smoothing.
The primary reason behind the occurrence of over-smoothing is
the overlapping sets of neighbors of the concerned nodes. The
overlap among the sets of neighbors gradually increases when
the size of the neighborhood grows. In fact, the overlapping
set of neighbors is not only responsible for the over-smoothing,
but the aggregation mode also plays a critical role in the fea-
ture over-smoothing. The well-known architectures like Graph
Convolutional Networks (GCN) [5], Graph Attention Networks
(GAT) [13], GraphSage [14], APPNP [18], Graph Diffusion
Convolution (GDC) [19] etc. aggregates node features from
higher to lower order neighborhoods in a recursive manner as
depicted in the Fig. 2. The redundancy involved in the recursive
higher to lower order computation may lead to repeated con-
sideration of the similar neighboring nodes during the feature
calculation. This redundancy acts as a primary reason for the
over-smoothing. Despite having the problem of over-smoothing,
deep models offer a significant advantage over shallow models
as the formers can learn from the multi-hop neighborhood.
Therefore, the drawbacks mentioned earlier and the necessity
of deep models motivate us to propose a novel aggregation
technique that prevents over-smoothing.

Numerous attempts like DeepGCN [20], JKNet [21],
PairNorm [22], DGN [23], DropEdge [24], AdaEdge [25] etc.
were made to mitigate the issue of over-smoothing, but the
aforesaid approaches are either different variants of GCN, GAT,
or GraphSage or the combinations of the existing architectures
where underlying aggregation strategy remains unaltered. The
question of tackling over-smoothing by improving the existing
neighborhood aggregation techniques still needs to be answered.
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Fig. 1. The overview of RPE-GNN is represented. The center node T whose embedding would be evaluated via 3-hop neighborhood aggregation. Initially, random
paths are generated gradually by layer-wise node sampling. The selected paths are marked with dotted lines. The path features are evaluated alongside in a dynamic
way. Solid blue lines denote the estimated path features. The graph is rewired by adding edges to replace the sampled paths. The edges are incorporated with the
respective path features. The newly added edges act as direct connections between the target node and its multi-hop neighbors. The neighborhood aggregation is
performed on the newly rewired graph.

Fig. 2. Comparative study between the proposed aggregation method and existing aggregation methods is demonstrated. The 2-hop neighborhood aggregation is
performed on the node T of the input graph(leftmost). In the case of the recursive aggregation(middle one), the aggregation is performed from higher to lower-order
neighborhoods (bold lines with arrows). In this case, the information flow from the leaf nodes to the root node of the computation graph. On the other hand, the
non-recursive aggregation method(rightmost) aggregates from lower to higher-order neighborhoods. The non-recursive method initially estimates the path features,
and at the final stage, the aggregation is performed with the distant neighbors by employing those path features. Here, the information flows from the root node to
the leaf nodes of the computation graph(dotted lines with arrows).

Motivated by those facts, we attempt to solve the issue by
introducing a novel architecture. The architecture enables a
message-passing strategy which is entirely different from ex-
isting message passing frameworks. The proposed approach
consists of two steps: initially, the fixed-length random paths are
sampled for a source node to explore its multi-hop neighbors. In
the second stage, the path features are estimated by using some
pre-defined rule. The sampled paths can be assumed as the con-
nectors or edges between source nodes and randomly selected
neighboring nodes. The graph is rewired by using those newly
constructed edges, and edges are equipped with the features as
corresponding estimated path features. After that, the message
aggregation is performed on the source node by considering the
newly rewired graph. The overview of the proposed algorithm
is presented in Fig. 1.

When the number of random paths is increased the computa-
tional burden also enhances. To avoid the overhead we propose
a dynamic path feature computation technique. The dynamic
method allows the model not to store the predetermined random

paths as a pre-processing step. The paths are gradually traced out
while propagating through the hidden layers. The path features
are also estimated alongside. The approach also explores better
graph topology.

The aggregation strategy of RPE-GNN is also unique from
other aggregation strategies. The existing aggregation tech-
niques updates node features in every hidden layer, whereas
we update node features only once which is after the complete
estimation of the path features. Specifically, in our case, the
hidden layers are utilized to compute path features rather than
used for aggregation. In this way, our proposed approach can
avoid redundant calculation of neighbors’ features, effectively
tackling the over-smoothing issue. Finally, we can summarize
our contributions as follows,
� Unlike [5], [13], [14], [21] we design a novel strategy that

aggregates from lower to higher-order neighborhoods in a
non-recursive manner.

� Our approach learns node representations by estimating
the features of the randomly explored paths in the graph,
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which is described in Section III. Therefore, we termed it
as Randomized Path Explorer-Graph Neural Networks or
RPE-GNN.

� We design an efficient technique where paths are traced
out gradually while propagating through the hidden lay-
ers without having prior knowledge of the predetermined
paths.

� In Section III-C we show that our method simulates a
biased random walk and the over-smoothing issue can be
prevented by controlling the bias of the walk.

� We perform diversified experiments to showcase the effi-
cacy of our framework in Section IV, and it outperforms
existing state-of-the-art approaches.

II. RELATED WORKS

Multiple significant works offer resilience to the over-
smoothing issue. Models like DeepGCN [20], JKNet [21] in-
volves residual connections across the hidden layers to tackle
over-smoothing. Meanwhile, GCNII [26] utilizes the fraction
of the initial features and identity mapping with the weight
matrices to update the node representations. DropEdge [24],
and AdaEdge [25] reduce the rate of over-smoothing by
learning to modify the underlying graph topology. Alterna-
tively, normalization-based techniques like PairNorm [22], and
DGN [23] introduces additional normalization layers to distin-
guish the node features in deeper architectures. On the other
hand, Simplifying Graph Convolution (SGC) [27] manages
to linearize GCN. APPNP [18] employs a costlier PageR-
ank [28] matrix to perform higher order neighborhood aggre-
gation while [19] relies on graph diffusion to learn the same.
GPR-GNN [29] jointly optimize node features and topological
information irrespective of the node homophily or node het-
erophily where Ortho-GConv [30] relies on orthogonal feature
transformation to minimize the effect of over-smoothing.

NRGCN [31] proposes a non-recursive aggregation strat-
egy that learns node embedding by extracting the information
from the hops of the current set of neighbors. However, the
work is not intended to tackle over-smoothing. On the other
hand, GeniePath [32] explores the receptive paths of the graph
in both breadth and width direction of the respective neigh-
borhoods where SPAGAN [33] aggregates features from the
higher-order neighbors by incorporating path-based attention
where shortest paths are considered. Another significant work
GraphSAINT [34] samples different subgraphs and construct the
graph convolution layers to learn node features. RWGNN [35]
designs a differentiable random walk kernel for learning graph
representations. The over-smoothing problem is also possible
in the hyper-graphs which is being discussed in [36]. Chen
et al. [37] discusses the theoretical concepts of over-smoothing in
terms of Dirichlet energy. Another approach, Deeply Supervised
GNN (DSGNN) [38] learned representations from each layer
and also contribute to the layer-wise loss functions. On the other
hand Zhou et al. [39] designed Dirichlet energy-constrained
graph neural networks, which control over-smoothing in deep
models.

III. PROPOSED METHOD

A. Preliminaries

A graph G = (V,E) consists of a set of n nodes V and a
set of edges E ⊆ (V × V ). The connections between nodes
are represented by an adjacency matrix A = [aij ]n×n where
aij ∈ {0, 1}. Evidently, aij = 1 indicates that the ith and jth
nodes are connected by an edge, while aij = 0 denotes other-
wise. The feature matrix of G is denoted by X ∈ Rn×f where
the ith row xi denotes the f -dimensional feature representation
of the ith node. The degree matrix D is a diagonal matrix where
the ith element in the diagonal corresponds to the degree of
the ith node. The graph Laplacian is defined as L = D −A.
The symmetrically normalized graph Laplacian is represented
as N = D− 1

2LD− 1
2 .

B. Randomized Path Exploration

The core idea of our approach is randomly exploring multiple
paths in the graph to aggregate multi-hop information. Simul-
taneously, we also learn features of the corresponding paths
via propagating through the hidden layers. The path features
are eventually used to evaluate the node embeddings. The node
representations are updated only after the estimation of the path
features.

Assume t is the node whose embedding would be eval-
uated using the k-hop distant neighbors. Consider Nk

t =
{n1, n2, . . . , nl} as the set containing all k-hop neighbors. The
complete embedding method will be described in a top-down
fashion to evaluate the embedding of t.

Path Feature Estimation: A path in the graph comprises a
sequence of nodes contained in the graph. Assume a k-length
path starting from t is denoted asPt = {t = n0, n1 · · ·nk = d}.
A feature of a path is the sum of the features estimated over the
individual edges of the path. The features of a single edge of a
path can be estimated as below:

Mpq = σ((xp − xq)W ), (1)

where p and q are the tail and head of the edge. Mpq is the
feature of the corresponding edge epq and W ∈ Rf×f ′

is the
trainable weight matrix where f ′ denotes dimension of newly
transformed space. The weight W is shared across all edges in
the graph, which makes our architecture parameter efficient.σ(.)
represents the non-linear activation function. xp and xq are the
features associated with the pth and qth node respectively.

As previously mentioned, a path’s feature is evaluated as the
sum of features of the individual edges of the respective path.
Then the path Pt will have a message as shown below:

MP = φ

(
k−1∑
i=0

Mnini+1

)
, (2)

where Mnini+1
is the features of the edge enini+1

and φ(.) is a
trainable function. Specifically, the feature of a path is the sole
representation within the graph. The learned features of the paths
contain information among the non-adjacent nodes.

Aggregation: The estimated path features will be employed
to update the node embeddings. The path features encode the
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Fig. 3. The workflow of our proposed aggregation scheme is demonstrated. The node T (in green) is the target node whose embedding would be evaluated. The
bold (black) lines denote edges between pairs of nodes, where the dotted lines (black) in the input graph show the existence of multiple intermediate nodes between
any pairs of nodes. At each step, a neighbor (marked blue) of the current node (marked yellow) is randomly selected, and the features of the newly selected edge
(bold red lines) are calculated. The current edge features are added with the total estimated features. The procedure is continued until the required length of path
features is evaluated. The edges with the red color denote the complete traced out path by the random walk. The remaining grey nodes are denoted as unvisited
nodes. After the path feature estimation, the aggregation step is performed with the distant neighbor (marked purple), and features of T are updated. The path
features are denoted by the dotted line with an arrow directly connecting from T to D. After passing through the softmax layer, the final nodes are classified into
the desired number of classes.

node sequences of the respective paths between the target nodes
and the multi-hop neighbors. One can redefine path features
as the features of the connecting edges between the pair of
non-adjacent nodes. Our approach gathers information from the
sequence of edges to generate complete path features rather
than passing information to distant neighbors like in graph
diffusion [19]. Consider the set of all possible k-length paths
starting from t is denoted as P . Therefore, the neighborhood
aggregation is formulated as the following:

x̃t = xt +
1

N(P)

∑
p∈P,l∈Nk

t

φ(Mp)� xl, (3)

where x̃t denotes updated node embedding, Mp is the estimated
features of the path p ∈ P ,xl is the feature of thenl ∈ Nk

t which
is the tail node of the path p. � denotes the element-wise multi-
plication between the vectors. N(P) is the number of elements
of the set P . The (3) aggregates information from the multi-hop
node l, which is also a tail node of path p. The equation also acts
as the message propagation rule of our proposed approach.

Dynamic Feature Computation: In (3) the set P contains all
k length paths begin from node t. The number of paths will
increase exponentially when k increases, and this will generate
a massive computational cost. To prevent the issue, we devise a
technique that computes path features dynamically by defining
a recurrence relation. Assume a k-length path p whose node
sequences are represented as {t = n0, n1, . . . , nk = d}. The
feature of the path Mp or Mn0nk

is estimated dynamically in
the following way:

M(l+1)
n0nl+1

= M(l)
n0nl

+M(l+1)
nlnl+1

, (4)

where l lies in [1, (k − 1)] and M
(l+1)
n0nl+1 denotes estimated path

features node n0 to nl+1 at the (l + 1)th layer. Similarly, M(l)
n0nl

indicates the computed features from n0 to nl at the lth layer.
Again the features of the (l + 1)th edge is M

(l+1)
nlnl+1 which is

estimated by using (1) as M
(l+1)
nlnl+1 = σ((xnl

− xnl+1
)W (l))

where W (l) denotes the trainable weight matrix of the lth layer.
The recurrence relation reduces the massive computational

overhead during path feature estimation. Prior knowledge of
the paths is not required as they would be gradually traced
out while propagating through the hidden layers. Therefore, the
features of the k-length paths are estimated by consecutively
adding the features of k edges. As depicted in Fig. 3, at lth
layer, we have already computed up to l-length features of
a k-length path where l ≤ k − 1. Then at the (l + 1)th layer
we will only estimate the features of the (l + 1)th edge of the
corresponding path. The features of the (l + 1)th edge will be
added with the previously computed l-length features to evaluate
the (l + 1)-length path features. Hence, the feature computation
is implemented by considering only the immediate estimated
total features and the current edge features. Therefore, this
dynamic approach prevents the algorithm from the unnecessary
requirements of the predetermined random paths. The node
features are updated only after evaluating the desired length
of path features. No update is performed between any two
hidden layers like the other prevalent aggregation strategies such
as GCN, GAT, GraphSage, JKNet, GCNII, etc. This approach
helps the model avoid redundant feature computation during the
aggregation procedure.

C. Relation With Random Walk Statistics

In this section, we will establish a connection between RPE-
GNN and random walk on the graph. Our proposed approach
inherently simulates a biased random walk in the graph. To
aggregate features from k-hop neighborhood we perform a
k-length random walk in the graph. Suppose Xt denotes the
state of the walk at the timestamp t and u, v are two connected
nodes in the graph. Now, we can define the probability rule of
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the walk in the following way.

Pr[Xt+1 = v|Xt = u] =

{
1− p, ∀u �= v, v ∈ N(u).

p, otherwise.
(5)

where Pr[A] denotes the probability of occurring of event A,
0 < p < 1 which controls the bias of the random walk. The
N(u) denotes the set of neighbors of the node u. In general, the
transition matrix of the random walk isAD−1. But following the
lazy random walk [40] style, we can formulate the parameterized
transition matrix as

Wp = pI + (1− p)AD−1. (6)

Now let us introduce the following lemma.
Lemma 3.1: If (λ, e) denotes the eigenvalue and eigen-

vector pair of the normalized Laplacian N respectively, then
the corresponding eigenvalue and eigenvector pair of Wp is
(1− (1− p)λ, D

1
2 e).

The proof is available in the Appendix A. The over-smoothing
occurs due to the convergence of the biased random walk to the
stationary distribution [26]. Suppose at time-stamp t the state
transition probability vector is denoted as spt , which depends
upon the parameter p. The dependence of spt on p can be deduced
by proposing the following theorem.

Theorem 3.2: For any p1, p2 such that 0 < p2 ≤ p1 < 1, then
the following inequality will hold(

sp1
t − lim

t→∞ sp1
t

)
≥
(
sp2
t − lim

t→∞ sp2
t

)
. (7)

The proof is discussed in the Appendix A.B. From the above
theorem, we can conclude that if p tends to 1, which will
eventually slow the convergence of state transition probabilities
to the stationary distribution. If p → 1, then from (5) it can be
stated that the probability of moving from the current node to
its neighbors will become lesser than the probability of staying
in the current node. This fact indicates that after infinitely many
steps of the random walk, it is better to stay at the current vertex
than to move to its neighbors. At that moment, exploring more
paths does not improve the model’s performance. The fact is
also experimentally demonstrated in the Section IV-F.

D. Connection With Existing Approaches

RPE-GNN has some significant properties of the propaga-
tion rule over the other existing approaches such as GCN [5],
GAT [13], and GraphSage-GCN [14]. Assume x and d are
respectively the features and the degree of any node v, then
the updated feature x̃ of GCN can be estimated as:

x̃ =
x

d+ 1
+
∑

j∈N(v)

1√
d+ 1)(dj + 1)

xj , (8)

wherexj is the features of jth neighbor of node v andN(v) is the
set of neighbors of the same. In GCN the aggregated features are
symmetrically normalized by the degree of the neighbors of the
node v. Similarly, RPE-GNN normalizes the same with the total
number of random paths. The random paths may be assumed as
the edges incorporated with the estimated path features connect-
ing the source node to its multi-hop neighbors. Therefore, our
method tackles the aggregation of the non-adjacent neighbors
through the connecting paths.

On the other hand, the feature aggregation of GAT is formu-
lated as:

x̃ = x+
∑

j∈N(v)

aij
dj

xj , (9)

where aij is the attention coefficient between ith and jth node.
The attention coefficient aij is multiplied by the neighbor’s
features where the identical attention value weights each di-
mension. But RPE-GNN weights each dimension of the same
by the distinct values. This implies our approach can provide
feature-level attention weights.

Another architecture called GraphSage-GCN has the follow-
ing propagation formula.

x̃i = xi +
1

di

∑
j

xj . (10)

In this case, the neighborhood features are also simply averaged
by the node degree like GCN where we average the weighted
features by the number of randomly selected paths. GraphSage-
GCN cannot provide feature-level attention whereas RPE-GNN
enables feature-level attention which is learned from the random
paths. The message propagation technique’s highlighted features
help prevent over-smoothing in the deeper GNN architectures.

The common objective between RPE-GNN and Graph Diffu-
sion Convolution (GDC) [19] is to gather multi-hop neighbor-
hood information to update the node features. However, GDC
and RPE-GNN have fundamental differences while aggregating
features from long-range dependency. Applying GDC, initially,
we make the graph denser because the higher powers of the tran-
sition matrix lead to interaction with the higher-order neighbors.
Then a dense graph is sparsified by removing the edges whose
weights are below a pre-defined threshold value. In contrast,
RPE-GNN is a novel architecture, which rewires the graphs by
randomly exploring multi-hop neighbors via sampling random
paths. RPE-GNN does not require any threshold value to rewire
the graph and enjoys complete freedom to select any random
neighbors.

IV. EXPERIMENTS AND RESULTS

We perform diversified experiments to showcase the efficacy
of our model. The experiments are done on the open benchmark
graph datasets.

A. Details of Datasets

The experiments are carried out on four different categories
of datasets.

Citation datasets: We select Cora [41], Citeseer [41], and
Pubmed [41] as the citation networks where the nodes represent
documents, and the edges act as citations between the docu-
ments. Each document belongs to one academic topic. The fea-
tures associated with each node correspond to the bag-of-words
representation of the respective document.

Co-authorship datasets: Coauthor CS [42] and Coauthor
Physics [42] are two co-authorship networks. Nodes represent
authors, and edges exist between them if they coauthored a paper.
The features of the nodes represent the keywords related to the
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TABLE I
DATASET STATISTICS

author’s paper. The label of each node denotes the field of study
of the corresponding author.

Co-purchase datasets: Amazon Computers [42], and Amazon
Photo [42] are two co-purchase networks where each node
denotes products, and an edge exists if two products are bought
frequently. Node features denote the bag-of-words representa-
tion of the product reviews. Node labels indicate the product
category.

Wikipedia networks: Chameleon [43] is the Wikipedia net-
work where nodes denote web pages from the Wikipedia pages,
and edges exist if edges have mutual links between them. Node
features are the bag-of-words of the nouns on the page. The
node labels signify one of the five classes of average monthly
web page traffic.

WebKB Datasets: We choose Wisconsin and Cornell [43] as
our webkb datasets where nodes represent web pages, and edges
are the hyperlinks between the web pages. The node features are
the bag-of-words representation of the web pages. These datasets
are heterophilic graphs where connected nodes are more likely
to be in different classes.

Table I summarizes the details of the datasets.
The code is implemented by using Pytorch-Geometric [44]

framework and is available at https://github.com/gnn-codes/
rpe-gnn

B. Semi-Supervised Node Classification

Dataset Settings: For semi-supervised node classification, we
use standard train-validation-test split of the three datasets Cora,
Citeseer, and Pubmed as stated in [5]. For training 20 labeled
samples are selected from each of the classes. For validation
and testing, we select 500 nodes and 1000 nodes, respectively.
For Coauthor CS, Coauthor Physics, Amazon Computers, and
Amazon Photo, 20 samples are randomly selected from each
class for training, 30 samples from each class are randomly
selected for validation, and the rest of the samples are chosen
for testing as described in [45].

Discussions: The performance of our model can be evident
by comparing it with the other SOTA approaches. We con-
sider GCN [5], GAT [13], SGC [27], Jumping Knowledge Net-
works [21], and APPNP [18] as our contenders. Table II provides
necessary details regarding the performances of RPE-GNN.
The method outperforms all results on three Cora, Citeseer,
and Pubmed. The optimal layer numbers are written in the
parenthesis. The baselines like GCN, GAT, and JKNet utilize

TABLE II
MEAN CLASSIFICATION ACCURACY(%) OF THE MODEL COMPARING WITH

DIFFERENT STATE-OF-THE-ART APPROACHES

TABLE III
MEAN CLASSIFICATION ACCURACY(%) OF THE RPE-GNN COMPARING WITH

DIFFERENT STATE-OF-THE-ART APPROACHES WHERE GRAPH DIFFUSION IS

EMPLOYED AS PRE-PROCESSING

recursive message-passing frameworks. However, we employ
non-recursive aggregation without performing redundant feature
computations, and still, we achieve better performances over the
datasets.

We also consider to pre-process data with graph diffusion con-
volution(GDC) [19] to evaluate the performance of RPE-GNN.
We consider the variants of GNNs like GCN, GAT, GraphSAGE,
and APPNP with the graph diffusion based pre-processing to
compare the performances with the GDC-based RPE-GNN. The
results are presented in Table III. From the results, it can be
observed that applying graph diffusion does not improve model
performance. Graph diffusion modifies the graph connections
under some conditions, but RPE-GNN rewires the graph with
long-distant nodes via sampling random paths.

To compare performances of RPE-GNN on co-authorship and
co-purchase networks we include GCN [5], GAT [13], Graph-
Sage [14], MoNet [46], and DAGNN [45] as our contenders.
RPE-GNN outperforms all methods in the four datasets, as
mentioned earlier. All said competitors utilize recursive aggre-
gation in contrast to our aggregation, which is non-recursive
and still achieves the best performances, which is demonstrated
in Table IV. Coauthor CS and Coauthor Physics achieve the
best performance when network depth is 2 and 8, respectively,
whereas Amazon Computers and Amazon Photo accomplish the
same when network depth is 8 and 32, respectively.

C. Analysis of Deep Models

We conduct a detailed study on the performance of RPE-GNN
for the different network depths. We select three citation net-
works Cora, Citeseer, and Pubmed, along with two heterophilic
datasets Wisconsin and Cornell. The number of hidden layers is
chosen from the set {2, 4, 6, 8, 10, 12, 14, 16}. Fig. 4 illustrates
the variation of test accuracy when the network depth is in-
creased gradually. For citation datasets, the model performance
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TABLE IV
MEAN CLASSIFICATION ACCURACY(%) IS PRESENTED BY COMPARING WITH

THE STATE-OF-THE-ART ARCHITECTURES

Fig. 4. The performance of RPE-GNN is observed by varying the network
depths in the model. RPE-GNN achieves the best performance on Cora, Citeseer,
and Pubmed at 8th, 16th, and 8th layers, respectively. RPE-GNN shows best
results on Wisconsin and Cornell at 8th and 14th layers. Better test accuracy
may be achieved when multiple layers are stacked together.

gradually improves throughout the experiment while the model
depth increases. On the other side, the best performance of Wis-
consin and Cornell is achieved in the deeper models. Therefore,
the study justifies that going deeper into the GNN models is
sometimes helpful to achieve optimal model performance. Thus,
we can conclude that the proposed non-recursive aggregation
strategy may mitigate the over-smoothing issue in the deeper
architectures.

D. Full-Supervised Node Classification

Besides semi-supervised settings, we also evaluate RPE-GNN
on fully-supervised node classification tasks.

Dataset Settings: In this case, we include the web data network
Chameleon [43] along with the previous three datasets, Cora,
Citeseer, and Pubmed. As per [26], the datasets are randomly
split into 60%, 20%, 20% for train, validation, and testing, re-
spectively, for a fair comparison.

Discussions: In addition to previously mentioned baselines
we further include Geom-GCN [43], APPNP [18] and SIGN [47]
as our new contenders. We present the obtained results in Ta-
ble V. The best results are mentioned with the optimal layer num-
ber within parentheses. RPE-GNN shows almost 1% improve-
ment on Cora and Citeseer datasets compared to all approaches.

TABLE V
MEAN CLASSIFICATION ACCURACY(%) OF THE MODEL UNDER

FULLY-SUPERVISED CONDITION

On the Pubmed dataset, the algorithm produces competitive
results (≤ 1%) compared to other approaches. On Pubmed
still, RPE-GNN outperforms all other mentioned approaches
except GCNII and GCNII*. For Chameleon, we achieve almost
9% improvements over SOTA. The results suggest that model
performance can still be improved without having redundant
feature estimation.

E. Architecture & Training

The architecture of RPE-GNN consists of a set of hidden
layers, followed by an aggregation layer and, finally, a softmax
layer. A k-layered RPE-GNN can perform k-hop neighborhood
aggregation. Each hidden layer consists of a trainable weight
matrix shared across all the edges for that layer and is followed
by batch normalization layers, non-linear activation function
ReLU and dropout layers.

The model is trained by Adam [48] optimizer with learning
rate 0.2, and other parameters are set to defaults. The weight
decay is set to 0.0005. We use 0.5 dropout to prevent potential
overfitting. The model is trained for a maximum number of 200
steps, and the results are reported after averaging 10 steps during
the test phase. The dimension of the hidden layers is 32. Cross-
Entropy loss is used to optimize the model parameters. We also
introduce a sampling strategy to generate random paths, which
are broadly discussed in Appendix B.A.

F. Effect of Sampling of Random Paths

The effect on the model performance with a different number
of sampled paths in the graph is demonstrated in Fig. 5. The
experiment suggests that the test accuracy of the model signifi-
cantly improves when the number of sampled paths is increased.
The higher number of random paths enhances the scope of
exploring the graph topology. Another observation is the test
accuracy may not improve beyond an optimal number of random
paths. The optimal number at which test accuracy becomes
non-increasing depends on the dataset itself. One should note
that for different depths of the model, the required number of
random paths is different to achieve the best performance. In
fact, for shallow architecture, the optimal number of paths is
less than the requirement for the same in the case of deeper
architecture.
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Fig. 5. Test accuracy of RPE-GNN is observed with varying the number of random paths for different depths of the architecture. Test accuracy increases when
the number of sampled paths is increased. The model with more depth needs more random paths to produce optimal results.

V. CONCLUSION AND FUTURE WORKS

We propose RPE-GNN, an architecture that aggregates node
features from lower to higher-order neighborhoods in a non-
recursive way by considering path features of randomly ex-
plored paths in the graph. We design an efficient technique to
estimate path features without having prior knowledge of the
predetermined random paths. We have theoretically shown that
RPE-GNN simulates a biased random walk in the graph. We have
demonstrated RPE-GNN is capable of minimizing the effect of
over-smoothing in the deeper GNN models through rigorous
experiments. As a future work, the method corresponding to
path features estimation can be further improved for better model
performance. Also, our work can be extended to define a new
field of study regarding the non-recursive aggregation strategies
for graph learning tasks.

APPENDIX A

A. Proof of Lemma 3.1

Proof: If λ and e are the eigenvalue and the eigenvector of N
respectively, then we have

Ne = λe (11)

By algebraic manipulation, the Wp can be rewritten as

Wp =
(
I − (1− p)D

1
2ND− 1

2

)
(12)

Now, consider the following equation

WpD
1
2 e =

(
I − (1− p)D

1
2ND− 1

2

)
D

1
2 e

= D
1
2 e− (1− p)D

1
2Ne

= D
1
2 e− (1− p)D

1
2 λe[from (11)]

= (1− (1− p)λ)D
1
2 e (13)

Hence, the claim is proved. �

B. Proof of Theorem 3.2

Proof: The transition matrix of the biased random walk is
derived as below

Wp = p.I + (1− p)AD−1. (14)

We know L = D −A as the graph Laplacian. The symmetri-
cally normalized Laplacian is represented as:

N = D− 1
2LD− 1

2

= D− 1
2 (D −A)D− 1

2

= I −D− 1
2AD− 1

2 (15)

Reformulating the (14) by using the (15) we get

Wp = p.I + (1− p)D
1
1D− 1

2AD− 1
2D− 1

2

= p.I + (1− p)D
1
2 (I −N)D− 1

2

= p.I + (1− p)
(
I −D

1
2ND− 1

2

)
= I − (1− p)D

1
2ND− 1

2 (16)

Suppose the state transition probabilities at time t is st them at
time t+ 1 the state transition probabilities will be

st+1 = Wpst (17)

Substituting t = 0 we get s1 = Wps0. As Wp is diagonalizable,
then a set of eigenvectors forms a basis. Therefore, any vector
can be expressed as

s0 =
n∑

i=1

αiD
1
2 ei (18)

where ei is the ith eigen vectors and n is the number of dimen-
sion. Now, we can rewrite

s1 =

n∑
i=0

αiWpD
1
2 ei

=

n∑
i=0

αi(1− (1− p)λi)D
1
2 ei (19)

Iterating t times the expression will be

st =

n∑
i=0

αi(1− (1− p)λi)
tD

1
2 ei (20)

It is a well-known fact that eigenvalues of N lie between [0, 2].
Therefore, it is easy to observe that the eigenvalues of Wp lie
between [0, 1]. Assume λ1 = 1, λj ≤ 1∀j ∈ [2, n]. Finally, the
stationary distribution of the random walk is

lim
t→∞ st = lim

t→∞

n∑
i=0

αi(1− (1− p)λi)
tD

1
2 ei

=
n∑

i=0

αi lim
t→∞(1− (1− p)λi)

tD
1
2 ei

= α1D
1
2 e1 (21)
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It may observe that the eigenvalues of Wp other than 1 all lies
between [0, 1). Therefore, the rest of the terms vanish as t tends
to infinity. Moreover, the expression st also depends on the
parameter p so that we can rewrite it as spt . WLOG for a fixed λ

the following inequality will hold

(1− (1− p1)λ) ≥ (1− (1− p2)λ), (22)

where p1 ≥ p2. For t > 0 the above inequality can be written as

(1− (1− p1)λ)
t ≥ (1− (1− p2)λ)

t

⇒
n∑

i=0

(1− (1− p1)λi)
t ≥

n∑
i=0

(1− (1− p2)λi)
t,

⇒
n∑

i=0

αi(1− (1− p1)λi)
tD

1
2 ei

≥
n∑

i=0

αi(1− (1− p2)λi)
tD

1
2 ei,

⇒ sp1
t ≥ sp2

t

⇒ (sp1
t − ε) ≥ (sp2

t − ε)

⇒
(
sp1
t − lim

t→∞ sp1
t

)
≥
(
sp2
t − lim

t→∞ sp2
t

)
From the (21), it can be deduced that the limiting value of the
state transition probabilities is independent of p. Therefore, we
can have limt→∞ sp1

t = limt→∞ sp2
t = ε for any p1, p2 where ε

denotes the vector of the stationary distribution of the random
walk. Hence, the theorem is proved. �

APPENDIX B

This section provides the details of the hyper-parameters used
to reproduce the results.

A. Sampling Strategy

We adopt a simple and effective layer-wise sampling tech-
nique that prevents increasing the exponential number of random
paths. At the beginning of each layer, we initialize a parameter
that decides the maximum of how many neighbors of a node can
be selected. For every layer, the value of the parameter remains
fixed for each node in the graph. The parameter is increased
to explore more graph topology and is decreased to restrict the
number of random paths.

We also introduce two random variables for layer-wise sam-
pling, namely nsample and lrange. The first one decides the
maximum number of neighbors that will be selected for every
node in the graph. This value will be different for every layer.
The second one indicates the number of layers up to which
the node-wise sampling will be performed. After that layer, the
sampling will be 1, i.e., only one neighbor will be randomly
selected. So the default value of nsample is 1.

The hyper-parameters of the semi-supervised experiments are
summarized in Table VI. Table VII reports the hyper-parameters
of the fully-supervised experiments. The ‘layers’ denotes the
network depth where the algorithm performs best on the corre-
sponding dataset. Here L2 represents the weight decay of the
optimizer, and ‘lr’ denotes the learning rate used during the
training.

TABLE VI
HYPER-PARAMETERS FOR SEMI-SUPERVISED NODE CLASSIFICATION

EXPERIMENTS

TABLE VII
HYPER-PARAMETERS FOR FULLY-SUPERVISED NODE CLASSIFICATION

EXPERIMENTS
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