
Adjustment Identification Distance: A gadjid for Causal Structure Learning

Leonard Henckel1 Theo Würtzen2 Sebastian Weichwald2,3

1School of Mathematics and Statistics, University College Dublin, Ireland
2Pioneer Centre for AI, University of Copenhagen, Denmark

3Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract

Evaluating graphs learned by causal discovery al-
gorithms is difficult: The number of edges that
differ between two graphs does not reflect how
the graphs differ with respect to the identifying
formulas they suggest for causal effects. We intro-
duce a framework for developing causal distances
between graphs which includes the structural in-
tervention distance for directed acyclic graphs as
a special case. We use this framework to develop
improved adjustment-based distances as well as
extensions to completed partially directed acyclic
graphs and causal orders. We develop new reach-
ability algorithms to compute the distances effi-
ciently and to prove their low polynomial time
complexity. In our package gadjid (open source
at github.com/CausalDisco/gadjid), we provide im-
plementations of our distances; they are orders of
magnitude faster with proven lower time complex-
ity than the structural intervention distance and
thereby provide a success metric for causal discov-
ery that scales to graph sizes that were previously
prohibitive.

1 INTRODUCTION

Inferring the causal effect of a treatment on an outcome
from observational data requires qualitative knowledge of
the underlying causal structure, for instance in form of a
causal graph [Pearl, 2009]. We can, for example, use a causal
graph to decide whether a set of covariates forms a valid
adjustment set and enables correct estimation of a causal
effect via adjustment [Pearl, 1995, Perkovic et al., 2018].

Under certain assumptions, we can learn the causal graph
that underlies the covariates; a task known as causal dis-
covery [e.g. Spirtes et al., 2000, Chickering, 2002, Heinze-
Deml et al., 2018]. Causal discovery is challenging. First,

the causal graph is only identifiable from observational data
under restrictive assumptions, such as additive errors sat-
isfying distributional or scale restrictions [Shimizu et al.,
2006, Park, 2020]. Second, algorithms based on existing
identifiability results often require further assumptions or
approximations to be computationally feasible, for example,
testing only few of the combinatorially exploding number
of required conditional independence tests [Spirtes et al.,
2000]. Third, causal discovery from finite data is statisti-
cally challenging and there are pitfalls to evaluating causal
discovery algorithms on simulated data [Gentzel et al., 2019,
Weichwald et al., 2020, Kaiser and Sipos, 2022, Reisach
et al., 2021, 2023].

The literature has focused on the first two problems. Yet, for
causal discovery to become practically useful, it is neces-
sary to tackle the third problem and improve the evaluation
criteria, benchmarks, and success metrics that guide algo-
rithm development [Mooij et al., 2016, Cheng et al., 2022,
Rios et al., 2021]. A prerequisite for research into more
accurate causal discovery algorithms is that we quantify that
accuracy, for which we need a distance between a learned
graph Gguess and the true graph Gtrue. A common and very
widely used choice in the literature is the structural Ham-
ming distance (SHD) or variants thereof which count the
number of edges that differ between graphs [Tsamardinos
et al., 2006, de Jongh and Druzdzel, 2009, Constantinou,
2019]. The SHD, however, does not reflect how similar
graphs are when used to infer interventional distributions: A
graph Gguess may have a large Hamming distance from Gtrue
but still be a good estimate of Gtrue for performing causal
inference (cf. Corollary 8 or [Peters and Bühlmann, 2015]).
The number of edges that differ between graphs is not a
performance metric for causal discovery when the graph is
to be used for effect identification.

The literature on comparing causal graphs can broadly be
divided into two approaches. The first approach considers
data-driven graph distances [Viinikka et al., 2018, Eigen-
mann et al., 2020, Peyrard and West, 2021, Dhanakshirur
et al., 2023]. These are challenging to use as performance

mailto:<leonard.henckel@ucd.ie>?Subject=Your UAI 2024 paper - gadjid
https://github.com/CausalDisco/gadjid

metrics for algorithm development, as evaluating these dis-
tances generally requires large samples and is only compu-
tationally feasible for small graphs. The second approach
considers only the graph structure and its implications for
causal inference to define a graph distance; an example
is the Structural Intervention Distance (SID) [Peters and
Bühlmann, 2015]. We focus on distances that consider only
the graph structure. This approach has received less atten-
tion than the first approach but offers advantages: First, it
enables comparisons to graphs encoding expert knowledge
without having to specify all conditional distributions. Sec-
ond, it is independent of the sample size, hyperparameter
tuning, and choice of density estimator.

The SID counts interventional densities f(Y | do(T = t))
in Gtrue that are incorrectly inferred if we instead use Gguess
as the causal graph to compute interventional densities via
parent adjustment. For directed acyclic graphs (DAGs), this
amounts to counting the parent sets in Gguess that are not
valid adjustment sets in Gtrue. Using this characterization,
Peters and Bühlmann [2015] provide an algorithm with
O(p4 log(p)) time complexity in the number of nodes p.1

They propose a generalization of the SID to completed par-
tially directed acyclic graphs (CPDAGs), which represent
equivalence classes of DAGs, by iterating over the DAGs
in the equivalence class to compute a multi-set of distances.
As one major use of causal graphs is inferring interventional
densities, the SID is a practically relevant distance. How-
ever, parent adjustment is only one of many approaches
to compute causal effects and is in fact statistically ineffi-
cient [Rotnitzky and Smucler, 2020, Henckel et al., 2022].
Further, iterating over the DAGs in a Markov equivalence
class to calculate the multi-set SID between CPDAGs has
exponential time complexity and the resulting non-scalar
distance is difficult to interpret. In fact, the CRAN SID pack-
age v1.1 requires that the true graph be a directed acyclic
graph, that is, it does not implement the distance between
two completed partially directed acyclic graphs outlined by
Peters and Bühlmann [2015]; calculating the SID between
a DAG and CPDAG exactly likewise has exponential time
complexity and returns a difficult to interpret multi-set.

Contribution. We develop distances between causal
graphs that reflect their dissimilarity when used to infer
causal effects. Specifically, we propose a framework to con-
struct an identifiability distance from a graphical identifica-
tion strategy, that is, an algorithmic approach to causal effect
identification. We posit that such a distance is interesting
if the underlying graphical strategy for causal effect identi-
fication represents a potential practitioner using the graph
to infer causal effects. Different assumptions on how an

1For certain adjacency matrices, using the Strassen algorithm
for matrix multiplication in the algorithm by Peters and Bühlmann
[2015] may reduce the complexity to O(plog2(7)+1 log(p)) ≈
O(p3.8 log(p)); using our novel reachability algorithms we reduce
the complexity to O(p3) for dense and O(p2) for sparse graphs.

V2 V3V1

V4 V2 V3V1

V4

V2 V3V1

V4

Figure 1: A CPDAG (left) and the two DAGs in the corre-
sponding Markov equivalence class (right).

idealized practitioner would use a causal graph lead to dif-
ferent causal graph distances. We show that our framework
includes the SID for DAGs as a special case and use the
framework to propose new distances with attractive proper-
ties. We discuss for each distance a) whether the underlying
identification strategy is good practice and used in practice,
and b) when it is zero. Within our framework and in contrast
to the SID, our distances canonically generalize to distances
between any combination of DAGs and CPDAGs. We also
generalize one of the distances to learned causal node or-
ders. We develop polynomial time algorithms to compute
the distances, which, to our knowledge, makes them the
first causal distances between CPDAGs with a polynomial
runtime guarantee. For the distances using local adjustment
strategies, which in the special case of DAGs includes the
SID, we show that the complexity is O(p2) for sparse and
O(p3) for dense graphs, irrespective of whether the graphs
are DAGs or CPDAGs. We also show that the complexity
of our most complex distance is at most O(p4). We provide
empirical evidence for the asymptotic time complexities
and fast runtimes of our algorithms. Finally, we discuss how
future advances on sound and complete criteria for causal
effect identification could be integrated into our framework
to develop distances for more general graph types that allow
for unobserved variables.

A gadjid for causal structure learning. For our dis-
tances, we provide efficient Rust-implementations with
a Python interface. Our package gadjid (open source
at github.com/CausalDisco/gadjid) enables researchers to
evaluate and benchmark causal discovery algorithms with
causally meaningful and computationally tractable perfor-
mance metrics to guide and support the development of
structure learning algorithms.

2 PRELIMINARIES

We use graphs where nodes represent random variables and
edges causal relationships. Here, we provide an overview of
the key terminology and refer to Appendix A for details.

We consider two types of graphs: directed acyclic graphs
(DAGs) and completed partially directed acyclic graphs

https://github.com/CausalDisco/gadjid

(CPDAGs), see Figure 1. DAGs are graphs with directed
edges (→) and without directed cycles. DAGs can describe
causal relationships without feedback loops [Pearl, 2009].
They also encode conditional independences that can be read
off the graph using the d-separation criterion [Pearl, 2009].
DAGs can be learned from data only under strong assump-
tions. However, the class of DAGs encoding the same con-
ditional independences, known as its Markov equivalence
class, can be learned under weaker assumptions. A CPDAG
can uniquely represent this equivalence class if there are no
hidden variables [Meek, 1995, Chickering, 2002]. CPDAGs
contain directed (→) and undirected () edges and satisfy
further structural properties [Meek, 1995].

Causal DAGs and CPDAGs. We consider external in-
terventions do(T = t) (short do(t)) for T ⊆ V that
set T to some value t for the entire population [Pearl,
1995]. A probability density function f over random vari-
ables V = (V1, . . . , Vp) is compatible with a causal DAG
G = (V,E) if all densities f(v | do(t)) obey

f(v | do(t)) =

{∏
V ∈V\T f(v | Pa(V,G)) if T = t,

0 otherwise.

This equation is known as truncated factorization formula
[Pearl, 2009], manipulated density formula [Spirtes et al.,
2000], or g-formula [Robins, 1986]. A density f is compati-
ble with a CPDAG G if it is compatible with a causal DAG
in the Markov equivalence class represented by G.

Identifying formula. Causal graphs are used to estimate
the causal effect of a treatment T ⊆ V on an outcome Y ⊆
V from observational data, that is, to estimate (functionals
of) the interventional distribution f(y | do(t)). To do so,
we require an identifying formula for this interventional
distribution, that is, an equation in the observational density
that solves for f(y | do(t)) for any f compatible with
the causal graph. We refer to inferring such an identifying
formula from a causal graph as inferring the causal effect.
An effect is identifiable in a causal graph G if there is at
least one identifying formula.

Valid adjustment. Let T,Y, and Z be pairwise disjoint
node sets in a causal DAG or CPDAG G. Z is a valid ad-
justment set if f(y | do(t)) =

∫
f(y | t, z)f(z) dz for

any density f compatible with G. Graphical criteria fully
characterize valid adjustment sets in DAGs, CPDAGs, and
other graph types [Perkovic et al., 2018].

Causal ordering. Let G be a DAG with node set V. A
strict partial order ≺ on V is called a causal order of G if
for all nodes A,B ∈ V with A → B it holds that A ≺ B.
In general, there are multiple causal orders. For two DAGs
G andH with node set V, we say that G respects the causal
orders ofH if every causal order of G is a causal order ofH.
We define pre≺(B) = {A ∈ V | A ≺ B}, post≺(A) =

{B ∈ V | A ≺ B}, and G≺ as the transitively closed DAG
with A→ B if and only if A ≺ B.

3 CAUSAL IDENTIFICATION DISTANCE

We introduce a framework for developing identifiability
distances between causal graphs. This framework lays out
how to extend distances to different graph types and align
them with how causal graphs are used to answer causal
queries.

3.1 FRAMEWORK

In our framework, a distance is defined by a) a sound and
complete identification strategy and b) a verifier. We use
the identification strategy to derive identification formulas
based on Gguess and the verifier to evaluate whether the iden-
tification formulas obtained on Gguess are correct in Gtrue.
Intuitively, the identification strategy represents how an ide-
alized practitioner would use Gguess to infer causal effects
and the verifier evaluates how often the practitioner would
be wrong if the ground truth graph were Gtrue. For simplic-
ity, we only consider single-node interventions while the
framework generalizes when provided a sound and complete
identification strategy and verifier (cf. also Section 4.3).

Definition 1 (Identification Strategy). An identification
strategy is an algorithm that for a tuple (G, T, Y) of a
causal graph G and two distinct nodes T and Y in G, re-
turns the tuple (T, Y) and either an identifying formula I
for f(y | do(t)) or none. An identification strategy I is
sound and complete if a) I(G, T, Y) ̸= none if and only if
f(y | do(t)) is identifiable in G and b) all returned identify-
ing formulas are correct for any f compatible with G.

Example 2 (Parent Adjustment Strategy). For a DAG G
and two distinct nodes T and Y , PT = Pa(T,G) is a valid
adjustment set whenever Y /∈ PT . If, on the other hand,
Y ∈ PT , then, by the acyclicity of G, Y is a non-descendant
of T and so there is no causal effect from T on Y . We can
combine these two results to obtain the sound and complete
parent adjustment strategy

IP (G, T, Y) =

{∫
f(y | t,pT)f(pT) dpT if Y /∈ PT ,

f(y) else.

In a DAG, all causal effects are identifiable and therefore
IP never returns none.

Definition 3 (Verifier). A verifier is an algorithm that given
a graph G, distinct nodes T and Y in G, and an identifying
formula I for f(y | do(t)), verifies whether I is correct for
all densities compatible with G and returns either correct
or incorrect. For an input of none it verifies that the effect
is not identifiable in G, that is, that no identifying formula
exists.

Identification has been widely studied; for example, vari-
ous sufficient conditions for the validity of adjustment sets
are known [Pearl, 1993, Maathuis and Colombo, 2015].
Verification, however, has received limited attention and
no algorithm is available to verify an arbitrary identifying
formula for DAGs or CPDAGs. Yet, for some types of iden-
tifying formulas, necessary and sufficient graphical criteria
exist and these can be used for verification. In particular,
for identifying formulas that use adjustment, we can use the
necessary and sufficient adjustment criterion for verification
[Shpitser et al., 2010, Perkovic et al., 2018]. A necessary and
sufficient criterion also exists for instrumental variables but
only for linear models [Henckel et al., 2023]. We focus on
adjustment-based identification strategies but our framework
is amenable to other strategies provided a corresponding
verifier exists.

Example 4 (Adjustment-Verifier for DAGs). The identifi-
cation strategy IP relies on two identification principles:
a) valid adjustment and b) non-descent. The verifier Vadj
in Algorithm 1 is simple, sound, and complete and uses
the adjustment criterion and a non-descent check for the
verification of adjustment-based identification strategies. In
DAGs all effects are identifiable and so the verifier rejects
any none-identification formula as incorrect, that is, the
if-branch in line 5 is not reached and only included for
completeness.

Definition 5 (I-Specific Identification Distance). Given
a sound and complete identification strategy I, we define
the I-specific identification distance between two graphs
Gtrue and Gguess with common node set V as the number
of identification formulas inferred by I on Gguess that are
incorrect relative to Gtrue, that is,

dI(Gtrue,Gguess,S)

=
∑

(T,Y)∈S

1{incorrect}
(
V (Gtrue, I(Gguess, T, Y))

)
where S ⊆ S = {(T, Y) ∈ V × V | T ̸= Y } and V
is a verifier. Unless otherwise noted, we use all p(p − 1)
pairs of distinct nodes in V and write dI(Gtrue,Gguess) =
dI(Gtrue,Gguess,S).2

Formally, the I-specific identification distance between Gtrue
and Gguess counts how many of the identification formulas
obtained by using the identification strategy I on Gguess are
incorrect for Gtrue. Intuitively, the distance is the number of
causal effects an idealized practitioner would wrongly infer
from Gguess, if I resembled how the practitioner would use
the graph Gguess for causal inference while the true DAG

2The flexibility to choose other sets S′ ⊂ S allows one to
tailor the distance dI(Gtrue,Gguess,S

′) to consider only some spe-
cific nodes of interest as treatment or effect nodes or, given a
suitable identification strategy and verifier, to consider multi-node
interventions when comparing graphs (see also Section 4.3).

Algorithm 1 Adjustment-Verifier Vadj

1: Input: Graph G, tuple (T, Y), identifying formula I
2: Output: Validity indicator V ∈ {correct, incorrect}
3: V ← incorrect
4: if I = none and f(y | do(t)) not identifiable in G then
5: V ← correct
6: else if I = f(y) and Y ∈ NonDe(T,G) then
7: V ← correct
8: else if I =

∫
f(y | t, z)f(z) dz and Z is a valid adjust-

ment set relative to (T, Y) in G then
9: V ← correct

10: return V

were Gtrue. By construction, strategy-specific identification
distances are asymmetric in their input graphs.

Example 6 (SID is the IP -Specific Distance for DAGs).
Let Gtrue and Gguess be DAGs with common node set V.
Then dIP (Gtrue,Gguess) coincides with SID(Gtrue,Gguess) as
defined by Peters and Bühlmann [2015]. For CPDAGs, how-
ever, the SID is defined as the multi-set obtained by cal-
culating the SID for each DAG in the Markov equivalence
class and is not a distance in our framework; in Section 5 we
present the canonical extension of the IP -specific distance
to CPDAGs that outputs a scalar and retains interpretability.

3.2 GENERAL PROPERTIES

Any identification distance between a DAG and a supergraph
of that DAG is zero. A corollary highlights that identification
distances differ from the SHD: there exist DAGs for which
identification distances are maximally different from the
SHD. Proofs are provided in Appendix B.

Proposition 7 (Distance to Super-DAG is Zero). Let I be
a sound and complete identification strategy for DAGs. For
any DAG Gtrue, it holds that if Gguess is a super-DAG of Gtrue,
then dI(Gtrue,Gguess) = 0.

As dI(Gtrue,Gtrue) = 0, identification distances are pre-
metrics. Proposition 7 is a consequence of all causal effects
in a DAG being identifiable; adding edges removes the in-
formation that certain effects are absent and may reduce
the number of correct identifying formulas, but never to
zero. For other graph types such as CPDAGs, this is not the
case (cf. Section 5). As a corollary, DAGs may be close in
identification distance but far in SHD.

Corollary 8 (Identification Distances Differ from the SHD).
Let dI be a strategy-specific identification distance. Let
Gguess be a fully connected DAG with p nodes and Gtrue the
empty DAG on the same node set. Then the SHD dH is
maximal and maximally different from dI:

dH(Gtrue,Gguess)− dI(Gtrue,Gguess) = p(p− 1)/2− 0.

4 DAG DISTANCES

We propose three adjustment-based distances for DAGs and
extend them to CPDAGs in Section 5. We propose a parent
adjustment distance which between DAGs corresponds to
the SID but, in contrast to the SID, generalizes canonically
to CPDAGs. We develop an ancestor adjustment distance
that assigns low distance to graphs with similar causal orders
and an Oset adjustment distance that uses a statistically effi-
cient identification strategy. We discuss how each distance
corresponds to different assumptions on how a practitioner
would use a graph for causal inference. Users need to choose
(a combination of) distances based on how they envision
the graph will be used for causal reasoning in a downstream
task. Depending on the downstream task, even the SHD
may be considered a causal graph distance, for example, if
the downstream task merely involves reasoning about the
existence of direct cause-effect relationships but not the
identification or estimation of those direct effects.

4.1 PARENT ADJUSTMENT DISTANCE

We call dIP the parent adjustment distance (Parent-AID).
The Parent-AID is an identification distance (cf. Example 6)
but yields unintuitive results between graphs with the same
causal orders (cf. Lemma 10) and uses an inefficient ad-
justment strategy (cf. Section 4.3); we include it for com-
pleteness, as it includes the SID for DAGs as a special case,
but, in contrast to the SID, canonically extends to CPDAGs
within our framework (cf. Section 5). We develop refined
adjustment-based distances in the next two subsections.

Parent adjustment is used in practice [Gascon et al., 2015,
Sunyer et al., 2015]. To reason about the effect of interven-
ing on a variable T , it requires one to know only the direct
causes of T but not the full causal graph; if a practitioner
knew the parent sets for all nodes infact they would know
the full causal DAG. The Parent-AID assumes a practitioner
who follows this common practice. The parent adjustment
strategy is local, that is, for any pair (T, Y) the adjustment
set only depends on T but not Y . We use this to improve the
time complexity of calculating the distance (cf. Section 6).
For DAGs, dIP (Gtrue,Gguess) = 0 if and only if Gguess is a
supergraph of Gtrue [Peters and Bühlmann, 2015].

4.2 ANCESTOR ADJUSTMENT DISTANCE

Many causal discovery algorithms learn an ordering of the
nodes in a separate first step [Shojaie and Michailidis, 2010,
Bühlmann et al., 2014, Chen et al., 2019, Park, 2020] and
pairwise causal effects can be learned from the correct
causal order alone [Bühlmann et al., 2014, Section 2.6].
We formalize this known result as follows.

Lemma 9 (Ancestors are Valid Adjustment Sets). Let T
and Y be two distinct nodes in a DAG G. Then any set

V1 V2 V3
. . . Vp

Figure 2: Fully connected and chain DAG in Lemma 10.

Z such that Pa(T,G) ⊆ Z ⊆ NonDe(T,G) and Y /∈ Z
is a valid adjustment set for (T, Y) in G. As a corollary,
given an order ≺, pre≺(T) is a valid adjustment set for all
Y /∈ pre≺(T) in all DAGs for which ≺ is a causal order.

Thus, it is possible to derive identification formulas in Gguess
that are also correct in Gtrue, if Gguess respects the causal
orders of Gtrue. Yet, even if two DAGs have the same causal
orders, the Parent-AID between them can be large.

Lemma 10 (Parent-AID Misrepresents Causal Order). Let
Gptrue be the fully connected DAG over p causally-ordered
nodes {V1, ..., Vp} and Gpguess the chain V1 → V2 · · · → Vp

(cf. Figure 2). Then, despite Gtrue and Gguess respecting each
others causal orders, dIP (Gptrue,Gpguess) = p2−4p+4 which
is close to its maximal value p(p− 1) in the sense that

lim
p→∞

dIP (Gptrue,Gpguess)/p(p− 1) = 1.

Considering DAGs as distant that respect each others causal
orders may be unintuitive. We therefore propose an alterna-
tive adjustment strategy and distance.

Definition 11 (Ancestor Adjustment Strategy and Distance).
Given two distinct nodes T and Y in a DAG G, let AT =
An(T,G) \ {T} and DT = De(T,G). We define the ances-
tor adjustment strategy as

IA(G, T, Y) =

{∫
f(y | t,aT)f(aT) daT if Y ∈ DT ,

f(y) else,

which is a sound and complete identification strategy per
Proposition 12. We call the corresponding distance dIA the
ancestor adjustment distance (Ancestor-AID).

Proposition 12 (Ancestor-AID Reflects Causal Order). The
ancestor adjustment strategy IA is sound and complete
for DAGs and so the corresponding ancestor adjustment
distance dIA is the IA-specific identification distance. Fur-
ther, for any two DAGs Gtrue and Gguess with the same node
set, dIA(Gtrue,Gguess) = 0 if and only if Gguess respects the
causal orders of Gtrue.

Due to Proposition 12, the Ancestor-AID is preferable to
the Parent-AID for evaluating the causal order of a learned
graph. It can be used both as a replacement and to comple-
ment the Parent-AID.

The ancestor adjustment strategy is local, that is, for any
pair (T, Y) the adjustment set only depends on T but not

Y . Adjusting for the ancestors has some advocates [Rubin,
2008] and is at least as statistically efficient as parent adjust-
ment [Henckel et al., 2022]. A practitioner more confident
in the ability of causal discovery algorithms to learn causal
orders rather than all specific edges and exact parent sets,
may prefer the ancestor adjustment strategy over the parent
adjustment strategy to infer causal effects from a learned
graph.

4.3 OSET ADJUSTMENT DISTANCE

In practice, identifying formulas are a tool to estimate a
causal effect of interest. Different identifying formulas cor-
respond to different estimators for this effect. For example,
in linear models we can estimate the average treatment ef-
fect with an ordinary least squares regression of Y on T and
Z; this estimator is consistent for any valid adjustment set
Z. Other properties of the estimator, such as its asymptotic
variance, however, depend on the adjustment set.

We can use the causal graph to decide which valid adjust-
ment sets result in statistically efficient estimators; impor-
tantly, for a large class of estimators, the valid adjustment
set Pa(T,G) is close to the least efficient among all valid
adjustment sets [Rotnitzky and Smucler, 2020, Witte et al.,
2020, Henckel et al., 2022]. The parents are therefore an
inefficient adjustment set and parent adjustment is perhaps
not good practice. As an alternative Henckel et al. [2022]
have proposed the optimal adjustment set.

Definition 13 (Optimal Adjustment Set (Oset)). Let T and
Y be two distinct nodes in a DAG G. Then the optimal
adjustment set (Oset) O(T, Y,G) is defined as

O(T, Y,G) = Pa(Cn(T, Y,G),G) \ Forb(T, Y,G)

where Cn(T, Y,G) are the causal and Forb(T, Y,G) the
forbidden nodes as defined in Appendix A.

If Y ∈ De(T,G), then O(T, Y,G) is a valid adjustment set
whenever a valid adjustment set exists. For a large class of
estimators, the Oset is the most statistically efficient among
all valid adjustment sets. We use this result to propose an-
other adjustment-based identification distance.

Definition 14 (Oset Adjustment Strategy and Distance).
Given two distinct nodes T and Y in a DAG G, let OT =
O(T, Y,G) and DT = De(T,G). We define the Oset ad-
justment strategy as

IO(G, T, Y) =

{∫
f(y | t,oT)f(oT) doT if Y ∈ DT ,

f(y) else,

which is a sound and complete identification strategy per
Proposition 15. We call the corresponding distance dIO the
Oset adjustment distance (Oset-AID).

Proposition 15 (Oset-AID is the IO-Specific Distance).
The Oset adjustment strategy IO is sound and complete for
DAGs and so the corresponding Oset adjustment distance
dIO is the IO-specific identification distance.

Oset adjustment has seen some early adoption by practi-
tioners [Steiger et al., 2021]. Given the Oset’s efficiency
guarantee, the Oset-AID assumes that a practitioner takes
efficiency into account when selecting valid adjustment sets.
The Oset adjustment strategy is non-local as the Oset de-
pends on both T and Y . As a result, the Oset adjustment
distance is computationally expensive with polynomial com-
plexity of one order higher than that of the Parent- and
Ancestor-AID which use local adjustment strategies (cf.
Section 6). Further, we do not have a graphical characteriza-
tion of all cases where the Oset adjustment distance is zero
(cf. Example 18 in Appendix C).

Joint interventions. Another advantage of the Oset adjust-
ment strategy over the parent or ancestor adjustment strate-
gies is that the Oset—in contrast to the parents or ancestors—
is a valid adjustment set whenever a valid adjustment set
exists, even if we consider joint interventions. As such, the
Oset adjustment strategy enables generalizations of the Oset
adjustment distance to settings where S may contain multi-
node interventions. However, adjustment is not sound and
complete for effects of joint interventions and there may
exist identifiable effects that are not identifiable via adjust-
ment. Therefore, this generalization is strictly speaking not
a strategy-specific identification distance. Identifiable joint
intervention effects that cannot be identified via adjustment
are characterized in Corollary 27 of Perkovic et al. [2018]
and can be correctly identified by other strategies [Nandy
et al., 2017, Huang and Valtorta, 2006]. However, there is no
verifier for these alternative strategies. More research into
verification is required to develop a proper strategy-specific
distance that considers joint interventions.

5 CPDAG DISTANCES

In general and without strong assumptions, the true causal
DAG cannot be identified or learned, even from infinite data
[e.g. Peters et al., 2014]. Instead, many causal discovery
algorithms target the corresponding Markov equivalence
class and aim to learn its CPDAG [e.g. Chickering, 2002].
To evaluate common causal discovery algorithms, we thus
also need easy to compute and interpret distances between
CPDAGs. Our strategy-specific distance framework pro-
vides a recipe on how to develop such distances: a) devise a
sound and complete identification strategy and b) devise a
corresponding verifier. We follow this recipe to propose new
and computationally attractive distances for CPDAGs based
on the parent, ancestor, and Oset adjustment strategies. The
distances operate directly on the CPDAGs, assess the com-
patibility of identification formulas between the two graphs,

and return a scalar distance. This improves upon previous
approaches that iterate over an exponentially large number
of Markov equivalent DAGs to calculate a multi-set of dis-
tances, which is computationally prohibitive and difficult to
interpret. We also discuss potential distances across graph
types and their pitfalls.

5.1 CPDAG TO CPDAG DISTANCES

In contrast to DAGs, not all causal effects are identifiable
given a CPDAG [Meek, 1995]. For example, we cannot
identify the effect of A on B given the CPDAG A B. To
extend the SID to CPDAGs, Peters and Bühlmann [2015]
combine two approaches. The first, is to consider all DAGs
in the Markov equivalence class of the CPDAG Gguess and
compute a multi-set of distances using the SID for DAGs.
The second, is to ignore all (T, Y) node tuples for which the
effect of T on Y is not identifiable in Gtrue. In principle, the
first approach could also be applied to Gtrue and the second
to Gguess. Either way, both approaches of extending the SID
to CPDAGs have drawbacks.

The first approach yields a difficult to interpret multi-set of
values and is in general computationally infeasible beyond
graphs with very few nodes and small Markov equivalence
class. For example, let Gtrue be the empty CPDAG (which
is also a DAG) and Gguess the fully connected CPDAG. The
SID between the empty and the fully connected CPDAG is a
multi-set of 0s but to compute it one needs to iterate over all
fully connected DAGs. Arguably, the two CPDAGs are also
maximally different when used to infer causal effects, since
all effects are identifiable in the empty CPDAG but no effect
is identifiable in the fully connected CPDAG. The second
approach discards valuable information. For example, if
no effect is identifiable in Gtrue, then the SID between Gtrue
and any other CPDAG Gguess is a multi-set of 0s. The SID
between CPDAGs as proposed by Peters and Bühlmann
[2015] inherits these drawbacks3 and in contrast to the SID
between DAGs, is not an easy-to-interpret identification
distance within our framework.

Our framework offers an alternative. Indeed, following our
framework of identification distances there is a canonical
solution to developing distances between CPDAGs: have
identification strategies return none in case an effect is non-
identifiable in Gguess and treat non-identifiability as a claim
that we can verify in Gtrue just like we verify identifying
formulas returned by the identification strategy. Identifi-
cation distances always return a single scalar value and –
by sidestepping iteration over exponentially large Markov
equivalence classes and using efficient verification algo-
rithms on CPDAGs – they are computationally tractable
even for large CPDAGs. Furthermore, as identification dis-

3In fact, the CRAN SID package v1.1 requires the true graph
to be a DAG and does not implement the distance between two
CPDAGs outlined by Peters and Bühlmann [2015].

tances they are interpretable since they capture how often a
practitioner would wrongly infer a causal effect when using
the learned instead of the true CPDAG. Importantly, we do
not presuppose that a practitioner would (randomly) pick
a DAG within the Markov equivalence class of the learned
CPDAG and just use that DAG for causal inference; instead,
we posit a practitioner would only infer those effects that are
identifiable in the learned CPDAG and would rather look
into learning a more refined graph than attempting to reason
about non-identifiable effects.

As a result, however, there is no clear relationship of
the strategy-specific identification distances between two
DAGs, to the distances between the two corresponding
CPDAGs. For example, the DAGs V1 → · · · → Vp and
V1 ← · · · ← Vp have the same CPDAG and yet the adjust-
ment distance between the two DAGs is maximal (irrespec-
tive of the strategy). In contrast to DAGs (cf. Section 3.2),
adding edges in CPDAGs may render some causal effects
non-identifiable and no analogous statement to Proposition 7
holds for identification distances between CPDAGs; indeed,
since all effects are identifiable in the empty CPDAG but
none in the fully connected CPDAG, their identification
distance is maximal. Further, the distance between any two
CPDAGs in which no effect is identifiable is zero. For ex-
ample, if Gtrue and Gguess are both CPDAGs consisting of
a single undirected path connecting all nodes, then their
distance is zero even though they may not have a single
edge in common. While this behavior is less extreme than
for the SID where the distance between a true CPDAG with
no identifiable effects and any learned CPDAG is zero, it
may nonetheless seem unintutive. However, following the
interpretation of identification distances, the distance of zero
between any two CPDAGs in which no effect is identifiable
is reasonable since a practitioner given such a Gguess would
conclude that no effect is identifiable as is indeed the case
in Gtrue.

In CPDAGs, non-identifiability is characterized by a graphi-
cal condition called amenability by Perkovic et al. [2018],
Perkovic [2020], which for single-node interventions is as
follows.

Proposition 16 (Amenability). Consider distinct nodes T
and Y in a CPDAG G. The interventional density f(y |
do(t)) is identifiable if and only if there exists no possibly
directed path from T to Y that starts with an undirected
edge. If this holds, we say that (G, T, Y) is amenable.

Equipped with graphical conditions for non-identifiability
and validity of adjustment sets in CPDAGs, we can apply
the adjustment verifier in Algorithm 1 to CPDAGs. Within
our framework, any sound and complete adjustment-based
identification strategy together with this verifier defines a
strategy-specific identification distance for CPDAGs. To ex-
tend the above adjustment distances to CPDAGs, we need to
extend the identification strategies by adding an amenability

check such that none is returned for (G, T, Y) that are not
amenable and else the return values of the identification
strategies IP , IA, and IO are the same as for DAGs.

The parent adjustment strategy is sound and complete for
CPDAGs [Maathuis and Colombo, 2015, Corollary 4.2], as
are the Oset [Henckel et al., 2022, Theorem 3] and ancestor
adjustment strategies (Proposition 20, Appendix B). Thus,
we generalize the Parent-AID, the Ancestor-AID, and the
Oset-AID to distances between CPDAGs.

5.2 DAG, CPDAG, AND ORDER DISTANCES

DAG to CPDAG distance. Given a suitable identification
strategy and verifier, we can define a strategy-specific dis-
tance between graphs of different type. For example, since
the presented adjustment strategies and verifier apply to
both DAGs and CPDAGs, our distances accept any combi-
nation of DAG and CPDAG as Gtrue and Gguess. Yet, such a
distance may be unintuitive: The distance between a DAG
Gtrue and the CPDAG Gguess that encodes the Markov equiva-
lence class of Gtrue is generally non-zero as some effects are
non-identifiable in the CPDAG; the distance to this correct
CPDAG may in fact be further than to another CPDAG that
encodes a Markov equivalence class that does not contain
Gtrue (cf. Example 19, Appendix C). A cross-graph-type dis-
tance may still be useful when comparing an algorithm that
can learn a DAG, such as LiNGAM [Shimizu et al., 2006],
to an algorithm that cannot, such as GES [Chickering, 2002].
Our implementation therefore accepts DAG-to-CPDAG and
CPDAG-to-DAG comparisons.

Transformations to compare alike. An alternative is to
transform one graph type to the other and then apply a
distance between DAGs or between CPDAGs. To obtain a
proxy for the distance between a DAG Gtrue and a CPDAG
Gguess, for example, one could pick a DAG corresponding to
Gguess and compare that to Gtrue; common approaches are a)
to sample a DAG in the Markov equivalence class of Gguess
or b) to orient undirected edges in Gguess for which a corre-
sponding edge in DAG Gtrue exists correctly and the remain-
ing undirected edges randomly while ensuring acyclicity.
Both approaches are ad-hoc, non-deterministic, and ignore
causal information in the CPDAG Gguess, such as claims
about which effects are not identifiable. Our CPDAG dis-
tance enables a principled alternative: transform the DAG
Gtrue to its corresponding CPDAG and then compare the
CPDAG corresponding to the true DAG to the learned
CPDAG. This approach is natural, when the test data is
simulated according to a DAG Gtrue and we compare the
performance of two CPDAG learning algorithms, such as
GES and PCALG4 [Chickering, 2002, Spirtes et al., 2000].

4In finite samples the output of PCALG may not be a CPDAG
and for these graphs no identification strategy exists. As a result, it
may be necessary to resolve PCALG conflicts or to use non-causal

DAG to order distance. Given a strict partial order ≺ on
nodes V we can define the identification strategy

Iord(≺, T, Y) =

{∫
f(y | t,bT)f(bT) dbT if Y ∈ AT ,

f(y) else,

where BT = pre≺(T) and AT = post≺(T). By Lemma 9
this strategy is sound and complete and we can verify
the returned identification formulas in a DAG Gtrue us-
ing Vadj. As such we obtain a strategy-specific distance
dIord(Gtrue,≺guess) = dIA(Gtrue,G≺guess) between DAGs
and strict partial orders. The strategy-specific distance
dIord(Gtrue,≺guess) counts the number of identification for-
mulas derived from the partial order ≺guess that would be
wrong if the true graph were Gtrue. It allows for direct com-
parison between a learned causal order and the true DAG.
It offers an alternative to existing approaches, such as rank
correlations or order distances that lower bound the SHD
[Rolland et al., 2022] and that may be difficult to interpret
or computationally expensive because in general the causal
order of a graph is neither unique nor a total order.

6 IMPLEMENTATION

We sketch our implementation of the distances for CPDAG
inputs with p nodes and m edges; see Appendix D for de-
tails. First, consider a single tuple (T, Y). For the identifica-
tion strategy, we check whether (Gguess, T, Y) is amenable
and if so compute a) Pa(T,Gguess) for the Parent-AID, b)
De(T,Gguess) and An(T,Gguess) for the Ancestor-AID, or
c) De(T,Gguess) and O(T, Y,Gguess)

5 for the Oset-AID. For
the verifier, we check whether a) (Gtrue, T, Y) is amenable,
b) Y ∈ NonDe(T,Gtrue), or c) the proposed adjustment set
is a valid adjustment set for (T, Y) in Gtrue. Algorithms exist
to perform each of these steps in O(p +m) time [van der
Zander et al., 2014], so we can compute the distances in
O(p2(p+m)) time by iterating over all tuples.

We improve this complexity for the Parent- and Ancestor-
AID by sharing computations between tuples instead of
evaluating identification strategy and verifier for each of
the p(p− 1) tuples separately. For this we use reachability
algorithms, which are inspired by the Bayes-Ball algorithm
[Geiger et al., 1989, Shachter, 1998]: They start from a node
set, walk along edges per fixed rules, and return the set of
all reached nodes [cf. Wienöbst et al., 2024, Appendix C].
Reachability algorithms find all nodes with a certain prop-
erty that depends on the rules used. For example, given T
and the rule to continue only along→ edges, the search algo-
rithm finds all nodes in De(T,G) in O(p+m) time. There
are reachability algorithms to compute De(T,G), An(T,G),

distances when evaluating the performance of PCALG [Wahl and
Runge, 2024].

5In Lemma 21, Appendix C, we prove a characterization of
the Oset that, given amenability, simplifies its computation.

32 8192 16384
#nodes p

10−1

104

re
la

tiv
e

pr
oj

ec
te

d
ru

nt
im

e Ancestor-AID, sparse

32 256 512 768
#nodes p

Oset-AID, sparse

8 512 1024
#nodes p

Ancestor-AID, dense

8 128 320
#nodes p

Oset-AID, dense

O(p) O(p2) O(p3) O(p4) O(p5)

Figure 3: Empirical results on the algorithmic time complexity of calculating the Ancestor-AID dIA and the Oset-AID
dIO between random sparse and dense graphs. We project the runtime under the different time complexities based on the
smallest graphs in each panel and visualize the projected runtime as a fraction of the observed empirical runtime; if the
relative projected runtime increases/decreases with increasing number of nodes, the considered time complexity suggests a
faster/slower increase of runtime than empirically observed. The empirical analysis suggests that our implementation of the
Ancestor-AID achieves the time complexity of O(p2) for sparse and O(p3) for dense graphs, and that the implementation
of the Oset-AID achieves the time complexity of O(p3) for sparse and O(p4) for dense graphs. See Appendix E for details.

and similar sets. We develop new walk-status-aware reach-
ability algorithms that, given a graph G, treatment T , and
candidate adjustment set Z, return a) all nodes such that
(G, T, Y) is amenable, or b) all nodes Y such that Z is a
valid adjustment set for (T, Y) in G (Algorithms 2 and 3).

These reachability algorithms enable our computationally ef-
ficient implementation. When using local adjustment strate-
gies, we can fix a T and compute both the identification
strategy and verifier for all Y via at most six reachability
algorithms. Selecting each node as T once, we can calcu-
late the Parent- and Ancestor-AID in O(p(p + m)) time;
this amounts to O(p2), the optimum, for sparse graphs with
m ∈ O(p) and to O(p3) for dense graphs. The asymptotic
runtime complexity of the Oset-AID remains O(p2(p+m))
since O(T, Y,G) depends on both T and Y .

The original SID implementation has O(p4 log(p)) runtime
for DAGs and exponential runtime for CPDAGs [Peters and
Bühlmann, 2015]. Our implementation of the related Parent-
AID between either DAGs or CPDAGs has runtime O(p3)
for dense and O(p2) for sparse graphs. To our knowledge,
our distances are the first causal distances between CPDAGs
with a polynomial runtime guarantee.

7 EMPIRICAL RESULTS

We provide a simulation study quantifying the empirical
runtime of our algorithms. In an additional simulation study,
we compare the three distances we propose in this paper
across various pairs of graphs.

7.1 EMPIRICAL RUNTIME ANALYSIS

We calculate distances with our gadjid package version
0.1.0, implemented in Rust and using a graph memory lay-
out purposefully designed for fast memory access in reach-
ability algorithms. We use the CRAN SID package v1.1
and run all experiments on a laptop with 8 GB RAM and
4-core i5-8365U processor. We draw DAGs with p nodes,
uniformly random total order of nodes, and edges compat-
ible with this order independently drawn with probability
20/(p − 1) for sparse graphs with 10p edges in expecta-
tion and 0.3 for dense graphs with 0.3p(p− 1)/2 edges in
expectation.

To empirically validate the theoretical asymptotic runtime
complexities, we evaluate the Ancestor-AID and the Oset-
AID on random DAGs. For each graph size, we record the
runtime averaged over 5 repetitions. Based on the runtimes
for the smallest graphs, we project what runtimes we would
expect for larger graphs under various time complexities.
Figure 3 shows the results and Appendix E provides details.

Next, we draw 11 pairs of random DAGs, calculate a dis-
tance, and if the median runtime is less than 60 seconds, we
increase the number of nodes by one and repeat; we repeat
until the median runtime exceeds 60 seconds and obtain:

Maximum graph size feasible within 1 minute
Method sparse dense

Parent-AID 13601 962
Ancestor-AID 8211 932
Oset-AID 1105 508
SID 256 239

Finally, we consider the graph sizes for which the average
runtime of the SID first exceeded one minute, and the ex-
tremely sparse graphs from Peters and Bühlmann [2015];
for 11 random pairs of graphs of that size and sparsity, we
obtain the following average runtimes:

Average runtime

Method
x-sparse6

p = 1000
sparse
p = 256

dense
p = 239

Parent-AID 7.3 ms 30.5 ms 173 ms
Ancestor-AID 3.4 ms 40.9 ms 207 ms
Oset-AID 5.0 ms 567 ms 1.68 s
SID ~1-2 h ~60 s ~60 s

7.2 DISTANCE COMPARISON

To compare the distances and empirically demonstrate that
they capture distinct information, we draw random pairs of
graphs and compute the Parent-AID, Ancestor-AID, Oset-
AID, and SHD between these pairs. For the distances be-
tween 300 pairs of 30-node graphs where Gtrue is a random
dense graph (sampled as described above) and Gguess is the
graph obtained by removing one edge from Gtrue at random,
we obtain the following correlation matrix.

Ancestor-AID Oset-AID Parent-AID

Ancestor-AID 1 0.7281 0.0886
Oset-AID 0.7281 1 0.2080
Parent-AID 0.0886 0.2080 1

Further, the average distances are Ancestor-AID: 2.0, Oset-
AID: 5.9, and Parent-AID: 11.2 (while the SHD between all
these graph pairs is 1). We provide a corresponding scatter
plot between the distances in Figure 5, Appendix F.1. The
results highlight that the number of wrongly inferred causal
effects if we delete an edge from the true DAG, depends on
the choice of identification strategy.

When benchmarking causal discovery algorithms, the dis-
tance should be chosen in line with the downstream task the
graph will eventually be used for. If the task is to reason
about the existence of direct cause-effect relationships, the
SHD is a natural choice. If the task is to infer causal effects,
there are multiple options. The Parent-, Ancestor-, and Oset-
AID are three such options, each corresponding to different
assumptions on the behavior of an idealized practitioner
who will use Gguess to infer causal effects. This simulation

6We denote the sparse graphs with 0.75p expected edges
considered in Peters and Bühlmann [2015] as extremely sparse
(x-sparse); for x-sparse 1000-node random graphs, Peters and
Bühlmann [2015] reported a runtime of almost 7000 s, which on
our hardware took ~1 h (running 1 instead of 11 repetitions).

experiment and additional experiments in Appendix F un-
derline that the choice of distance is practically important
when benchmarking causal discovery algorithms.

8 DISCUSSION

Our framework gives a recipe for developing distances
for other graph types, such as maximal ancestral graphs
that allow for hidden variables: Find a sound and complete
identification strategy and a corresponding verifier. While
the adjustment-based identification strategies we use for
DAGs and CPDAGs are not sound and complete for settings
with hidden variables, sound and complete alternatives ex-
ist [Huang and Valtorta, 2006, Shpitser and Pearl, 2006].
Yet, there are no verifiers for these alternatives. Therefore,
advances on causal effect identification and in particular
verification are needed before we can develop distances for
other graph types so as to aid the development of causal
discovery under latent confounding. Nonetheless, the frame-
work for strategy-specific identification distances provides a
handbook on how to develop such a distance as the necessary
methodology for causal effect identification and verification
becomes available.

Acknowledgements

We thank Alexander G. Reisach for valuable discussions
and feedback on an earlier draft of the present manuscript.
We also thank the anonymous reviewers for constructive
feedback that helped improve the presentation.

References

Josh Alman and Virginia Vassilevska Williams. A re-
fined laser method and faster matrix multiplication.
arXiv:2010.05846, 2020.

Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal
additive models, high-dimensional order search and pe-
nalized regression. The Annals of Statistics, 42(6):2526–
2556, 2014.

Wenyu Chen, Mathias Drton, and Y Samuel Wang. On
causal discovery with an equal-variance assumption.
Biometrika, 106(4):973–980, 2019.

Lu Cheng, Ruocheng Guo, Raha Moraffah, Paras Sheth,
K Selçuk Candan, and Huan Liu. Evaluation methods
and measures for causal learning algorithms. IEEE Trans-
actions on Artificial Intelligence, 3(6):924–943, 2022.

David Maxwell Chickering. Learning equivalence classes of
Bayesian-network structures. Journal of Machine Learn-
ing Research, 2:445–498, 2002.

Anthony C. Constantinou. Evaluating structure learn-
ing algorithms with a balanced scoring function.
arXiv:1905.12666, 2019.

Martijn de Jongh and Marek J Druzdzel. A comparison of
structural distance measures for causal Bayesian network
models. Recent advances in intelligent information sys-
tems, challenging problems of science, computer science
series, pages 443–456, 2009.

Mihir Dhanakshirur, Felix Laumann, Junhyung Park, and
Mauricio Barahona. A continuous structural intervention
distance to compare causal graphs. arXiv:2307.16452,
2023.

Marco Eigenmann, Sach Mukherjee, and Marloes H.
Maathuis. Evaluation of causal structure learning algo-
rithms via risk estimation. In Proceedings of the Thirty-
Sixth Annual Conference on Uncertainty in Artificial In-
telligence (UAI), pages 151–160, 2020.

Mireia Gascon, Maribel Casas, Eva Morales, Damaskini
Valvi, Ana Ballesteros-Gómez, Noelia Luque, Soledad
Rubio, Núria Monfort, Rosa Ventura, David Martínez,
Jordi Sunyer, and Martin Vrijheid. Prenatal exposure
to bisphenol A and phthalates and childhood respiratory
tract infections and allergy. Journal of Allergy and Clini-
cal Immunology, 135(2):370–378, 2015.

Dan Geiger, Thomas Verma, and Judea Pearl. d-separation:
From theorems to algorithms. In Max Henrion, Ross D.
Shachter, Laveen N. Kanal, and John F. Lemmer, editors,
Proceedings of the Fifth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 139–148,
1989.

Amanda Gentzel, Dan Garant, and David Jensen. The case
for evaluating causal models using interventional mea-
sures and empirical data. In Proceedings of the Thirty-
Second Annual Conference on Neural Information Pro-
cessing Systems (NeuRIPS), 2019.

Christina Heinze-Deml, Marloes H. Maathuis, and Nicolai
Meinshausen. Causal structure learning. Annual Review
of Statistics and Its Application, 5:371–391, 2018.

Leonard Henckel, Emilija Perković, and Marloes H.
Maathuis. Graphical criteria for efficient total effect esti-
mation via adjustment in causal linear models. Journal of
the Royal Statistical Society: Series B (Statistical Method-
ology), 84(2):579–599, 2022.

Leonard Henckel, Martin Buttenschoen, and Marloes H.
Maathuis. Graphical tools for selecting conditional in-
strumental sets. Biometrika, page asad066, 2023.

Yimin Huang and Marco Valtorta. Identifiability in causal
Bayesian networks: A sound and complete algorithm. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence (AAAI), pages 1149–1154, 2006.

Marcus Kaiser and Maksim Sipos. Unsuitability of
NOTEARS for causal graph discovery when dealing with
dimensional quantities. Neural Processing Letters, 54(3):
1587–1595, 2022.

Marloes H. Maathuis and Diego Colombo. A generalized
back-door criterion. Annals of Statistics, 43:1060–1088,
2015.

Christopher Meek. Causal inference and causal explana-
tion with background knowledge. In Proceedings of the
Eleventh Annual Conference on Uncertainty in Artificial
Intelligence (UAI), pages 403–410, 1995.

Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob
Zscheischler, and Bernhard Schölkopf. Distinguishing
cause from effect using observational data: Methods and
benchmarks. Journal of Machine Learning Research, 17
(32):1–102, 2016.

Preetam Nandy, Marloes H. Maathuis, and Thomas S
Richardson. Estimating the effect of joint interventions
from observational data in sparse high-dimensional set-
tings. Annals of Statistics, 45(2):647–674, 2017.

Gunwoong Park. Identifiability of additive noise models
using conditional variances. Journal of Machine Learning
Research, 21(75):1–34, 2020.

Judea Pearl. Comment: Graphical models, causality and
intervention. Statistical Science, 8(3):266–269, 1993.

Judea Pearl. Causal diagrams for empirical research.
Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causality. Cambridge University Press, second
edition, 2009.

Emilija Perkovic. Identifying causal effects in maximally
oriented partially directed acyclic graphs. In Proceedings
of the Thirty-Sixth Annual Conference on Uncertainty in
Artificial Intelligence (UAI), pages 530–539, 2020.

Emilija Perkovic, Johannes Textor, Markus Kalisch, and
Marloes H. Maathuis. Complete graphical characteriza-
tion and construction of adjustment sets in markov equiv-
alence classes of ancestral graphs. Journal of Machine
Learning Research, 18(220):1–62, 2018.

Jonas Peters and Peter Bühlmann. Structural intervention
distance for evaluating causal graphs. Neural Computa-
tion, 27(3):771–799, 2015.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bern-
hard Schölkopf. Causal discovery with continuous addi-
tive noise models. Journal of Machine Learning Research,
15:2009–2053, 2014.

Maxime Peyrard and Robert West. A ladder of causal dis-
tances. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence (IJCAI), pages 2012–
2018, 2021.

Alexander G. Reisach, Christof Seiler, and Sebastian Weich-
wald. Beware of the simulated DAG! Causal discovery
benchmarks may be easy to game. In Proccedings of
the Thirty-Fourth Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS), pages 27772–27784,
2021.

Alexander G. Reisach, Myriam Tami, Christof Seiler, An-
toine Chambaz, and Sebastian Weichwald. A scale-
invariant sorting criterion to find a causal order in additive
noise models. In Proceedings of the Thirty-Sixth Annual
Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Felix L. Rios, Giusi Moffa, and Jack Kuipers. Benchpress:
A scalable and versatile workflow for benchmarking struc-
ture learning algorithms. arXiv:2107.03863, 2021.

James M. Robins. A new approach to causal inference
in mortality studies with a sustained exposure period-
application to control of the healthy worker survivor ef-
fect. Mathematical Modelling, 7:1393–1512, 1986.

Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris
Russell, Dominik Janzing, Bernhard Schölkopf, and
Francesco Locatello. Score matching enables causal dis-
covery of nonlinear additive noise models. In Proceedings
of the Thirty-Ninth International Conference on Machine
Learning (ICML), pages 18741–18753, 2022.

Andrea Rotnitzky and Ezequiel Smucler. Efficient adjust-
ment sets for population average causal treatment effect
estimation in graphical models. Journal of Machine
Learning Research, 21:188–1, 2020.

Donald B. Rubin. For objective causal inference, design
trumps analysis. The Annals of Applied Statistics, 2(3):
808 – 840, 2008.

Ross D. Shachter. Bayes-ball: The rational pastime (for
determining irrelevance and requisite information in be-
lief networks and influence diagrams). In Proceedings
of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI), 1998.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and
Antti Kerminen. A linear non-gaussian acyclic model for
causal discovery. Journal of Machine Learning Research,
7(10):2003–2030, 2006.

Ali Shojaie and George Michailidis. Penalized likelihood
methods for estimation of sparse high-dimensional di-
rected acyclic graphs. Biometrika, 97(3):519–538, 07
2010.

Ilya Shpitser and Judea Pearl. Identification of joint in-
terventional distributions in recursive semi-markovian
causal models. In Proceedings of the Twenty-First Na-
tional Conference on Artificial Intelligence (AAAI), pages
1219–1226, 2006.

Ilya Shpitser, Tyler VanderWeele, and James Robins. On
the validity of covariate adjustment for estimating causal
effects. In Proceedings of the Twenty-Sixth Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI),
pages 527–536, 2010.

Peter Spirtes, Clark Glymour, and Richard Scheines. Cau-
sation, Prediction, and Search. MIT Press, Cambridge,
MA, second edition, 2000.

Edgar Steiger, Tobias Mussgnug, and Lars Eric Kroll.
Causal graph analysis of COVID-19 observational data
in german districts reveals effects of determining factors
on reported case numbers. PLoS One, 16(5):e0237277,
2021.

Jordi Sunyer, Mikel Esnaola, Mar Alvarez-Pedrerol, Joan
Forns Guzman, Ioar Rivas, Mónica López-Vicente, Elis-
abet Suades González, Maria Foraster, Raquel García-
Esteban, Xavier Basagaña, Mar Viana, Marta Cirach,
Teresa Moreno, Andres Alastuey, Nuria Sebastian Galles,
Mark Nieuwenhuijsen, and Xavier Querol. Association
between traffic-related air pollution in schools and cogni-
tive development in primary school children: a prospec-
tive cohort study. PLoS Medicine, 12(3), 2015.

Ioannis Tsamardinos, Laura E Brown, and Constantin F
Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65(1):
31–78, 2006.

Benito van der Zander, Maciej Liskiewicz, and Johannes
Textor. Constructing separators and adjustment sets in
ancestral graphs. In Proceedings of the Thirtieth Annual
Conference on Uncertainty in Artificial Intelligence (UAI),
pages 907–916, 2014.

Jussi Viinikka, Ralf Eggeling, and Mikko Koivisto.
Intersection-validation: A method for evaluating struc-
ture learning without ground truth. In Proceedings of the
Twenty-First International Conference on Artificial In-
telligence and Statistics (AISTAT-18), pages 1570–1578,
2018.

Jonas Wahl and Jakob Runge. Metrics on markov equiva-
lence classes for evaluating causal discovery algorithms.
arXiv:2402.04952, 2024.

Sebastian Weichwald, Martin E. Jakobsen, Phillip B. Mo-
gensen, Lasse Petersen, Nikolaj Thams, and Gherardo
Varando. Causal structure learning from time series:
Large regression coefficients may predict causal links
better in practice than small p-values. In Proceedings of

the NeurIPS 2019 Competition and Demonstration Track,
pages 27–36, 2020.

Marcel Wienöbst, Benito van der Zander, and Maciej
Liśkiewicz. Linear-time algorithms for front-door ad-
justment in causal graphs. arXiv:2211.16468, 2024.

Janine Witte, Leonard Henckel, Marloes H. Maathuis, and
Vanessa Didelez. On efficient adjustment in causal graphs.
Journal of Machine Learning Research, 21(246):1–45,
2020.

Adjustment Identification Distance: A gadjid for Causal Structure Learning
(Supplementary Material)

Leonard Henckel1 Theo Würtzen2 Sebastian Weichwald2,3

1School of Mathematics and Statistics, University College Dublin, Ireland
2Pioneer Centre for AI, University of Copenhagen, Denmark

3Department of Mathematical Sciences, University of Copenhagen, Denmark

A ADDITIONAL PRELIMINARIES

Simple graphs with directed and undirected edges. A simple graph G = (V,E) over nodes V = {Vi | i ∈ [d]} with
edges E is a graph where there is at most one edge between any two nodes. A graph is directed, if all edges are directed
edges→, and partially directed, if all edges are directed edges→ or undirected edges . Two nodes are adjacent, if an edge
connects them. In particular a node is adjacent to itself.

Walks and paths. A walk w is a sequence of nodes (T, ..., Y) where each successive pair of nodes is adjacent. The nodes
T and Y are called endpoint nodes on w. A path p is a sequence of distinct nodes (T, ..., Y) and is a special case of a walk.
A walk w is possibly directed from T to Y if no directed edge along the path is directed towards T (a possibly directed
walk is sometimes called possibly causal). A walk w is directed from T to Y if all edges along the path are directed and
directed towards Y (a directed walk is sometimes called causal); every directed walk is also a possibly directed walk. We
often consider walks that are not possibly directed as they contain at least one edge facing towards T , for ease, we call such
a walk w non-causal. A directed path from T to Y together with Y → T forms a cycle.

DAGs and PDAGs. A directed acyclic graph (DAG) is a simple directed graph, that is, all edges are directed, that has no
cycles. A partially directed acyclic graph (PDAG) is a simple graph that is partially directed and has no cycles. A DAG is
also a PDAG. A walk w from a set T to a set Y is a walk from some node T ∈ T to some node Y ∈ Y, that is, T and
Y are the endpoint nodes of the walk. The walk w is called proper, if it only contains one node in T. Given two walks
w = (A, . . . , B) and w′ = (B, . . . , C) we let w ⊕ w′ = (A, . . . , B, . . . , C) denote the walk we obtain by concatenating w
and w′.

Node relationships in DAGs and PDAGs. If the edge T → Y or T Y exists, T is a possible parent of Y and Y a
possible child of T . Let PossPa(Y,G) denote the set of all possible parents of Y and PossCh(T,G) the set of all possible
children of T . If there is a possibly directed path from T to Y or if T = Y , T is a possible ancestor of Y and Y a possible
descendant of T . Let PossAn(Y,G) denote the set of all possible ancestors of Y and PossDe(T,G) the set of all possible
descendants of T . If all edges are directed, we analogously define the set of parents Pa(Y,G), children Ch(T,G), ancestors
An(Y,G), and descendants De(T,G). For a set T we define PossPa(T,G) =

⋃
T∈T PossPa(T,G); we analogously

define PossCh(T,G),PossAn(T,G),PossDe(T,G),Ch(T,G),Pa(T,G),De(T,G), and An(T,G). We also define
NonDe(T,G) = V \ PossDe(T,G) which in the DAG case reduces to NonDe(T,G) = V \De(T,G).

Supergraph. A graph G = (V,E) is a called a supergraph of a graph G′ = (V,E′) if E′ ⊆ E. We say that G is a
super-DAG of G′ if G is a DAG, and define super-CPDAG analogously.

Colliders, v-structures, and definite-status paths. A node V in a PDAG G is a collider on a path p if p contains the
subpath U → V ← W . Node V on a path p is called a definite non-collider on p if p contains a subpath such that (a)
U ← V , (b) V →W , or (c) U V W and U and W are not adjacent in G. A path p is of definite status if every node on
p is a collider, a definite-status non-collider, or an endpoint node. We define all terms analogously for walks. A path of the

mailto:<leonard.henckel@ucd.ie>?Subject=Your UAI 2024 paper - gadjid

form U → V ←W in G is called a v-structure if U and V are not adjacent in G.

Blocking and d-separation in PDAGs. Let Z be a set of nodes in a PDAG G. A definite-status path p is blocked given Z
if p either contains a non-collider N ∈ Z or a collider C such that De(C,G) ∩ Z = ∅. A definite-status walk w is blocked
given Z if p either contains a non-collider N ∈ Z or a collider C such that C /∈ Z. A definite-status path or walk that is not
blocked given Z is said to be open or d-connecting given Z. Given three pairwise disjoint node sets T,Y,Z in a PDAG G
we say that T is d-separated from Y given Z in G and write T ⊥G Y | Z if Z blocks all definite-status paths from T to Y
or equivalently all definite-status walks. If it does not, we say that T and Y are d-connected given Z.

CPDAGs, Markov property, and Markov equivalence. A density f is Markov with respect to a DAG G if for any three
pairwise disjoint node sets T,Y,Z in G such that T ⊥G Y | Z, T is conditionally independent of Y given Z. Two DAGs
that encode the same set of d-separation statements are called Markov equivalent. Given a DAG G, the set of all DAGs that
are Markov equivalent to G is called a Markov equivalence class and can be represented by a completed partially directed
acyclic graph (CPDAG); a special subset of PDAGs characterized by Meek [1995]. Note that a DAG is in general not a
CPDAG. Given a CPDAG C let [C] denote the corresponding equivalence class. For any DAG D ∈ [C] we say that C is the
CPDAG of D. The CPDAG C has the same v-structures and adjacencies as any DAG in [C]. Further, an edge→ in C implies
that every DAG in [C] contains that edge→. An edge in C implies that some DAG in [C] contains the edge→ and some
other DAG in [C] contains the edge←.

Causal and forbidden Nodes. Given set T and Y in a DAG or CPDAG G, we define the causal nodes Cn(T,Y,G) to
be all nodes that lie on proper directed paths from T to Y and are not in T. In a CPDAG G, we define the possibly causal
nodes PossCn(T,Y,G) to be all nodes that lie on proper possibly directed paths from T to Y and are not in T. We define
the forbidden nodes as Forb(T,Y,G) = PossDe(PossCn(T,Y,G),G) ∪T.

Amenability. Let T and Y be disjoint node sets in a DAG, CPDAG, MAG or PAG G. We say that (G,T,Y) is amenable
if every proper possibly directed path from T to Y begins with an edge→.

The generalized adjustment criterion by Perkovic et al. [2018] provides necessary and sufficient graphical conditions for a
set to be a valid adjustment set:

Definition 17 (Generalized Adjustment Criterion). Let T,Y, and Z be pairwise disjoint node sets in a DAG, CPDAG, MAG
or PAG G. Then Z satisfies the generalized adjustment criterion relative to (T,Y) in G if the following three conditions
hold:

(Amenability) (G,T,Y) is amenable, and

(Forbidden set) Z ∩ Forb(T,Y,G) = ∅, and

(Blocking) all proper definite-status non-causal paths from T to Y are blocked by Z in G.

B PROOFS

Proof of Proposition 7 (Distance to Super-DAG is Zero). Let I = I(Gguess, T, Y) be an identifying formula. Since I is
sound and complete, I = f(y | do(t)) for any f compatible with Gguess. Since any f compatible with Gguess is also
compatible with Gtrue (since all parent sets in Gguess are supersets of parent sets in Gtrue) it follows that I = f(y | do(t)) for
any f compatible with Gtrue. Therefore, V(Gtrue, I(Gguess, T, Y)) returns correct. Since this is true for any tuple (T, Y) our
claim follows.

Proof of Lemma 9 (Ancestors are Valid Adjustment Sets). Since Forb(T, Y,G) \ De(T,G) = ∅, Z satisfies the forbidden
set condition of Definition 17. Let p be a non-causal path from T to Y . If p begins with an edge into T , it contains a node in
Pa(T,G) which is therefore also a node in Z that is a non-collider on p. It follows that p is blocked. If p begins with an edge
out of T , p is either directed or it must contain a collider C ∈ De(T,G). Since Z∩De(T,G) = ∅ and De(C,G) ⊆ De(T,G)
it follows that p is blocked given Z. Therefore, Z satisfies the adjustment criterion.

Proof of Lemma 10 (Parent-AID Misrepresents Causal Order). Here, Pa(Vt,Gguess) = Vt−1 for t − 1 ≥ 1 and therefore

the parent adjustment strategy IP (Gguess, Vt, Vy) returns
∫
f(vy | vt, vt−1)f(vt−1) dvt−1 if y ̸= t− 1 ≥ 1,

f(vy | vt) ("empty adjustment set") if t− 1 = 0,

f(vy) if y = t− 1 ≥ 1.

We now apply the verifier VD
adj. Consider first inputs to the verifier of the form I = f(vy). The DAGs Gtrue and Gguess have

the same causal ordering and therefore any one of the p− 1 such inputs with y = t− 1 ≥ 1 is correct. Consider now the
remaining inputs to the verifier of the adjustment form. Since Vi ∈ Pa(Vt,Gtrue) for all i < t − 1, no valid adjustment
set exists for the effect of Vt on such a Vi in Gtrue. Further, if t < y then the only valid adjustment set is {V1, . . . , Vt−1}.
Therefore, Pa(Vt,Gguess) is a valid adjustment set in Gtrue if and only if t = 1 or t = 2 and y > t. Using IP we therefore
obtain exactly 3p− 4 = (p− 1) + (p− 1) + (p− 2) identification formulas in Gguess that are also correct in Gtrue, while the
remaining (p2 − p)− (3p− 4) = p2 − 4p+ 4 are false. It follows that

lim
p→∞

dIP (Gguess,Gtrue)/(p
2 − p) = 1.

Proof of Proposition 12 (Ancestor-AID Reflects Causal Order). Consider two nodes T and Y in a DAG Gguess. If Y ∈
DT = De(T,Gguess), then AT = An(T,Gguess) is a valid adjustment set in Gguess by Lemma 9. If Y /∈ DT , then
f(y | do(t)) = f(y). Therefore, IA is sound and complete.

Consider two DAGs Gtrue and Gguess, such that Gguess respects the causal orders of Gtrue, that is, De(T,Gtrue) ⊆ De(T,Gguess)
or equivalently An(T,Gtrue) ⊆ An(T,Gguess) for all nodes T . Fix a pair (T, Y) and consider ITY = IA(G, T, Y). If Y /∈
De(T,Gguess) then Y /∈ De(T,Gtrue) and therefore, ITY = f(y) is a correct identifying formula in Gtrue. If Y ∈ De(T,Gguess)
then Y /∈ An(T,Gguess), which implies that Y /∈ An(T,Gtrue) and Y /∈ Pa(T,Gtrue). Since Pa(T,Gtrue) ⊆ An(T,Gtrue) ⊆
An(T,Gguess) ⊆ NonDe(T,Gguess) and NonDe(T,Gguess) = V \De(T,Gguess) ⊆ V \De(T,Gtrue) we can therefore invoke
Lemma 9 to conclude that ITY is correct in Gtrue. Therefore, dIA(Gtrue,Gguess) = 0.

Suppose now that Gguess does not respect the causal order of Gtrue, that is, there exists a pair T, Y such that Y ∈ De(T,Gtrue)\
De(T,Gguess). Since Y /∈ De(T,Gguess), ITY = f(y) but this is wrong in Gtrue.

Proof of Proposition 15 (Oset-AID is the IO-Specific Distance). The soundness and completeness of IO follows by the
results of Henckel et al. [2022] and that the causal effect on a non-descendant is the observational density.

C ADDITIONAL EXAMPLES AND RESULTS

Example 18 (Counter-Examples where Oset Adjustment Distance is (not) Zero). Let G1true be the graph from Figure 4a, G2true
be the graph from Figure 4c, and Gguess be the graph from Figure 4b.

Consider the pair (G1true,Gguess). Since, V2 is an isolated node in G1true any identifying formula produced by IO for a pair
involving V2 will be correct irrespective of Gguess. Further, IO(Gguess, V3, V1) = f(v1) and IO(Gguess, V1, V3) = f(v3 |
v1). Since V1 /∈ De(V3,G1true) and the empty set is a valid adjustment set relative to (V1, V3) in G1true it follows that
dIO (G1true,Gguess) = 0. This shows that the Oset adjustment distance may be zero even if Gguess is not a supergraph of Gtrue.

Consider the pair (G2true,Gguess). Since IO(Gguess, V2, V3) = f(v3 | v2) and the empty set is not a valid adjustment set relative
to (V2, V3) in G2true, dIO (G2true,Gguess) ̸= 0. This shows that Gguess respecting the causal order of Gtrue does not ensure that the
Oset adjustment distance is zero.

Example 19 (Correct CPDAG may be further from true DAG than Incorrect CPDAG). Let GDtrue be a fully connected DAG.
Let G1guess be the corresponding CPDAG, that is, the fully connected CPDAG. Since every effect in Gguess is non-identifiable
it follows that for any strategy-specific distance dI(Gtrue,G1guess) = p(p− 1). Let G2guess be the empty CPDAG. Since exactly
half the effects in Gtrue are zero it follows that for any identification strategy that uses a descendant check, such as IA or IO,
dI(Gtrue,G2guess) = p(p− 1)/2

Proposition 20 (Ancestor Adjustment Strategy is Sound and Complete for CPDAGs). Consider nodes T and Y in a CPDAG
G, such that (G, T, Y) is amenable. Then An(T,G) is a valid adjustment set relative to (T, Y) in G.

V1 V2 V3

a – G1true

V1 V2 V3

b – Gguess

V1 V2 V3

c – G2true

Figure 4: DAGs for Example 18.

Proof. Since by assumption (G, T, Y) is amenable and An(T,G) satisfies the forbidden set condition of Definition 17, it
only remains to show that An(T,G) satisfies the blocking condition. To see this consider a definite-status non-causal path p
from T to Y . If p begins with an edge← it contains a node in Pa(T,G) and is therefore blocked given An(T,G). If it begins
with an edge or→, then it must contain at least one collider C ∈ PossDe(T,G) by the fact that it is of definite status
and may therefore not contain −V ← but contains at least one backwards facing edge. Since De(C,G) ∩An(T,G) = ∅, it
follows that p is blocked given An(T,G).

Lemma 21 (Oset-Characterization Simplifies Given Amenability). Consider two node sets T and Y in a CPDAG G such
that (G,T,Y) is amenable. Then

O(T,Y,G) = Pa(De(T,G) ∩ PropAn(Y,T,G),G) \De(T,G),

where PropAn(Y,T,G) is the set of all nodes N , such that there exists a directed path from N to some Y ∈ Y that does
not contain any nodes in T.

Proof. Recall that O(T,Y,G) = Pa(Cn(T,Y,G),G) \ Forb(T,Y,G). Clearly,

Cn(T,Y,G) = De(T,G) ∩ PropAn(Y,T,G)

by the definition of Cn(T,Y,G). Since every causal node is in PropAn(Y,T,G) so is every node in O(T,Y,G). Since
every node that is both in PropAn(Y,T,G) and De(T,G) is a causal node and therefore forbidden it follows that
O(T,Y,G)∩De(T,G) = ∅. By Lemma E.6 by Henckel et al. [2022], Forb(T,Y,G) ⊆ De(T,G) and therefore removing
all nodes in De(T,G) from Pa(Cn(T,Y,G),G) is equivalent to removing all nodes in Forb(T,Y,G).

D ALGORITHM DEVELOPMENT

Many graph properties involved in the validation of adjustment sets, such as amenability, forbidden nodes, or blocking, are
based on the (non-)existence of paths with certain properties. For example, two nodes T and Y are d-connected in a DAG
given Z if and only if a path exists between them that is not blocked by Z. We can reformulate the problem of verifying
whether such a path exists as a reachability task: Starting from T , try reaching Y by following all possible paths that are not
blocked by Z until either you reach Y or you have exhausted all possible paths.

The Bayes-Ball algorithm [Geiger et al., 1989, Shachter, 1998] uses the reachability framework to obtain all nodes in a
DAG that are d-connected to T given Z. A key insight for its efficient implementation is that a d-connecting walk exists
between two nodes if and only if a d-connecting path exists between them; thus, we can avoid having to a) check for each
collider along the path that one of its descendants is in Z before continuing and to b) follow all possible paths for which we
need to keep track of all previously visited nodes along any given path traversal (to avoid visiting the same node more than
once). Instead, we can traverse along walks and continue a walk from V to W along an incoming/outgoing edge if a’) W
has not previously been reached through an incoming/outgoing edge and if b’) the walk is not blocked by Z (if we face
→ V ← W , we continue from V to W only if V ∈ Z, otherwise we continue only if V ̸∈ Z). The benefit of a’) and b’)
over a) and b) is that both conditions are local to the current node in a walk and verifiable without querying ancestor sets or
storing and checking against all previously visited nodes. In this walk reachability algorithm, each node is visited at most
twice and each edge considered a constant number of times [see, for example, Appendix A in Wienöbst et al., 2024] and
therefore its runtime is linear in the number of nodes p plus the number of edges m; in dense graphs the number of edges
grows quadratic in the number of nodes and consequently the runtime is O(p2) for dense graphs.

Wienöbst et al. [2024] generalize the algorithmic concept underlying Bayes-Ball to a class of DAG search algorithms akin to
a depth-first graph search that recursively visits neighbouring nodes that have not been reached by the same kind of edge
before. Since each node V is visited at most once per edge type (for example,→ V or← V in DAGs), the runtime of their

gensearch algorithm is also O(p2). Rule tables encode the conditions for continuing on a given walk based on how the
current node was reached and how the potential next node W would be reached. Which rule table we use for the gensearch
algorithm determines the properties of the nodes that will be reached and therefore returned by the algorithm; for example,
they show that a sequence of gensearch algorithms with carefully chosen rule tables finds a minimal adjustment set in
O(p+m) time.

Key to implementing our adjustment distances efficiently, is a new walk-status-aware reachability algorithm that, given
a DAG or CPDAG G with p nodes and m edges, set Z, and treatment nodes T, returns all nodes Y such that Z is a
valid adjustment set for (T, Y) in G in O(p + m) time. We use this algorithm to verify an adjustment set for many Y
simultaneously. To implement this algorithm, we prove a modified adjustment criterion, adapt the reachability algorithm
for finding d-connected nodes in DAGs to account for walks that are not of definite-status in CPDAGs, implement an
amenability check, and show how to find nodes that satisfy all conditions of the modified adjustment criterion with only one
reachability algorithm. We proceed as follows:

• In Appendix D.1 we prove a modified adjustment criterion that translates all conditions of the generalized adjustment
criterion [Perkovic et al., 2018] into conditions on the (non-)existence of certain walks. An adjustment criterion in
terms of walks allows us to verify whether it holds using only reachability algorithms.

• In Appendix D.2 we show how to verify blocking in CPDAGs with a reachability algorithm that uses no non-local
information to verify whether a walk is definite-status or not.

• In Appendix D.3 we provide motivation and intuition for our decision to add a walk-status to reachability algorithms
that is propagated forward in the depth-first search traversal of the graph. The addition of a walk status allows us to
track walks that do not transmit reachability, but may change status and become walks for which we need to track
nodes reached by such a walk.

• In Appendix D.4, we demonstrate how we use our new reachability algorithm to calculate the Parent- and Ancestor-AID
between DAGs or CPDAGs with O(p(p+m)) and the Oset-AID with O(p2(p+m)) time complexity.

D.1 MODIFIED ADJUSTMENT CRITERION

We prove a modified adjustment criterion that translates all conditions of the generalized adjustment criterion [Perkovic
et al., 2018] into conditions on the (non-)existence of certain walks. Having an adjustment criterion exclusively in terms of
walks allows us to use reachability algorithms to verify it.

Lemma 22 (Modified Adjustment Criterion for Walk-Based Verification). Consider nodes T and Y in a DAG or CPDAG
G and a node set Z in G. The set Z fulfills the adjustment criterion if and only if

1. every proper possibly directed walk from T to Y begins with a directed edge out of T, and

2. no proper possibly directed walk from T to Y contains a node in Z, and

3. every proper definite-status walk from T to Y that contains a backwards facing edge is blocked by Z.

Proof. We prove our claims for the CPDAG case as the DAG case can be shown with the same basic arguments but is
simpler. We first show that if Z does not satisfy the adjustment criterion then it also does not satisfy the alternative adjustment
criterion. Since the two criteria both assume amenability we can assume amenability holds. Suppose that there exists a proper
definite-status non-causal path p from T to Y that is open given Z. Consider all colliders C1, . . . , Ck and the corresponding
directed paths q1, . . . , qk from Ci to some node Zi ∈ Z. If any of the qi contains a node in T ′ ∈ T we can replace p with
qi(T

′, Ci)⊕ p(Ci, Y) so without loss of generality we can assume this is not the case. By appending the qi to p we obtain a
proper definite-status walk from T to Y that contains an edge←, inherited from p.

We can therefore assume, no such p exists and that Z ∩ Forb(T,Y,G) ̸= ∅. Since Forb(T,Y,G) =
PossDe(PossCn(T,Y,G),G) we can in fact assume that there exists a node Z ∈ Z ∩ (PossDe(PossCn(T,Y,G),G) \
PossCn(T,Y,G)). For such a node Z there exists a directed path p1 from T to Z by Lemma E.6 of Henckel et al. [2022]
and a possibly directed path p2 from some causal node N . Since N is possibly causal there also exists a possibly directed
path p3 from N to some node in Y ∈ Y. We can choose all three paths to not contain other nodes in Z. Let I be the
node closest to Z, where p2 and p3 intersect and consider p4 = p2(Z, I) ⊕ p3(I, Y). Note that p4 is colliderless and by
taking shortcuts we obtain a definite-status path p∗4, that is also colliderless. By assumption on Z, p∗4 must be non-causal
and therefore the walk w = p1 ⊕ p∗4 has Z as a definite-status collider, contains no other node in Z and all other nodes

are endpoint nodes or definite-status non-colliders. The walk w therefore violates the blocking condition of the modified
criterion.

We now show that if Z satisfies the adjustment criterion then it satisfies the alternative adjustment criterion. Again we can
assume amenability holds. It suffices to show that any proper non-causal definite-status walk w from T ∈ T to Y ∈ Y is
blocked given Z. Suppose w is colliderless. This in particularly implies that w begins with an edge T ← N . By snipping
cycles and appropriate shortcuts we obtain a definite-status, colliderless, non-causal path, where we use that N will always be
of definite status and therefore the directed edge into T will never be removed. This path p is blocked given Z and therefore
contains a node in Z. Therefore, so does w which implies that it is blocked given Z. Suppose now that w contains colliders
C1, . . . , Ck. By snipping cycles and taking shortcuts we can again obtain a definite-status path p from T to Y . Suppose p
is possibly directed, that is, consists of possibly causal nodes. Then at least on of the colliders must be a descendant of a
possibly causal node and therefore w is blocked. If p is not possibly directed it must either contain a non-collider in Z that is
also a non-collider on w or a collider C, such that De(C,G) ∩ Z ̸= ∅. In the former case, w is obviously blocked. In the
latter case, at least one of the Ci must satisfy Ci /∈ Z which again suffices to conclude that w is blocked.

With this modified adjustment criterion we can algorithmically verify that a set Z is a valid adjustment set for (T, Y) in
DAG or CPDAG G, by verifying that

1. no proper possibly directed walk that does not begin with a directed edge out of T reaches Y , and

2. no proper possibly directed walk that contains a node in Z reaches Y , and

3. no proper definite-status non-causal walk that is not blocked by Z reaches Y .

Condition 1. is equivalent to Condition 1. in Lemma 22; since we need to verify that no such walk reaches Y , the reachability
algorithm will need to continue walking possibly directed walks that do not start with an edge out of T even if they are
blocked by Z. Condition 2. is equivalent to Condition 2. in Lemma 22; since we need to verify that no such walk reaches Y ,
the reachability algorithm will need to continue walking possibly directed walks that start with an edge out of T even if
they contain a node in Z. Condition 3. is equivalent to the blocking Condition 3. in Lemma 22; since the (non-)existence of
blocked non-causal paths does not appear in any of the conditions, the reachability algorithm can stop walking non-causal
walks upon reaching a blocking node in Z; however, the blocking condition poses a problem as verifying whether a path is
blocked requires a non-local check to verify that it is of definite-status. In the following subsection, we show how to verify
blocking in CPDAGs with a reachability algorithm while avoiding this non-local definite-status check.

D.2 D-SEPARATION VIA A REACHABILITY ALGORITHM FOR CPDAGS

In this section, we show how to verify blocking in CPDAGs by a reachability algorithm without needing to discern the
non-local property of a walk being definite-status or not. This is necessary to enable the use of reachability algorithms with
local decision rules to verify the blocking condition on definite-status walks in the modified adjustment criterion. We show
this in 5 steps:

• Lemma 23: Indefinite-status paths are irrelevant for d-separation in CPDAGs

• Lemma 24: Existence of open definite-status walks or paths coincides in CPDAGs

• Lemma 25: Reachability algorithm with non-local decision rules for d-connectedness in CPDAGs

• Lemma 26: We may treat some indefinite-status walks as definite-status

• Lemma 27: We may treat some more indefinite-status walks as definite-status

The following lemma by Henckel et al. [2022] characterizes d-separation in a CPDAG in terms of definite-status paths.

Lemma 23 (Indefinite-status paths are irrelevant for d-separation in CPDAGs). Consider node sets T,Y and Z in a CPDAG
G. Then T is d-separated from Y given Z in every DAG D ∈ [G] if an only if every definite-status path from T to Y is
blocked given Z in G.

Checking whether a collider is open on a definite-status path requires checking a non-local condition, as we need to consider
all descendants of the collider. In DAGs we can circumvent that by considering walks instead, as it is possible to show that
an open path exists if and only if an open walk exists. We now show that a similar result holds for CPDAGs, connecting
definite-status paths and connecting definite-status walks.

Lemma 24 (Existence of open definite-status walks or paths coincides in CPDAGs). Consider node sets T,Y and Z in a
CPDAG G. Then there exists a definite-status path from T to Y that is open given Z if and only if there exists a definite-status
walk from T to Y that is open given Z.

Proof. Let p be a definite-status path from some T ∈ T to some Y ∈ Y that is open given Z in G. Let C1, . . . , Ck be all
colliders on p. By assumption there exist directed paths q1, . . . , qk from Ci to some node Zi ∈ Z that we choose to not
contain any other node in Z. Then w = p(T,C1) ⊕ q1(C1, Z1) ⊕ q1(Z1, C1) ⊕ · · · ⊕ p(Ck, Y) is a definite-status walk
from T to Y that is open given Z.

For the converse direction consider a walk w and let I be the node closest to T on w that appears twice w, i.e., w =
w(T, I) ⊕ w(I, I) ⊕ w(I, Y). Consider the walk w′ = w(T, I) ⊕ w(I, Y). We will now show that either w′ itself is a
definite-status walk from T to Y such that no no-collider is in Z and every collider has a descendant in Z or that we can
construct a shortcut walk that is. Since w′ contains at least one repeating node less than w we can then iterate this contraction
to obtain a definite-status path open given Z. Every node on w′ inherits their definite status from the path w except for I .
Suppose I ∈ Z, then I must be a collider whenever it appears on w and therefore it also a definite-status collider on w′

which is therefore of the claimed form. Suppose now that I /∈ Z. Then it must be a non-collider whenever it appears on
w. There are three cases to consider: a) I is a collider on, w′ b) I is a definite-status non-collider on w′ and c) I is not of
definite status on w′. In case a) w must have been of the form T · · · → I → · · · ← I ← · · ·Y . Therefore w must contain a
collider that is a descendant of I . Therefore De(I,G) ∩ Z ̸= ∅. In case b) w′ trivially fulfills the required conditions.

In case c) we again consider three subcases: a) A→ I −B, b) A− I ← B and c) A− I −B. In all three cases A and B
are definite-status non-colliders on w′ as they inherited their status from w and they cannot have been colliders. This also
implies that A,B /∈ Z. In case a) there must also exist an edge A→ B and we can replace w′ with w′(T,A)⊕ w′(B, Y).
The node A is a definite non-collider on this new walk. If B is also we are done. If it is not, i.e., we have the structure
A→ B −B′ we can replace w′ again by repeating the argument we just made and taking the shortcut to B′. We can do
so iteratively, until we encounter either a definite-status non-collider or Y itself. Either way we obtain a definite-status
walk such that every non-collider is not in Z and every collider has a descendant that is. Case b) follows by the exact same
argument reversing the roles of A and B. In case c) we must have an edge A − B. Again we replace w′ by taking the
shortcut. If A is not of definite status on the new walk, i.e, it contains the segment A′ −A−B, there must exist an edge
A′ − C. We can again iteratively take shortcuts until we either obtain an A′ that is a definite-status non-collider or arrive at
T . If B is not of definite status we repeat the same procedure untile we arrive at definite-status B′ or Y . In all cases, we
obtain a walk w′ of definite status that is open given Z.

Based on Lemma 24 we can propose a reachability d-separation algorithm that additionally tracks and discerns whether a
walk in a CPDAG is definite-status or not. The algorithm is a gensearch algorithm [Wienöbst et al., 2024, Algorithm 6] using
the rule table given in Table 1 to traverse the graph. We now prove that this table is correct for d-separation in CPDAGs.

Lemma 25 (Reachability algorithm with non-local decision rules for d-connectedness in CPDAGs.). Consider a node set T
in a CPDAG G and let Z be a node set in G. The output of a reachability algorithm (gensearch by Wienöbst et al. [2024])
with the rule table given in Table 1 is the set of all nodes Y ∈ V that are d-connected with T given Z in G.

case continue to W yield W

init T −W always always
init T →W always always
init T ←W W /∈ Z always
−V −W V /∈ Z and V of definite status V /∈ Z and V of definite status
−V →W V /∈ Z V /∈ Z
−V ←W never never
→ V −W never never
→ V →W V /∈ Z V /∈ Z
→ V ←W V ∈ Z V ∈ Z
← V −W V /∈ Z V /∈ Z
← V →W V /∈ Z V /∈ Z
← V ←W V /∈ Z V /∈ Z

Table 1: Rule table for gensearch algorithm [Wienöbst et al., 2024] to compute all d-connected nodes in a CPDAG.

Proof. Every node adjacent to some T ∈ T is d-connected with T given Z. Therefore, the initialization step of the
reachability algorithm is correct. Now suppose that if we arrive at a node V in the reachability algorithm that there exists
some definite-status walk w from some T ∈ T to V that is open Z and consider a proper step of the reachability algorithm
continuing from V . Based on the rule table we continue and yield W precisely when appending the edge between V and W
to w results in a definite-status d-connecting walk w′ from T to W , i.e., if V is definite non-collider on w′ and V /∈ Z or
if V is a collider on w′ and V ∈ Z. By induction it follows that for every reachable node Y there exists a definite-status
d-connecting walk from T which by Lemma 24 suffices to conclude that T and Y are d-connected given Z.

We now show that if a node Y is d-connected with some T ∈ T given Z then it will be returned as reachable. By Lemma 24
there exist a definite-status d-connecting walk from T to Y . We now make an induction argument on the length l of the
shortest such walk. If l = 1, the algorithm clearly returns Y , so suppose the algorithm returns all nodes with shortest paths
of length l = k − 1 and suppose for Y the shortest walk w is of length l = k. Let w′ be the walk we obtain by removing the
final edge from w. It’s a walk of length l that is d-connecting given Z and therefore this holds for it’s end node Y ′. By the
induction hypothesis Y ′ is reachable. Further, since w is a definite-status d-connecting walk we can see that by applying the
rule table to Y ′ the algorithm will also return Y .

From an implementation perspective, it is problematic that in the fourth row of Table 1 we need to check whether V is
of definite status, since this requires storing adjacent nodes for previously visited nodes, that is, this rule is non-local. We
now show that we can simply drop this check without modifying the output of the algorithm and in this way obtain a local
algorithm.

Lemma 26 (We may treat some indefinite-status walks as definite-status). Consider a node set T in a CPDAG G and let Z
be a node set in G. Suppose we modify the rule table in Table 1 by treating the V W case as if V were of definite status
(irrespective of whether it actually is). The resulting reachability algorithm has the same output as the original algorithm.

Proof. The two algorithms agree locally in all cases except in the case −V −W , with V /∈ Z not of definite status, where
the original algorithm does not continue to W and the modified algorithm does and also considers all vertices such that
W −W ′ or W → W ′ if W /∈ Z. Suppose that starting from some T ∈ T, V is the first node where the two algorithms
disagree, i.e., there exists a V ′ reachable by both algorithms such that V ′ − V −W , V /∈ Z and V ′ −W . Since V ′ is
reachable with the original algorithm and we continue onto an undirected edge, V ′ /∈ Z and we arrive at V ′ via an edge of
the form← V ′ or −V . The original algorithm will therefore reach W , either via← V ′ −W or −V ′ −W unless in the
latter case V ′ is not of definite status. If the latter is the case we can repeat the argument to obtain a new V ′ until we either
arrive at a V ′ that is of definite status or the walk T −W . In either case, W is reachable and if W /∈ Z we will consider all
vertices such that W −W ′ or W →W ′.

Finally, we will use a d-separation reachability algorithm within our new reachability algorithm to verify adjustment validity.
Here, we also need to verify whether Z contains possibly causal nodes, that is, whether there exists a proper possibly directed
path from T to Y that contains a node in Z (see Lemma 22). To do so, we may have to continue along segments of the form
→ N if N /∈ Z which are of indefinite status. We now show that we can further modify the d-separation rule tables to
accommodate this without changing the output of the d-separation reachability algorithm. This will allow us to run all three
checks required in the validity algorithm simultaneously. If we were only interested in d-separation, the rule table from
Lemma 26 is more computationally efficient.

Lemma 27 (We may treat some more indefinite-status walks as definite-status). Consider a node set T in a CPDAG G and
let Z be a node set in G. Suppose we modify the rule table in Table 1 by treating the V W case as if V were of definite
status and the→ V case by proceeding if V /∈ Z (analogous to the rule for definite-status non-colliders). The resulting
reachability algorithm has the same output as the original algorithm.

Proof. We have already established in Lemma 26, that we can ignore the definite-status check without modifying the output
so consider an algorithm based on this rule table and compare it to an algorithm with the additional rule modification stated
in the lemma. The two algorithms agree locally in all cases except in the case→ V −W , with V /∈ Z, where the original
algorithm does not continue to W and the modified algorithm does and also considers all vertices such that W −W ′ or
W →W ′ if W /∈ Z. Suppose that starting from some T ∈ T, V is the first node where the two algorithms disagree, i.e.,
there exists a V ′ reachable by both algorithms such that V ′ → V −W , V /∈ Z and V ′ →W . Since V ′ is reachable with the
original algorithm and we continue onto an undirected edge, V ′ /∈ Z and we arrive at V ′ via an edge of the form← V ′ or
−V . The original (and the modified) algorithm will therefore reach W , either via← V ′ →W or −V ′ →W . In either case,

W is reachable and if W /∈ Z we will consider all vertices such that W −W ′ or W →W ′ and if W ∈ Z we will consider
all vertices such that W ←W ′. This means W ′ is reachable either way and we will in fact move onto a larger number of
the adjacent nodes of W , regardless. The extra check we make in the modified algorithm therefore does not modify the
output.

D.3 WALK-STATUS IN REACHABILITY ALGORITHMS

In addition to the result from Appendix D.1 and Appendix D.2, we require one more idea in order to be able to verify the
adjustment criterion with a reachability algorithm: when verifying the adjustment criterion a walk may at first not violate the
adjustment criterion but as we append edges to it it may become a walk whose existence violates the adjustment criterion.
For example, a directed walk starting from T does not violate the adjustment criterion until it either encounters a node in Z
or turns into an open definite-status non-causal walk. In order to track such walks, we need to carry forward information
about the current walk’s status when traversing the graph; specifically, we require that a quinary walk status be propagated
forward. Knowing a walk’s status allows us to use more complex local rules about when to continue a walk (for example,
only stopping on a blocked walk when the walk is non-causal) and assigning different tags to a node depending on the status
of the walk with which we reached it; two examples of this are a) adding a non-amenable tag to nodes we can reach with a
possibly directed walk that begins with an undirected edge, and b) adding a not-validly-adjusted-for tag to nodes we can
reach with a possibly directed walk that contains a node in Z, since this is a walk that contains a possibly causal node.

Assume we start the algorithm in T given some Z, by construction we never walk back into T, that is, all walks are proper
walks. Also, we never visit the same node via the same edge on a walk of the same type twice, such that our algorithm has
runtime guarantee O(p+m) analogous to the Bayes-Ball and gensearch algorithm. The walk status is quinary and one of
the following:

PDT→OPEN – These are possibly directed walks that started with an edge pointing out of T are not blocked by Z. Reaching
a node Y by a PDT→OPEN walk does not tell us anything about whether (G, T, Y) is amenable or whether Z is a valid
adjustment set for (T, Y). Instead, we need to keep walking such a walk as it may turn into a blocked (possibly directed
walk that started with an edge pointing out of T) walk upon passing through Z or a non-causal walk upon traversing
along a backward-facing edge←, which are walks that contain information about amenability or validity of adjustment
for the nodes reached.

PDT OPEN – These are possibly directed walks that started with an undirected edge out of T and are not blocked by Z.
Reaching a node Y by a PDT OPEN walk tells us that (G, T, Y) is not amenable (which implies that Z cannot be a
valid adjustment set for (T, Y)) as Condition 1 in the Modified Adjustment Criterion is violated. We need to keep
walking such a walk as other nodes reached by it are also not amenable and as it may turn into a blocked (possibly
directed walk that started with an undirected edge out of T) or a non-causal walk (which we need to check are blocked).

PDT→BLOCKED – These are possibly directed walks that started with an edge pointing out of T and contain a node in Z.
Reaching a node Y by a PDT→BLOCKED walk tells us that Z is not a valid adjustment set for (T, Y) as Condition 2
in the Modified Adjustment Criterion is violated (the walk must have passed through a node in Z). We need to keep
walking such a walk as Z is also not a valid adjustment set for other nodes reached by this walk and as it may turn into
a non-causal walk (which we need to check are blocked).

PDT BLOCKED – These are possibly directed walks that started with an undirected edge out of T and are blocked by Z.
Reaching a node Y by a PDT BLOCKED walk tells us that (G, T, Y) is not amenable (which implies that Z cannot be
a valid adjustment set for (T, Y)) as Condition 1 in the Modified Adjustment Criterion is violated. We need to keep
walking such a walk as other nodes reached by it are also not amenable and as it may turn into a non-causal walk
(which we need to check are blocked).

NONCAUSAL — These are walks that have passed through at least one backward-facing edge and are thus non-causal and
are not blocked by Z; if they were blocked by Z we would just stop walking such a non-causal blocked walk. Reaching
a node Y by a NONCAUSAL walk tells us that Z is not a valid adjustment set for (T, Y) as Condition 3 in the Modified
Adjustment criterion is violated.

To summarise and help intuition, we provide the following illustration of the possible walk-status changes:

PDT→BLOCKEDPDT→OPEN

start T →W

NONCAUSALstart T ←W

PDT OPEN

start T W

PDT BLOCKED

when walking→ V ←W,V ∈ Z when walking


→ V →W

V →W
V W

→ V W

 , V ∈ Z

An instructive first example of a reachability algorithm is Algorithm 2 to check amenability, which we use also in our
implementation of the identification strategies for CPDAGs. Here, the routine simplifies considerably, since we only start
walking PDT OPEN and PDT BLOCKED walks from T and all nodes Y reached by a such a walk are nodes such that
(G, T, Y) is not amenable.

Finally, in Algorithm 3 we present the key to efficiently implementing adjustment verification for our adjustment-based
identification distances: Given a graph (DAG or CPDAG) G, treatment T , and candidate adjustment set Z with T /∈ Z,
Algorithm 3 returns in O(p+m) time two lists a) NAM (“not amenable”) containing all Y /∈ T such that (G, T, Y) is not
amenable, and b) NVA (“not validly adjusted for”) containing all Y /∈ T ∪ Z such that Z is not a valid adjustment set for
(T, Y) in G and all Y ∈ Z.

Algorithm 2 Check amenability of a CPDAG G relative to (T, Y) for a given set T of treatment nodes and all possible Y

1: Input: CPDAG G and a set of treatment nodes T in G
2: Output: Set NAM of nodes Y ̸∈ T in G such that G is not amenable relative to (T, Y)

3: function VISIT(arrivedby, V)
4: visited.insert(V)
5: if arrivedby == init then ▷ Start walking proper possibly directed walks that do not start out of T
6: for W in AdjacentNodes(V) \T do
7: if W not in visited then
8: VISIT(, W)
9: else ▷ Continue walking proper possibly directed walks

10: NAM.push(V) ▷ Reached V by a proper possibly directed walk that does not start out of T
11: for W in AdjacentNodes(V) \T do
12: if W not in visited then
13: VISIT(, W)
14: for W in Ch(V) \T do
15: if W not in visited then
16: VISIT(→, W)

17: Initialise NAM as empty set
18: Initialise visited as empty HashSet

19: for V in T do VISIT(init, V)

20: return NAM

Algorithm 3 Validate Z as adjustment set relative to (T, Y) for a given set T of treatment nodes and all possible Y in G
1: Input: CPDAG (or DAG) G, a set of treatment nodes T in G, and a set of adjustment nodes Z in G with T ∩ Z = ∅
2: Output: Set NAM of nodes Y ̸∈ T in G such that G is not amenable relative to (T, Y)
3: Set NVA of nodes Y ̸∈ T in G such that Z is not a valid adjustment set for (T, Y) in G
4: function NEXTSTEPS(arrivedby, V) ▷ Return (moveonby, W, blocked) triplets
5: Initialise next as empty set
6: if arrivedby == → then
7: for W in Pa(V) \T do ▷ collider→ V ←W
8: next.push((←, W, 1(V ̸∈ Z)))
9: else if arrivedby in {init,←} then

10: for W in Pa(V) \T do ▷← V ←W
11: next.push((←, W, 1(V ∈ Z)))
12: for W in AdjacentNodes(V) \T do ▷→ V W or V W or← V W
13: next.push((, W, 1(V ∈ Z)))
14: for W in Ch(V) \T do ▷→ V →W or V →W or← V →W
15: next.push((→, W, 1(V ∈ Z)))
16: return next ▷ omits steps to T and V ←W

17: function VISIT((arrivedby, V , walkstatus))
18: visited.insert((arrivedby, V , walkstatus))
19: if walkstatus in {PDT OPEN,PDT BLOCKED} then
20: NAM.push(V) and NVA.push(V) ▷ Reached V by a possibly directed walk that does not start out of T
21: else if walkstatus == NONCAUSAL then
22: NVA.push(V) ▷ Reached V by a non-causal walk that is not blocked by Z
23: else if walkstatus == PDT→BLOCKED then
24: NVA.push(V) ▷ Reached V by a possibly directed walk that is blocked by Z
25: for (moveonby, W, blocked) in NEXTSTEPS(arrivedby, V) do
26: next = none
27: if walkstatus == init then
28: if moveonby == → then next = (→, W, PDT→OPEN) ▷ Start possibly directed walk T→
29: else if moveonby == then next = (, W, PDT OPEN) ▷ Start possibly directed walk T
30: else if moveonby == ← then next = (←, W, NONCAUSAL) ▷ Start non-causal walk
31: else if walkstatus in {PDT→OPEN,PDT→BLOCKED} then
32: if moveonby in {→, } then
33: if blocked == false then next = (moveonby, W, walkstatus)
34: else if blocked == true then next = (moveonby, W, PDT→BLOCKED)
35: else if moveonby == ← and blocked == false and walkstatus == PDT→OPEN then
36: next = (moveonby, W, NONCAUSAL)
37: else if walkstatus in {PDT OPEN,PDT BLOCKED} then
38: if moveonby in {→, } then
39: if blocked == false then next = (moveonby, W, walkstatus)
40: else if blocked == true then next = (moveonby, W, PDT BLOCKED)
41: else if moveonby == ← and blocked == false and walkstatus == PDT OPEN then
42: next = (moveonby, W, NONCAUSAL)
43: else if walkstatus == NONCAUSAL and blocked == false then
44: next = (moveonby, W, NONCAUSAL)
45: if next is not none and next not in visited then VISIT(next)

46: Initialise NAM as empty set
47: Initialise NVA=Z
48: Initialise visited as empty HashSet

49: for V in T do VISIT((init, V , init))

50: return NAM and NVA

D.4 OUR ALGORITHM ENABLES EFFICIENT CALCULATION OF PARENT-, ANCESTOR-, AND OSET-AID

For the three distances, the Parent-AID, Ancestor-AID, and Oset-AID, we need to identify adjustment sets in Gguess with
an additional amenability check in case Gguess is a CPDAG and then verify the proposed adjustment sets in Gtrue. While
algorithms with O(p + m) runtime exist for each involved computation, the algorithmic development in the preceding
subsections is crucial to enable efficient calculation of the distances: Algorithm 3 enables us to verify adjustment sets for
all {(T, Y ′) | Y ′ ∈ V \ {T}} with one O(p+m) run, instead of performing (p− 1) separate runs of a valid adjustment
verifier algorithm. For simplicity and as an instructive example, we first discuss our implementation of the Parent-AID for
DAGs and then present the general routine for implementing our distances.

D.4.1 Calculating the Parent Adjustment Identification Distance Efficiently

To calculate the Parent-AID between two DAGs Gtrue and Gguess over p nodes and m edges, we need to iterate over all
tuples (T, Y) of nodes, obtain the parent set of the treatment in Gguess, and check whether this set is a valid adjustment set
in Gtrue with respect to (T, Y). For their SID implementation, Peters and Bühlmann [2015] report a worst-case runtime of
O(p · log2(p) · p3) where the factor p3 corresponds to squaring of the adjacency matrix of Gtrue which is done ⌈log2(p)⌉
times to assemble a path matrix that codes which nodes are reachable from each of the n treatment nodes.1

Combining the above algorithms, we can calculate the Parent-AID with an algorithm with runtime O(p(p+m)) as follows:

• Initialise the mistake count c = 0

• For each node T (each of the following steps can be completed in O(p+m) time)

– Obtain Z as the set of parents of T in Gguess

– Obtain ND as the set of non-descendants of T in Gtrue

– Obtain NVA as the the set of nodes Y such that Z is not a valid adjustment set for (T, Y) in Gtrue

– Add
|Z \ND|︸ ︷︷ ︸

guessed no effect, but descendant in Gtrue

+ |Z∁ ∩NVA|︸ ︷︷ ︸
Z valid adjustment set in Gguess, but not in Gtrue

to the mistake count c

• Return dIP (Gtrue,Gguess) = c

Our Parent-AID coincides with the SID only as distance between DAGs, but, in contrast to the SID, generalizes to
CPDAGs. The multi-set SID between CPDAGs requires exponential runtime, while the Parent-AID between CPDAGs is
still O(p(p+m)) as shown in the next subsection.

D.4.2 Calculating Adjustment Identification Distances Efficiently

We fix the treatment T and apply our algorithm to all tuples (T, Y), T ̸= Y simultaneously. We also group our identifying
formulas as follow: For each T , the identification strategy algorithm returns a vector of (node, identifying formula) tuples
which we code as a triple (A,B, (Y,Z(Y))Y ∈C) consisting of a) the set nodes A for which the causal effect from T is not
identifiable, b) a set of nodes B for which the causal effect from T is zero and c) a set of two-tuples consisting of the remaining
nodes Y ∈ C = (A∪B)c and for each Y a corresponding valid adjustment set Z(Y). To compute this vector, we first apply
a reachability algorithm to compute I = amen(T,Gguess) (Algorithm 2), where amen(T,G) denotes the set of nodes Y such
that (G, T, Y) is amenable . For the parent strategy we then compute P = Pa(T,Gguess) and return (Ic,P, (Y,P)Y ∈I\P). For
the ancestor strategy we compute A = An(T,G), D = De(T,G) and return (Ic,Dc∩I, (N,A)N∈D). For the Oset strategy,
we compute D, O(T, Y,G) = Pa(D ∩ An(Y,G)) \D for each Y ∈ D and return (Ic,Dc ∩ I, (Y,O(T, Y,Gguess))Y ∈D).
We repeat these steps for each T and return a vector of three-tuples. The overall complexity is therefore O(p(p+m)) for
the parent and ancestor strategies, and O(p2(p+m)) for the Oset strategy. The additional p is due to O(T, Y,G) depending
on Y , whereas Pa(T,G) and An(T,G) do not depend on Y .

1One may be able to reduce the cubic runtime for the matrix multiplication if the adjacency matrices exhibit extra known structure,
though, the algorithm with the best known asymptotic runtime to date of O(p2.37) is a galactic algorithm and not usable in practice
[Alman and Williams, 2020]. For certain adjacency matrices, the Strassen algorithm for matrix multiplication may enable a reduction to
O(plog2(7)) ≈ O(p2.8).

Consider now the verification step for a fixed treatment T and the corresponding triple (A,B, (Y,Z(Y))Y ∈C). We compute
I′ = amen(T,Gtrue) and D′ = De(Y,Gtrue) in O(p + m) using reachability algorithms. For each unique Z(Y) we then
apply a reachability algorithm to compute set of nodes N ∈ V(T,Z(Y),Gtrue) such that Z(Y) is a valid adjustment set
relative to (T,N) in Gtrue (Algorithm 3). For the parent and ancestor strategy there is only one Z(Y), so we only need to do
this step once. We then add

|A ∩ I′|+ |B ∩D′|+#{Y ∈ C \V(T,Z(Y),Gtrue)}

to the distance between Gtrue and Gguess. As we have to repeat this for each T , the overall runtime for the verifier is
O(p(p+m)) for the parent and ancestor strategies, and O(p2(p+m)) for the Oset strategy.

E EMPIRICAL ANALYSIS OF ALGORITHMIC TIME COMPLEXITY

To empirically analyze the runtime complexity of our distance implementations, we evaluate the algorithms on inputs of
varying size p and measure the runtime remp(p) (here, we use the wall time). For a given complexity, such as O(p2), we
then project the runtime we would expect for any p based on the runtime observed for the smallest size p. We denote the
projected runtime for p as rproj(p). The idea is that the ratio of the projected runtime rproj(p) and the observed empirical
runtime remp(p) approaches 1 in the limit of p→∞ if the implementation has the complexity used to compute rproj(p).
For a given algorithm distance(Gtrue,Gguess) we proceed as follows.

• (Grid of graph sizes)
Specify a grid of graph sizes P , for example, P = (8, 16, 32, 64, 128, 256, 512, 1024).

• (Observed empirical runtimes)
Sample, for each p ∈ P , 11 pairs of DAGs Gtrue = (V,Etrue) and Gguess = (V,Eguess) with |V| = p and edges drawn
independently with probability 20/(p− 1) for sparse and 0.3 for dense graphs (the expected number of edges is thus
linear in the number of nodes for sparse, and quadratic for dense graphs). We run distance on those 11 pairs and
compute the average runtime over these 11 runs, denoted remp(p).

• (Project the runtime under the given time complexity O(c(p)) where, for example c(p) = p2)
We obtain the projected runtime for inputs of size p under the given time complexity based on the smallest input size
p∗ = min(P) as

projected runtime: rproj(p) = c(p)
remp(p

∗)
c(p∗)

.

• (Relative projected runtime)
To compare the projected runtime to the observed empirical runtime, we then visualize the projected runtime as a
fraction of the observed empirical runtime

relative projected runtime:
rproj(p)

remp(p)
.

As we consider asymptotic complexity, we need to evaluate for large enough p to assess the following trends of relative
projected runtimes for increasing p. If, when comparing to O(c(p)), the relative projected runtime increases with the number
of nodes p, this indicates that the empirical time complexity is lower than O(c(p)). If, when comparing to O(c(p)), the
relative projected runtime decreases with the number of nodes p, this indicates that the empirical time complexity is larger
than O(c(p)). If the algorithm has time complexity O(c(p)) then we expect the relative projected runtime for this complexity
to be close to constant.

F DISTANCE COMPARISON

The simulation study described in Section 7.2 is part of a larger study in which we consider 8 parameter settings. Specifically,
we consider all possible combinations of the following three choices: i) Gtrue is a dense, respectively sparse graph randomly
drawn as described in Section 7.1, ii) Gguess is Gtrue with one edge randomly removed, respectively Gguess is randomly
drawn in the same way as Gtrue and iii) Gtrue and Gguess are 30-node, respectively 100-node graphs. For each of these 8
settings we randomly draw 300 pairs of Gtrue and Gguess graphs. For each pair we compute the three proposed adjustment
identification distances and the SHD. To summarise the results we obtain correlation tables across the distances for each of
the 8 experiments. We also provide corresponding scatter plots; to reduce clutter we do so only for the 30-node graphs.

F.1 DISTANCES BETWEEN A RANDOM GRAPH AND A GRAPH WITH ONE EDGE REMOVED

Table 2 contains correlation tables for the setting that Gtrue is a random dense graph and Gguess is Gtrue with one edge removed
as well as the average value for each distance over the 300 pairs. The left table contains the correlations for the p = 30 case
and the right those for the p = 100 case. We also provide a corresponding scatter plot for the p = 30 case in Figure 5. We
do not include the SHD, as the SHD between Gtrue and Gguess is by construction 1.

When Gguess graphs are close to the true graphs Gtrue the correlation between the three distances is surprisingly small;
particularly the correlations between the Oset-AID, respectively the Ancestor-AID and the Parent-AID are small. This may
be explained by how the Parent-AID treats node tuples (T, Y) for which Y /∈ De(T,Gguess) differently from the Ancestor-
and Oset-AID: For such tuples, both the Oset and ancestor adjustment strategy return f(y), whereas parent adjustment
only does so if Y ∈ Pa(T,Gguess). As a result, small differences between Gtrue and Gguess tend to lead to a larger number of
mistakes if we apply parent adjustment as opposed to Oset or ancestor adjustment. This is also reflected in the larger average
of the Parent-AID. Another interesting pattern visible in the scatter plot, is the number of cases where a large Parent-AID
coincides with a small or even zero Ancestor-AID. This illustrates how Gguess graphs that respect the causal orders of
Gtrue may nonetheless be deemed very distant by the Parent-AID. Overall, the results indicate that the three distances are
meaningfully different, that is, they capture distinct information.

p = 30 Ancestor-AID Oset-AID Parent-AID

Ancestor-AID 1 0.7281 0.0886
Oset-AID 0.7281 1 0.2080
Parent-AID 0.0886 0.2080 1
Average dist. 2.0 5.9 11.2

p = 100 Ancestor-AID Oset-AID Parent-AID

Ancestor-AID 1 0.7441 0.3717
Oset-AID 0.7441 1 0.3114
Parent-AID 0.3717 0.3114 1
Average dist. 3.4 13.6 39.8

Table 2: Correlation tables for the case that Gtrue is a random dense graph and Gguess is Gtrue with one edge removed.

Table 3 contains correlation tables for the setting that Gtrue is a random sparse graph and Gguess is Gtrue with one edge removed
as well as the average value for each distance over the 300 pairs. The left table contains the correlations for the p = 30 case
and the right those for the p = 100 case. We also provide a corresponding scatter plot for the p = 30 case in Figure 6. We
do not include the SHD, as the SHD between Gtrue and Gguess is by construction 1.

The results are overall qualitatively similar to the results for dense graphs, which indicates that the distinct characteristics of
the three distances are not specific to sparse or small graphs but are in fact a characteristic of the three distances.

p = 30 Ancestor-AID Oset-AID Parent-AID

Ancestor-AID 1 0.8564 0.4377
Oset-AID 0.8564 1 0.3749
Parent-AID 0.4377 0.3749 1
Average dist. 1.0 2.4 8.3

p = 100 Ancestor-AID Oset-AID Parent-AID

Ancestor-AID 1 0.7280 0.3019
Oset-AID 0.7280 1 0.2685
Parent-AID 0.3019 0.2685 1
Average dist. 4.1 24.8 42.7

Table 3: Correlation tables for the case that Gtrue is a random sparse graph and Gguess is Gtrue with one edge removed.

0

5

10

15

A
nc

es
to

r-
A

ID

0

10

20

30

O
se

t-A
ID

0

10

Ancestor-AID

5

10

P
ar

en
t-A

ID

0

20

Oset-AID
5

10

Parent-AID

Figure 5: Scatter plot for the case that Gtrue is a random 30-node dense graph and Gguess is Gtrue with one edge removed.

0

5

10

A
nc

es
to

r-
A

ID

0

20

40

O
se

t-A
ID

0

10

Ancestor-AID

5

10

P
ar

en
t-A

ID

0

20 40

Oset-AID

5

10

Parent-AID

Figure 6: Scatter plot for the case that Gtrue is a random 30-node sparse graph and Gguess is Gtrue with one edge removed.

F.2 DISTANCES BETWEEN TWO RANDOM GRAPHS

Table 4 contains correlation tables for the setting that Gtrue and Gguess are random dense graphs. The left table contains the
correlations for the p = 30 case and the right those for the p = 100 case. We also provide a corresponding scatter plot for
the p = 30 case in Figure 7.

When comparing two independently drawn random dense graphs, the distances are more strongly correlated than what was
observed in Appendix F.1. Especially, the Ancestor-AID and the Oset-AID are very strongly correlated. Overall, the results
indicate that, while the distances have distinct characteristics, the practical difference may be less relevant when comparing
vastly different graphs as opposed to close-by graphs as in Appendix F.1.

p = 30 Ancestor-AID Oset-AID Parent-AID SHD

Ancestor-AID 1 0.9474 0.7429 0.4673
Oset-AID 0.9474 1 0.5715 0.5233
Parent-AID 0.7429 0.5715 1 0.1769
SHD 0.4673 0.5233 0.1769 1
Average dist. 253.6 258.7 383.0 202.4

p = 100 Ancestor-AID Oset-AID Parent-AID SHD

Ancestor-AID 1 0.9819 0.8512 0.4038
Oset-AID 0.9819 1 0.7704 0.3838
Parent-AID 0.8512 0.7704 1 0.2959
SHD 0.4038 0.3838 0.2959 1
Average dist. 3469.8 3475.6 4539.0 2299.7

Table 4: Correlation tables for the case that Gtrue and Gguess are random dense graphs.

Table 5 contains correlation tables for the setting that Gtrue and Gguess are random sparse graphs. The left table contains the
correlations for the p = 30 case and the right those for the p = 100 case. We also provide a corresponding scatter plot for
the p = 30 case in Figure 8.

The results for sparse graphs are overall qualitatively similar to the results for dense graphs. One notable difference is
the scatter plot between the Ancestor-AID and the Oset-AID which shows that in many cases the Ancestor-AID and the
Oset-AID are the same but that in the cases where they differ they are rarely just slightly different. We are uncertain what
drives this behavior and why it is less pronounced in dense graphs. One potential explanation is that the Ancestor-AID
and the Oset-AID count a mistake whenever two variables are in ancestral relationship in Gguess but not in Gtrue or vice
versa. Similarly, they do not count a mistake when two variables that are not in ancestral relationship in Gguess also are not
in ancestral relationship in Gtrue. When comparing two random sparse graphs, this behavior may cover the large majority
of node pairs and therefore the Ancestor-AID and the Oset-AID between random sparse graphs are often very similar.
The distances only possibly differ for node pairs (T, Y) where T is ancestor of Y in both graphs and only one of the two
adjustment strategies applied to Gguess yields an adjustment set that is also a valid adjustment set in Gtrue.

p = 30 Ancestor-AID Oset-AID Parent-AID SHD

Ancestor-AID 1 0.9782 0.9390 0.8170
Oset-AID 0.9782 1 0.9000 0.8264
Parent-AID 0.9390 0.9000 1 0.8026
SHD 0.8170 0.8264 0.8026 1
Average dist. 316.0 316.8 356.0 289.2

p = 100 Ancestor-AID Oset-AID Parent-AID SHD

Ancestor-AID 1 0.9668 0.6965 0.3124
Oset-AID 0.9668 1 0.5212 0.2914
Parent-AID 0.6965 0.5212 1 0.1324
SHD 0.3124 0.2914 0.1324 1
Average dist. 3229.3 3242.9 4639.4 1694.5

Table 5: Correlation tables for the case that Gtrue and Gguess are random sparse graphs.

200

250

300

A
nc

es
to

r-
A

ID

200

250

300

O
se

t-A
ID

350

375

400

P
ar

en
t-A

ID

20
0

30
0

Ancestor-AID

175

200

225

S
H

D

20
0

30
0

Oset-AID

35
0

40
0

Parent-AID

17
5

20
0

22
5

SHD

Figure 7: Scatter plot for the case that Gtrue and Gguess are random dense graphs with 30 nodes.

300

350

A
nc

es
to

r-
A

ID

300

350

O
se

t-A
ID

325

350

375

P
ar

en
t-A

ID

30
0

35
0

Ancestor-AID

250

300

S
H

D

30
0

35
0

Oset-AID

32
5

35
0

37
5

Parent-AID

25
0

30
0

SHD

Figure 8: Scatter plot for the case that Gtrue and Gguess are random sparse graphs with 30 nodes.

	Introduction
	Preliminaries
	Causal Identification Distance
	Framework
	General Properties

	DAG Distances
	Parent Adjustment Distance
	Ancestor Adjustment Distance
	Oset Adjustment Distance

	CPDAG Distances
	CPDAG to CPDAG Distances
	DAG, CPDAG, and Order Distances

	Implementation
	Empirical Results
	Empirical Runtime Analysis
	Distance Comparison

	Discussion
	Additional Preliminaries
	Proofs
	Additional Examples and Results
	Algorithm Development
	Modified Adjustment Criterion
	D-separation via a Reachability Algorithm for CPDAGs
	Walk-Status in Reachability Algorithms
	Our Algorithm Enables Efficient Calculation of Parent-, Ancestor-, and Oset-AID
	Calculating the Parent Adjustment Identification Distance Efficiently
	Calculating Adjustment Identification Distances Efficiently

	Empirical Analysis of Algorithmic Time Complexity
	Distance Comparison
	Distances between a random graph and a graph with one edge removed
	Distances between two random graphs

