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Abstract
Privacy is of increasing importance in the
world of machine learning in general and in
healthcare more specifically due to the nature of
patients data. Multiple type of security attacks
and mechanisms already exist which allow
adversaries to extract sensitive information
based only from a high-level interaction with
a trained machine learning model. This paper
specifically addresses the model inversion
attack, which aims to reconstruct input data
from a model’s output. This paper describes
a novel approach of using multi-color spaces
as a defense mechanism against this type of
attack to strenghten the privacy of open source
models trained on image data. The main idea
of our approach is to use a combination of
those color spaces to create a more generic
representation and reduce the quality of the
reconstruction coming from a model inversion
attack while maintaining a good classification
performance. We evaluate the privacy-utility ratio
of our proposed security method on retina images.

1. Introduction
In the era of cloud services and open source applications,
more deep learning models are being deployed and served
in the cloud allowing other parties to benefit and take ad-
vantage of them in their own projects. However, despite the
black-box deployment of such models, mishonest individu-
als and entities known as adversaries might still cause and
apply harmful actions through leveraging attacks in order to
identify sensitive information and contents of the data that
were used to train the models. Despite the presence of vari-
ous data regulations as GDPR (Voigt & Von dem Bussche,
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2017) and CCPA (Pardau, 2018), which had a growing posi-
tive impact in raising awareness in protecting users data and
adding a legal and ethical framework around data-oriented
applications, they are unfortunately not enough in stopping
the bad intentions of adversaries that still use techniques and
methods to infer some information about the training data
of the users and patients. An adversary might have 2 types
of access: a white-box access, where the adversary knows
the model’s weights and is aware of the exact architecture
of the model, and a black-box access, where the adversary
only receives the prediction and output of the model without
having any knowledge of how the model is structured. In the
latter case, some attacks, such as membership inference and
model inversion attacks, can still be applied. Membership
inference (Shokri et al., 2017; Carlini et al., 2022) is a type
of attack where the adversary builds a binary classification
model which verifies and checks if a sample was part of
the training data or not. Model inversion attack (Fredrikson
et al., 2014) on the other hand is a type of privacy attack
that aims to recreate the input data only from the model’s
output. In the context of privacy-preserving machine learn-
ing in healthcare (Xiang et al., 2021; Yadav et al., 2023;
Guerra-Manzanares et al., 2023), the highly sensitive na-
ture of patient data emphasizes the importance of ensuring
optimal privacy-utility ratios. This consideration is crucial
when training and deploying machine learning models in
the cloud and open-sourcing them. The objective is to main-
tain good performance in the original task assigned to the
model while protecting patient data as much as possible.
In this paper, we explore the impact of combining multi-
modal autoencoders and color spaces as a way to strengthen
representation models applied on images. Representation
learning is gaining more in popularity especially with its
direct benefit of allowing institutions with limited resources
to collaborate with big data companies which offer them
Representation-as-a-Service (RaaS) systems defined as mod-
els deployed in the cloud and acting as feature extractors
on similar data. Model inversion attack can be applied on
the learned representations to reverse engineer them and re-
construct the train image data. In our study, We empirically
evaluate and experiment on retina images. The presence
of personalized patterns created by the blood vessels in a
retina directly increases the privacy concern when delivering
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Artificial Intelligence (AI) solutions on retina images.

We summarize our contributions in this paper as following:

• We propose an encoding strategy based on the use of
multimodal autoencoder of various color spaces to reduce
the reconstruction quality of model inversion attacks on
images.

• We evaluate the privacy-utility ratio of our suggested en-
coding method on diabetic retina images.

• We show that different combinations of color spaces yield
better privacy-utility ratio against model inversion attacks
than using the default RGB color format.

2. Background & Related Work
2.1. Model Inversion Attacks

Model inversion attack is a type of privacy threat where an
adversary attempts to recover sensitive information about
individual training samples or data points by exploiting
the model’s outputs. It was first introduced by (Fredrikson
et al., 2014) where it has been shown that attackers can
perform a model inversion attack on a trained model to
retrieve patient’s genetic markers. Model inversion attacks
are defined by two main approaches namely:

• Optimization-based (Zhang et al., 2020; Nguyen et al.,
2023; Wu et al., 2023): In this approach, the adversary
relies on a gradient-based optimization problem for re-
constructing the data. This works by finding x̂ which
approximates the prediction and output of a model M
given an input x. More precisely, the gradient-based opti-
mization work on updating dummy data {x̂1, x̂2, ..., x̂n}
and labels {ŷ1, ŷ2, ..., ŷn} to match the observed gradients
on the original data by minimizing the objective function:
defined in Eq 1:

min ||
n∑

i=1

∇L(M(x̂i), ŷi)−
n∑

i=1

∇L(M(xi), yi)||22 (1)

With L being the loss function of the task.
• Learning-based (Yang et al., 2019; Zhou et al., 2023):

Given a model M trained on a private dataset Dpriv =
{xi, yi}, the main goal of learning-based inversion attacks
is to find an optimal inversion model I , defined as a de-
coder, and training it to minimize the following objective
function:

L = R(x, I(M(x))) (2)

where R is a chosen metric to evaluate the quality of the
reconstructed data.

In our paper, we consider the case of training-based model
inversion attacks applied on retina image data where we
compare the impact of color spaces in reducing the recon-
struction attack performance.

2.2. Color Spaces

By definition, a color space is a way to represent how colors
are perceived by humans considering different and various
angles and parameters. They are mathematical models set
to show and encode how colors can be represented as a set
of vectors. They were used within the domain of applying
and developing machine learning architectures and models
in computer vision. ColorNet (Gowda & Yuan, 2019) is a
model designed to take an ensemble of 7 different types of
color spaces each one linked to a Densenet (Huang et al.,
2017) which resulted and yielded better performance. Color
spaces were also leveraged in using deep learning for image
colorization (Cheng et al., 2015; Yoo et al., 2019; Pucci
et al., 2021) where the main goal behind this process is to
generate and produce images that appear visually natural.
They were also used in the context of health for example
HED (Haematoxylin-Eosin-DAB) is a color space intro-
duced by (Ruifrok et al., 2001) and was developed with the
goal of better analyzing tissues.

2.2.1. RGB

RGB is an additive color model where colors are represented
by combinations of red, green, and blue light. RGB is known
for being labeled as a hardware-friendly type of color space
since the vast majority of hardware which stores pixels uses
RGB as a coloring system which makes it the default and
mostly used color space among all.

2.2.2. HSV

HSV is a psychological type of color model and it was
primarily designed to order colors which align with human
perception and it was modeled on the ways that people
consciously break down colors. This model was based more
upon how colors are organized and conceptualized in human
vision in terms of other color-making attributes, such as hue,
lightness, and chroma. HSV as a color space includes the
following parameters. Hue (H) represents the type of color,
which is intuitively understood by humans. Saturation (S)
represents the intensity or purity of the color, which also
corresponds well to how humans perceive color. Value (V)
represents the lightness or darkness of the color.

2.2.3. L*A*B

The L*a*b color space was designed and developed to
mimic the function of a human eye. L stands for lightness,
a stands for green-red component and b for the yellow-blue
one.

3. Methods & Architecture
In this section, we introduce the main components of our
proposed privacy solution, aiming to create a more robust
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Figure 1. From left to right columns we have examples of RGB,
HSV and L*a*b color spaces of retina images respectively

representation against model inversion attacks. Additionally,
we provide a step-by-step explanation of the workflow of
the overall pipeline.

3.1. Multimodal Autoencoder with Color Spaces

Autoencoders are a type of unsupervised learning neural net-
work designed to learn proper reconstruction mechanisms
and patterns. An autoencoder is composed of an encoder
E(.) and a decoder D(.) and is trained to minimize the re-
construction loss defined in Eq 3 as the mean squared error
between an input x and its reconstructed version x′.

L =

n∑
i=1

(xi − x′
i)

2 =

n∑
i=1

(xi −D(E(xi, θE), θD))2 (3)

Given various modalities, an autoencoder can be extended
to a multimodal autoencoder (Jaques et al., 2017; Bach-
mann et al., 2022) by simultaneously reconstructing multi-
ple modalities in parallel from a common shared latent space
and it is trained by optimizing the loss function defined in
Eq 4, where n and m represent the number of samples and
number of modalities, respectively.

L =

n∑
i=1

m∑
j=1

[x
(j)
i − x

′(j)
i ]2 =

n∑
i=1

m∑
j=1

[x
(j)
i −D(j)(E(j)(x

(j)
i , θ

(j)
E )), θ

(j)
D )]2

(4)

In our proposed security method, we compare the security
robustness of the representation generated from training
multimodal autoencoders with various combinations of the
3 color spaces we previously defined in Section 2.2. We
consider here the scenario and use case of cloud services
”Representation as a Service” (RaaS) or ”Embedding as a
Service” (EaaS). These services fall into the category of

1

2

3

4

Big Data Provider
Cloud

RaaS

Small Institution

Figure 2. The attack scenario is defined as follows: A hospital with
a huge dataset trains an autoencoder locally as shown in 1⃝. Then
the encoder part is deployed and open-sourced in the cloud as a
feature extractor in 2⃝ as a Representation-as-a-Service (RaaS)
cloud application. Small clinics and institutions with limited data
and computational resources 3⃝ benefits from it by obtaining mean-
ingful representations through querying the RaaS. However, and
as illustrated in 4⃝ an adversary, assuming he has some similar
data, keeps querying the RaaS and create a decoder Dinv which
intends to reconstruct data only from the learned representation
thus identifying some private and sensitive attributes.

Machine-Learning-as-a-Service (MLaaS). The idea behind
RaaS is to allow big data holders and providers to train
models which returns a meaningful vector representation
for a given datatype and deploy those models into the cloud
as a RaaS so that smaller institutions and enterprises with
limited training data and capacity can query those models
as feature extractors and obtain a representation R and then
fine-tune a predictor for a down-stream task trained on the
returned representations provided by the RaaS. In our threat
analysis, we assume that an adversary A aims to apply a
model inversion attack on the RaaS. Formerly given a set
of representations {R} of a small institution that queried
the RaaS in the cloud, the adversary A using a decoder
Dinv, as inversion model, aims to reconstruct the samples
X ′ = Dinv(R), where {X ′} is set to be as close as pos-
sible to {X}. In order to obtain Dinv we assume that the
adversary A has some data Xadv and keeps querying the
RaaS until getting a pair dataset {Radv , Xadv} and train af-
terwards the decoder Dinv through a learning-based model
inversion attack approach as defined in Section 2.1. The
overall security/attack scenario and pipeline is summarized
in Fig 2.

4. Experiments & Results
4.1. Datasets

4.1.1. RFMID

The Retinal Fundus Multi-disease Image Dataset (Pachade
et al., 2021) consists of 3200 fundus images captured using
three different fundus cameras with 46 conditions annotated
through adjudicated consensus of two senior retinal experts.
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It includes 45 diseases and pathologies. In our paper, we
consider the binary classification task of predicting if the
retina is healthy or abnormal.

4.1.2. DEEPDRID

Diabetic Retinopathy Grading and Image Quality Estima-
tion Challenge (Liu et al., 2022) is a dataset of retina images
with the aim to predict different levels and grades of dia-
betic retinopathy which is the most common disease caused
by diabetes. We consider the task of ordinal regression by
predicting the grade of diabetic retinopathy severity scale
ranging from 0 (no apparent retinopathy) to 4 (Proliferative
Diabetic Retinopathy).

4.1.3. IMPORTANCE OF PRIVACY IN RETINA IMAGES

Because of the complex network of blood vessels in the
retina, every eye has a unique pattern where even identical
twins retinas are different. In fact, due to those unique and
personalized patterns, a biometric method known as retina
recognition (Seto, 2009; Choraś, 2012) exists where the dis-
tinct patterns found on an individual’s retina are utilized to
identify them. In addition, retina images include informa-
tion about the gender of the patient which is considered a
private attribute in that context. Previous work has shown
that deep learning models can be developed for gender iden-
tification on retina images (Korot et al., 2021). Due to these
sensitive information and specific patterns present in retina
images strengthening RaaS for those type of images is of
big importance.

4.2. Experimental Settings

We consider in our experiments Xtrain and Xtest generated
on a 10-fold stratified splits. The experimental pipeline is
based on Fig 2. Xtrain is used to train either a standard
autoencoder with 1 color space or a multimodal autoen-
coder with 2 color spaces and more. Those autoencoders
are trained for 32 epochs and a batch size of 64. The re-
sulted learned representation to be outputted later on when
deployed as a RaaS is of size 64. After being deployed in the
cloud as a RaaS, an adversary uses Xtest and keeps quering
the RaaS until having a pair dataset {Rtest, Xtest}, Rtest

being the set of representations relevant to Xtest. Based
on that, the adversary trains a decoder Dinv as the model
inversion attack for 50 epochs. We assume in this scenario
that the adversary is able to access the representation Rtrain

relevant to Xtrain and use the learned decoder Dinv to ob-
tain the reconstructed version of the train dataset noted as
X ′

train. In our study and experimental setting, the adversary
do not know the type of color spaces combination used in
the autoencoder and we assume that the adversary recre-
ates the RGB format of the images as it is the default and
most used color space in the community. To evaluate how

good the inversion attack model performed we compute the
image quality difference between Xtrain and X ′

train. On
the other side and to make sure our security method does
not discard useful information relevant to diagnostic pur-
poses when trained on the learned representation we use
{Rtrain, ytrain} and {Rtest, ytest} for classification evalu-
ation. We consider in our study 3 types of machine learning
models namely support vector machine, random forest and
XGBoost and grid search over them to find the best classifi-
cation model.

4.3. Evaluation Metrics

Due to the importance of computing the privacy-utility ra-
tio when evaluating a security solution we decided to use
macro F1 score as the classification metric and both mean
squared error and structural similarity index matching for
evaluating the quality of the reconstruction image from the
model inversion attack step.

• Macro F1-Score: We decided to use macro F1 score as
the classification metric due to its robust nature. It is
the harmonic mean between the precision and the recall
thus it simultaneously considers the ratio of false positive
and false negatives. In addition, in the presence of high
imbalance in a multi-class problem, macro f1 score gives
equal weight to each label which ensures that minority
classes are not excluded and are properly evaluated.

• Mean Squared Error: Famous metric used in comparing
continuous variables, in the case of images it is defined
by computing the pixel-by-pixel l2 norm. Given 2 col-
ored images of C channels I, J ∈ RH×W×C their mean
squared error is defined as:

MSE(I, J) =
1

H ×W × C

H∑
i=1

W∑
j=1

C∑
k=1

(Ii,j,k−Ji,j,k)
2

(5)
• Structural Similarity Index Matching (SSIM): is a

method developed by (Wang et al., 2004) to quantify
how similar 2 images are. It takes simultaneously into
account luminance and contrast and SSIM is labeled as
a perception-based metric. Unlike mean squared error
(MSE) which compares pixel by pixel and has no bound-
aries, SSIM is a normalized metric which ranges between
-1 and 1 and evaluate the similarity on the overall percep-
tion level rather than pixel-to-pixel level.

SSIM(x, y) =
(2µx + µy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

Where:
– x and y are images we would like to compare.
– µxand µy are the average pixel values of x and y.
– σ2

x and σ2
y are the variance of pixel values in x and y.

– σxy is the covariance of pixel values between x and y.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Leveraging Multi-Color Spaces as a Defense Mechanism Against Model Inversion Attack

0.28 0.30 0.32 0.34 0.36 0.38
SSIM

0.63

0.64

0.65

0.66

0.67

0.68

F1
 S

co
re

Scatter Plot of SSIM vs F1 Score SVC
Combinations
RGB
HSV
Lab
RGB-HSV
RGB-Lab
HSV-Lab
RGB-HSV-Lab

0.28 0.30 0.32 0.34 0.36 0.38
SSIM

0.65

0.66

0.67

0.68

0.69

F1
 S

co
re

Scatter Plot of SSIM vs F1 Score RF
Combinations
RGB
HSV
Lab
RGB-HSV
RGB-Lab
HSV-Lab
RGB-HSV-Lab

0.28 0.30 0.32 0.34 0.36 0.38
SSIM

0.64

0.65

0.66

0.67

F1
 S

co
re

Scatter Plot of SSIM vs F1 Score XGB
Combinations
RGB
HSV
Lab
RGB-HSV
RGB-Lab
HSV-Lab
RGB-HSV-Lab

Figure 3. RFMiD
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Figure 4. DeepDRID

Figure 5. F1 Score vs SSIM of different color spaces combinations
for RFMiD and DeepDRiD Retina Datasets. The best cases to
consider is when the F1 score is bigger or equal and the SSIM is
smaller than the RGB baseline case thus all datapoints on the top
left corner of the interesection of the 2 lines.

– c1 and c2 are constants defined to stabilize the division
with weak denominator and in the extreme case to avoid
the division by zero.

4.4. Results

The results are shown in Table 1 in Appendix A, the best
combinations are the ones that give high macro F1 score,
high mean squared error and low SSIM, this translates to
obtaining a RaaS where the learned representation is useful
for the considered diagnostic tasks in addition of being ro-
bust enough against a potential model inversion attack. The
baseline use case is when the autoencoder is only trained on
the RGB format to create the representation. In Fig 5, all
color space combination results are plotted in terms of both
SSIM and Macro F1 Score. The best combinations are the
data points that give an equal or higher macro F1 Score and
a smaller SSIM compared to the RGB baseline. In addition,
The fact that multiple color spaces combinations performed
better than the RGB baseline gives us the flexibility and
allows us to not be dependant towards the use of a unique
combination which makes it harder to the adversary to po-
tentially know before hand which exact combination we
have used.

5. Discussion & Limitations
The main limitation given to our method specifically and
to the use of color spaces in general is its constrained
application towards only images as a modality. This will
for example exclude electronic health records (EHR) and
omics data which fall into the category of tabular data.

6. Conclusion
In this paper, we have proposed a method which merges
multimodal autencoder and color spaces as a defense mech-
anism to generate meaningful representations and reduce
the reconstruction quality of model inversion attacks.

References
Bachmann, R., Mizrahi, D., Atanov, A., and Zamir, A. Mul-

timae: Multi-modal multi-task masked autoencoders. In
European Conference on Computer Vision, pp. 348–367.
Springer, 2022.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramer, F. Membership inference attacks from first prin-
ciples. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Cheng, Z., Yang, Q., and Sheng, B. Deep colorization.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Leveraging Multi-Color Spaces as a Defense Mechanism Against Model Inversion Attack

In Proceedings of the IEEE international conference on
computer vision, pp. 415–423, 2015.
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A. Privacy-Utility Evaluation
We summarize privacy and utility performance of all pos-
sible color spaces in combinations generated from the set
of {RGB, HSV, Lab} in Table 1. The baseline to compare
with is RGB since it is the default color space choice within
the computer vision community.
The best performing color spaces are the ones that yield sim-
ilar of better macro F1 score, a higher mean squared error
and a smaller structural similarity index matching (SSIM)
than the RGB baseline.
We can observe that HSV and RGB-HSV are the color
spaces which always verify this criteria with various ma-
chine learning models and across both datasets.
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Table 1. Privacy-Utility Ratio Results of Multiple Color Space Combinations

RFMiD

F1 SVM F1 RF F1 XGB MSE SSIM

RGB (baseline) 67.67 ± 3.53 67.06 ± 2.71 65.76 ± 2.96 0.027 ± 0.014 0.380 ± 0.106

HSV 67.99 ± 3.32 68.91 ± 2.36 66.80 ± 3.27 0.028 ± 0.012 0.293 ± 0.055

Lab 62.80 ± 4.46 64.48 ± 4.15 63.29 ± 4.11 0.029 ± 0.012 0.288 ± 0.076

RGB-HSV 67.61 ± 2.46 69.35 ± 2.28 67.60 ± 2.32 0.042 ± 0.013 0.277 ± 0.081

RGB-Lab 64.26 ± 3.93 66.20 ± 3.50 63.98 ± 2.93 0.027 ± 0.008 0.344 ± 0.081

HSV-Lab 66.57 ± 3.16 68.45 ± 1.80 66.89 ± 1.96 0.022 ± 0.002 0.365 ± 0.046

RGB-HSV-Lab 66.82 ± 2.61 68.59 ± 3.19 66.23 ± 3.32 0.031 ± 0.015 0.314 ± 0.075

DeepDRiD

F1 SVM F1 RF F1 XGB MSE SSIM

RGB (baseline) 26.39 ± 3.83 28.64 ± 3.07 29.45 ± 3.40 0.056 ± 0.021 0.266 ± 0.082

HSV 28.18 ± 3.40 28.65 ± 4.12 29.52 ± 1.92 0.052 ± 0.016 0.235 ± 0.089

Lab 25.39 ± 4.96 25.74 ± 3.60 28.68 ± 3.65 0.054 ± 0.017 0.250 ± 0.063

RGB-HSV 29.21 ± 2.73 29.82 ± 2.44 30.52 ± 3.39 0.065 ± 0.018 0.215 ± 0.072

RGB-Lab 28.15 ± 1.80 29.13 ± 1.88 29.32 ± 1.50 0.046 ± 0.010 0.282 ± 0.076

HSV-Lab 28.12 ± 4.08 26.59 ± 1.82 28.37 ± 1.95 0.046 ± 0.007 0.292 ± 0.056

RGB-HSV-Lab 30.01 ± 3.51 28.61 ± 3.65 31.23 ± 4.20 0.048 ± 0.014 0.282 ± 0.078


