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ABSTRACT

Optimal Transport (OT) problem aims to find a transport plan that bridges two
distributions while minimizing a given cost function. OT theory has been widely
utilized in generative modeling. In the beginning, OT distance has been used
as a measure for assessing the distance between data and generated distributions.
Recently, OT transport map between data and prior distributions has been utilized as
a generative model. These OT-based generative models share a similar adversarial
training objective. In this paper, we begin by unifying these OT-based adversarial
methods within a single framework. Then, we elucidate the role of each component
in training dynamics through a comprehensive analysis of this unified framework.
Moreover, we suggest a simple but novel method that improves the previously
best-performing OT-based model. Intuitively, our approach conducts a gradual
refinement of the generated distribution, progressively aligning it with the data
distribution. Our approach achieves a FID score of 2.51 on CIFAR-10 and 5.99 on
CelebA-HQ-256, outperforming unified OT-based adversarial approaches.

1 INTRODUCTION

Optimal Transport (OT) theory addresses the most cost-efficient way to transport one probability
distribution to another (Villani et al., 2009; Peyré et al., 2017). OT theory has been widely exploited
in various machine learning applications, such as generative modeling (Arjovsky et al., 2017; Rout
et al., 2022), domain adaptation (Guan et al., 2021; Shen et al., 2018), unpaired image-to-image
translation (Korotin et al., 2023; Xie et al., 2019), point cloud approximation (Mérigot et al., 2021),
and data augmentation (Alvarez-Melis & Fusi, 2020; Flamary et al., 2016). In this work, we focus
on OT-based generative modeling. During its early stages, WGAN (Arjovsky et al., 2017) and its
variants (Gulrajani et al., 2017; Petzka et al., 2018; Liu et al., 2019; Miyato et al., 2018) introduced
OT theory to define loss functions in GANs (Goodfellow et al., 2020) (OT Loss). More precisely,
OT-based Wasserstein distance is introduced for measuring a distance between data and generated
distributions. These approaches have shown relative stability and improved performance compared
to the vanilla GAN (Gulrajani et al., 2017). However, these models still face challenges, such as an
unstable training process and limited expressivity (Sanjabi et al., 2018; Mescheder et al., 2018).

Recently, an alternative approach has been introduced in OT-based generative modeling. These
works consider OT problems between noise prior and data distributions, aiming to learn the transport
map between them (An et al., 2020a;b; Fan et al., 2022) (OT Map). This transport map serves as a
generative model because it moves a noise sample into a data sample. In this context, two noteworthy
methods have been proposed: OTM (Rout et al., 2022) and UOTM (Choi et al., 2023a). Interestingly,
these two algorithms present similar adversarial training algorithms as previous OT Loss approaches,
like WGAN, but with additional cost function and composition with convex functions (Eq. 5 and 8).
These models, especially UOTM, demonstrated promising outcomes, particularly in terms of stability
in convergence and performance. Nevertheless, despite the success of OT Map approaches, there is a
lack of understanding about why they achieve such high performance and what their limitations are.

(i) In this paper, we propose a unified framework that integrates previous OT Loss and OT Map
approaches. Since both of these approaches utilize GAN-like adversarial training, we collectively
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refer to them as OT-based GANs. (ii) Utilizing this framework, we conduct a comprehensive analysis
of previous OT-based GANs for an in-depth analysis of each constituent factor of OT Map. Our
analysis reveals that the cost function mitigates the mode collapse problem, and the incorporation of
a strictly convex function into discriminator loss is beneficial for the stability of the algorithm. (iii)
Moreover, we propose a straightforward but novel method for improving the previous best-performing
OT-based GANs, i.e., UOTM. Our method involves a gradual up-weighting of divergence terms in
the Unbalanced Optimal Transport problem. In this respect, we refer to our model as UOTM with
Scheduled Divergence (UOTM-SD). This gradual up-weighting of divergence terms in UOTM-SD
leads to the convergence of the optimal transport plan from the UOT problem toward that of the OT
problem. Our UOTM-SD outperforms UOTM and significantly improves the sensitivity of UOTM to
the cost-intensity hyperparameter. Our contributions can be summarized as follows:

• We introduce an integrated framework that encompasses previous OT-based GANs.
• We present a comparative analysis of these OT-based GANs to elucidate the role of each component.
• We propose a simple and well-motivated modification to UOTM that improves both generation

results and τ -robustness of UOTM for the cost function c(x, y) = τ∥x− y∥22.

Notations Let X , Y be compact Polish spaces and µ and ν be probability distributions on X and
Y , respectively. Assume that these probability spaces satisfy some regularity conditions described
in Appendix A. We denote the prior (source) distribution as µ and data (target) distributions as ν.
M+(X × Y) represents the set of positive measures on X × Y . For π ∈ M+(X × Y), we denote
the marginals with respect to X and Y as π0 and π1. Π(µ, ν) denote the set of joint probability
distributions on X ×Y whose marginals are µ and ν, respectively. For a measurable map T : X → Y ,
T#µ denotes the associated pushforward distribution of µ. c(x, y) refers to the transport cost function
defined on X ×Y . In this paper, we assume X ,Y ⊂ Rd and the quadratic cost c(x, y) = τ∥x− y∥22,
where τ is a given positive constant. For a detailed explanation of assumptions, see Appendix A.

2 BACKGROUND AND RELATED WORKS

In this section, we introduce several OT problems and their equivalent forms. Then, we provide an
overview of various OT-based GANs, which will be the subject of our analysis.

Kantorovich OT Kantorovich (1948) formulated the OT problem through the cost-minimizing
coupling π ∈ Π(µ, ν) between the source distribution µ and the target distribution ν as follows:

C(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×Y

c(x, y) dπ(x, y)

]
, (1)

Under mild assumptions, this Kantorovich problem can be reformulated into several equivalent forms,
such as the dual (Eq. 2) and semi-dual (Eq. 3) formulation (Villani et al., 2009):

C(µ, ν) = sup
u(x)+v(y)≤c(x,y)

[∫
X
u(x) dµ(x) +

∫
Y
v(y) dν(y)

]
, (2)

= sup
v∈L1(ν)

[∫
X
vc(x) dµ(x) +

∫
Y
v(y) dν(y)

]
, (3)

where u and v are Lebesgue integrable with respect to measure µ and ν, i.e., u ∈ L1(µ) and
v ∈ L1(ν), and the c-transform vc(x) := infy∈Y (c(x, y)− v(y)). For a particular case where the
cost c(·, ·) is a distance function, i.e., the Wasserstein-1 distance, then u = −v and u is 1-Lipschitz
(Villani et al., 2009). In such case, we call Eq. 2 a Kantorovich-Rubinstein duality.

OT Loss in GANs WGAN (Arjovsky et al., 2017) introduced the Wasserstein-1 distance to define
a loss function in GAN. This Wasserstein distance serves as a distance measure between generated
distribution and data distribution. From Kantorovich-Rubinstein duality, the optimization problem
for WGAN is given as follows:

Lvϕ,Tθ
= sup

∥vϕ∥L≤1

inf
Tθ

[
−
∫
X
vϕ (Tθ(x)) dµ(x) +

∫
Y
vϕ(y) dν(y)

]
, (4)
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where the potential (critic) vϕ is 1-Lipschitz, i.e., ∥vϕ∥L ≤ 1, and Tθ is a generator. WGAN-GP
(Gulrajani et al., 2017) suggested a gradient penalty regularizer to enhance the stability of WGAN
training. For optimal coupling π∗, the optimal potential v∗ϕ satisfies ∥∇vϕ(ŷ)∥2 = 1 π∗-almost surely,
where ŷ = tTθ(x) + (1− t)y for some 0 ≤ t ≤ 1 with (Tθ(x), y) ∼ π∗. WGAN-GP exploits this
optimality condition by introducing R(x, y) = (∥∇vϕ(ŷ)∥2 − 1)

2 as the penalty term.

OT Map as Generative model Parallel to OT Loss approaches, there has been a surge of research
on directly modeling the optimal transport map between the input prior distribution and the real
data distribution (Rout et al., 2022; An et al., 2020a;b; Makkuva et al., 2020; Yang & Uhler, 2019;
Choi et al., 2023a). In this case, the optimal transport map serves as the generator itself. In
particular, Rout et al. (2022) and Fan et al. (2022) leverage the semi-dual formulation (Eq. 3) of
the Kantorovich problem for generative modeling. Specifically, these models parametrize v =
vϕ in Eq. 3 and represent its c-transform vc through the transport map1 Tθ : X → Y, x 7→
arg infy∈Y [c(x, y)− v (y)]. Then, we obtain the following optimization problem:

Lvϕ,Tθ
= sup

vϕ

[∫
X
inf
Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))] dµ(x) +

∫
Y
vϕ(y) dν(y)

]
. (5)

Intuitively, Tθ and vϕ serve as the generator and the discriminator of a GAN. For convenience, we
denote the optimization problem of Eq. 5 as an OT-based generative model (OTM) (Fan et al., 2022).
Note that, if we set c = 0 and introduce a 1-Lipschitz constraint on vϕ, this objective has the same
form as WGAN (Eq. 4). In OT map models, the quadratic cost is usually employed.

Recently, Choi et al. (2023a) extended OTM by leveraging the semi-dual form of the Unbalanced
Optimal Transport (UOT) problem (Liero et al., 2018). UOT extends the OT problem by relaxing
the strict marginal constraints using the Csiszàr divergences DΨi (See the Appendix A for precise
definition). Formally, the UOT problem (Eq. 6) and its semi-dual form (Eq. 7) are defined as follows:

Cub(µ, ν) = inf
π∈M+(X×Y)

[∫
X×Y

c(x, y) dπ(x, y) +DΨ1
(π0|µ) +DΨ2

(π1|ν)
]
, (6)

= sup
v∈C(Y)

[∫
X
−Ψ∗

1 (−vc(x))) dµ(x) +

∫
Y
−Ψ∗

2(−v(y)) dν(y)

]
, (7)

where C(Y) denotes a set of continuous functions over Y . Here, the entropy function Ψi : R → [0,∞]
is a convex, lower semi-continuous, and non-negative function, and Ψi(x) = ∞ for x < 0. Ψ∗

i
denotes its convex conjugate. Note that for non-negative Ψi, Ψ∗

i is a non-decreasinig convex
function. For simplicity, we assume Ψ∗

i (0) = 0, (Ψ∗
i )

′(0) = 1. The reason for this assumption will
be clarified in Sec 4. By using the same parametrization as in Eq. 5, we arrive at the following:

Lvϕ,Tθ
= inf

vϕ

[∫
X
Ψ∗

1

(
− inf

Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))]

)
dµ(x) +

∫
Y
Ψ∗

2 (−vϕ(y)) dν(y)

]
. (8)

We call such an optimization problem a UOT-based generative model (UOTM) (Choi et al., 2023a).

3 ANALYZING OT-BASED ADVERSARIAL APPROACHES

In this section, we suggest a unified framework for OT-based GANs (Sec 3.1). Using this unified
framework, we compare the dynamics of each algorithm through various experimental results (Sec
3.2). This comparative ablation study delves into the impact of employing strictly convex g1, g2
within discriminator loss, and the influence of cost function c(x, y) = τ∥x− y∥22. Furthermore, we
present an additional explanation for the success of UOTM (Sec 3.2.3).

3.1 A UNIFIED FRAMEWORK

We present an integrated framework, Algorithm 1, that includes various OT-based adversarial net-
works. These models are derived by directly parameterizing the potential and generator, utilizing the

1Note that this parametrization does not precisely characterize the optimal transport map (Rout et al., 2022).
The optimal transport map satisfies this relationship, but not all functions satisfying this condition are transport
maps. However, investigating a better parametrization of the optimal transport is beyond the scope of this work.
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Algorithm 1 Unified training algorithm

Require: Functions g1, g2, g3. Generator network Tθ and the discriminator network vϕ. The number
of iterations per network Kv , KT . Total iteration number K. Regularizer R with regularization
hyperparameter λ.

1: for k = 0, 1, 2, . . . ,K do
2: for k = 1 to Kv do
3: Sample a batch X ∼ µ, Y ∼ ν, z ∼ N (0, I).
4: ŷ = Tθ(x, z).
5: Lv = 1

|X|
∑

x∈X g1 (−c (x, ŷ) + vϕ (ŷ)) +
1

|Y |
∑

y∈Y g2(−vϕ(y)) + λR(y, ŷ).
6: Update ϕ by using the loss Lv .
7: end for
8: for k = 1 to KT do
9: Sample a batch X ∼ µ, z ∼ N (0, I).

10: LT = 1
|X|

∑
x∈X g3((c (x, Tθ(x, z))− vϕ(Tθ(x, z)))).

11: Update θ by using the loss LT .
12: end for
13: end for

dual or semi-dual formulations of OT or UOT problems. Specifically, Algorithm 1 can represent the
following models, depending on the choice of the cost function c(x, y), the convex functions g1, g2, g3,
and the regularization term R. (Note that g1, g2 correspond to Ψ∗

1,2 in Eq 8.) Here, we denote two
convex functions, Identity and Softplus, as Id(x) = x and SP(x) = 2 log(1 + ex)− 2 log 2.2 Also,
the Gaussian noise z represents the auxiliary variable and is different from the input prior noise
x ∼ µ. This auxiliary variable z is introduced to represent the stochastic transport map Tθ in the OT
map models, such as UOTM.

• WGAN (Arjovsky et al., 2017) if c ≡ 0 and g1 = g2 = g3 = Id.3

• WGAN-GP (Gulrajani et al., 2017) if c ≡ 0, g1 = g2 = g3 = Id, and R a gradient penalty.
• OTM (Rout et al., 2022) if τ > 0 and g1 = g2 = g3 = Id.
• UOTM (Choi et al., 2023a) if τ > 0, g1 = g2 = SP and g3 = Id.
• UOTM w/o cost if τ = 0, g1 = g2 = SP and g3 = Id.

Table 1: Unified Framework for
OT-based GANs (g3 = Id).

g1 = g2 = Id g1 = g2 = SP

τ = 0 WGAN UOTM w/o cost
τ > 0 OTM UOTM

In this work, we conduct a comprehensive comparative analy-
sis of OT-based GANs: WGAN, OTM, UOTM w/o cost, and
UOTM (Table 1). This comparative analysis serves as an abla-
tion study of two building blocks of OT-based GANs. Thus, we
focus on investigating the influence of cost c(·, ·) and g1, g2.

3.2 COMPARATIVE ANALYSIS OF OT-BASED GANS

In this section, we present qualitative and quantitative generation results of OT-based GANs on both
toy and CIFAR-10 (Krizhevsky et al., 2009) datasets. We particularly discuss how the algorithms
differ with respect to functions g1&g2, and the cost c(·, ·). This analysis is conducted in terms of the
well-known challenges associated with adversarial training procedures, namely, Unstable training
and Mode collapse/mixture. (See Appendix C for the introduction of these challenges.) Moreover,
we provide an in-depth analysis of the underlying reasons behind these observed phenomena.

Experimental Settings For visual analysis of the training dynamics, we evaluated these models on
2D multivariate Gaussian distribution, where the source distribution µ is a standard Gaussian. The
network architecture is fixed for a fair comparison. Note that we impose R1 regularization (Roth
et al., 2017) to WGAN and OTM because they diverge without any regularizations. Moreover, to
investigate the scalability of the algorithms, we assessed these models on CIFAR-10 with various
network architectures and hyperparameters. See Appendix B for detailed experiment settings.

2The softplus function is scaled and translated to satisfy SP(0) = 0 and SP′(0) = 1.
3For the vanilla WGAN, we employed a weight clipping strategy following Arjovsky et al. (2017).
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Figure 1: Comparison of Training Dynamics between OT-based GANs. Left: Visualization of
generated samples (blue) and data samples (red) for every 6K iterations. Right: Training loss of the
generator (Tθ Loss) and discriminator (vϕ Loss) for each algorithm.

Table 2: Quantitative Evaluation of OT-
based GANs on CIFAR-10.

Model Metric

FID (↓) Precision (↑) Recall (↑)

WGAN 48.8 0.45 0.02
WGAN-GP 4.5 0.71 0.55

OTM 4.3 0.71 0.49

UOTM w/o cost 19.7 0.80 0.13
UOTM (SP) 2.7 0.78 0.62
UOTM (KL) 2.9 - -

Figure 2: Ablation Study
on Regularizer Intensity λ.

Figure 3: Ablation Study
on Cost Intensity τ .

3.2.1 EFFECT OF STRICTLY CONVEX g1 AND g2

Experimental Results Fig 1 illustrates how each model evolves during training for each 6K
iterations. To investigate the effect of g1 and g2, we compare the models with g1 = g2 = Id (WGAN,
OTM) and g1 = g2 = Sp (UOTM, UOTM w/o cost). When g1 = g2 = Id, WGAN and OTM initially
appear to converge in the early stages of training. However, as training progresses, the loss highly
fluctuates, leading to divergent results. Interestingly, adding a gradient penalty regularizer to WGAN
(WGAN-GP) is helpful in addressing this loss fluctuation. Conversely, when g1 = g2 = Sp, UOTM
and UOTM w/o cost consistently perform well, with the loss steadily converging during training.
From these observations, we interpret that setting g1, g2 to Sp functions, which are strictly convex,
contribute to the stable convergence of OT-based GANs.

Moreover, Tab 2 presents CIFAR-10 generation results of OT-based GANs with NCSN++ (Song et al.,
2021b) backbone architecture (See the Appendix D.2 for DCGAN (Radford et al., 2015) backbone
results). Here, we additionally compared UOTM (KL) following Choi et al. (2023a). UOTM (KL)
serves as another example of strictly convex g1, g2, where g1 = g2 = ex − 1. 4 As in the toy dataset,
UOTM w/o cost and UOTM achieve better FID scores than their algorithmic counterparts with respect
to g1, g2, i.e., WGAN and OTM, respectively. The precision and recall metric (Kynkäänniemi et al.,
2019) results will be examined regarding the cost function in Sec 3.2.2. The additional stability of
UOTM can be observed in an ablation study on the regularizer intensity λ (Fig 2). UOTM model
provides more robust FID results compared to OTM.

4Here, UOTM (SP) outperformed the original UOTM (KL). Since UOTM defines g1, g2 as any non-
decreasing and convex functions, we adopt UOTM (SP) as the default UOTM model throughout this paper.
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(a) Small τ (b) Optimal τ (c) Large τ

Figure 4: Qualitative Comparison of Generated Samples from UOTM. Left: When τ is too small
(τ = 0.0002). Middle: When τ is optimal (τ = 0.001). Right: When τ is too large (τ = 0.005). On
Left, we reordered randomly generated samples to gather similar-looking samples. When τ is large,
the samples appear noisy, and when τ is small, the generated samples show a mode collapse problem.

Effect of g1 and g2 in Optimization We observed that the introduction of strictly convex functions,
such as SP or g(x) = ex − 1, into g1, g2 contributes to more stable training of OT-based GANs. We
explain this enhanced stability in terms of the adaptive optimization of the potential network vϕ.
From the potential loss function Lv in line 5 of Algorithm 1, we can express the gradient descent
update for the potential function vϕ with a learning rate γ as follows:

ϕ− γ∇ϕLvϕ = ϕ− γ

|X|
∑
x∈X

g′1(−l̂(x))︸ ︷︷ ︸
=:ŵ(x)

∇ϕvϕ(ŷ) +
γ

|Y |
∑
y∈Y

g′2 (−vϕ(y))︸ ︷︷ ︸
=:w(y)

∇ϕvϕ(y), (9)

where l̂(x) = c(x, ŷ)− vϕ(ŷ). Note that the generator loss LT = 1
|X|

∑
x∈X l̂(x), since we assume

g3 = Id. Here, w and ŵ in Eq. 9 serve as sample-wise weights for the potential gradient ∇ϕvϕ.

We interpret the role of g1, g2 as mediating the balance between T and v. Suppose the generator
dominates the potential for certain x, i.e., l̂(x) is small. In this case, because g′1 is a strictly increasing
function, the weight ŵ(x) becomes large for this sample x, counterbalancing the dominant generator.
Similarly, consider the weight of the true data sample w(y). Note that the goal of potential is to
assign a high value to real data y and a low value to generated samples ŷ. Assume that the potential is
not good at discriminating certain y, which means that v(y) is small. Then, the weight w(y) becomes
large for this sample y as above. We hypothesize that this failure-aware adaptive optimization of the
potential vϕ stabilizes the training procedure, regardless of the regularizer.

3.2.2 EFFECT OF COST FUNCTION

Experimental Results To examine the effect of the cost function c(x, y) = τ∥x−y∥22, we compare
the models with τ = 0 (WGAN, UOTM w/o cost) and τ > 0 (OTM, UOTM) in Fig 1. When τ = 0,
both WGAN and UOTM w/o cost exhibit a mode collapse problem. These models fail to fit all modes
of the data distribution. On the other hand, WGAN-GP shows a mode mixture problem. WGAN-GP
generates inaccurate samples that lie between the modes of data distribution. In contrast, when τ > 0,
both OTM and UOTM avoid model collapse and mixture problems. In the initial stages of training,
OTM succeeds in capturing all modes of data distribution, until training instability occurs due to loss
fluctuation. UOTM achieves the best distribution fitting by exploiting the stability of g1, g2 as well.
Moreover, Table 2 provides a quantitative assessment of the mode collapse problem on CIFAR-10.
The results are consistent with our analysis on the Toy datasets (Fig 1). The recall metric assesses
the mode coverage for each model. In this regard, the introduction of the cost function improves the
recall metric for each model: from WGAN (0.02) to OTM (0.49) and from UOTM w/o cost (0.13) to
UOTM (0.62). The precision metric evaluates the faithfulness of generated images for each model.
UOTM w/o cost achieves the best precision score, but the recall metric is significantly lower than
UOTM. This result shows that UOTM w/o cost exhibited the mode collapse problem. From these
results, we interpret that the cost function c(x, y) plays a crucial role in preventing mode collapse
by guiding the generator towards cost-minimizing pairs.

Furthermore, we analyze the influence of the cost function intensity τ by performing an ablation
study on τ on CIFAR-10 (Fig 3). Interestingly, the results are quite different between OTM and
UOTM. When we compare the best-performing τ , UOTM achieves much better FID scores than
OTM (τ = 10× 10−4). However, when τ is excessively small or large, the performance of UOTM
deteriorates severely. On the contrary, OTM maintains relatively stable results across a wide range of
τ . The deterioration of UOTM can be understood intuitively by examining the generated results in
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(a) WGAN (b) UOTM w/o cost (c) OTM (d) UOTM

Figure 5: Visualization of Generator Tθ. The gray lines illustrate the generated pairs, i.e., the
connecting lines between x (green) and Tθ(x) (blue). The red dots represent the training data samples.

(a) WGAN (b) UOTM w/o cost (c) OTM (d) UOTM

Figure 6: Distribution of the absolute value of Average Rate of Change (ARC) of potential
|vϕ(y)−vϕ(x)|

∥y−x∥ for every 5K iterations. Due to the equi-Lipschitz property, |ARC| of UOTM potential
is stable during training. This stability contributes to the stable training of UOTM.

Fig 4. When τ is too large, UOTM tends to produce noise-like samples because the cost function
dominates the other divergence terms DΨi

within the UOT objective (Eq. 6). When τ is too small,
UOTM shows a mode collapse problem because the negligible cost function fails to prevent the mode
collapse. Conversely, as inferred from OT objective (Eq. 1), the optimal pair (v⋆, T ⋆) of OTM remains
consistent regardless of variations in τ . Hence, OTM presents relatively consistent performance
across changes in τ (Fig 3). In Sec 4, we propose a method that enhances the τ -robustness of UOTM
while also improving its best-case performance.

Effect of Cost in Mode Collapse/Mixture In Fig 1, the OT-based GANs with the cost term (OTM,
UOTM) exhibited a significantly lower occurrence of mode collapse/mixture, compared to the models
without the cost term. This observation proves that the cost function plays a regularization role
in OT-based GANs, helping to cover all modes within the data distribution. This cost function
encourages the generator T to minimize the quadratic error between input x and output T (x). In
other words, the generator T is indirectly guided to transport each input x to a point, that is
within the data distribution support and close to x. Fig 5 visualizes the transported pair (x, T (x))
by the gray line that connects x and T (x). Fig 5 demonstrates that this cost term induces OTM and
UOTM to spread the generated samples (in an optimal way). (See Appendix D.1 for a comprehensive
comparison of generators, including WGAN-GP, UOTM-SD, and GT transport map.)

3.2.3 ADDITIONAL ADVANTAGE OF UOTM

Lipshitz Continuity of UOTM Potential We offer an additional explanation for the stable con-
vergence observed in UOTM. In OT-based GANs, we approximate the generator and potential with
neural networks. However, since neural networks can only represent continuous functions, it is crucial
to verify the regularity of these target functions, such as Lipschitz continuity. If these target functions
are not continuous, the neural network approximation may exhibit highly irregular behavior. Theorem
3.1 proves that under minor assumptions on g1 and g2 in UOTM (Choi et al., 2023a), there exists
unique optimal potential v⋆ and it satisfies Lipschitz continuity. (See Appendix A for the proof.)

Theorem 3.1. Let g1 and g2 be real-valued functions that are non-decreasing, bounded below,
differentiable, and strictly convex. Assuming the regularity assumptions in Appendix A, there exists a
unique Lipschitz continuous optimal potential v⋆ for Eq. 7. Moreover, for the semi-dual maximization
objective −Lv (Eq. 7),

Γ := {v ∈ C(Y) : Lv ≤ 0, vcc = v} , (10)

is equi-bounded and equi-Lipschitz.
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Table 3: Image Generation on CIFAR-10. † indicates
the results conducted by ourselves.

Class Model FID (↓)

GAN
SNGAN+DGflow (Ansari et al., 2020) 9.62

StyleGAN2 w/o ADA (Karras et al., 2020) 8.32
StyleGAN2 w/ ADA (Karras et al., 2020) 2.92

DDGAN (Xiao et al., 2021) 3.75
RGM (Choi et al., 2023b) 2.47

Diffusion

DDPM (Ho et al., 2020) 3.21
Score SDE (VE) (Song et al., 2021b) 2.20
Score SDE (VP) (Song et al., 2021b) 2.41
DDIM (50 steps) (Song et al., 2021a) 4.67

CLD (Dockhorn et al., 2022) 2.25
LSGM (Vahdat et al., 2021) 2.10

OT-based

WGAN (Arjovsky et al., 2017) 55.20
WGAN-GP(Gulrajani et al., 2017) 39.40

OTM † (Rout et al., 2022) 4.15
UOTM (Choi et al., 2023a) 2.97

UOTM-SD (Cosine)† 2.57
UOTM-SD (Linear)† 2.51
UOTM-SD (Step)† 2.78

Table 4: Image Generation on CelebA-HQ.

Class Model FID (↓)

OT-based

OTM† 13.56
UOTM (KL) 6.36
UOTM (SP)† 6.31
UOTM-SD† 5.99

Table 5: Comparison of τ -robustness.

Note that the semi-dual objective Lv can be derived by assuming the optimality of Tθ for given v,
i.e., Tθ(x) ∈ arg infy∈Y [c(x, y)− v (y)]. Also, Theorem 3.1 shows that the set of valid5 potential
candidates Γ is equi-Lipschitz, i.e., there exists a Lipshitz constant LΓ that all v ∈ Γ are LΓ-Lipschitz.
This equi-Lipschitz continuity also explains the stable training of UOTM over OTM. The
condition Lv ≤ 0 in Γ is not a tough condition for the neural network vϕ to satisfy during training,
since Lv = 0 when v ≡ 0 6. Therefore, during training, the potential network vϕ would remain within
the domain of LΓ-Lipshitz functions. In other words, vϕ would not express any drastic changes for
all input y. Furthermore, the target of training, v⋆, also stays within this set of functions. Hence, we
can expect stable convergence of the potential network as training progresses. Note that Theorem 3.1
is fundamentally different from the 1-Lipschitz constraint of WGAN. WGAN involves constrained
optimization over a 1-Lipschitz potential. In contrast, Theorem 3.1 states that, under unconstrained
optimization, the potential networks vϕ with only minor conditions satisfy equi-Lipschitzness.

Experimental Validation We tested whether this equi-Lipschitz continuity of UOTM potential vϕ
is observed during training in practice. In particular, we randomly choose data a ∈ Y and b ∼ ν on
2D experiment and visualize the Average Rate of Change (ARC) of potential |vϕ(b)−vϕ(a)|

∥b−a∥ . Fig 6
shows boxplots of an ARC of ten thousand pairs of (a, b) for every 10K iterations. As shown in Fig 6,
only UOTM shows a bounded ARC, and others, especially WGAN and OTM, diverge as the training
progresses. This result indirectly shows the potential network in UOTM mostly remains within the
equi-Lipschitz set during training. Furthermore, we can conjecture that the highly irregular behavior
of potential networks in other models could potentially disrupt stable training processes.

4 TOWARDS THE STABLE OT MAP

In this section, we suggest a straightforward yet novel method to enhance the τ -robustness of UOTM,
while improving the best-case performance. Intuitively, our idea is to gradually adjust the transport
map in the UOT problem towards the transport map in the OT problem. Note that the OT problem of
OTM assumes a hard constraint on marginal matching.

Motivation The analysis in Sec 3 showed that the semi-dual form of the UOT problem, i.e., UOTM,
provides several advantages over other OT-based GANs. However, Fig 4 showed that UOTM is

5The optimal potential satisfies the c-concavity condition vcc = v. For the quadratic cost, this is equivalent
to the condition that y 7→ τ

2
|y|2 − v(y) is convex and lower semi-continuous (Santambrogio, 2015).

6In practice, the potential loss Lv is always Lv < 0 after only 100 iterations.
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τ -sensitive. In this respect, Choi et al. (2023a) proved that the upper bound of marginal discrepancies
for the optimal π⋆ in the UOT problem (Eq. 6) is linearly proportional to τ :

DΨ1
(π⋆

0 |µ) +DΨ2
(π⋆

1 |ν) ≤ τW2
2 (µ, ν) for c(x, y) = τ∥x− y∥22. (11)

When the divergence term is minor (Large τ ), the cost term prevents the mode collapse problem
(Sec 3.2.2), but the model fails to match the target distribution, generating noisy samples (Eq. 11).
Conversely, when the divergence term is dominant (Small τ ), the model should theoretically exhibit
improved target distribution matching (Eq. 11, Theorem 4.1). However, the mode collapse problem
disturbs the optimization process in practice (Sec 3.2.2). In this regard, we introduce a method that
can leverage the advantages of both regimes: preventing mode collapse with minor divergence
and improving distribution matching with dominant divergence. Intuitively, we start training
with a smaller divergence term to mitigate mode collapse. Subsequently, as training progresses, we
gradually increase the influence of the divergence term to achieve better data distribution matching.

Method Formally, we consider the following α-scaled UOT problem (α-UOT) Cα
ub(µ, ν) for α ≥ 0

(Eq. D.4). Note that this α-UOT problem recovers the OT problem C(µ, ν) when α → ∞ if µ, ν
have equal mass (Fatras et al., 2021).

Cα
ub(µ, ν) = inf

πα∈M+(X×Y)

[∫
X×Y

c(x, y) dπα(x, y) + αDΨ1(π
α
0 |µ) + αDΨ2(π

α
1 |ν)

]
. (12)

Motivated by this fact, we suggest a monotone-increasing scheduling scheme during training for α to
achieve the stable convergence of the UOT transport map πα towards the OT transport map. Because
αDΨi = DαΨi and (αΨi)

∗(x) = αΨ∗
i (x/α), the learning objective of α-scaled UOTM are given as

follows:

Lα
vϕ,Tθ

= inf
vϕ

[∫
X
αΨ∗

1

(
− 1

α
inf
Tθ

[c(x, Tθ(x))− v (Tθ(x))]

)
dµ(x) +

∫
Y
αΨ∗

2

(
− 1

α
v(y)

)]
.

(13)
Note that, given our assumption that Ψ∗

i is C1, (αΨi)
∗ uniformly converges to Id for every compact

domain, since Ψ∗
i (0) = 0, (Ψ∗

i )
′(0) = 1. Therefore, this α-scheduling can be intuitively understood

as a gradual process of straightening the strictly convex Ψ∗
i function towards the identity function Id,

so that Lα
vϕ,Tθ

converges to OTM (Tab 1). We refer to this UOTM with α-scheduling as UOTM with
Scheduled Divergence (UOTM-SD).

Convergence Theorem 4.1 proves that the optimal transport plan of the α-scaled UOT problem
converges to that of the OT problem as α → ∞. However, one limitation of this theorem is that it
shows the convergence of transport plan π, but does not address the convergence of transport map T .
Theorem 4.1. Assume the entropy functions Ψ1,Ψ2 are strictly convex and finite on (0,∞). Then,
the optimal transport plan πα,⋆ of the α-scaled UOT problem Cα

ub(µ, ν) (Eq. 6) weakly converges to
the optimal transport plan π⋆ of the OT problem C(µ, ν) (Eq. 1) as α goes to infinity.

α-schedule Settings We evaluated three scheduling schemes for α. For the schedule parameters
αmax ≥ αmin > 0, the assessed scheduling schemes are as follows:

• Cosine : Apply Cosine scheduling from αmin to αmax.
• Linear : Apply Linear scheduling from αmin to αmax.
• Step : At each titer iterations, multiply α by 2 until α = αmax.

Note that the standard cosine scheduling technique (Loshchilov & Hutter, 2017) typically works by
decreasing the target parameters. In this case, we multiplied the scheduling term by (−1).

Generation Results We tested our UOTM-SD model on CIFAR-10 (32 × 32) and CelebA-HQ
(256 × 256) datasets. For quantitative evaluation, we adopted FID (Heusel et al., 2017) score.
Tab 3 shows that our UOTM-SD improves UOTM (Choi et al., 2023a) across all three scheduling
schemes. Our UOTM-SD achieves a FID of 2.51 under the best setting of linear scheduling with
(αmin, αmax) = (1/5, 5) and τ = 1× 10−3, surpassing all other OT-based methods. (See Appendix
D.5 for the qualitative comparison of generated samples.) We tested UOTM-SD with linear scheduling,
which performed best on CIFAR-10, on CelebA-HQ. Our UOTM-SD outperformed the previous
best-performing OT-based model (UOTM) (Tab 4). We added a more extensive comparison with
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other generative models in Appendix D.2. (Due to page constraints, we included the ablation study
regarding schedule intensity, i.e., (αmin, αmax), and the schedule itself, i.e., αmin = αmax, in
Appendix D.4.)

τ Robustness We assessed the robustness of our model regarding the intensity parameter τ of the
cost function c(x, y). Specifically, we tested whether our UOTM-SD resolves the τ -sensitivity of
UOTM, observed in Fig 3. Fig 5 displays FID scores of UOTM-SD, UOTM, and OTM for various
values of τ . Note that we employed harsh conditions for τ -robustness, where τmax/τmin = 25.
We adopted αmin = 1/5 and αmax = 5 for each UOTM-SD. All three versions of UOTM-SD
outperform UOTM and OTM under the same τ . While UOTM shows large variation of FID scores
depending on τ , ranging from 2.71 to 218.02, UOTM-SD provides much more stable results. (See
Appendix D.2 for table results.)

5 CONCLUSION

In this paper, we integrated and analyzed various OT-based GANs. Our analysis unveiled that
establishing g1 and g2 as lower-bounded, non-decreasing, and strictly convex functions significantly
enhances training stability. Moreover, the cost function c contributes to alleviating mode collapse and
mixture problems. Nevertheless, UOTM, which leverages these two factors, exhibits τ -sensitivity. In
this regard, we suggested a novel approach that addresses this τ -sensitivity of UOTM while achieving
improved best-case results. However, there are some limitations to our work. Firstly, we fixed g3 = Id
during our analysis. Also, our convergence theorem for α-scaled UOT guarantees the convergence
of the transport plan, but not the transport map. Exploring these issues would be promising future
research.

ACKNOWLEDGEMENTS

This work was supported by KIAS Individual Grant [AP087501] via the Center for AI and Natural
Sciences at Korea Institute for Advanced Study, the NRF grant[2021R1A2C3010887], and MSIT/
IITP[NO.2021-0-01343, Artificial Intelligence Graduate School Program(SNU)].

REPRODUCIBILITY

To ensure the reproducibility of this work, we submitted the source code in the supplementary
materials. The implementation details of all experiments are clarified in Appendix B. Moreover, the
assumptions and complete proofs for Theorem 3.1 and 4.1 are included in Appendix A.

REFERENCES

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428–21439, 2020.

Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng Gu. Ae-ot: A
new generative model based on extended semi-discrete optimal transport. ICLR, 2020a.

Dongsheng An, Yang Guo, Min Zhang, Xin Qi, Na Lei, and Xianfang Gu. Ae-ot-gan: Training gans
from data specific latent distribution. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pp. 548–564. Springer, 2020b.

Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat. A contrastive learning approach for training
variational autoencoder priors. Advances in neural information processing systems, 34:480–493,
2021.

Abdul Fatir Ansari, Ming Liang Ang, and Harold Soh. Refining deep generative models via discrimi-
nator gradient flow. arXiv preprint arXiv:2012.00780, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

10



Published as a conference paper at ICLR 2024

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in
generative modeling and domain adaptation. Advances in Neural Information Processing Systems,
33:12934–12944, 2020.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semi-dual
formulation of unbalanced optimal transport. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023a.

Jaemoo Choi, Yesom Park, and Myungjoo Kang. Restoration based generative models. In Proceedings
of the 40th International Conference on Machine Learning, volume 202. PMLR, 2023b.

Imre Csiszár. A class of measures of informativity of observation channels. Periodica Mathematica
Hungarica, 2(1-4):191–213, 1972.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. The International Conference on Learning Representations, 2022.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Jiaojiao Fan, Shu Liu, Shaojun Ma, Yongxin Chen, and Hao-Min Zhou. Scalable computation
of monge maps with general costs. In ICLR Workshop on Deep Generative Models for Highly
Structured Data, 2022.
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A PROOFS

Notations and Assumptions Let X and Y be compact complete metric spaces which are convex
subsets of Rd, and µ, ν be positive Radon measures of the mass 1. For a measurable map T : X → Y ,
T#µ denotes the associated pushforward distribution of µ. c(x, y) refers to the transport cost function
defined on X × Y . We assume X ,Y ⊂ Rd and the quadratic cost c(x, y) = τ∥x− y∥22, where τ is
a given positive constant. Let Ψ1 and Ψ2 be an entropy function, i.e. Ψi : R → [0,∞] is a convex,
lower-semi continuous, non-negative function such that Ψi(1) = 0, and Ψi(x) = ∞ for x < 0. Let
g1 := Ψ∗ and g2 := Ψ∗ be a convex, differentiable, non-decreasing function defined on R. We
assume that g1(0) = g2(0) = 0 and g′1(0) = g′2(0) = 1.

Csiszàr Divergence Let Ψ be an entropy function. The Csiszàr divergence induced by Ψ (or
Ψ-divergence) between µ and ν is defined as follows:

DΨ (µ|ν) =
∫
Y
Ψ

(
dµ

dν

)
dν +Ψ′(∞)µ⊥(ν), (14)

where µ = dµ
dν ν + µ⊥(ν) is a Radon-Nikodym decomposition of µ with respect to ν.

Theorem A.1. Let g1 and g2 be real-valued functions that are non-decreasing, bounded below,
differentiable, and strictly convex. Assuming the regularity assumptions in Appendix A, there exists a
unique Lipschitz continuous optimal potential v⋆ for Eq. 7. Moreover, for the maximization objective
−Lv of Eq. 7,

Γ := {v ∈ C(Y) : Lv ≤ 0, vcc = v} , (15)
is equi-bounded and equi-Lipschitz.

Proof. Let

L(v) =
∫
X
g1 (−vc(x))) dµ(x) +

∫
Y
g2(−v(y)) dν(y). (16)

Since L(0) = 0, the infimum of L(v) is non-positive. Thus, Γ is nonempty. We would like to prove
that the set Γ is equi-bounded and equi-Lipschitz, i.e., there exists a constant L > 0 such that for
every z ∈ Γ, vc|supp(µ) and v|supp(ν) are L-Lipschitz. Let A be the lower bound of functions g1 and
g2, i.e. A ≤ g1(x) and A ≤ g2(y) for x ∈ X and y ∈ Y , respectively. Furthermore, since X and
Y are compact, there exists M > 0 such that c(x, y) ≤ M for all (x, y) ∈ X × Y . Then, since
g1(x) ≥ Id(x),

0 ≥ L(v) ≥
∫
X
− inf

y∈Y
(c(x, y)− v(y)) dµ(x) +

∫
Y
g2(−v(y)) dν(y), (17)

≥ −M + sup
y∈Y

(v(y))︸ ︷︷ ︸
=:ṽ

+

∫
Y
g2(−v(y)) dν(y) ≥ −M + ṽ +A, (18)

which indicates that v(y) ≤ M − A for all y ∈ Y . Note that M nor A is dependent on the choice
of v. Thus, v ∈ Γ is equi-bounded above. Moreover, by using similar logic with respect to vc, we
can easily prove that v is also equibounded below. Consequently, by symmetricity, v and vc are
equi-bounded.

We now prove that there exists a uniform constant L such that for every z ∈ Γ, v is Lipschitz
continuous with constant L. Since v is bounded and vcc = v, there exists a point x(y) such that

v(y) = c(x(y), y)− vc(x(y)), (19)

and for every ỹ ∈ Y ,
v(ỹ) ≤ c(x(y), ỹ)− vc(x(y)). (20)

Subtracting the two previous inequalities gives,

v(ỹ)− v(y) ≤ c(x(y), ỹ)− c(x(y), y). (21)

Since c is Lipschitz continuous on the compact domain X ×Y , there exists a Lipshitz constant L that
satisfies |c(x(y), ỹ)− c(x(y), y)| ≤ L∥ỹ − y∥2. Thus,

|v(ỹ)− v(y)| ≤ L∥ỹ − y∥2. (22)
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To sum up, Γ is nonempty, equibounded, and equi-Lipschitz. Moreover, L(v) ≥ 2A, thus L(Γ) is
lower-bounded.

Now, we would like to prove the compactness of Γ. Take any sequence {vn}n∈N ⊂ Γ. Then, since Γ
is nonempty, equibounded, and equi-Lipschitz, we can obtain a uniformly convergent subsequence
{vnk

}k∈N → v by Arzelà-Ascoli theorem. Because vn(y) − τ∥y∥22 is concave for each vn ∈ Γ
from vcc = v (Santambrogio, 2015), v is also continuous and v(y)− τ∥y∥22 is concave. Thus, v is
c-concave, i.e. vcc = v. Now, to prove v ∈ Γ, we only need to prove Lv ≤ 0. Since {vnk

}k∈N → v
uniformly, it is easy to show that {vcnk

}k∈N → vc uniformly. Moreover, note that {vcnk
}k∈N is

equibounded. By applying the dominated convergence theorem (DCT), we can easily prove that
Lv ≤ 0. Thus, for any sequence of Γ, there exists a subsequence that converges to point of Γ (Bolzano-
Weierstrass property), which implies that Γ is compact. Finally, since L(Γ) is lower-bounded, there
exists a minimizer v⋆ ∈ Γ, i.e. L(v⋆) ≤ L(v) for all v ∈ Γ by compactness of Γ.

Now, we prove the uniqueness of the minimizer. Let K > 0 be a real value that |v| ≤ K and
|vc| ≤ K for every v ∈ Γ. There exists such K by the equiboundedness. Now, let CK denote the
collection of continuous functions which are bounded by K. Since g1 and g2 are strictly convex on
[−K,K], the following dual minimization problem becomes strictly convex:

inf
(u,v)∈CK(X )×CK(Y)

∫
X
g1 (−u(x))) dµ(x) +

∫
Y
g2(−v(y)) dν(y). (23)

Thus, there exists at most one solution. Because there exists a solution (v⋆c, v⋆), it is the unique
solution.

Theorem A.2. Assume the entropy functions Ψ1,Ψ2 are strictly convex and finite on (0,∞). Then,
the optimal transport plan πα,⋆ of the α-scaled UOT problem Cα

ub(µ, ν) (Eq. 6) weakly converges to
the optimal transport plan π⋆ of the OT problem C(µ, ν) (Eq. 1) as α goes to infinity.

Proof. Note that the α-scaled UOT problem Cα
ub(µ, ν) is equivalent to setting the cost intensity

τ → τ
α within the cost function c(x, y) = τ∥x− y∥22 of the standard UOT problem Cub(µ, ν):

πα,⋆ = arg infπα∈M+(X×Y)

[∫
X×Y

τ∥x− y∥22 dπα(x, y) + αDΨ1(π
α
0 |µ) + αDΨ2(π

α
1 |ν)

]
,

(24)

= arg infπ∈M+(X×Y)

[∫
X×Y

τ

α
∥x− y∥22 dπ(x, y) +DΨ1

(π0|µ) +DΨ2
(π1|ν)

]
. (25)

Choi et al. (2023a) proved that, in the standard UOT problem, the marginal discrepancies for the
optimal π⋆ are linearly proportional to the cost intensity. This relationship can be interpreted as
follows for the above πα,⋆:

DΨ1
(πα,⋆

0 |µ) +DΨ2
(πα,⋆

1 |ν) ≤ τ

α
W2

2 (µ, ν). (26)

Therefore, as α goes to infinity, the marginal distributions of πα,⋆ converge in the Csiszàr divergences
to the source µ and target ν distributions:

lim
α→∞

DΨ1
(πα,⋆

0 |µ) = lim
α→∞

DΨ2
(πα,⋆

1 |ν) = 0. (27)

The convergence in Csiszar divergence DΨi
for a strictly convex Ψi implies the convergence of

measures in Total Variation distance (Sason & Verdú, 2016; Csiszár, 1972). Then, this convergence
in Total Variation distance implies the weak convergence of measures. This can be easily shown as
follows: For any continuous and bounded f ∈ Cb(X ), we have∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣ = ∣∣∣∣∫ fd (µn − µ)

∣∣∣∣ = ∥f∥∞
∣∣∣∣∫ (f/∥f∥)d (µn − µ)

∣∣∣∣ , (28)

≤ ∥f∥∞ ∥µn − µ∥TV . (29)

Therefore, πα,⋆
0 and πα,⋆

1 weakly converges to µ and ν, respectively. Choi et al. (2023a) showed that
the optimal πα,⋆ of Eq. 25 becomes the optimal transport plan for the OT problem C(πα,⋆

0 , πα,⋆
1 ) for
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the same cost function c(x, y) = τ∥x− y∥22. (The optimal transport plan is invariant to the constant
scaling of the cost function). Moreover, since X ,Y are compact, c(x, y) is bound on X × Y . Thus,

lim inf
α→∞

∫
c(x, y) dπα,⋆ < ∞. (30)

Consequently, Theorem 5.20 from Villani et al. (2009) proves that πα,⋆ weakly converges to the
optimal transport plan π⋆ of the OT problem C(µ, ν) as α goes to infinity.

B IMPLEMENTATION DETAILS

For every implementation, the prior (source) distribution is a standard Gaussian distribution with the
same dimension as the data (target) distribution.

2D Experiments For mi = 12
(
cos i

4π, sin
i
4π

)
for i = 0, 1, . . . , 7 and σ = 0.4, we set mixture

of N (mi, σ
2) a target distribution. For all synthetic experiments, we used the same generator and

discriminator network architectures. The auxiliary variable z has a dimension of two. For a generator,
we passed z through two fully connected (FC) layers with a hidden dimension of 128, resulting in
128-dimensional embedding. We also embedded data x into the 128-dimensional vector by passing it
through three-layered ResidualBlock (Song & Ermon, 2019). Then, we summed up the two vectors
and fed them to the final output module. The output module consisted of two FC layers. For the
discriminator, we used three layers of ResidualBlock and two FC layers (for the output module).
The hidden dimension is 128. Note that the SiLU activation function is used. We used a batch size
of 128, and a learning rate of 2× 10−4 and 10−4 for the generator and discriminator, respectively.
We trained for 30K iterations. For OTM and UOTM, we chose the best results between settings of
τ = 0.01, 0.05. OTM has shown the best performance with τ = 0.05 and UOTM has shown the
best performance with τ = 0.01. For WGANs and OTM, since they do not converge without any
regularization, we set the regularization parameter λ = 5. We used a gradient clip of 0.1 for WGAN.

CIFAR-10 For the DCGAN model, we employed the architecture of Balaji et al. (2020), which
uses convolutional layers with residual connection. Note that this is the same model architecture as in
Rout et al. (2022); Choi et al. (2023a). We set a batch size of 128, 50K iterations, a learning rate of
2× 10−4 and 10−4 for the generator and discriminator, respectively. In the DCGAN backbone, we
adopt a simple practical scheme suggested in OTM Rout et al. (2022) for accommodating a smaller
dimension for the input latent space X . This practical scheme involves introducing a deterministic
bicubic upsampling Q from X to Y . Then, we consider the OT map between Q#µ and ν. In practice,
we sample x in Algorithm 1 from a 192-dimensional standard Gaussian distribution. Then, x is
directly used as an input for the DCGAN generator Tθ. The random variable z is not employed in the
DCGAN implementation. Meanwhile, Q(x) is obtained by reshaping x into a 3× 8× 8 dimensional
tensor, and then bicubically upsampling it to match the shape of the image. The generator loss is
defined as c (Q(x), Tθ(x))− vϕ (Tθ(x)).

For the NCSN++ model, we followed the implementation of Choi et al. (2023b) unless otherwise
stated. Specifically, we set X = Y and use c(x, y) = τ∥x − y∥2 without introducing upsampling
Q. Here, the auxiliary variable z is employed. We sample z from a 256-dimensional Gaussian
distribution and put it as an additional stochastic input to the generator. The input prior sample x is
fed into the NCSN++ network like UNet input. The auxiliary z passes through embedding layers
and is incorporated into the intermediate feature maps of the NCSN++ through an attention module.
We trained for 200K for OTM and 120K for other models because OTM converges slower than
other models. Moreover, we used R1 regularization of λ = 0.2 for all methods and architectures.
WGANs are known to show better performance with the optimizers without momentum term, thus,
we use Adam optimizer with β1 = 0, for WGANs. Furthermore, since OTM has a similar algorithm
to WGAN, we also use Adam optimizer with β1 = 0. Lastly, following Choi et al. (2023a), we
use Adam optimizer with β1 = 0.5 for UOTM. Note that for all experiments, we use β2 = 0.9
for the optimizer. We used a gradient clip of 0.1 for WGAN. Furthermore, the implementation of
UOTM-SD follows the UOTM hyperparameter unless otherwise stated. We trained UOTM-SD for
200K iterations. For UOTM-SD (Cosine) and (Linear), we initiated the scheduling strategy from the

17



Published as a conference paper at ICLR 2024

start and finished the scheduling at 150K iterations. For UOTM-SD (Step), we halved α̃ for every
30K iterations until it reaches α−1

max.

Evaluation Metric For the evaluation of image datasets, we used 50,000 generated samples to
measure FID (Karras et al., 2018) scores. For every model, we evaluate the FID score for every 10K
iterations and report the best score among them.

C PROBLEMS OF GAN-BASED GENERATIVE MODELS

Unstable training Training adversarial networks involves finding a Nash equilibrium (Osborne
& Rubinstein, 1994) in a two-player non-cooperative game, where each player aims to minimize
their own objective function. However, discovering a Nash equilibrium is an exceedingly challenging
task (Salimans et al., 2016; Mescheder et al., 2018). The prevailing approach for adversarial training
is to adopt alternating gradient descent updates for the generator and discriminator. Unfortunately,
the gradient descent algorithm often struggles to converge for many GANs (Salimans et al., 2016;
Mescheder et al., 2018). Notably, Mescheder et al. (2018) showed that neither WGANs nor WGANs
with Gradient Penalty (WGAN-GP) offer stable convergence.

Mode collapse/mixture Another primary challenge in adversarial training is mode collapse and
mixture phenomena. Mode collapse means that a generative model fails to encompass all modes of
the data distribution. Conversely, mode mixture represents that a generative model fails to separate
two modes of data distribution while attempting to cover all modes. This results in the generation of
spurious or ambiguous samples. Many state-of-the-art GANs enforce regularization on the spectral
norm (Miyato et al., 2018) to mitigate training instability. Odena et al. (2018) showed that enforcing
the magnitude of the spectral norm of the networks reduces instability in training. However, recent
works (Nagarajan & Kolter, 2017; Khayatkhoei et al., 2018; An et al., 2020a; Salmona et al., 2022)
have revealed that such Lipschitz constraints can lead the generator to concentrate solely on one of
the modes or lead to mode mixtures in the generated samples.

D ADDITIONAL RESULTS

D.1 ADDITIONAL QUALITATIVE RESULTS ON TOY DATASETS
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(a) WGAN (b) WGAN-GP

(c) UOTM w/o cost (d) OTM

(e) UOTM (f) UOTM-SD

(g) Convex OT Solver

Figure 7: Visualization of Generator Tθ. The gray lines illustrate the generated pairs, i.e., the
connecting lines between x (green) and Tθ(x) (blue). The red dots represent the training data samples.
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(a) WGAN (b) WGAN-GP

(c) UOTM w/o cost (d) OTM

(e) UOTM (f) UOTM-SD

(g) Convex OT Solver

Figure 8: Visualization of Generator Tθ. The gray lines illustrate the generated pairs, i.e., the
connecting lines between x (green) and Tθ(x) (blue). The red dots represent the training data samples.
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(a) WGAN (b) WGAN-GP

(c) UOTM w/o cost (d) OTM

(e) UOTM (f) UOTM-SD

(g) Convex OT Solver

Figure 9: Visualization of Generator Tθ. The gray lines illustrate the generated pairs, i.e., the
connecting lines between x (green) and Tθ(x) (blue). The red dots represent the training data samples.
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D.2 FULL TABLE RESULT FOR CIFAR-10 GENERATION

Table 6: Quantitative Evaluation of OT-based GANs on CIFAR-10.

Model

Backbone Architecture

NCSN++ DCGAN

FID (↓) Precision (↑) Recall (↑) FID (↓)

WGAN 48.8 0.45 0.02 52.3
WGAN-GP 4.5 0.71 0.55 50.8

OTM 4.3 0.71 0.49 19.8

UOTM w/o cost 19.7 0.80 0.13 15.4
UOTM (SP) 2.7 0.78 0.62 15.8
UOTM (KL) 2.9 - - 12.2

Table 7: Comparison of τ -robustness. We use αmin = 1/5 and αmax = 5 for each UOTM-SD.

τ 2e-4 5e-4 1e-3 2e-3 5e-3

UOTM-SD (Cosine) 3.60 2.99 2.57 2.95 5.42
UOTM-SD (Linear) 4.18 3.01 2.51 3.39 4.62
UOTM-SD (Step) 3.92 2.81 2.78 2.89 5.34

UOTM 15.19 22.02 2.71 6.30 218.02
OTM 4.34 4.15 4.38 5.13 7.43
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Table 8: Image Generation on CIFAR-10. † indicates the results conducted by ourselves.

Class Model FID (↓)

GAN

SNGAN+DGflow (Ansari et al., 2020) 9.62
AutoGAN (Gong et al., 2019) 12.4
TransGAN (Jiang et al., 2021) 9.26

StyleGAN2 w/o ADA (Karras et al., 2020) 8.32
StyleGAN2 w/ ADA (Karras et al., 2020) 2.92

DDGAN (T=1)(Xiao et al., 2021) 16.68
DDGAN (Xiao et al., 2021) 3.75
RGM (Choi et al., 2023b) 2.47

Diffusion

NCSN (Song & Ermon, 2019) 25.3
DDPM (Ho et al., 2020) 3.21

Score SDE (VE) (Song et al., 2021b) 2.20
Score SDE (VP) (Song et al., 2021b) 2.41
DDIM (50 steps) (Song et al., 2021a) 4.67

CLD (Dockhorn et al., 2022) 2.25
Subspace Diffusion (Jing et al., 2022) 2.17

LSGM (Vahdat et al., 2021) 2.10

VAE&EBM

NVAE (Vahdat & Kautz, 2020) 23.5
Glow (Kingma & Dhariwal, 2018) 48.9
PixelCNN (Van Oord et al., 2016) 65.9

VAEBM (Xiao et al., 2020) 12.2
Recovery EBM (Gao et al., 2021) 9.58

OT-based

WGAN (Arjovsky et al., 2017) 55.20
WGAN-GP(Gulrajani et al., 2017) 39.40

Robust-OT (Balaji et al., 2020) 21.57
AE-OT-GAN (An et al., 2020b) 17.10

OTM† (Rout et al., 2022) 4.15
UOTM (Choi et al., 2023a) 2.97

UOTM-SD (Cosine)† 2.57
UOTM-SD (Linear)† 2.51
UOTM-SD (Step)† 2.78

D.3 ADDITIONAL QUANTITATIVE RESULTS FOR LIPSCHITZNESS OF POTENTIAL
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Table 9: Image Generation on CelebA-HQ. † indicates the results conducted by ourselves.

Class Model FID (↓)

Diffusion

Score SDE (VP) Song et al. (2021b) 7.23
Probability Flow Song et al. (2021b) 128.13

LSGM Vahdat et al. (2021) 7.22
UDM Kim et al. (2021) 7.16

DDGAN Xiao et al. (2021) 7.64
RGM Choi et al. (2023b) 7.15

GAN

PGGAN Karras et al. (2017) 8.03
Adv. LAE Pidhorskyi et al. (2020) 19.2

VQ-GAN Esser et al. (2021) 10.2
DC-AE Parmar et al. (2021) 15.8

StyleSwin (Zhang et al., 2022) 3.25

VAE
NVAE Vahdat & Kautz (2020) 29.7
NCP-VAE Aneja et al. (2021) 24.8

VAEBM Xiao et al. (2020) 20.4

OT-based

OTM† (Rout et al., 2022) 13.56
UOTM (KL) (Choi et al., 2023a) 6.36

UOTM (SP)† 6.31
UOTM-SD† 5.99

(a) OTM (b) UOTM

Figure 10: Distribution of the norm of the potential gradient ∥∇yvϕ(y)∥, ∥∇ŷvϕ(ŷ)∥ at a random
real data y and a randomly generated data ŷ for every 10K iterations on CIFAR-10. Due to the
equi-Lipschitz property, the gradient norm of UOTM potential is stable during training. This stability
contributes to the stable training of UOTM. In the Toy dataset, we measured the Average Rate of
Change (ARC) of potential |vϕ(y)−vϕ(x)|

∥y−x∥ between a randomly selected training data x and another
randomly chosen point y within the data space (Fig 6). However, unlike the Toy dataset, the image
dataset is extremely sparse in its ambient space (pixel space). Hence, randomly selecting point y
within the pixel space can yield undesirable results. Therefore, instead of measuring the Average
Rate of Change (ARC) of potential, we measured the norm of the potential gradient.

D.4 ADDITIONAL DISCUSSIONS ON SCHEDULING

Schedule Intensity Ablation To analyze the effect of schedule intensity further, we evaluated
our UOTM-SD model for four different scheduling intensities. For simplicity, we focused on
symmetric ones i.e., αmax = k, αmin = 1/k for some k > 1, while fixing τ = 0.001. Overall, the
Linear Scheduling scheme provided the best result, achieving FID scores below 3 for all scheduling
intensities. Nevertheless, the other two scheduling schemes also demonstrated robust performance.
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(a) WGAN (b) WGAN-GP (c) UOTM w/o cost

(d) OTM (e) UOTM

Figure 11: Distribution of the absolute value of Average Rate of Change (ARC) of potential
|vϕ(y)−vϕ(x)|

∥y−x∥ for every 5K iterations. Due to the equi-Lipschitz property, |ARC| of UOTM potential
is stable during training. This stability contributes to the stable training of UOTM.

Table 10: Ablation Study on Schedule Intensity (αmin, αmax).

Schedule Type (1/2, 2) (1/3, 3) (1/5, 5) (1/10, 10) (3, 3) (5, 5)

Cosine 3.20 2.94 2.57 2.78
3.73 3.99Linear 2.70 2.97 2.51 2.77

Step 3.29 2.85 2.78 2.70

Moreover, we tested UOTM-SD without scheduling (α-UOTM). Specifically, we tested the setting of
αmax = αmin = αconst > 1. In this case, the divergence weight α in Eq. is constant throughout
training. When we set αconst = 3, 5, α-UOTM showed FID scores of 3.73 and 3.99. This result
demonstrates that α-scheduling provides a method for harnessing the advantages of both the large τ
regime and the small τ regime. Therefore, UOTM-SD outperforms α-UOTM.

D.5 ADDITIONAL QUALITATIVE RESULTS

Figure 12: Generated samples from UOTM with Small τ(= 0.0002) on CIFAR-10 (32× 32).
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Figure 13: Generated samples from UOTM with Optimal τ(= 0.001) on CIFAR-10 (32× 32).

Figure 14: Generated samples from UOTM with Large τ(= 0.005) on CIFAR-10 (32× 32).

Figure 15: Generated samples from UOTM-SD (Cosine) on CIFAR-10 (32× 32).
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Figure 16: Generated samples from UOTM-SD (Linear) on CIFAR-10 (32× 32).

Figure 17: Generated samples from UOTM-SD (Step) on CIFAR-10 (32× 32).
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