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ABSTRACT

Effective text generation and chat interfaces for low-resource languages (LRLs)
remain a challenge for state-of-the-art large language models (LLMs) to support.
This is mainly due to the difficulty of curating high-quality instruction datasets for
LRLs, a limitation prevalent in the languages spoken across the African continent
and other regions. Current approaches, such as automated translation and synthetic
data generation, frequently yield outputs that lack fluency or even orthographic
consistency. In this paper, we introduce InstructLR, a novel framework designed
to generate high-quality instruction datasets for LRLs. Our approach integrates
LLM-driven text generation with a dual-layer quality filtering mechanism: an
automated filtering layer based on retrieval-augmented-generation (RAG)-based
n-shot prompting, and a human-in-the-loop validation layer. Drawing inspiration
from benchmarks such as MMLU in task definition, InstructLR has facilitated
the creation of three multi-domain instruction benchmarks: Zarmalnstruct-50k,
Bambaralnstruct-50k, and FulfuldeInstruct-50k.

1 INTRODUCTION

Large language models (LLMs) are proficient in many tasks, with recent models sometimes out-
performing humans, depending on the language. They tend to perform substantially worse on
low-resource languages (LRLs), such as those spoken across Africa and other regions, than on
higher-resource languages. This performance gap is evidently due to the limited representation of
these languages in pre-training and fine-tuning datasets. Although LL.Ms such as GPT-4 (OpenAl
et al.,|2024) and Gemini (Team et al.,|2024) have made progress in multilingual capabilities, many
LRLs remain poorly, if at all, supported.

Existing approaches to address this gap also face major limitations. Machine translation (MT) of
fine-tuning datasets from higher-resourced languages into LRLs often produces unnatural text that
fails to capture language-specific nuances (Zhu et al., [2024)). Synthetic data generation frequently
results in hallucinated content and a lack of cultural awareness (Guo & Chenl|2024)). The relatively
high cost of creating human-annotated instruction data for LRLs worsens the situation.

We introduce InstructLR, a novel framework designed to produce high-quality instruction tuning
datasets for LRLs through a combined approach that balances automation with human-in-the-loop
validation. Unlike direct translation approaches that often produce unnatural outputs, InstructLR
uses translation at the instruction response generation stage, where instructions—initially in a high-
resource language (e.g., French)—are translated to the target LRL along with the other output
components. This allows the model to generate contextually appropriate responses directly in the
target language (since the high resource and low resource instructions will be both embedded
during the responses generation)—rather than translating complete instruction-response pairs.

Our contributions are as follows:
* We propose InstructLLR, a scalable pipeline that integrates LLM generation, RAG-based

correction, and human-in-the-loop validation to produce high-quality instruction data for
LRLs.
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¢ We use this framework to create three 50k-scale, multi-domain instruction benchmarks:
Zarmalnstruct-50k, Bambaralnstruct-50k, and FulfuldeInstruct-50k—all under a CC-
BY-SA 4.0 license—with links available at: Links will be made public after the double
blind review.

* We conduct experiments comparing three training approaches: zero-shot baseline (no fine-
tuning), MT-Seed baseline (fine-tuning on machine-translated instructions), and InstructLR
(fine-tuning on our framework’s output). This comparison aims to isolate the effectiveness
of our framewok versus direct translation methods.

Our evaluation addresses three research questions: (RQ1) How do open-source LLMs perform
on instruction-following tasks for these LRLs without fine-tuning? (RQ2) How much does fine-
tuning on InstructLR datasets improve performance compared to MT baselines? (RQ3) How well do
InstructLR-trained models generalize to downstream tasks?

Our study demonstrates that InstructLR enables effective instruction-following in previously unsup-
ported languages, by achieving BLEU scores of 22.8 (Zarma), 30.1 (Bambara), and 28.9 (Fulfulde)
compared to near-zero baseline performance. Furthermore, the framework reduces dataset creation
costs by 88% through automated quality filtering while maintaining good linguistic quality, as val-
idated by native speakers who preferred InstructLR outputs over machine-translation baselines in
78-84% of comparisons.

2 INSTRUCTLR
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Figure 1: The InstructLR pipeline for creating high-quality instruction-tuning datasets for LRLs. The
pipeline starts by the topic curation and finishes by final output.

We designed InstructLR (Figure [I) to assist in creating domain-specific instruction datasets for
LRLs.

InstructLR consists of multiple stages—including: seed instruction, instruction-response-pair creation,
automated quality checking, human validation, and the final dataset—organized as a pipeline. In this
section, we describe each stage and show how they work together to produce clean instruction data.

2.1 SEED INSTRUCTION

Topic Selection To ensure the final dataset is comprehensive and useful for training models,
InstructLR starts by curating a diverse set of topics. We draw inspiration from established multi-task
benchmarks like MMLU (Hendrycks et al.} [2021)) because they provide a structured framework of
knowledge domains and reasoning skills. Our selection process targets a balanced distribution across
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a wide range of areas. These include STEM fields (e.g., Physics, Mathematics, Computer Science),
humanities (e.g., History, Law, Philosophy), and social sciences. The goal is to create a dataset that
supports not only knowledge recall but also the development of complex reasoning abilities.

Seed Instruction Generation After gathering the topic list, seed instructions are generated in a
high-resource language. This approach is a necessary adaptation of the self-instruct method (Wang
et al.| 2023)) for the LRL context. The standard self-instruct loop is technically infeasible here, as it
requires a teacher model with strong generative capabilities in the target language to create novel
instructions—a prerequisite that current models do not meet for languages like Zarma. Our method
circumvents this by using the LLM for the task it can perform well (ideation in French). The choice of
the high-resource language depends on its presence in the region where the target LRL is used—e.g.,
French-speaking countries will use French.

The seed generation process uses a modified self-instruct method, where we design an instruction
generation prompt template (see Section|[L.T) to produce diverse, domain-appropriate instructions. We
incorporate two quality control mechanisms within the prompt: (1) We add instruction diversity by
using different directive verbs—e.g., explain, describe, analyze—to prevent repetitive instructions.
(2) The prompt includes guidelines to avoid output that contains hallucinations, sensitive content, or
falls outside the target domain.

The output is structured in a JSONL format, where each instruction is based on one topic.

2.2 INSTRUCTION-RESPONSE PAIRS

Once the curated set of seed instructions is prepared, the next step is generating instruction-response
pairs in the target LRL. This is done using an LLM with some baseline capability—ability to generate
mediocre, yet acceptable outputs—to generate content in the target LR

The LLM is prompted using a structured prompt template—(see Section[[.2)—with specific guidelines
to handle edge cases often encountered during translation between the higher-resource language
and the target LRL, and other specifications such as the response length. The seed instructions
enable the model to translate the instructions to the LRL and generate responses directly in the
LRL, informed by both the high-resource and LRL instructions—unlike MT approaches that
translate pre-existing aligned segments..The template includes explicit constraints addressing: (1)
Word adaptation: rules for handling technical terms, proper nouns, and domain-specific vocabulary
that might not have direct equivalents in the target LRL. (2) Prioritize understandability: guidelines
to prioritize understandability and fidelity over word-for-word translation. (3) Language specific
constraints: language specific guidelines that cannot be generalized.

For reasoning tasks, the prompt additionally requests a chain-of-thought (CoT) component in the
target LRL and ensures that the generated responses include explicit reasoning steps in the LRL.

This stage outputs drafts structured by key metadata fields, as shown in Table[IT] Each draft includes
the original instruction in the high-resource language, the translated instruction in the target LRL,
the generated response in the target LRL, and, for reasoning tasks, the CoT explanation—in case of
reasoning tasks—in the target LRL.

2.3 DUAL-LAYER QUALITY FILTERING

Raw drafts produced by an LLM often contain domain inconsistencies, fluency issues, and factual
errors—particularly for LRLs with limited coverage in pretraining data. To deliver a dataset with a
minimized error rate while keeping human effort affordable, we implemented a dual-layer quality
pipeline that combines automated and human-driven quality assessment.

Layer 1: Automated Quality Check An automated Retrieval-Augmented Generation (RAG)
checker processes the drafts using a knowledge base of clean sentences, grammar rules, and glossaries
of the LRL. To ground the automated quality assessment, the RAG checker retrieves relevant
information to guide the LLM’s correction suggestions, and ensures that every correction adheres to

IThis phase only works if the chosen LLM has indeed a baseline ability to generate in the target LRL.
Otherwise, the produced content would be hallucinated outputs.
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lingustic rules of the LRL. With an elaborated n-shot prompting, it suggests corrections or flags drafts
for human review. When the RAG successfully corrects a draft, it is marked as “low priority” for
human review. If the RAG flags a draft as problematic but can not propose a correction, it is marked
as “top priority” for human review. Drafts with no detected issues are accepted as is.

The RAG component is convenient when the LLM used for checking has moderate proficiency in
the LRL. For LRLs with “no” LLM support, alternative strategies for the automated layer would be
needed; and for LRLs where LLMs are already highly proficient, simpler prompting might suffice for
the automated check.

Layer 2: Human Validation A team of native speakers checks drafts flagged or corrected by the
RAG system. The human validation protocol varies depending on the language. However, the main
objective is to assess the grammar, orthography, and fluency. All corrected and validated drafts are
then formatted as JSONL.

InstructLR is designed to be language-agnostic, requiring only minimal adaptation to target a new
LRL. The framework’s modularity allows components to be improved or replaced depending on the
context.

3 DATASET CREATION AND ANALYSIS

To demonstrate the effectiveness of InstructLR for generating instruction datasets, we report on
our use of it to create a dataset in Zarma, a West African language spoken by over six million
people (Keita et al., 2024).

3.1 SEED INSTRUCTION CREATION

For this stage, we selected 20 topics— listed with descriptions in Table [T0}—and proceeded with
instruction generation. Since Zarma coexists with French in everyday usage (Keita et al.| [2024]),
we chose French as the primary language for generating seed instructions, and a suitable model for
French: the Mistral 7b model (Jiang et al.| [2023)). We then generated French instructions per topic
and equally split across the topics (= 5% per topic).

3.2 DRAFT GENERATION

Once we had the curated set of French seed instructions and their associated topics, we moved on to
generating the first drafts of instruction-response pairs in Zarmaﬂ To achieve this, we tested several
models—Gemini 2.5 Pro, GPT 4.0, and Llama 3.3 (Grattafiori et al., 2024)—to determine which one
demonstrated a relatively acceptable understanding of Zarma.

We selected Gemini 2.5 Pro due to its basic understanding of Zarma. While not perfect, it outper-
formed other models in generating coherent Zarma texts with fewer hallucinations.

We adjusted the prompt template (see Section|[[.2)) for Gemini and included the following specific
guidelines to handle edge cases that may happen during translation between French and Zarma. These
included:

Handling of nouns and loanwords: We instructed the model not to change proper nouns. For
example, names of people, cities like Niamey, or countries like Niger should remain as they are,
rendered in the target language’s phonetic script. Similarly, for common French loanwords already
understood in Zarma, the model was prompted to keep the existing commonly used form.

Scientific or technical terms: If the input text contained scientific or technical terms that do not have
a direct, commonly known equivalent in Zarma—e.g., a term like “photosynthesis” or “algorithm”—
the instruction was to keep the original term unchanged. The same rules apply to things like book
titles, etc. The goal was to avoid the model inventing new words that would not be understood.

Managing unknown French words: For French words in the input that the model needed to use in
the output but might not have a standard equivalent or common borrowing in the target language,

2All 50, 000 instructions were processed, and a snapshot of the outputs is shown in Table
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Table 1: Zarmalnstruct-50k Dataset Characteristics and Quality Assessment. “Percentage of top
priority drafts (4,563). "Percentage of low priority drafts (2,535).

(a) Dataset Characteristics | (b) Quality Assessment Results

Metric Count % | Metric Count %

Instruction Distribution Automated Filtering

Instructions with 1-10 tokens 1,379  2.76 | Total drafts processed 50,000 100.00

Instructions with 11-20 tokens 27,655 55.31 | Accepted without correction 42,902  85.80

Instructions with >20 tokens 20,966 41.93 | Low priority (corrected by RAG) 2,535 5.07
Top priority (needs human review) 4,563 9.13

Response Distribution Human Validation - Top Priority

Responses with <50 tokens 29,833 59.67 | Major fluency errors 2,574 56.41°

Responses with 50-100 tokens 20,167 40.33 | Suffix misuse errors 1,101 24.13"

Instructions with CoT reasoning 12,500 25.00 | Tense consistency errors 888 19.46°

Instruction Types Human Validation - Low Priority

Open-ended questions 41,957 8391 | Already correct 1,978 78.03"

Definition requests 121 0.24 | Minor typographic adjustments 557 21.97°

Explanation tasks 5,781 11.56

List generation tasks 2,141 4.28

we allowed a process of phonetic adaptation. This means the model could “Frenchize” the word—
writing it out in the target language’s phonetic script based on its French pronunciation. A good
example of this might be the French word “politique,” which could be written as *“politik” in Zarma
or Bambara, if that matches how such words are typically borrowed and written phonetically. This
was preferred over omitting the concept or making a potentially incorrect direct translation.

3.3 QUALITY ASSESSMENT

Knowledge base construction: Our RAG checker used a knowledge base of 3,000 clean sentences
from the Feriji dataset (Keita et al.,|2024), 20 Zarma grammar rules each followed by examples, and
bilingual glossaries, all encoded with a FAISS dense index (Douze et al.|, [2025). This knowledge base
enabled the system to contextualize and evaluate drafts with high precision.

Base model: We relied on the Gemini 2.0 flash model for our RAG. Similarly to the reason of
selecting Gemini 2.5 Pro for drafts generation, the choice of the model is guided by the fact that the
model already has a basics understanding of the language.

The full detail of our RAG checker is explained in Section

After processing the 50,000-draft dataset, 4,563 drafts were flagged as top priority—a ratio of 9.126%
of the dataset—while 2,535 were successfully corrected by the RAG, considered low priority (5.07%).
The remaining 42,902 drafts were accepted without correction.

3.3.1 HUMAN EVALUATION

Annotator pool: We recruited five volunteers—all native Zarma speakers with prior experience
reading and writing in the language. Before starting work, annotators underwent a short training
session covering: the annotation task itself, how to use the tools, and what types of corrections are
acceptable. Additionally, we assessed the inter-annotator agreement using Krippendorff’s Alpha,
and obtained a score of 0.793 on 351 samples from the annotated sets. The results of the evaluation
are presented in Table[I]

Evaluation outcomes: As shown in Table[I] among the 4,563 top-priority flagged samples, the
primary issues detected were fluency problems (56.40%), followed by suffix misuse errors (24.14%)
and tense consistency errors (19.46%). In the 2,535 low-priority samples, 1978 (78.028%) were
already correct despite being flagged by the automated system, with the remaining 557 (21.97%)
requiring only minor typographic adjustments that did not affect comprehensibility.

3.4 ZARMAINSTRUCT-50K DATASET

Following the InstructLR pipeline, we created Zarmalnstruct-50k, the first multi-domain instruction
benchmark in the Zarma language. The dataset is composed of 50,000 instruction-response pairs
covering 20 different topics (as shown in Table[I0). Table [T| presents statistics of Zarmalnstruct-50k.
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3.5 GENERALIZATION TO BAMBARA AND FULFULDE

To validate the language-agnostic nature and scalability of our framework, we applied the full
InstructLR pipeline to two additional West African LRLs: Bambara and Fulfulde. We maintained
the core methodology used for Zarma, generating 50,000 instruction-response pairs for each language
using the same seed topics and French as the high-resource language. The objective was to confirm
that the framework could be effectively redeployed with minimal adaptation.

The process yielded two new large-scale benchmarks: Bambaralnstruct-50k and FulfuldeInstruct-
50k. Initial raw drafts generated by Gemini 2.5 Pro showed error patterns comparable to those
observed in Zarma—including minor fluency issues and occasional word-level hallucinations, which
highlights the need for the dual-layer quality filtering mechanism to address these errors.

More details about the generation process, raw output quality assessment, and full dataset
statistics for both Bambara and Fulfulde are provided in Section D]

4 EXPERIMENTS

We evaluate InstructLR through systematic ex-

periments that assess both output quality and  Taple 2: Results of the metric-based experiments.
downstream task performance.

Model Protocol| BLEUT ROUGE-L{ METEOR?
. . Gemma-3-270M  Zero-Shot| 0.1%0.1 1.2+0.5 0.5+0.3
Experiment Setups We evaluate six open- Gemma-3-270M InstructLR|12.541.8 18321  15.1%1.9
source models across different parameter scales: Gemma3-1B  Zero-Shot| 02801 14306 06303
emma-3- nstructl W82 A2 42
Gemma-3-270M, Gemma-3-1B, Gemma-3- S TR ————— TR
= < Gemma-3- ero-Shot| 0.3+0. 70, . 7+0.
4B [Team et al.| (2025)), Llama-3.1-8B |Grattafiori E Gemma3-4B  InstructLR|182+22 256428  21.3+2.5

n n N
et al.[(2024), Mistral-7B-Instruct-v0.3, and Phi- Llama-3.1-8B  Zero-Shot| 0.30.2 1.8:08  0.8+0.4
: Llama-3.1-8B MT-Seed| 135419 20.142.4  16.5£2.0
4|Abdin et al.| (2024). For each language, we Llama-3.1-8B InstructLR|22.8+2.5  304%3.1  26.1+2.8
split our 50k datasets into 49,000 training pairs Mistral-7B-v0.3  Zero-Shot| 0.2:0.1 15206  0.6+03
and 1’000 held—out test pairs fOI' evaluation. Mistral-7B-v0.3  InstructLR|20.1£2.3 28.5+£3.0 23.9+2.6
Ph§—4 Zero-Shot| 0.3+0.2 1.6+0.7 0.7£0.4
FOI' the baselines, WC Compare against two base- Phi-4 InstructLR |21.8+2.4 29.7£3.0 25.1£2.7
lines; Zero-Shot Baseline: Each base model Commai2lOM Insiuetl R|118607 179500 146e18
evaluated on test sets without fine-tuning. MT- Gomma31B  Zero-Shot| 0.3£02 L6507 07204
Seed Baselll‘le: TO lSOlate the effeCt Of our gen_ ; Gemma-3-1B InstructLR | 18.1+2.1 24.7£2.6 212423
3 3 3 & Gemma-3-4B Zero-Shot| 0.4+0.3 1.9+0.8 0.8+0.4
erat.lon PlPeh“?s we create a controlled com- € Gemma-3-4B  InstructLR|232425 314232  27.8%29
parison using direct MT of our French seed in- E ama3 8B ZeroShot| 04403 21509 09405
i _ 31- Llama-3.1-8B MT-Seed (213424 29.8430 257427
struccl:tllons. We ﬁlrlle ltlunle Llama-3.1-8B (Our bes(; Llama-3.1-8B  InstructLR|30.1£2.9  39.8:38  34.5:34
model across all the languages experimente Mistral-7B-v0.3 ~ Zero-Shot| 0.3+0.2 17407 07404
before the MT one)on datasets created by trans- Mistral-7B-v0.3  InstructLR |25.842.7  34.1#3.4  30.23.1
lating the same 50,000 French seed instructions Phi4 Zero-Shot) 04203 18208 0.8+04
. - nstruct DL .S, dES.
using MADLAD-400 (Kudugunta et al., 2023)— G T TS 1m0 To0r omoa
. emma-s-. L10- O L 1£0. 0x0. .4x0).
because MADLAD is the only known model Gemma-3-270M InstructLR|10.9t1.6 16819  13.7+1.7
(untill this date) that supports all the three lan- Gemma3-1B  Zero-Shot| 02£0.1 1306  0.5+0.3
. . . . Gemma-3-1B InstructLR | 16.742.0 23.1£2.5 19.8+2.2

guages of this experiment. This approach avoids N
. . . = Gemma-3-4B Zero-Shot| 0.3+0.2 1.6+0.7 0.7£0.4
confusion caused by culture-specific instruc- Z Gemma-3-4B  InstructLR |218+24  29.3:30 259427
tions in existing datasets such as Alpaca (Taori = Llama-3.1-8B  Zero-Shot| 0.2+0.2 15607  0.6£0.4
11.P023 Llama-3.1-8B MT-Seed| 197423 28.142.9 242426
etal., ). Llama-3.1-8B InstructLR|28.9+2.8  38.2#3.7  33.1:3.3
; . Mistral-7B-v0.3  Zero-Shot| 0.220.1 1406 0.6£0.3
We use unsloth (Daniel Han & team, 2023)) with Mistral- 7B-v03  InstructLR |24.342.6 32733  28.9+3.0
QLoRA (Dettmers et al., 2023) for efficient Phi-4 Zero-Shot| 03202 16+07 0704
Phi-4 InstructLR [26.1427  35.043.5  30.843.1

fine-tuning. Training parameters include: learn-
ing rate 2e-5, 3 epochs, with CoT responses
included as supervised targets. We ensure no
overlap between training and test sets.

Automatic Evaluation Table [2] presents re-
sults on held-out test sets using BLEU (Papineni et al., [2002), ROUGE-L (Lin| [2004)), and ME-
TEOR (Banerjee & Lavie,|2005) metrics. Zero-shot performance demonstrates limitations of current
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Table 4: Human quality ratings and downstream NER. The NER experiment was conducted with our
best model from the automatic evaluation: (Llama-3.1-8B with InstructLR) (see Table@)

(a) Human quality ratings. (b) NER (exact match & macro-F1).
Lang Model Fluency T Correctness T Relevance 1 Lang Model Exact Match 1 Macro-F1 1
Zero-shot 1.2[1.1,1.3] 1.1[1.0,1.2] 1.3[1.2,1.4] Zero-shot 9.8% [7.2,12.7] 21.4[18.1,24.7]
Zarma  MT-Seed 23(22,2.5] 2.1[2.0,23] 262527  Zarma MT-Seed 27.6% [23.6, 31.8] 49.3 [45.2, 53.2]
InstructLR 33[32,34] 29[2.8,3.1] 3.7[3.6,3.8] InstructLR 41.2% [36.8,45.7] 63.8 [60.1, 67.2]
Zero-shot 1.4[1.3,1.5] 1.2[1.1,1.3] 1.3[1.2,1.4] Zero-shot 13.0% [10.1, 16.4] 27.2[23.9, 30.6]
Bambara MT-Seed 3.0[2.9,32] 27[26,29] 33[32,34]  Bambara MT-Seed 36.8% [32.5,41.3] 57.9 [54.2, 61.5]
InstructLR 4.2[4.0,4.5] 4.0[3.9,4.1] 4.2[4.1,4.3] InstructLR 54.4% [50.0, 58.7] 71.6 [68.4, 74.7]
Zero-shot 1.3[1.2,1.4] 1.1[1.0,1.2] 1.2[1.1,1.3] Zero-shot 12.2% [9.4,15.6]  25.9[22.6, 29.3]
Fulfulde MT-Seed 281[2.7,3.0] 25([24,27] 3.1[3.0,3.2] Fulfulde MT-Seed 33.0% [29.0,37.3] 55.2[51.3,58.9]
InstructLR 4.1[4.0,4.2] 3.8[3.7,4.0] 4.0[3.9,4.1] InstructLR 50.6% [46.2,55.0] 69.1[65.8,72.2]

LLMs for these languages, with scores near zero across all models—which confirms that Zarma,
Bambara, and Fulfulde are minimally or not covered by the models used for the trainings.

Fine-tuning on InstructLR datasets produces

important improvements. The best-performing  Taple 3: Results of the human preferences exper-
model (Llama-3.1-8B with InstructLR) achieves jment. The human evaluation and the MT-Seed

22.8 BLEU on Zarma, 30.1 on Bambara, and  yere carried out with our best-performing model
28.9 on Fulfulde. These results demon- ([ ]ama-3.1-8B with InstructLR)

strate that our framework enables effective

1nstruct10n-follow1ng Capabllltles In previ- Lang  InstructLR vs. InstructLR Baseline Ties
ously unsupported languages. Jarma Zero-Shot 89.2% [86.1,91.7]  4.4% [2.9, 6.6] 6.4% [4.5,9.0]
Arma — MT-Seed 78.4% [74.6, 81.8] 12.2% [9.6, 15.4] 9.4% [7.1, 12.4]

3 : ; Zero-Shot  94.0% [91.6,958]  2.4% [1.4,41] 3.6% [2.3,5.6]
The MT-Seed baseline underperforms In-  Bambara fioone 83.6% [80.1. 86.6] 8.0% [5.9, 10.7] 8.4% (6.3, 11.1]
- Zero-Shot  91.8% [89.0,939] 2.8%[1.6,4.7] 54% [3.6,7.9]
structLR across all languages. On Zarma, In- ruruae Fodle 5585 (90 837 11 5% 014 1) s 10110
structLR outperforms MT-Seed by 9.3 BLEU
points (22.8 vs 13.5).

Human Evaluation We conduct comprehensive human evaluation with native speakers using our
best-performing model (Llama-3.1-8B with InstructL.R) across three evaluation protocols.

-Pairwise Preference Evaluation Two native speakers per language independently compared
system outputs on 500 randomly selected prompts from our test sets. Evaluators chose between
system outputs or marked ties when outputs were equivalent in quality.

Table [3| shows strong preference for InstructLR across all languages. Against zero-shot baselines,
InstructL.R wins in 89.2% of Zarma comparisons, 94.0% of Bambara comparisons, and 91.8% of
Fulfulde comparisons. The high tie rates with zero-shot baselines (4-6%) reflect cases where both
systems produced minimal or no valid output. When compared to MT-Seed baselines, InstructLR
maintains substantial advantages with win rates of 78.4% (Zarma), 83.6% (Bambara), and 80.8%
(Fulfulde). The lower margins against MT-Seed reflect that both systems produce fluent output, but
InstructLR demonstrates higher linguistic quality and appropriateness.

-Quality Evaluation Native speakers rated 500 responses per protocol on three quality aspects
using 5-point scales: fluency, correctness, and relevance.

Table 4| demonstrates quality advantages for InstructLR across all aspects and languages. Zero-
shot baselines score poorly (1.1-1.6 range) due to their inability to generate coherent responses
in these languages. MT-Seed baselines achieve moderate scores (2.1-3.3 range) but fall short of
InstructLR’s performance. InstructL.R achieves strong scores across languages, with Bambara and
Fulfulde showing particularly high ratings (4.0-4.2 range). The slightly lower Zarma scores (2.9-3.7
range) reflect the more complex grammatical structure and our evaluation criteria during the human
validation process.
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4.1 DOWNSTREAM TASK EVALUATION

To assess practical utility beyond instruction-following, we evaluate models on Named Entity Recog-
nition (NER). We created 1,000-statement NER datasets per language with annotations for person,
location, and organization entities. Models were prompted to extract entities using zero-shot prompt-
ing without task-specific fine-tuning. We evaluate using exact match accuracy and macro-averaged
F1 scores.

Table 4] shows that InstructLR-trained models demonstrate strong generalization to downstream tasks.
InstructLLR achieves exact match scores of 41.2% (Zarma), 54.4% (Bambara), and 50.6% (Fulfulde),
outperforming both zero-shot baselines (9-13% range) and MT-Seed baselines (27-37% range).

The improvements over MT-Seed baselines (13-17 percentage point gains) confirm that our quality
filtering approach produces more reliable training data that enables better task generalization.

5 DISCUSSION

Our experimental results demonstrate that InstructLR successfully creates useful instruction datasets
for under-resourced languages. The experiments confirm that models fine-tuned on our data achieve
substantial improvements over both zero-shot and MT baselines. Furthermore, the performance
gains across three differentlanguages—Zarma, Bambara, and Fulfulde—prove the framework’s
language-agnostic design.

An important component behind the framework’s effectiveness is its dual-layer quality filtering
mechanism. The automated RAG-based layer processes the majority of the data (85.8%) without
human input, which directly enables the 88% cost reduction compared to full human annotation (see
Section [F). This balance makes large-scale dataset creation economically feasible. The quality of the
resulting data is confirmed by the high performance on automatic metrics—where fine-tuning yields
BLEU scores as high as 22.8 (Zarma), 30.1 (Bambara), and 28.9 (Fulfulde) from near-zero baselines.

Human evaluation further emphasizes these findings. Native speakers showed a strong preference for
InstructLR outputs over baselines in 78-94% of comparison. Also, the model trained on Zarmalnstruct
achieves a 41.2% exact match score on a zero-shot NER task, a considerable improvement over the
baselines. These findings suggests the datasets from InstructLLR can serve as foundational resources
for real-world applications.

In sum, these findings position InstructLR as an efficient and economically friendly framework in
creating multi-domain instructions dataset for LRLs, and thus opening more research opportunities
for these languages.

6 LIMITATIONS

While InstructLR provides a robust framework for generating instruction datasets for LRLs, we
acknowledge several limitations that impact its current effectiveness and scalability.

First, our framework currently relies on commercial LLMs for the initial draft generation, as these
are often the only models with even a basic capability in many LRLs. This dependency introduces a
cost factor that may be a challenge for researchers. Additionally, the InstructLR pipeline requires that
the target LRL is at least minimally covered by an existing LLM. For languages with no current LLM
support, the framework is inapplicable without significant adaptations.

Another limitation concerns the demonstrated scope of our framework. While we successfully applied
it to three distinct West African languages, all three share French as a high-resource contact language.
Consequently, further work is needed to validate its effectiveness for languages with different features
or writing systems.

The scope of our quality assessment also presents a limitation. The automated quality assessment
and human validation layers focus primarily on grammatical correctness and fluency, not on factual
accuracy. Errors in the source LLM’s knowledge could therefore propagate into the final datasets.
Furthermore, the reliance on French seed instructions, even on general topics inspired by MMLU,
could introduce a cultural bias toward Western or francophone perspectives. Finally, our human
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validation relies on small annotator pools, which may not capture the full dialectal variation within
the language communities.

7 CONCLUSION & FUTURE WORK

This paper introduces InstructLR, a framework for generating high-quality instruction datasets for
low-resource languages. Our work addresses the critical data gap that limits LLM performance in
these languages. Using this pipeline, we created three 50k-scale benchmarks: Zarmalnstruct-50k,
Bambaralnstruct-50k, and FulfuldeInstruct-50k. The framework’s dual-layer quality filter, which
combines RAG-based checking with human validation, effectively corrects errors while managing
costs. Our experiments demonstrate that fine-tuning on these datasets enables open-source models to
follow instructions in the target languages, showing significant improvements over both zero-shot
and machine-translation baselines.

Future work will focus on several key areas. We aim to reduce the framework’s dependency on
commercial LLMs to increase its accessibility. Also, we plan to extend InstructLR to 12 new
languages, including those with different high-resource contact languages and those with no existing
LLM coverage. Finally, we will work to develop more sophisticated automated quality assessment
techniques. These enhancements will target complex grammatical rules and aim to improve the
detection of factual or cultural inconsistencies.
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8 STATEMENT OF ETHICS

Our work aims to address an urgent gap in Al accessibility for speakers of low-resource languages.
We acknowledge several ethical considerations linked to this research:

First, we recognize the importance of cultural appropriateness in generated content. While our
framework incorporates human validation, we acknowledge potential limitations in capturing nuanced
cultural contexts. The benchmarks reflect the expertise of our native speaker annotators but may not
represent all dialectal variations or cultural perspectives within the language communities.

Second, regarding data ownership and usage rights, we emphasize that the generated instruction
datasets represent content created through collaboration between automated systems and human
annotators. All annotators provided informed consent for their voluntary participation, understanding
how their contributions would be used in the research.

Third, we acknowledge limitations in demographic representation within our annotator pool. Our
small sample of five Zarma speakers and one Bambara speaker may not represent the full diversity of
these language communities. We recommend future work to expand validator diversity across age
groups, regions, and educational backgrounds.

Finally, we designed our framework to minimize potential harms from generated content by incorpo-
rating multiple quality control measures. The dual-layer filtering system helps identify and remove
potentially inappropriate or offensive content before inclusion in the final dataset. However, we
acknowledge that no filtering system is perfect, and future users of these datasets should implement
additional safeguards appropriate to their specific applications.
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A USE OF LLMs

We used LLMs in several aspects of our work. First, our InstructLR pipeline, as described in
Section [2] integrates LLMs for both the initial generation of seed instructions and the creation of
instruction-response drafts in the target languages. In addition, we used Claude 4.1 Opus E] to help
us debugging and refining our codes for our both for training and data analysis. Finally, we used
Grammarly [*|to correct grammatical errors and improve the overall readability of the manuscript.

*https://www.anthropic.com/news/claude-4
4c_;;raumnarly.com
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B RELATED WORK

Instruction tuning for Low-Resource Languages Instruction tuning aligns LLMs with user needs
by fine-tuning on task instruction data (Ma et al., [2025). Benchmarks—Ilike FLAN, T0, etc—provide
instruction datasets for LLMs to be trained on (Wei et al., 2022; |Sanh et al) 2022; Wang et al.|
2024; Hendrycks et al., [2021; Wang et al., 2020; [2019). However, these advances are centered on
higher-resource languages—leaving LRLs with marginal coverage. This is particularly true for many
African languages, due to the lack of task-specific data and the affordability of creating data. Recent
work addresses this gap through multilingual instruction tuning. [Muennighoft et al.[|(2023)) showed
that fine-tuning a multilingual model on English tasks can enable zero-shot instruction-following in
other languages present only in pre-training data. Moreover, adding a small portion of multilingual
data during fine-tuning yields further improvements on the target-language tasks (Muennighoff et al.|
2023). Nevertheless, “severely” LRLs—particularly African languages—still lag behind, as the
current benchmarks cover only relatively better-represented languages—such as Hausa or Swahili.

Several works provide instruction data specifically for African languages. For instance, Masakhane
has produced datasets for tasks such as machine translation (MT) or named entity recognition
(e.g., MasakhaNER supports 10 African languages (Adelani et al.| [2021))). Afrilnstruct integrates
translation data (FLORES, MAFAND-MT for 16 languages), topic classification and summarization
data (XL-Sum, etc), sentiment corpora (AfriSenti and NollySenti), and Masakhane benchmarks
(NER, POS tagging) into a unified training set (Uemura et al.| 2024])). Yet, these are limited to a few
African languages—not even half of the total languages present in the region. Our work addresses
the need for scale-appropriate tools for building instruction datasets for LRL.

Synthetic Instructions Due to the lack of human-written instruction data in most LRLs, a popular
alternative is synthetic instruction generation. The self-instruct framework proposed by Wang et al.
(2023)) demonstrated that one can create an instruction dataset by prompting a language model with a
handful of seed tasks to produce new instruction-response pairs. Following this, researchers have
explored extending self-instruction to other languages. For example, |Chen et al.|(2024) translates the
Alpaca English instructions into eight languages to compare multilingual vs. monolingual instruction
tuning, and finds that even machine-translated instructions can provide cross-lingual benefits.

Also, it is important to mention the recent trend of using LL.Ms as annotators to reduce the cost of
creating LRL data. For instance, |Alhanai et al.| (2024)) leverage GPT-40 to automate parts of their
quality assessment process by having the model score generated text on metrics such as fluency and
factual consistency.

However, purely synthetic data approaches are not fully reliable in terms of quality. Model-generated
instructions may contain errors, non-fluent phrasing, or cultural inappropriateness in the target LRL.
Recent work highlights the need for careful control of LLM-synthesized data using strategies like
rewriting the generated instructions or having multiple LLMs chat with each other to stimulate
feedback dialog (Ma et al., [2025)). Despite these solutions, this limitation still remains, and proves
the need of human-in-the-loop approaches within these processes.

InstructLR leverages these previous approaches and combines their strengths into a unified frame-
work for generating quality synthetic instruction data for LRLs with minimal human intervention.
While self-instruction and translation approaches offer scalability, they often lack quality for LRLs.
InstructLR addresses this limitation by integrating a robust LRL-aware dual-layer quality filtering
process that includes RAG-based checks and human-in-the-loop validation to ensure higher fidelity
and fluency.

C RAG-BASED CHECKER DETAILS

In this section, we provide an overview of the Retrieval-Augmented Generation (RAG) checker
developed for quality assessment of Zarma textﬂ Our system combines dense retrieval with language-
model analysis to detect and correct grammatical errors and to improve textual fluency.

3 A mini-RAG version is available for public use at: Linktobeprovideduponacceptance
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C.1 SYSTEM ARCHITECTURE

The RAG checker integrates two primary components: a retrieval module and a generation/assessment
module. The retrieval module uses a knowledge base comprising 3,000 clean Zarma sentences from
the Feriji dataset (Keita et al.,[2024), 20 Zarma grammar rules with examples, and bilingual glossaries.
These resources were encoded with a FAISS dense index (Douze et al., [2025) for efficient semantic
retrieval.

For the generation component, we used the Gemini 2.0 Flash model, selected for its understanding of
Zarma linguistic structures. This model processes retrieved contextual information alongside input
text to perform grammar checking and correction.

The system operates through the following workflow:

1. Input text is analyzed to identify potential error patterns.

2. Relevant grammar rules, example sentences, and vocabulary entries are retrieved from the
knowledge base.

3. Retrieved context is incorporated into a prompt that guides the LLM to analyze and, if
necessary, correct the text.

4. The system produces a structured assessment, including error identification and correction
suggestions.

Our prompt design was important to ensure reliable performance. The prompt included instructions
for recognizing proper nouns, maintaining linguistic coherence, and providing explicit reasoning for
any corrections.

C.2 EVALUATION PROTOCOLS

To evaluate the RAG checker, we designed a con-

trolled test set of 300 Zarma sentences. The test Tuple 5: Performance metrics of the RAG-

set comprised 200 sentences with injected gram- pagsed checker on 300 Zarma test sentences
matical errors, created by prompting the DeepSeek

v3 (DeepSeek-Al et al., |2025) LLM to break specific

Metric Value
Zarma grammar rules, and 100 unaltered sentences
that served as a gold standard for measuring false- GI;EU Score 0.8978
positive rates. Each sentence was processed through M" Score 0.3400
False-Positive Rate 0.0

the RAG analyzer, and the system’s assessments and

corrections were compared with the gold references. Fluency Assessment Score  4.3/5

C.3 EVALUATION RESULTS

Table [5] presents the quantitative results of the controlled test. The average GLEU score (0.8978)
reflects close N-gram alignment with the gold corrections. The M? accuracy of 0.3400 indicates that
at least one suggestion matched the gold correction exactly for 34 % of the error sentences. No false
positives were recorded across the 100 correct sentences. In addition, 2 native Zarma speakers rated
the outputs’ fluency at 4.3/5.
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C.4 PROMPT CONFIGURATION

The checker uses the following core prompt:

RAG Analyzer Prompt (evaluation configuration)

You are a Zarma language expert. Analyze this potentially corrupted
Zarma sentence: '‘{sentence}’’

Rely primarily on your expertise in Zarma grammar and meaning.
Recognize proper nouns unless contradicted by the glossary.

Use the grammar check and glossary below as supplementary aids.
Grammar check results: {grammar_check}

Glossary information: {glossary_info}

Provide the analysis in this format:

Is the sentence correct? [Yes/No]

Reason for Incorrectness (if applicable): [Brief reason]
Corrections (if incorrect):

Option 1: [Corrected sentence with explanation]

Option 2: [Corrected sentence with explanation]

Option 3: [Corrected sentence with explanation]

C.5 EXAMPLE ANALYSIS

Sentence analyzed: “Demain, a koy Niamey”
Grammar status: Correct (basic syntax, with caveats)

WORD BREAKDOWN:
Demain: Adverb, ‘tomorrow’ (French loanword)
a: 3rd-person singular pronoun, ‘she/he/it’
koy: Verb, ‘to go’
Niamey: Proper noun, city name

LINGUISTIC INSIGHT:
Word order: Adheres to Zarma SVO, initial adverbs allowed.
Tense: Lacks future marker “ga”, implying habitual / near-future action.
Context: Suggests “Tomorrow, she/he goes to Niamey”; “Demain” shows code-switching.

CORRECTNESS ASSESSMENT:
Is the sentence correct? No
Reason: Missing future marker for “tomorrow”; “Demain” is non-standard.

CORRECTIONS:
Option 1: Suba, a ga koy Niamey
Option 2: Suba, a koy Niamey
Option 3: Demain, a ga koy Niamey

Context sources (RAG retrieval):
Demain: French “demain”, Zarma “suba”
a: French “elle”, Zarma “a”
koy: French “aller”, Zarma “koy”

Figure 2: Example of RAG analysis output for a single sentence.
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D GENERALIZABILITY: ADAPTING INSTRUCTLR TO BAMBARA AND
FULFULDE

To validate the adaptability and scalability of InstructLR across different languages, we applied the
framework to two additional West African languages: Bambara and Fulfulde.

EXPERIMENTAL SETUP

For these experiments, we maintained the core pipeline structure used in the Zarma implementation.
We generated 50,000 instruction-response pairs for both Bambara and Fulfulde using Gemini 2.5 Pro,
the same model used for Zarma, with instructions spread randomly across the 20 topics. The objective
was to evaluate whether the framework could transfer to other LRLs with minimal modifications.

To assess the raw output quality and better understand the necessity of the automated filtering stage,
we implemented a simplified version of the pipeline by excluding the dual-layer quality filtering
mechanism. Instead, we provided a random sample of 300 draft instruction-response pairs for each
language to native speakers for manual quality assessment.

EVALUATION RESULTS

For Bambara, the native speaker evaluation revealed that approximately 26% of samples had minor
fluency problems. These issues did not significantly impact comprehension but indicated the need
for better phrasing. A more significant problem was the detection of hallucinated words in 2% of
samples—one instance with a Hindi word and another containing a Russian word. Despite these
issues, the remaining 72% of the samples were considered correct and understandable.

For Fulfulde, the evaluation showed a similar pattern, with approximately 17% of samples containing
fluency errors and 1% containing hallucinated words. The errors in Fulfulde often related to its
complex noun class system—something that our RAG checker could handle.

For both languages, evaluators noted that the content was easily accessible to bilingual speakers.
This accessibility stems from the framework’s approach to technical terminology, which remained
unchanged or was adapted from French. While this ensures comprehension for bilingual speakers,
monolingual speakers might face challenges with these technical concepts.

These scaled experiments with Bambara and Fulfulde demonstrate that the core instruction-response
generation component of InstructLR transfers well across linguistically diverse LRLs. The presence
of fluency issues and hallucinations underscores the importance of the dual-layer quality filtering
approach to produce high-fidelity datasets at scale.

Table 6: Bambaralnstruct-50k Dataset Statistics.

Metric Value % or Average

Instruction Characteristics

Instructions with 1-10 tokens 1,053 2.11%
Instructions with 11-20 tokens 29,966 59.93%
Instructions with >20 tokens 18,981 37.96%
Response Characteristics
Responses with <50 tokens 28,346 56.69%
Responses with 50-100 tokens 21,654 43.31%
Instructions with CoT reasoning 12,500 25.00%
Instruction Type Distribution
Open-ended questions 41,953 83.91%
Definition requests 66 0.13%
Explanation tasks 5,936 11.87%
List generation tasks 2,045 4.09%
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Table 7: FulfuldeInstruct-50k Dataset Statistics.

Metric Value % or Average

Instruction Characteristics

Instructions with 1-10 tokens 4,390 8.78%
Instructions with 11-20 tokens 31,273 62.55%
Instructions with >20 tokens 14,337 28.67%
Response Characteristics
Responses with <50 tokens 42,786 85.57%
Responses with 50-100 tokens 7,214 14.43%
Instructions with CoT reasoning 12,500 25.00%
Instruction Type Distribution
Open-ended questions 39,765 79.53%
Definition requests 219 0.44%
Explanation tasks 7,431 14.86%
List generation tasks 2,585 5.17%

E ANNOTATOR PROTOCOL AND QUALITY ASSURANCE

The integrity of the final datasets relies partially on the quality and consistency of the human validation
layer. To ensure a high standard of accuracy, we designed and implemented a structured protocol for
annotator recruitment, training, and workflow management. This section provides a detailed account
of that process.

E.1 RECRUITMENT AND TRAINING

We recruited a team of native speakers for each target language. The primary validation effort for
Zarmalnstruct-50k was conducted by a team of five annotators. For the initial quality assessments
of Bambara and Fulfulde, we worked with two native speakers for each language. All participants are
graduate students with a formal background in Computer Science and are fluent in both their native
language and French. While none had prior formal experience in linguistic annotation, their technical
background facilitated a quick adoption of the structured task requirements.

Before starting the main annotation task, all participants underwent a mandatory 40-minute training
session. The session covered:

1. Project Goals: An overview of the project’s objective to create high-quality instruction
datasets and the role of human validation in correcting the nuanced errors that automated
systems miss.

2. Tooling: A practical walkthrough of the annotation interface, which was implemented in
Google Sheets for its accessibility and real-time collaboration features.

3. Linguistic Guidelines: A detailed review of the annotation guidelines (see Section[E.3)),
with a focus on distinguishing between different error types.

Following the training, annotators participated in a calibration phase. During this phase, all annotators

independently evaluated a common set of 50 drafts. Afterward, the team convened to discuss their
decisions and resolve any disagreements.

E.2 ANNOTATION WORKFLOW AND TOOLING
The annotation task was managed entirely within a shared Google Sheets environment. Each language
had a dedicated workbook, and drafts were assigned to annotators in batches of 200. The sheet was

structured with the following columns to create a clear and efficient workflow:

* draft_id: A unique identifier for each instruction-response pair.
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e instruction_1rl: The original, uncorrected instruction in the target LRL, as generated
by the LLM. This field was locked.

* response_1rl: The original, uncorrected response in the target LRL. This field was
locked.

* rag_status: The status assigned by the automated checker (e.g., ’top_priority’,
"low_priority’).

e is_correct: A dropdown menu with two options ("Yes’, ’No’). Annotators selected
"Yes’ if the draft was entirely free of errors.

* corrected_instruction: An editable field where the annotator would provide the
corrected version of the instruction, if necessary.

* corrected_response: An editable field for the corrected version of the response.

* error_category: A dropdown menu with predefined error categories (e.g., 'Fluency’,
"Suffix Misuse’, *Tense Inconsistency’, ’Orthography’). This structured data was essential
for our error analysis.

* comments: An optional text field for the annotator to leave notes about ambiguous cases
or complex corrections.

Annotators were instructed to first assess the draft and set the is __correct flag. If they selected
’No’, they were then required to provide corrections in the corresponding ’corrected_’ fields and
select the primary error category.

E.3 ANNOTATION GUIDELINES
To maintain consistency, all annotators adhered to a defined set of guidelines:

1. Preserve Semantic Intent: The primary rule was to correct linguistic errors without altering
the core meaning or intent of the original French instruction. The goal was to fix the
language, not the content.

2. Prioritize Fluency and Naturalness: Corrections should result in text that sounds natural to
a native speaker. This often involved rephrasing sentences that were grammatically correct
but idiomatically awkward due to literal translation.

3. Correct All Linguistic Errors: Annotators were tasked with identifying and fixing all
grammatical, orthographic (spelling), and syntactic errors. This included issues with tense,
noun-verb agreement, and the misuse of function words or suffixes.

4. Ensure Consistent Handling of Loanwords: Annotators followed the same rules provided
to the LLM: technical terms from French were to be preserved, and other non-translatable
words were to be rendered using phonetic adaptation.

E.4 CoMMON ERROR CATEGORIES AND CORRECTION EXAMPLES

During the human validation phase, several recurrent error patterns emerged. Table [8| provides
illustrative examples of these common errors and the corrections applied by the annotators for the
Zarma language.

E.5 INTER-ANNOTATOR AGREEMENT (IAA)

To validate the consistency of our annotation process and the clarity of our guidelines, we measured
Inter-Annotator Agreement (IAA). We calculated Krippendorff’s Alpha («). For the Zarma dataset,
a randomly selected sample of 351 drafts was annotated by all five annotators. For Bambara and
Fulfulde, a smaller sample of 50 drafts was cross-annotated to validate the initial quality assessment
task.

The results, presented in Table 9] show a high level of agreement for the primary Zarma annotation
task and substantial agreement for the initial assessments of Bambara and Fulfulde.

The pretty high alpha score for Zarma (« = 0.793) indicates that the guidelines were effective and
the annotators applied them. An analysis of disagreements revealed two primary sources:
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Table 8: Examples of Common Errors and Applied Corrections in Zarma.

Error Category

Erroneous Draft Example

Corrected Version

Rationale

Suffix Misuse

Ay na hansi di. (1 saw dog.)

Ay na hanso di. (1 saw the dog.)

The draft was missing the definite ar-
ticle suffix *-0’. The correction adds
the suffix to make the noun “hansi’
(dog) definite, which is required by
the context.

Tense Inconsistency

Suba, a koy Niamey. (Tomorrow,
he/she went to Niamey.)

Suba, a ga koy Niamey. (Tomorrow,
he/she will go to Niamey.)

The adverb *Suba’ (tomorrow) estab-
lishes a future context, but the verb
lacks the future tense marker ’ga’.
The correction inserts the marker to
ensure grammatical consistency.

Wrong Phrasing (Flu-
ency)

Boro fo kan ga ti alfa go no. (A
person who is a teacher is there.)

Alfa fo go no. (A teacher is there.)

The original phrasing is a literal,
word-for-word translation (calque)
of the French “Une personne qui est
un enseignant...”. The corrected ver-
sion is more concise and idiomati-
cally natural in Zarma.

Orthography Iri ga barma te. (We will do work.)  Iri ga barna te. (We will do work.)  The word for "work" was misspelled.
The correction applies the standard
orthography for "barna’.

Table 9: Inter-Annotator Agreement Scores

Language Annotation Task Sample Size Krippendorff’s Alpha (o)

Zarma Full Error Correction & Categorization 351 0.793

Bambara Initial Quality Assessment (Correct/Incorrect) 50 0.821

Fulfulde Initial Quality Assessment (Correct/Incorrect) 50 0.637

* Subjectivity in Fluency: The most frequent source of disagreement arose from the subjec-
tive nature of fluency. One annotator might accept a phrasing as adequate, while another

would suggest an alternative phrasing.

 Dialectal Variation: Minor disagreements occasionally rose from regional variations in
vocabulary or preferred sentence structures.

In all cases of disagreement, the final version included in the dataset was determined through a
majority vote. If no majority existed, a final decision was made by the lead author in consultation

with the annotators.
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F CoSsT COMPARISON

To quantify the economic efficiency of our framework, we provide a detailed cost comparison for
building a 50,000-pair LRL instruction dataset under three distinct scenarios: LLM Only (No QC),
Full Human Correction, and our proposed InstructLR (RAG + Human) pipeline. The analysis,
summarized in Figure[3| covers both commercial API models and self-hosted open-source models,
factoring in their per-token costs and estimated baseline error rates—the proportion of generated
pairs requiring correction before any filtering.

Our cost model is based on the following up-to-date estimates:

e LLM Costs: We use an average of 75 tokens per instruction-response pair, totaling approxi-
mately 3.75 million tokens for the entire dataset. Commercial API prices are estimated at
$12/1M tokens for Gemini 2.5 Pro and $10/1M tokens for GPT-40. Self-hosted open-
source models have a negligible compute cost, estimated at under $0.01/1M tokens on a
single consumer GPU.

¢ Human Annotation Cost: We assume a professional annotator can review and correct a
generated pair at a cost of $0.40 per pair. This rate was chosen based on similar study
(CITATION HIDDEN FOR ANONYMITY) conducted in the past.

* Baseline Error Rates: Based on our initial experiments, we use the following error rates
for raw generated drafts: Gemini 2.5 Pro (15%), DeepSeek-V3 (25%), GPT-40 (70%), and
Llama-3-8B (95%).

The results show cost differences driven primarily by the human labor required. In a Full Human
Correction scenario, every one of the 50,000 drafts is reviewed. This fixes the human labor cost
at a substantial $20,000 (50,000 pairs x $0.40/pair) which makes the initial LLM API cost ($45
for Gemini) almost irrelevant to the total project budget. This high cost makes large-scale dataset
creation “VERY CHALLENGING” for many research teams.

The InstructLR pipeline aims to address this challenge. Our dual-layer filtering process reduces the
number of pairs requiring human review by approximately 88%, meaning validators only need to
inspect the 6,000 pairs flagged as “top priority” or corrected by the RAG system. This slashes the
human validation cost from $20,000 to just $2,400 (6,000 pairs x $0.40/pair).

This efficiency gain has several implications. For a high-performing commercial model like Gemini
2.5 Pro, InstructLR reduces the total project cost from $20,045 (Full Correction) to $2,445—a saving
of nearly 88%. The framework makes even models with very high error rates economically viable;
a self-hosted Llama-3-8B model, despite its 95% error rate, can be used to produce a high-quality
dataset for a total cost of approximately $2,400, as the automated RAG filter handles the vast majority
of errors.

These results highlight that the “primary” value of InstructLR lies in its targeted reduction of
human labor. By mergining scalable LLM generation with an efficient, automated quality filter, our
framework makes the creation of large-scale, high-quality instruction datasets for LRLs financially
practical.
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Figure 3: Estimated total project cost for producing 50,000 instruction—response pairs under three
quality—control scenarios. Each bar shows the combined LLM compute/API cost and any required
human annotation.

G ZARMA GRAMMAR RULES

We drafted the rules below based on linguistic documentation and observations from multiple sources.
The rules are not limited to these ones; however, this constitutes a baseline for future work.

RULE 1: PRONOUNS — PERSONAL PRONOUNS
Personal pronouns in Zarma are invariable across nominative, objective, and possessive cases.

* ay — I, me, my
* ni — you, your (singular)
e a (nga) — he, she, it; his, her, its
e iri (ir) — we, us, our
* aray — you (plural), your
* i (ngey, ey) — they, them, their
RULE 2: PRONOUNS — DEMONSTRATIVE PRONOUNS
Demonstrative pronouns indicate specific items; a din suffix can be added to nouns for specificity.
¢ wo — this, that
¢ wey — these, those
RULE 3: PRONOUNS — INDEFINITE PRONOUNS

Indefinite pronouns refer to non-specific entities.

* boro — someone, one (person)
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* hay kulu— everything

* hay fo — something

RULE 4: NOUNS — DEFINITE ARTICLE

[I3%1]

Definite articles are expressed by adding “a” or “o0” to the noun based on its ending.

Patterns:

* Ending
* Ending

[TPCIN

a

G 99,

(o)

add “a” (e.g. zanka — zankaa); exceptions: pre-1999 texts may not change.
change to “a” or add “a” (e.g. wayboro — waybora).

* Ending “ko”: change to “kwa” (e.g. darbayko — darbaykwa).

6 9

* Ending “e, i, u, consonant”: change to “0” or add “0” (e.g. wande — wando).

[IP%1]

* Ending “ay”: change “ay” to “a” or add “0” (e.g. farkay — farka or farkayo).

Examples:

* zanka - zankaa — a child — the child

e wayboro = waybora — a woman — the woman

¢ darbayko - darbaykwa — a fisherman — the fisherman

* hansi =+ hanso — adog — the dog

* farkay -+ farka — adonkey — the donkey

RULE 5: NOUNS — DEFINITE PLURAL

Definite plural is formed by replacing the definite singular vowel with “ey”.

* Replace final vowel with “ey” (e.g. zankaa — zankey).

* zankaa - zankey — the child — the children

* hanso -+ hansey — the dog — the dogs

e farka = farkey — the donkey — the donkeys

RULE 6: NOUNS — INDEFINITE ARTICLE

No explicit indefinite article; “fo” (one) is used to specify “a certain” or “one”.

s

* Add “fo” after noun for specificity (e.g. musu — musu fo).

* musu—acat

e musu fo — a(certain) cat, one cat

RULE 7: NOUNS — GENDER

No grammatical gender; specific words indicate male/female for living beings.

* alboro—man

* wayboro — woman

RULE 8: VERBS — COMPLETED ACTION (PAST TENSE)

Verbs without auxiliaries indicate completed actions (past tense).

* Subject + Verb (e.g. ay neera).

e ay neera —Isold

* a neera — he/she sold

e zankaa kani — the child went to bed
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RULE 9: VERBS — UNCOMPLETED ACTION (FUTURE TENSE)
Future tense uses the auxiliary “ga” before the verb.

* Subject + ga + Verb (e.g. ay ga neera).
e ay ga neera— [ will sell

* i ga neera — they will sell

RULE 10: VERBS — CONTINUOUS ASPECT
Continuous aspect uses “go no ga” before the verb for ongoing actions.

* Subject + gono ga + Verb (e.g. ay go no ga neera).
* ay go no ga neera — I am selling
* a go no ga neera — he/she is selling

RULE 11: VERBS — SUBJUNCTIVE

Subjunctive uses “ma” to indicate possible actions.

* Subject + ma + Verb (e.g. ay ma neera).
* ay ma neera — [ should sell

* ni ma neera — you should sell

RULE 12: VERBS — IMPERATIVE
Imperative uses “ma” or ‘wa” before the verb, or just the verb alone.

Ma/Wa + Verb or Verb alone (e.g. Ma hary or Hap).
* Hay! — Drink!
e Ma hay! — Drink!

* Aran ma di! — You (plural) see!

RULE 13: VERBS — TO BE

The verb “to be” varies by context: “go”, “ya ... no”, or “ga ti”.

e A go fu— He/she is at home
e Ay ya alfa no—1Iam ateacher

* Nga ga ti wayboro— Sheis a woman

RULE 14: VERBS — IRREGULAR VERBS
Some verbs place objects unusually (e.g. direct object before verb without “na”

e Ay di a — Isaw him/her

* A ne ay se — He/she said to me

RULE 15: ADJECTIVES — QUALIFYING ADJECTIVES
Adjectives follow the noun they modify.

e fu beeri — abig house

* hansi kayna — asmall dog
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RULE 16: SENTENCE STRUCTURE — BASIC ORDER
Basic sentence order is Subject—Verb—Object (SVO).

* Ay neera bari—Isold ahorse

RULE 17: SENTENCE STRUCTURE — DIRECT OBJECT
Direct object before the verb requires “na” in the past positive.

* Ay na bari neera—Isold ahorse

RULE 18: SENTENCE STRUCTURE — INDIRECT OBJECT
Indirect object is marked with “se” after the object.

* Ay no bari wayboro se — I gave a horse to the woman

RULE 19: NEGATION — PAST NEGATIVE
Past negative uses “mana” after the subject.

* Ay mana neera — I did not sell

RULE 20: NEGATION — PRESENT/FUTURE NEGATIVE
Present/future negative uses “si” instead of “ga”.

* Ay si neera—Ido not/will not sell
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H ToPricS SELECTED

In this section, we provide the list of topics—and a short description for each—we used for dataset
creation throughout this paper.

Table 10: List of the 20 topics used for dataset generation.

Topic

Description

General Knowledge

Includes basic factual information across diverse domains including geography, current events, etc. This category tests very basic
knowledge that educated individuals are “expected” to possess.

Biology

Covers living organisms, their structures, functions, growth, evolution, etc.

Economics & Finance

Examines economic principles, financial systems, market mechanisms, etc.

Common Sense Reasoning

Focuses on understanding cause-and-effect relationships in familiar contexts.

History

Explores past events, civilizations, historical figures, their impact on contemporary society, etc.

Mathematics

Involves numerical computations, algebraic manipulations, geometric principles, and mathematical problem-solving.

Computer Science

Includes programming concepts, algorithms, data structures, software engineering, and computational thinking. It covers both
theoretical computer science and practical programming applications.

Social Sciences & Psychology

Includes human behavior, mental processes, social interactions, and societal structures.

Adversarial Multi-step Reasoning

Challenges complex problem-solving abilities through multi-layered logical puzzles and sequential reasoning tasks.

Physics Examines matter, energy, motion, forces, and their interactions in the physical universe.
Engineering Focuses on the application of scientific and mathematical principles to design and build structures, machines, and systems.
Law & Ethics Explores legal systems, ethical principles, moral reasoning, and jurisprudence.

Extra-difficult Reasoning

Presents highly challenging logical problems that require advanced cognitive abilities and creative problem-solving approaches.

Chemistry

Studies the composition, properties, and behavior of matter at the atomic and molecular level.

Medicine & Health

Encompasses medical knowledge, healthcare practices, disease prevention, diagnosis, and treatment approaches.

Business & Management

Addresses organizational i strategic pl leadership principles, and business operations.

Causal Reasoning

Tests understanding of cause-and-effect relationships, logical inference, and the ability to predict outcomes based on given conditions.

Sports

Covers athletic activities, rules, strategies, and sports-related knowledge including historical achievements and sporting culture.

Sentiment Analysis

Involves identifying and interpreting emotional tones, attitudes, and opinions expressed in text or speech.

Multi- e Comp

ion

Assesses reading comprehension skills across multiple connected sentences, testing coherence understanding and information

synthesis.
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I PROMPT TEMPLATES
In this section, we show all the different prompt templates used in the InstructLR framework.

I.1 SEED INSTRUCTIONS PROMPT TEMPLATE

Seed Instruction Generation Prompt

Prompt

Domaine : {domain}

GENEREZ UNE SEULE CONSIGNE OU QUESTION EN FRANCAIS, REPRESENTATIVE DE CE DOMAINE.
VOUS POUVEZ CHOISIR :

- QUESTION A CHOIX MULTIPLES (Options: A)..., B)... etc.),

- QUESTION VRAI/FAUX,

- AFFIRMATION A COMPLETER,

— DEMANDE DE LISTE (ex. : ‘‘Donnez x exemples de...’’),

- TACHE OUVERTE (CLASSIFICATION, RESUME, EXPLICATION, EXEMPLE, ETC.),

- OU N’’IMPORTE QUEL AUTRE STYLE.

CONTRAINTES :

1. RESTEZ EN 1 A 4 PHRASES.

2. NE DEMANDEZ PAS DE DESSIN, DE CHANT,

DE GENERATION D’ IMAGE, NI DE RECHERCHE SUR LE WEB.

3. UTILISEZ UN VERBE UNIQUE POUR EVITER LA REPETITION ET MAXIMISER LA DIVERSITE.
4. FOURNISSEZ UNE ENTREE REALISTE (<=150 MOTS) .

5. L’/ENTREE DOIT ETRE SPECIFIQUE, SUBSTANTIELLE ET FOURNIR UN CONTENU STIMULANT.
6. NE REPONDEZ PAS AUX INSTRUCTIONS OU QUESTIONS

-- LIMITEZ-VOUS JUSTE A L’’INSTRUCTION OU A LA QUESTION.

RENVOYEZ STRICTEMENT CE JSON :

{{
‘“‘instruction_fr’’: ‘‘<VOTRE INSTRUCTION>'’,
“‘context_fr’’: ‘‘{domain}’’

b}

rrroror
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.2 INSTRUCTION-RESPONSE PROMPT TEMPLATE

We fed the Gemini model with the prompt below to obtain an LRL instruction-response pair from a
French input.

LRL Instruction—Response Generation Prompt

System Preamble

Vous étes un assistant IA expert dans la génération de paires instruction—réponse pour des langues a faibles ressources, spécifiquement
pour le {target_language}. Votre tache : (1) générer instr_1rl—Ia version de 1”instruction en {target_language}; (2) générer
resp_lrl—une réponse pertinente et grammaticalement correcte en {target_language}; (3) pour les sujets de raisonnement
(Raisonnement de sens commun, Raisonnement multi-étape adversarial, Raisonnement extra-difficile, Raisonnement causal), générer
CoT_1lrl—une explication des étapes de raisonnement en {target_language} avant la réponse, ne dépassant pas 200 mots; pour les
autres sujets, CoT_1r1 doit étre “N/A”. Le {target_language} est écrit en transcription phonétique.

\textbf {CONTRAINTES}

1. LES MOTS TECHNIQUES (SCIENCE, MEDECINE, ETC.)
DOIVENT RESTER INCHANGES MAIS UTILISER LEUR
VERSION FRANCAISE. EXEMPLE : ‘‘ENDOMETRIOSIS’’ SERA
‘‘ENDOMETRIOSE’’. LES TITRES DE LIVRES ET
SIMILAIRES DOIVENT RESTER INCHANGES.

2. SI UN MOT N'A PAS D’EQUIVALENT EN ZARMA,
ECRIVEZ SA TRANSCRIPTION PHONETIQUE EN FRANGAIS.
EXEMPLE : ‘‘POLITIQUE’’ EN ZARMA SERA ‘‘POLITIK’’.

3. N’INVENTEZ PAS DE MOTS. SUIVEZ LES DIRECTIVES.

4. PAS DE TRADUCTION MOT A MOT. L’ESSENTIEL DOIT
ETRE FIDELE ET COMPREHENSIBLE.

5. PAS DE CREATIVITE NI D’INVENTION. RESPECTEZ
STRICTEMENT LES CONSIGNES.

6. UTILISEZ LES MOTS FRANCAIS SI AUCUNE
TRADUCTION N’EST POSSIBLE EN ZARMA.

7. L’OBJECTIF EST UNE TRADUCTION FIDELE ET
COMPREHENSIBLE.

8. LES REPONSES (\verb|resp_lrl|) NE DOIVENT PAS
DEPASSER 100 MOTS.

9. POUR LES SUJETS DE RAISONNEMENT
(\textit{Raisonnement de sens commun},

\textit {Raisonnement multi-étape adversarial},
\textit {Raisonnement extra-difficile},

\textit {Raisonnement causal}), \verb|CoT_1lrl|
DOIT EXPLIQUER LES ETAPES DE RAISONNEMENT EN \
{target\_language\}, ETRE CLAIR, CONCIS, ET NE
PAS DEPASSER 200 MOTS. POUR LES AUTRES SUJETS,
\verb|CoT_1lrl| = “‘N/A’’.

User Request

‘‘instruction_fr’’: ‘‘{user_provided_french_instruction}’’,
‘‘context_fr’’: ‘‘{user_provided_french_context_or_domain}’’,
‘‘target_language_name’’: ‘‘{target_language_full_name}’’,
‘‘lang’’: ‘‘{language_code}’’,
‘‘specific_guidelines’’: [
‘‘La instr_lrl DOIT étre uniquement en {target_language}.’’,
‘‘La resp_lrl DOIT étre uniquement en {target_language}.’’,
‘‘Pour les sujets de raisonnement, générer CoT_lrl
expliquant les étapes de raisonnement en {target_language},
max 200 mots. Sinon, CoT_lrl = ‘N/A’.,
‘'Fidélité et naturel : instr_lrl et resp_lrl doivent
refléter 1’intention.’’,
‘‘Conserver noms propres et emprunts établis,
transcrits phonétiquement.’’,
‘‘Conserver termes techniques sans néologismes.’’,
‘‘Adapter phonétiquement tout mot inconnu
(ex. ’'politique’ =+ ’politik’).’’,
‘‘Clarté et grammaire irréprochables.’’
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1944
1945 The Output should be JSONL

1946 (

1947 ‘‘instr_fr’’: ‘‘{user_provided_french_instruction}’’,
1948 ‘‘instr_1rl’’: '’ [Generated instruction in target_language]’’,
‘‘resp_lrl’’: '’ [Generated response in target_languagel]’’,
1949 Y'CoT_1lrl’’: '’ [Generated reasoning steps in target_language or 'N/A’]’’,
1950 “‘topic_fr’’: “‘{user_provided_french_context_or_domain}’’,

‘‘lang’’: '’ {language_code}’’
1951 }

1952

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
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J GENERATED DATASETS SNAPSHOTS

Table 11: Snapshot of 20 instruction—response pairs from Zarmalnstruct-50k. Snapshot of the Gen-
erated Drafts. Columns represent: instr_fr = French instruction, instr_1rl = Instruction in
target LRL, resp_1lrl = Response in LRL, CoT_1r1 = Chain of Thoughts in response generation
in LRL (N/A for non-reasoning topic), topic_fr = Topic name in French, 1ang = Language code.

instr_fr instr_Irl resp_lIrl CoT_Irl topic_fr lang
Quelle est la capitale ~ Niamey wo di Niger kebal? Niamey di Niger gaba kuruso. N/A Connaissances générales dje
du Niger ?
Calcule 7 + 5. 7 nda 5 baani? 7 nda 5 ga baani 12. N/A Mathématiques dje
Explique laloidela  Bay gravite kanun no? Gravite kanun no: jano hinka ~ N/A Physique dje
gravitation. deera wusu nda deera.
QuZest-ce qu”une  Molekul ya mate no? Molekul no, kaani zankakwey =~ N/A Chimie dje
molécule ? koyra ga.
Définis la photosyn-  Fotosintez ga bay? Fotosintez no: hanci nda saa  N/A Biologie dje
thése. kaani ga bi kaba.
Qu”est-ce qu”un al-  Algorithme ya mate no? Algorithme no, ti hakilay hinka ~ N/A Informatique dje
gorithme ? teeri nda namay.
Explique le pont sus- ~ Bay zawo suru di? Zawo suru no, suuru sila hinka ~ N/A Ingénierie dje
pendu. ga hin ka ti zawo fa.
Définis 1”anémie. Anemia ya mate no? Anemia no, doro cee ka si jiri  N/A Médecine & santé dje
bon.
Que signifie infla-  Inflation ya hin ka ti? Inflation no, sarey goorukakoy =~ N/A Economie & finance dje
tion ? boori.
Définis le stress. Stress ya mate no? Stress no, boro hakilay ka  N/A Sciences sociales & psy-  dje
gaama. chologie
Qu”est-ce que laloi  Loi civile ya hin ka ti? Loi civile no, koyra nda boro ~ N/A Droit & éthique dje
civile ? farilla hinka.
Qu”est-ce  qu’un  Business plan ya mate no? Business plan no, ciloganinda ~ N/A Commerce & gestion dje
business plan ? foondiray han.
Combien de joueurs  Futbol kura ga boro hinka? Futbol kura ga boro 22. N/A Sports dje
dans un match de
foot ?
Donne le ton du  Kurun “A ganafa” seerey hin? ~ Kurun no seerey bara kamma, N/A Analyse de sentiment dje
texte “A ga nafa”. positifu.
Si1”eau chauffe, que  So dii, ko moto? So dii, a ga buburu. agabuburuwa;  Raisonnement causal dje
se passe-t-il ? sababaa dii.
Lis ces deux phrases Ay buburu; A koy. Suje di? Suje di “Ay” nda “A”. N/A Compréhension  multi-  dje
et dis le sujet. phrases
Pourquoi met-onun  Kari wa, ko sabu? Hima kura, kari ga ke boori. Fanda  kura, Raisonnement de sens dje
manteau en hiver ? kari za daaba  commun
ni.
Résous : (2x3) +4. 2 x 3 nda 4 baani? 2x3ga6;6nda4dgall. mulitétape: Raisonnement multi-  dje
dabari nda  étape adversarial
daaba.
Trouve le prochain 29 kuma, numuru kuma surey? ~ Numuru kuma surey ga 31. teste divisibil-  Raisonnement extra-  dje
nombre premier ité; 31 si baani. difficile
apres 29.
En quelle année le  Niger independansi ci hinka? Niger independansi ci 1960. N/A Histoire dje

Niger fut-il indépen-
dant ?
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