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Abstract

Real-time decoding of target variables from multiple simultaneously recorded
neural time-series modalities, such as discrete spiking activity and continuous
field potentials, is important across various neuroscience applications. However, a
major challenge for doing so is that different neural modalities can have different
timescales (i.e., sampling rates) and different probabilistic distributions, or can
even be missing at some time-steps. Existing nonlinear models of multimodal
neural activity do not address different timescales or missing samples across modal-
ities. Further, some of these models do not allow for real-time decoding. Here,
we develop a learning framework that can enable real-time recursive decoding
while nonlinearly aggregating information across multiple modalities with different
timescales and distributions and with missing samples. This framework consists
of 1) a multiscale encoder that nonlinearly aggregates information after learning
within-modality dynamics to handle different timescales and missing samples in
real time, 2) a multiscale dynamical backbone that extracts multimodal temporal
dynamics and enables real-time recursive decoding, and 3) modality-specific de-
coders to account for different probabilistic distributions across modalities. In both
simulations and three distinct multiscale brain datasets, we show that our model can
aggregate information across modalities with different timescales and distributions
and missing samples to improve real-time target decoding. Further, our method
outperforms various linear and nonlinear multimodal benchmarks in doing so.

1 Introduction

Real-time continuous decoding of target time-series, such as various brain or behavioral states from
neural time-series data is of interest across many neuroscience applications. A popular approach
for doing so is to develop dynamical latent factor models that describe neural dynamics in terms
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of the temporal evolution of latent variables that can be used for downstream decoding. To date,
dynamical latent factor models of neural data have mostly focused on a single modality of neural
data, for example, either spiking activity or local field potentials (LFP) [114]. However, brain and
behavioral target states are encoded across multiple spatial and temporal scales of brain activity
that are measured with different neural modalities. Furthermore, some of these dynamical models
have a non-causal inference procedure, which hinders real-time decoding. Therefore, inference of
target variables could be improved by developing nonlinear dynamical models of multimodal neural
time-series that can, at each time-step, aggregate information across neural modalities and do so in
real-time.

A natural challenge in developing such multimodal models arises when modalities are not aligned
due to their different recording timescales that can be caused by various factors such as fundamental
biological differences across modalities—with some modalities evolving slower than others [S]—
differences in recording devices [0l [7], or measurement failures or interruptions [8-H10]]. Further,
modalities could have different distributions. For example, spiking activity is a binary-valued time-
series that indicates the presence of action potential events from neurons at each time. As such, it has
a fast millisecond timescale and is often modeled as count processes, such as Poisson. In comparison,
LFP activity is a continuous-valued modality that measures network-level neural processes, has
a slower timescale, and is typically modeled with a Gaussian distribution [J5, (7, [11]. We refer to
multimodal data with different timescales as multiscale data. Thus, to fuse information across
spiking and LFP modalities and improve downstream target decoding tasks, their dynamics should
be modeled by incorporating their cross-modality probabilistic and timescale differences through a
careful encoder design.

Existing neural dynamical modeling approaches do not address the nonlinear modeling of multimodal
data with different timescales and/or with real-time decoding capability. Specifically, most dynamical
models do not capture multimodal neural dynamics and instead focus on a single modality of neural
activity either by using linear/switching-linear approaches [1} 12} [13] or by utilizing nonlinear deep
learning approaches [24}14]. There are also some methods to jointly model unimodal neural activity
together with behavior [15-H23]], but again, their latent factor inference is performed by processing
unimodal neural time-series and does not aggregate multimodal neural data. While there has been
some recent work on dynamical modeling and decoding of multimodal neural data, many of these
works have been linear [24-28]]. Motivated by this gap, recent studies have developed nonlinear
models of multimodal neural data [[18, [29-31]]. However, these recent works have not addressed
modalities with different timescales; further, the latent factor inference in such dynamical models has
been done non-causally over time [29-31]].

Beyond neural time-series data, many approaches in other domains have been proposed to combine
multiple modalities. However, these are again not focused on addressing the challenge of different
timescales and missing samples over time, and their applicability to joint modeling of Poisson and
Gaussian distributed modalities encountered in neuroscience has not been investigated (Section [2)).

Contributions We introduce Multiscale Real-time Inference of Nonlinear Embeddings (MRINE),
a nonlinear dynamical modeling approach designed to nonlinearly fuse multimodal neural time-series
with different timescales, distinct distributions, and/or missing samples over time, while supporting
inference both in real-time and non-causally. To achieve these capabilities, we: 1) design a multiscale
encoder that performs nonlinear information fusion via neural networks after learning modality-
specific dynamical models that account for timescale differences and missing samples in real-time by
learning the temporal dynamics (Section [3.2)) and 2) impose smoothness priors on the latent dynamics
via smoothness regularization objectives that also prevent learning trivial identity neural network
transformations (Section[3.3).

Through stochastic Lorenz attractor simulations and two independent nonhuman primate (NHP)
spiking and LFP neural datasets, we show that MRINE infers latent factors that are more predictive of
target variables such as the NHP’s arm kinematics. Further, we compare MRINE with various recent
linear and nonlinear multimodal methods and show that MRINE outperforms them in downstream
decoding from multiscale spike-LFP time-series in the NHP datasets, as well as on a high-dimensional
visual stimuli dataset containing neuropixel spikes and calcium imaging data.



2 Related work

Single-Scale Models of Neural Activity Numerous dynamical models of single-scale neural activity
have been developed. Some of these models are in linear or generalized linear form [[1} 12, 15} [32H34].
Linear dynamical models (LDMs) are widely used in real-time applications because they provide real-
time and recursive inference algorithms. To enable nonlinear modeling, there has been an increased
interest in switching linear models [13]] and deep learning architectures including recurrent neural
networks (RNN) with nonlinear temporal dynamics [3} [19, 135]], autoencoder-based architectures
that utilize Markovian linear dynamics to learn a smoothing distribution [2} [14} 36]], transformer
encoder based models optimized with masked training [37) [38] and neural ordinary differential
equations [39]. These models have shown great promise in improving behavior decoding compared
to linear models [3]]. A recent work [4]] has also developed a nonlinear neural network framework
termed DFINE that supports flexible inference—i.e., enables both real-time filtering and noncausal
smoothing, and accounts for missing observations simultaneously—by jointly training an autoencoder
with linear state-space models and utilizing Kalman filtering [40]. Another work has proposed a
low-rank structured variational encoding framework for Gaussian state-space models to capture
dense covariances with predictive capabilities, while supporting real-time parameterization of their
inference network [41]]. While LDM-based approaches and some other nonlinear approaches [41]]
can handle missing samples-—either via Kalman filtering or in a similar spirit within probabilistic
state-space formulations—-all the above linear and nonlinear methods are designed for a single
modality of neural activity and do not address multiscale modeling.

Multimodal Information Fusion Outside neuroscience, fusing multiple data modalities has been
extensively researched across many areas including natural language processing (NLP) and computer
vision. However, these approaches do not address nonlinear modeling of multiple time-series
modalities with different timescales and with real-time inference capability, which we consider
here. Specifically, in computer vision, many studies focused on variational autoencoders (VAE),
and approximated the joint posterior distribution by factorization it into modality-specific posteriors
[42-46] to handle missing modalities, or by concatenating the modality-specific representations
[47,/48]. Instead of learning the common embedding space via factorization or concatenation, some
studies have also employed cross-modality generation [49}150]. Even though some of these methods
can fuse time-series modalities with different timescales, they need to do so using separate networks
for each modality to first non-causally encode each modality into a single vector, which means
information fusion cannot be done causally over time-steps (i.e., in real time). However, many
neuroscience applications require aggregating information at each time step in a causal manner to
perform continuous real-time decoding of target variables. Finally, they are not designed to handle
time-series signals with missing samples in time and would rely on data augmentations such as
zero-padding, which can be suboptimal by changing the value of missing samples [S1H53].

Multimodal Models in Neuroscience One line of work in neuroscience aims to jointly model
single-scale neural activity and behavior as multimodal signals [15H17,|19]. However, in these works,
latent factor inference is performed using single-scale neural activity without any information fusion,
similar to the single-scale models discussed above. Another line of work aims to model multimodal
neural signals. However, these methods are either linear/generalized-linear or are designed for offline
reconstruction without addressing distinct timescales or enabling real-time inference. Specifically,
some approaches proposed linear multimodal modeling frameworks [26} [27]] and learned the model
parameters via expectation-maximization (EM). But these methods do not capture nonlinearity and
further do not address different timescales. To partly address this gap, a linear dynamical modeling
framework was introduced in [24] in which model parameters are also learned with EM but this
time inference can aggregate modalities with different timescales. With a similar linear formulation
of multiscale dynamics, recent work in [28]] proposed a more computationally efficient learning
framework compared to [24]] by using subspace identification. However, both of these approaches are
still linear and cannot characterize nonlinearities.

To account for nonlinearity, recent studies have developed nonlinear latent factor models for multi-
modal neural data [[18], 29H31]], but their formulation assumes the same timescale for the different
modalities and also does not consider missing samples. Thus, in such situations, they would need
to rely on indirect approaches such as augmentations with zero-padding, which can be suboptimal
by changing the value of missing samples [4} 51H53]. Furthermore, such multimodal dynamical
models have non-causal inference networks and thus do not enable real-time inference of latent



factors [29431]]. Instead, here we develop a nonlinear dynamical modeling framework for multimodal
neural time-series data that supports real-time and efficient recursive inference, and handles both
timescale differences and missing samples by directly leveraging the learned dynamical model to
predict these missing samples.

3 Methodology

We assume that we observe discrete neural signals (e.g., spikes) s; € {0,1}"= for ¢t € T where
T ={1,2,...,T} and continuous neural signals (e.g., LFPs) y,, € R™ fort' € T’ where T’ C T.
Note that the two different sets 7 and 7 allow for the timescale differences of s; and y,, via
different time-indices. As shown in Fig. [I|and expanded on below, we describe the neural processes
generating s; and y,, through multiscale latent and embedding factors, which in turn can be extracted
by nonlinearly aggregating information across these multiple neural modalities with a multiscale
encoder.
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Figure 1: a. MRINE model architecture. Multiscale encoder nonlinearly extracts multiscale embed-
ding factors (a.) by fusing discrete Poisson and continuous Gaussian neural time-series in real-time
(as indicated by thick dashed lines) while accounting for timescale differences and missing samples.
Temporal dynamics are then explained with a multiscale LDM whose states are the multiscale latent
factors (x). As an example, when y, is missing, as and x, are inferred by processing only s2. b.
MRINE multiscale encoder design. Modality-specific LDMs learn within-modality dynamics and
account for timescale differences or missing samples via Kalman filtering. Then, filtered modality-
specific embedding factors (af‘ , and afl ;) are fused and processed by another fusion network to

obtain the multiscale embedding factors a;. As an example, when y, is missing, ag|2 is predicted

only by the dynamics of modality-specific LDM in Eq. [7} Note that MLP networks are time-invariant,
and information about temporal dynamics is incorporated through LDMs.

3.1 Model formulation

The model architecture is shown in Fig. [Th with its main components being a multiscale encoder
network for nonlinear information fusion, a multiscale LDM backbone to facilitate real-time inference,
and nonlinear decoder networks for each modality. We write the generative model as follows:

T = Ay + wy 1)

a; = Cmt =+ T (2)

Do, (8¢ | ar) = Poisson(ss; Alay)), 3)
where A(+) := fo. (")

pe, Yy | av) = N(yy;pular), o), @)

where fa(+) = fo, ()

Here, Eq. [T|and 2] form a multiscale LDM, and ¢ € 7 where 7 = {1,2,...,T} and t' € T’ where
T’ C T. In this LDM, a; € R"=, termed multiscale embedding factors, are the observations. We
obtain a; as the nonlinear aggregation of multimodal information through the multiscale encoder



designed in Section Further, x; € R™=, termed multiscale latent factors, are the LDM states
and model the dynamics as linear in the nonlinear embedding space, which facilitates real-time
inference (Section [3.2). Note that from this point onward, we will only use time-index ¢ (except
observation models) for embedding and latent factors as 7’ C 7. Correspondingly, A € R™=*"= and
C € R"*"= gre the state transition and observation matrices in the multiscale LDM, respectively;
w; € R and r, € R™ are zero-mean Gaussian dynamics and observation noises with covariance
matrices W € R"=*"= and R € R"a*"e,

The observations from different modalities s; and y,, are then generated from a (or @) as in Eqs.
and respectively, with the likelihood distributions denoted by pg, (s; | a¢) and pg, (y,/ | ay ).
Assuming that data modalities are conditionally independent given a; (or ay for y,,), we modeled
the discrete spiking activity s, with a Poisson distribution and the continuous neural signals y,, with
a Gaussian distribution, given that these distributions have shown success in modeling each of these
modalities [2} 3} 24, [54]. The means of the corresponding distributions A(+) := fp_(-) € R™ and
u(-) := fo,(-) € R™ are parametrized by neural networks with parameters 6, and 6,,. Practically,
we observed that learning the variance of the Gaussian likelihood yielded suboptimal performance,
thus we set it to a constant value, i.e., unit variance, as in previous works [55}156].

3.2 Encoder design and inferring multiscale factors

To infer a; and z; from s; and y,,, we first construct the mapping from s; and y,, to a; as:

a; = fy(8t,Yy) )

where f,(-) represents the multiscale encoder network parametrized by a neural network with
parameters ¢.

One obstacle in the design of the encoder network is accounting for the different timescales without
using augmentation techniques such as zero-padding as commonly done [53} 57] since they can
yield suboptimal performance and distort the information during latent factor inference [511 152} 58]
Thus, it is important to account for timescale differences and the possibility of missing samples when
designing the multiscale encoder. Additionally, our goal is to perform multimodal fusion at each
time-step while also allowing for real-time inference of factors. We address these problems, which
remain unresolved in prior methods, with a multiscale encoder network design shown in Fig. [Tb.

In our multiscale encoder (Fig. [Tb), at each time-step, first, each modality (s; and y,,) is processed
by separate time-invariant multilayer perception (MLP) networks with parameters ¢, and ¢, to
obtain modality-specific embedding factors, ai € R" and a} € R"e, respectively. Then, we
construct modality-specific LDMs for each modality, whose observations at each time-step are their
corresponding embedding factors:
T} = Az} +wj ©)
a; =C.xi +7r]
zl, = Ayz! + wf

y _ y y
ai = Cyx; + 7]

(M

where x}, x] € R"* are modality-specific latent factors, A5, A, € R"*" are the state transition
matrices, Cs, C', € R™* %" are the emission matrices, w;, wi’ € R™ are the zero-mean dynamics
noises with covariances W, W, € R™**" and 7§ and 7} are the zero-mean Gaussian observation
noises with covariances R, R, € R"**"= for modalities s; and y,,, respectively. We denote the
modality-specific LDM parameters by ¢s = {A;,Cs, W, R} and ¢, = {A,,C,, W, R, } for
s; and y,., respectively.

In our design, we use the modality-specific LDMs because they allow us to account for missing
samples (whether due to timescale differences or missed measurements) by using the learned within-
modality state dynamics to predict these samples forward in time, while also maintaining the operation
fully real-time/causal. Specifically, given the modality-specific LDMs in Eq. [fland[7] we can obtain
the modality-specific latent factors, wf‘ , and a:i/‘ , with Kalman filtering, which is real-time and
constitutes the optimal minimum mean-squared error estimator for these models [40]. We use
the subscript i|j to denote the factors inferred at time ¢ given all observations up to time j. As
such, subscripts t|t, t|T and ¢ + k|t denote causal/real-time filtering, non-causal smoothing and
k-step-ahead prediction, respectively. At this stage, if ¢ is an intermittent time-step such that y,

is missing (i.e., t € T andt ¢ T'), acflt is obtained with forward prediction using the Kalman



predictor as a:tlt =Ax! 1e—1 [59], and similarly for mt‘t if s; is missing. Having done this for
each modality, we perform information fusion in real-time by concatenating the modality-specific
embedding factors and passing them through a fusion network with parameters ¢,, to obtain the
initial representation for a;, which later becomes the noisy observations of the multiscale LDM
formed by Eq. [I] and [2] (also see Fig. [Th). We denote the learnable multiscale encoder network
parameters by ¢ = {¢sa ¢ya 770& djyv ¢m}-

The multiscale LDM now allows us to infer x;; with real-time (causal) Kalman filtering, or infer
x; 7 with non-causal Kalman smoothing [60]. Similarly, k-step-ahead predicted multiscale latent
factors ast+k|t can be obtained by forward propagating @;; k-times into the future with Eq. || I ie.,

Tyt = AF x¢. We denote the parameters of the multiscale LDM by 1, = {A,C, W, R}.
We can now obtain the filtered, smoothed, and k-step-ahead predicted parameters of the likelihood
functions in Eq. E] and [ by first using Eq. 2]to compute the corresponding multiscale embedding
factors—i.e. a;; = C'z;);, where i[5 i y—and then forward passing
these factors through fo.(+) and fo_(-) (Fig. ).

3.3 Learning the model parameters

k-step ahead prediction To learn the MRINE model parameters and in order to encourage learning
the dynamics, as part of the loss, we employ the multi-horizon k-step-ahead prediction loss defined

as:
=3 (DS 108 (n. (st [ agei) + > Tog (po, (e | avie ) g
kek teT t'eT’ ()
t>k t'>k

where T and 7" denote the time-steps when s; and y,, are observed, respectively. 7 is the scaling
parameter as the log-likelihood values of different modalities are of different scales (see Appendix
IA.2.2)), and K is the set of future prediction horizons. We note that k-step-ahead prediction is
performed by computing k-step-ahead predicted multiscale latent factors, @, ., rather than modality-
specific ones.

Smoothed reconstruction In addition to the k-step-ahead prediction, we also optimize the recon-
struction from smoothed multiscale factors:

Lomootn == (D 7108 (b0, (¢ | ayr)) + > log (o, (wy | avir))) ©)
teT t'eT’

where T is the last time-step that any modality is observed.

Smoothness regularization To impose a smoothness prior on learned dynamics and to prevent
the model from overfitting by learning trivial identity encoder/decoder transformations, in our loss,
we also apply smoothness regularization on py, (s; | a1.7), pe, (¥ | @i.7) and p(x; | a1.7) by
minimizing the KL-divergence between the distributions in consecutive time-steps as introduced in
[61] for Gaussian-distributed modalities. Here, we extend this technique also to Poisson-distributed
modalities as below. Let L, be the smoothness regularization penalty, defined as:

ITI-1 n, [T'[=1 ny

Lon = D2 D d(po.(lagir),pa (5, laz )+ D > d(po, (e larsir).pe, (v, a7, ir)
i=1 j=1 i=1 j=1

Smoothness on s Smoothness on y,/ (10)

3
3

T %]
zz d( It‘at\T) (IZJrl‘at-H\T))

t=1 j=1

5

Smoothness on @

where d(-, -) is the KL—divergence between given distributions, subscript ¢ denotes the i™ element
of the set, superscript j is the j™ component of the vector (e.g., s7.), and py_(s; | a;r) and
po, (Yy | ayr) are asin Eq and! respectlvely Here -, 7, and -y, are the scaling hyperparameters.
The smoothness penalties on s; and y,, are computed over the time-steps that they are observed. The
penalty on x; is obtained over all time-steps as x; is inferred for all time-steps. After extracting a;.p
with multiscale encoder, p(x; | a1.7) can be obtained with the Kalman smoother, which provides the
posterior distribution for the multiscale LDM [40, 62]:

(s | arr) = N (24 247, Syr) (11)



where x; 7 and X7 are the smoothed multiscale latent factors and their error covariances, respec-
tively. To allow the model to learn both fast and slow dynamics, we put the smoothness regularization
on x; on half of its dimensions.

To assess the impact of incorporating smoothness regularization terms in Eq. [I0] and smoothed
reconstruction in Eq. [9} we performed an ablation study (see Appendix [A.6.2), which demonstrates
that each term contributes to the improved performance. Further, in another ablation study on the
effect of multiscale modeling (see Appendix [A.6.4), we show that MRINE’s multiscale encoder
design is an important contributing factor to improved performance, compared to the case where
missing samples are imputed by zeros and removed from the training objectives above.

Finally, we form the loss as the sum of the above elements and regularization terms, and minimize
it via mini-batch gradient descent using the Adam optimizer [63]] to learn the model parameters

{¢77/)79376y}:
['JWRINE = Ek + »Csmooth + »Csm + A/’I’LQ (087 gyv ¢sv d)y? ¢m) (12)

where Lo(+) is the Lo regularization penalty on the MLP weights and ,. is the scaling hyperparameter.

Moreover, we employ a dropout technique termed time-dropout during training to increase the
robustness of MRINE to missing samples even further. See Appendix [A.T] for more information,
Appendix for an ablation study on the effect of time-dropout, and Appendix [A.2]for training
details and hyperparameters.

4 Results

4.1 Stochastic Lorenz attractor simulations

We first validated that MRINE can successfully aggregate information across multiple modalities
by performing simulations with the stochastic Lorenz attractor dynamics defined in Eq. To do
so, we generated Poisson and Gaussian observations with 5, 10 and 20 dimensions as described in
Appendix[A.4.2] We generated 4 systems with different random seeds and performed 5-fold cross-
validation for each system. Then, we trained MRINE as well as single-scale networks with either
only Gaussian observations or only Poisson observations (see Appendix [A.2.T). To assess MRINE’s
ability to aggregate multimodal information, we compared its latent reconstruction accuracies with
those of single-scale networks. For each model, these accuracies were obtained by computing
the average correlation coefficient (CC) between the true and reconstructed latent factors (see
Appendix [A.4.3] for details). We refer to each observation dimension as a channel for simplicity.

b.
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4.2 MRINE fused multiscale information in behavior decoding for the NHP datasets

To test MRINE’s information aggregation capabilities in real datasets, we used two independent
publicly available NHP datasets [[64-66]. For both datasets, discrete spiking activity and continuous
LFP signals were recorded while subjects performed 2D reaches either on a grid via a cursor (grid-
reaching dataset), or from a center target to a random outer target via a manipulandum (center-out
reaching dataset). We considered the 2D cursor and manipulandum velocities in x and y directions
as our target behavior variables (see Appendices[A.5.T|and[A25.2] for details). For both datasets, we
trained single-scale models with 5, 10, and 20 channels of either spike or LFP signals alone, as well
as MRINE models of spike-LFP signals for every combination of these multimodal channel sets,
and decoded the target behavior from inferred latent factors (see Appendix [A.5.3|for details). In our
analyses, we used 4 and 3 experimental sessions recorded on different days for the NHP grid reaching
and center-out reaching datasets, respectively, and performed 5-fold cross-validation for each session.
In our analyses, LFP and spike signals had different timescales: spikes were observed every 10 ms
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Figure 3: Behavior decoding accuracies for the NHP grid reaching dataset (fop row) and NHP center-
out reaching dataset (bottom row). Shaded areas and error bars represent SEM. a. Accuracies, when 5,
10, or 20 spike channels were the primary modality and an increasing number of LFP channels, were
fused. b. Similar to a when LFP channels were the primary modality. ¢. Percentage improvements
in decoding accuracy when 20 LFP channels were added to 5, 10, and 20 spike channels. Asterisks
indicate significance of comparison (***: p < 0.0005, one-sided Wilcoxon signed-rank test). d.
Similar to ¢, when 20 spike channels were added to 5, 10, and 20 LFP channels. e-h. Same as a—d
but for NHP center-out reaching dataset.

and LFPs every 50 ms (abbreviated as 50 ms LFPs) [6, [28]. We found that when spiking signals were
taken as the primary modality, fusing them with increasing numbers of LFP channels improved the
behavior decoding accuracy for all different numbers of primary spike channels (Fig. Bh for NHP
grid reaching dataset, p < 0.009, n = 20; Fig. for NHP center-out reaching dataset, p < 1075,
n = 15, one-sided Wilcoxon signed-rank test). Similar to simulation results, improvements in
behavior decoding accuracy were higher in the low-information regimes, i.e., for 5 and 10 primary
spike channels. For instance, adding 20 LFP channels to 5, 10, and 20 spike channels improved
behavior decoding accuracy by 14.7%, 10.4%, and 5.3%, respectively, for the NHP grid reaching
dataset (Fig. ), and 47.3%, 24.4%, and 9.8% for the NHP center-out reaching dataset (Fig. ).

When LFP signals were considered as the primary modality, behavior decoding accuracies again
improved significantly when spike channels were fused (Fig. [3b for grid reaching dataset, p < 1074,
n = 20; Fig. for center-out reaching dataset, p < 10~°, n = 15, one-sided Wilcoxon signed-rank
test). For example, adding 20 spike channels to 5, 10 and 20 LFP channels improved behavior
decoding accuracy by 49.8%, 34%, and 29.6% in the grid reaching dataset (Figs. ) and by
30.1%, 21.6%, and 20.6% in the center-out reaching dataset (Fig. ). Overall, the bidirectional
improvements—regardless of whether spikes or LFPs were the primary modality—for both datasets
suggest that spike and LFP modalities may encode non-redundant information about behavior
variables that can be fused nonlinearly with MRINE. Interestingly, adding spike channels to LFP



channels helped more than adding LFP channels to spike channels in the grid-reaching dataset, but
the reverse held in the center-out reaching dataset. This suggests that while these modalities may have
different amounts of behaviorally relevant information depending on the experiment (e.g., task or
electrode types/locations), MRINE can combine their complementary strengths and be robust to such
differences. Finally, we also tested MRINE when both modalities had the same timescale (10 ms)
and found that MRINE again enabled consistent bidirectional improvements in behavior decoding
performance for both datasets (Fig. [).

4.3 MRINE improved behavior decoding compared with prior multimodal modeling methods

We compared MRINE with prior multimodal methods, namely the recent MSID in [28], mmPLRNN
in [29], MMGPVAE in [31]], and MVAE in [42] for both NHP datasets. We trained all models with
5, 10, or 20 channels of 10 ms spikes and 50 ms LFPs. Since mmPLRNN and MMGPVAE do not
support training and inference with different timescale signals, we imputed the missing LFP timesteps
by their global mean, i.e., zeros due to z-scoring, as is common practice. Further, mmPLRNN and
MMGPVAE decodings were performed non-causally unlike MRINE and MSID since mmPLRNN
and MMGPVAE do not support real-time recursive inference. For all numbers of primary channels
(i.e., all information regimes), MRINE significantly outperformed all baselines in behavior decoding
(Table p < 107>, n = 20 for NHP grid reaching dataset; p < 1075, n = 15 for NHP center-out
reaching dataset, one-sided Wilcoxon signed-rank test).

NHP grid reaching NHP center-out reaching

Method 5 Spike 10 Spike 20 Spike 5 Spike 10 Spike 20 Spike

5 LFP 10 LFP 20 LFP 5 LFP 10 LFP 20 LFP
MVAE 0.326 £ 0.011 | 0.386 £ 0.009 | 0.425 £+ 0.009 | 0.392 £0.017 | 0.462 £+ 0.014 | 0.544 £ 0.018
MSID 0.380 & 0.021 | 0.440 £0.015 | 0.519 +0.012 | 0.442 £ 0.022 | 0.521 £ 0.023 | 0.561 + 0.020
mmPLRNN | 0.450 4 0.010 | 0.477 £ 0.013 | 0.540 4 0.011 | 0.468 £ 0.022 | 0.470 & 0.029 | 0.538 + 0.032
MMGPVAE | 0.276 £ 0.021 | 0.438 &+ 0.019 | 0.479 £ 0.017 | 0.495 £ 0.020 | 0.567 £ 0.020 | 0.601 + 0.021
MRINE 0.487 £ 0.007 | 0.555 + 0.011 | 0.611 & 0.012 | 0.547 £ 0.020 | 0.624 + 0.022 | 0.649 + 0.021

Table 1: Behavior decoding accuracies for the NHP grid reaching and center-out reaching datasets
with 5, 10, and 20 channels of 10 ms spikes and 50 ms LFP for MVAE, MSID, mmPLRNN,
MMGPVAE, and MRINE. The best-performing method is in bold, the second best-performing
method is underlined, + represents SEM.

Next, using ablation studies on MRINE, we found that our multiscale encoder design was key in
achieving higher performance than baselines. In particular, accounting for different timescales using
the common technique of zero-imputation instead of using our multiscale encoder significantly
degraded performance (Appendix [A.6.4). Also, we performed the same baseline comparisons for the
same timescale scenario (10 ms) and found that MRINE again outperforms all baseline methods for
both datasets (Table[7). The degradation in performance due to having different timescales vs. having
the same timescale was lower in MRINE than in MMGPVAE and mmPLRNN, again highlighting the
importance of MRINE’s design, especially when modalities have different timescales.

Finally, we trained single-scale models, MSID, MMGPVAE, and MRINE models on high-channel
information regimes beyond 20 channels of spike and LFP signals, i.e., 30 and 60 channels. As
shown in Table 8] MRINE again outperformed all methods, highlighting that MRINE’s aggrega-
tion capabilities extend effectively to higher-dimensional recordings and that MRINE maintains
performance advantages even as the information content increases. Please also see Appendix

for trial-averaged latent factor visualizations, Appendix @] for more details on MVAE, MSID,
mmPLRNN, and MMGPVAE benchmarks, and Table E] for decoding accuracies using the R? metric
instead of CC, showing that MRINE’s improved performance is consistent across metrics.

4.4 MRINE’s information aggregation was robust to missing samples

Next, we studied the robustness of all methods’ inferences to randomly missing samples. Here, in
addition to having different timescales, we used various sample-dropping probabilities to drop spike
or LFP samples in both datasets. In both datasets, for models that were trained with 20 channels of
10 ms spikes and 50 ms LFP, we either fixed the dropping probability for LFP samples as 0.2 while
varying that of spike samples (Fig. [Sh,c) or vice versa (Fig. [5p,d) during inference. For the NHP grid
reaching dataset, behavior decoding accuracies of MRINE remained robust, for example decreasing



by only 5.4% and 20.4% when 40% and 80% of spike samples were missing, respectively, in addition
to 20% of LFP samples missing (Fig. [5h). Also, MRINE outperformed all baseline methods across
all sample dropping regimes (Fig. [Bp,b). Similarly for the NHP center-out reaching dataset, MRINE
again outperformed all baseline methods across all sample dropping regimes (Figs. [c.d).

In addition to behavior decoding, we also evaluated all methods’ information aggregation capabilities
in reconstructing spike and LFP signals in the same missing sample scenarios as for the previous case.
As shown in Table |10} MRINE achieved competitive performance in reconstructing neural modalities
as it achieved the best total average rank in terms of how well it reconstructed the neural modalities
compared to baseline methods (see Appendix [A.5.8]for details; averaged over the sample dropping
probability regimes, modalities, and datasets in Fig. [6). This shows MRINE’s capabilities beyond
behavior decoding for neural reconstruction.

4.5 MRINE’s performance improvements generalized to a distinct high-dimensional
multimodal neural dataset with visual stimuli

To provide evidence for MRINE’s generalization beyond neural datasets during motor tasks, we
evaluated MRINE on a multimodal high-dimensional (i.e., 800-D) neural dataset that contains
neuropixel spiking activity and calcium imaging data recorded from the visual cortex during visual
stimuli presentation [67,168] (see Appendix for details). This dataset contained neuropixel
and calcium imaging data with different timescales (i.e., sampled at 120 and 30 Hz, respectively),
which were subsequently smoothed with causal Gaussian kernels with standard deviations of 8 ms.
In this analysis, we also included CEBRA [[I7] in our evaluations (see Appendix [A.2.8|for CEBRA
training details), as well as single-scale models trained on either modality. As the downstream task,
we used the frame ID decoding task (0-900, 30Hz, 30s movie), similar to [17]. Since the downstream
task was of slower frequency (30 Hz rather than 120 Hz), we performed average pooling on the
latent factors inferred by MRINE for downsampling. As shown in Table[TT} MRINE successfully
aggregated information across neuropixel spiking activity and calcium imaging modalities, which
had different timescales, and improved frame ID prediction performance over single-scale models.
Furthermore, MRINE outperformed the CEBRA baseline, potentially due to its explicit dynamical
backbone that can capture temporal dependencies in sequential time-series data, whereas CEBRA’s
convolutional architecture does not explicitly model state evolution.

5 Discussion

In this study, we presented MRINE that can dynamically, nonlinearly and in real-time aggregate
information across multiple time-series modalities with different timescales or even with missing
samples. To achieve this, we proposed a novel multiscale encoder design that first extracts modality-
specific representations in real-time while accounting for their timescale differences and missing
samples, and then performs nonlinear fusion in real-time to aggregate multimodal information.
Through stochastic Lorenz attractor simulations and real NHP datasets, we show MRINE’s ability to
fuse information across modalities with different (or the same) timescales and with missing samples
to achieve better downstream target decoding performance. We show that MRINE outperforms recent
linear and nonlinear multimodal methods. Further, using these comparisons in addition to several
ablation studies, we show the importance of MRINE’s multiscale nonlinear encoder design and
training objective outlined in Section[3.3]to enable accurate real-time fusion for multiscale data. A
current limitation of MRINE is the assumption of time-invariant multiscale dynamics, which may
not hold in non-stationary cases, and MRINE models may need to be intermittently retrained across
days/sessions. Extending MRINE to track temporal variability, such as with switching dynamics or
adaptive approaches, is an important future direction [13}69H73]. Another promising direction is to
incorporate automatic hyperparameter tuning methods, since MRINE introduces additional scaling
terms for smoothness regularization penalties that we showed are important contributing factors
to its improved downstream decoding performance. A further direction is to explore alternative
training objectives for accurate cross-modal generation, which could allow MRINE and other baseline
multimodal methods to reconstruct an entirely missing modality from the available one. Finally,
incorporating external inputs in the MRINE model to disentangle input dynamics from intrinsic neural
dynamics, as done in prior single-scale models [20l 21]], is an interesting direction. Overall, MRINE
can be especially important for applications where target variables are encoded across time-series
modalities with different timescales and distribution, and/or where decoding needs to be done in
real-time, for example, in brain-computer interfaces [[7/4-76].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are supported by our figures
and tables in the main body and the Appendix. Our contributions are clearly detailed
throughout the Methods section and the Appendix.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss several limitations of our work in the Discussion section. Our
results are obtained over multiple session recordings and statistics are gathered across 5-fold
cross-validation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our work does not include any theoretical result.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the data and the link to code of our implementation in the Appendix.
We also provide the hyperparameters and training details in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the data and the link to the code of our implementation in the
Appendix, in which we also share the configuration files we used to obtain our results. The
hyperparameters and training details can be found in the Appendix.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the hyperparameters and other training-related details of our model
and benchmark methods in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars and confidence bounds for one standard error of the
mean (SEM) in our figures, as well as statistical significance levels. SEMs are also provided
in our benchmark comparison table for all methods.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of the cluster and device specifications on which the
model trainings are performed.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All aspects of our study conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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12.

Justification: We discuss the impact of our work that can improve the accuracy and robustness
of neurotechnologies, e.g., brain-machine interfaces, for the treatment of brain disorders in
millions of patients. We do not anticipate any negative societal impacts of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We gave the proper references to the creators of the data we used in our
study. The developers of the benchmark methods and their implementations are also cited
throughout the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

22



13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We explained all components of our model training and architecture in detail
throughout the paper, in addition to releasing our codebase with comments that further
explains the implementation details.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core development of our method does not involve LLM usage.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Time-dropout

To improve the robustness of the MRINE against missing samples, we developed a regularization
technique denoted as “fime-dropout". Before training MRINE, based on the availability of the
observations denoted by 7 and 7" (see Section , we define mask vectors m*, m¥ € R7 for s, and
y, respectively:

m = 1, ify, isoobserved att (e, ift € 7' -
0, otherwise
s 1, if s;isobserved att (ie.,ift € T
mi = . -,
0, otherwise

where subscript ¢ is the ¢ component of the vector. The general assumption is that 7/ C T, such
that s; is available for all time-steps where y, is observed, motivated by the faster timescale of spikes
compared with field potentials. However, this scenario may not always hold as recording devices can
have independent failures leading to dropped samples at any time. To mimic the partially missing
scenario where either modality can be missing, as well as the fully missing scenarios where both can
be missing, we randomly replaced (dropped) elements of m?® and mY by 0 at every training step,
with the same dropout probabilities p; for both modalities. Masked time-steps (time-steps with O
mask value) were not used either during the latent factor inference described in Section [3.2]or in
the computation of loss terms in Eqs. [§]and [9] so that the inference and model learning were not
distorted by missing samples. Instead, note that our inference procedure uses the learned model of
dynamics to account for missing samples during both inference and learning. We note that we used
the original masks (before applying time-dropout) while computing L, in Eq. [I0] as we wanted
to obtain smooth representations for all available observations. Note that time-dropout differs from
masked training that is commonly used for training transformer-based networks. Masked training
aims to predict masked samples from existing samples unlike our training objective (see Section
[3.3|for details). Here, the goal of time-dropout is to increase the robustness to missing samples by
artificially introducing partially and fully missing samples during model training, rather than being
the training objective itself. See the ablation study on the effect of time-dropout in Appendix[A.6.1]
which shows that MRINE models trained with time-dropout had more robust behavior decoding
performance and the effect of time-dropout was more prominent with more missing samples.

In addition to the time-dropout, we also applied regular dropout [77] in the encoder’s input and output
layers with probability pg.

A.2 Training details
A.2.1 Training single-scale networks

For the case of single-scale networks, we use a special case of the architecture in Fig. [Th by
replacing the multiscale encoder with an MLP encoder, and by just using a single-scale LDM with
one modality’s decoder network. In particular, for field potentials, we use a Gaussian decoder, and for
the spikes we use a Poisson decoder to obtain the corresponding likelihood distribution parameters.
Also, instead of the multiscale LDM of MRINE, this MLP is then followed by a single-scale LDM to
perform inference both in real-time and non-causally. During learning of the single-scale networks,
we dropped the terms related to the discarded modality from loss functions in Egs. [8] [9]and [I0}

A.2.2 Setting the likelihood scaling parameter ™

The log-likelihood values of modalities with different likelihood distributions may be of different
scales, e.g., Poisson log-likelihood has a smaller scale than Gaussian log-likelihood in our case
(and this can change arbitrarily by simply multiplying the Gaussian modality with any constant).
To prevent the model from putting more weight on one modality vs. the other due to a higher
log-likelihood scale while learning the dynamics, we scaled the log-likelihood of the modality with a
smaller scale by a parameter 7. To set this parameter, we first computed the time averages of each
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modality over 7 and 7~ for s; and y,, respectively, as:

= 7 Ly, (15)

teT

= ‘T, >y (16)

t'eT’

where A € R™s and p € R™. Then, we computed the corresponding log-likelihoods of s; and y,,
by using these time averages as the means of their likelihood distributions (assuming unit variance
for Gaussian distribution). Finally, we set 7 as the ratio between the higher and smaller scale

log-likelihoods:
ﬁ Zt’eT' log(./\/'(yt/; 1)) (17
T =
ﬁ > 17 log(Poisson(ss; X))

where 1 € R™v is the 1’s vector denoting the unit variances for the Gaussian likelihood. The above
allows us to balance the contribution of both modalities in our loss function during learning.

A.2.3 Hyperparameters and codebase

Tables 2} [3] ] and [5] provide the hyperparameters and network architectures used for training single-
scale networks and MRINE on stochastic Lorenz simulations and analyses of the real NHP datasets.
Our codebase is available at https://github.com/Shanechilab/mrinel

For all models, we used a cyclical learning rate scheduler [78]] starting with a minimum learning rate
of 0.001, and reaching the maximum learning rate of 0.01 in 10 epochs. The maximum learning
rate is exponentially decreased by a scale of 0.99. Across all experiments, batch size was set to 32,
MLP weights were initialized by Xavier-normal initialization [[79]], and tanh function was used as the
activation function of hidden layers. All models were trained on CPU servers (AMD Epyc 7513 and
7542, 2.90 GHz with 32 cores) with parallelization.

For scaling hyperparameters of smoothness regularization penalty, the hyperparameter search on each
dataset is performed using a random inner-training and inner-validation split from the training set
of the first fold on the first available session over a small grid. For scaling hyperparameters of the
Poisson and Gaussian modalities’ smoothness regularization penalties (s and -y, ), we used a grid of
[0, 30, 50, 100, 250] and [0, 5, 10, 50], respectively. For initial experiments, we recommend using
smaller scaling hyperparameters, such as 30 and 5 for Poisson and Gaussian modalities, respectively.
For the scaling hyperparameter of the smoothness penalty on x; (7,), we used a grid of [0, 30,
50] after finding v, and +, (in order to control the depth of hyperparameter search). Similarly, we
recommend using v, = 30 for initial experiments.

Hyperparameters
Models Ps G)y Pm 0 0y Na | Ng K 43 pa_| GC Vs Yy | Yz Yr TE
SS-Poisson 3,128 - - 3,128 - 3213211234 ]03]04 |01 ]100| - |30 0.0001 | 200
SS-Gaussian 3,128 3,128 | 32 132 | 1,234 103 ] 04| 0.1 50 | 30 | 0.0001 | 200
MRINE 3, 128 3,128 | 1, 128 3, 128 3,128 | 32 132 | 1,234 103 ] 04 | 0.1 250 10 | 30 | 0.001 | 200

Table 2: Hyperparameters used for the stochastic Lorenz attractor simulations. SS denotes single-scale
network. We represent the architecture’s various MLP encoders and decoders with their parameter
notations, and for each, provide the number of hidden layers and hidden units in order, separated by
commas. Specifically. ¢, and ¢,—i.e., MLP blocks through which s; and y,, are passed in Fig. —
represent the modality-specific encoder networks for Poisson and Gaussian modalities, respectively.
¢m is the fusion network (the last MLP block in Fig. [Ib). Modality-specific decoder networks are 6
and 0, for Poisson and Gaussian modalities, respectively.n, and n, represent dimensions of a; and
x;, respectively. /C is the set of future prediction horizons in Eq. [8] p; is the time dropout probability
on the mask vectors, and pg denotes the dropout probability applied in the input and output layers
of the encoder network (see Appendix [A.T). GC represents the global gradient clipping norm on
learnable parameters. s, 7y,, and -y, are scaling parameters for smoothness regularization penalty in
Eq. v, is the Ly penalty on MLP weights of the encoder and decoder networks. TE denotes the
number of training epochs.
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Hyperparameters

Models B | by [ Om | O [ 0 [malne] K [ [P [GC] % [ %] 3 [|TE
SS-Poisson 3,128 - - 3,128 - 64 | 64 1234 (103]0.1]0.1]100]| - 30 | 0.0001 | 500
SS-Gaussian 3,128 3,128 | 64 | 64 | 1,234 | 03 | 0.1 | 0.1 - 10 | 30 | 0.0001 | 500
MRINE 3, 128 3,128 | 1, 128 3, 128 3,128 | 64 | 64 | 1,234 | 03 ] 0.1 | 0.1 | 250 | 10 | 30 | 0.001 500

Table 3: Hyperparameters used for the NHP grid reaching dataset analysis with same timescales for
both modalities. Hyperparameter definitions are the same as in Table 2]

] Hyperparameters
Models 15, T 0w [ % [ 0, [maln.] K [ 5[5 ][CGC] % [ % [%] % [TE
SS-Poisson 3,128 - - 3,128 - 64 | 64 | 1,234 03| 0.1 | 0.1 [ 100 - 30 | 0.0001 | 500
SS-Gaussian 3,128 3,128 | 64 | 64 | 1,234 | 03 | 0.1 | 0.1 - 5 30 | 0.0001 | 500
MRINE 3, 128 3,128 | 1, 128 3, 128 3,128 1 64 | 64 | 1,234 1030101 [250] 5 |30 0.001 500

Table 4: Hyperparameters used for the NHP grid reaching dataset analy51s with different timescales
for the different modalities. Hyperparameter definitions are the same as in Table 2}

Hyperparameters
Models Ps by Pm 0 Oy, [ na [ ne K pt | pa | GC [ v [ [ Ve Ir TE
SS-Poisson | 3,128 - - 3,128 - 64 | 64 |1234]03]01]01]30] - |30]0.0001 | 200
SS-Gaussian 3,128 3,128 | 64 | 64 | 1,234 |1 03 | 0.1 | 0.1 5 | 30 | 0.0001 | 200
MRINE 3, 128 3,128 | 1, 128 3, 128 3,128 | 64 | 64 | 1,234 |03 | 0.1 | 0.1 50 5 [ 30| 0.001 | 200

Table 5: Hyperparameters used for the NHP center-out reaching dataset analysis with the same and
different timescales for the different modalities. Hyperparameter definitions are the same as in Table

Hyperparameters

Models . ;

odels Ps by ¢m 95 oy Ng | Ny K Pt Pd GC Vs | Yy | V= Tr TE
SS-Gaussian 3,128 3,128 | 64 | 64 | 1,234 (030101 ] - | 0 | 0 |0.001 | 500
MRINE 3, 128 3,128 | 1, 128 3, 128 3,128 1 64 | 64 | 1,234 03 ]0.1] 0.1 5 | 30 | 0.001 | 500

Table 6: Hyperparameters used for the visual stimuli dataset analysis. Hyperparameter definitions are
the same as in Table 2l Note that both modalities were treated with a Gaussian observation model for
MRINE, and single-scale models for both modalities were trained using the hyperparameter denoted
for SS-Gaussian.

A.2.4 MSID training

Multiscale subspace identification (MSID) is a recently proposed linear multiscale dynamical model
of neural activity that assumes linear dynamics. MSID can handle different timescales and allow
for real-time inference of latent factors [28]]. We compared MRINE with MSID and showed that
compared with the linear approach of MSID, the nonlinear information aggregation enabled by
MRINE can improve downstream behavior decoding while still allowing for real-time recursive
inference and for handling different timescales. To train MSID, we used the implementation provided
by the authors and set the horizon hyperparameters with the values provided in their manuscript,
i.e., hy = h, = 10. For the MSID results reported in this work, as recommended by the developers
in their manuscript [28]], we fitted MSID models with various latent dimensionalities consisting of
[8, 16, 32, 64] and picked the one with the best behavior decoding accuracy found with inner-cross
validation done on the training data.

A.2.5 mmPLRNN training

Multimodal piecewise-linear recurrent neural networks (mmPLRNN) is a recent multimodal frame-
work that assumes piecewise-linear latent dynamics coupled with modality-specific observation
models [29]. As discussed in Section[2] mmPLRNN has shown great promise in reconstructing the
underlying dynamical system but its inference network operates non-causally in time and assumes
the same timescale between modalities, unlike MRINE. Therefore, to train mmPLRNN models with
different timescale signals in Table[I] we performed global-mean imputation for the missing signals as
done in common practice. Also, for mmPLRNN results reported in this work, the behavior decoding
with mmPLRNN was performed non-causally. To train mmPLRNN, we used the variational inference
training code provided by the authors in their manuscript. However, the default implementation of
mmPLRNN only supports Gaussian and categorical distributed modalities. Thus, we implemented
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the Poisson observation model by following Appendix C of [29]]. Further, we replaced the default
linear decoder networks with nonlinear MLP networks for a fair comparison and better performance.

Finally, we trained all mmPLRNN models for 100 epochs. We also performed hyperparameter
searches for latent state dimension, learning rate, and number of neurons in encoder/decoder layers
over grids of [16, 32, 64], [1e-4, Se-4, 1e-3, le-2] and [32, 64, 128], respectively.

As shown in Tables [I] and [7, MRINE outperformed mmPLRNN in behavior decoding for both
NHP datasets across all information regimes. Further, we observed that mmPLRNN experienced
higher decline in behavior decoding performance when trained with different timescale signals
compared to MRINE and MSID (which support training and inference with multiscale signals and
missing samples), indicating the importance of multiscale modeling. We believe that the future-step-
ahead prediction training objective along with new smoothness regularization terms and smoothed
reconstruction are also important elements contributing to such performance gap (see Appendix[A.6.2)
whereas mmPLRNN is trained on optimizing evidence lower bound (ELBO), whose optimization
can be challenging due to KL-divergence term [80H83]].

A.2.6 MVAE Training

Multimodal variational autoencoder (MVAE) is a variational autoencoder-based architecture proposed
in [42] that can account for partially paired multimodal datasets by a mixture of experts posterior
distribution factorization. However, the notion of partial observations in our work and MVAE are
different. In MVAE, partial observations refer to having partially missing data tuples in each element
of the batch, which would translate to having completely missing LFP or spike signals for a given
trial/segment of multimodal neural activity. However, as we detailed in Section [3} we are interested in
modeling multimodal neural activities with different sampling rates, i.e., partially missing time-steps
rather than missing either of the signals completely. Further, as discussed in Section [2} the latent
factor inference in MVAE is designed to encode each modality to a single factor, whereas MRINE
is designed to infer latent factors for each time-step so that behavior decoding can be performed at
each time-step. To account for all these differences, we trained MVAE models without a dynamic
backbone by treating each time-step as a different data point that allowed us to train MVAE models
with partially missing time-steps as done for MRINE. As shown in Table[T, MVAE showed the lowest
overall performance among all methods which could be caused by lacking a dynamical backbone,
unlike other methods.

A.2.7 MMGPVAE training

Multimodal Gaussian process variational autoencoder MMGPVAE) is another recent multimodal
framework that utilizes Gaussian process to model latent distribution underlying multimodal observa-
tions [31]. Distinct from other approaches discussed in this work, MMGPVAE inference network
extracts the frequency content of the latent factors followed by conversion to time domain representa-
tions, rather than direct estimation on the time domain. This approach allows MMGPVAE to prune
high-frequency content in the latent factors that help in obtaining smooth representations. Similar
to mmPLRNN, MMGPVAE does not allow training on modalities with different timescales, thus,
for the comparisons provided in Table|l} we performed global-mean imputation for missing samples
as common practice. Further, behavior decoding for MMGPVAE is performed non-causally for all
MMGPVAE results reported in this work, as it does not support real-time latent factor inference. To
train MMGPVAE, we used the authors’ official implementation provided in their manuscript. To
provide a fair comparison, we trained MMGPVAE models with 64-dimensional latent factors for
each modality, where 32 dimensions of 64-dimensional latent factors were shared across modalities
(i.e., MMGPVAE models in this work had 96 dimensional latent factors unlike other methods). All
MMGPVAE models are trained for 100 epochs as behavior decoding performances reached their
peak performance in around 100 epochs, then started degrading due to overfitting. The default
encoder/decoder architecture for Gaussian modality in the MMGPVAE codebase was implemented
for an image dataset, which resulted in poor performance in our dataset. Therefore, for the en-
coder/decoder architectures, we used the same architectures as MRINE. Further, we scaled the
likelihood of Poisson modality with the same 7 value as done for MRINE (see Section[A.2.2). We
also performed a hyperparameter search for the learning rate in a grid of [1e-3, 5e-4, le-4] since
default values resulted in poor convergence. Despite MMGPVAE being the best competitor of
MRINE as shown in Table|/] it also experiences a significant decline in its performance when trained
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with different timescale signals (Table [I)), which indicates the importance of multiscale modeling.
Further, we believe that MRINE’s training objective is another important factor contributing to its
improved performance over MMGPVAE.

A.2.8 CEBRA training

CEBRA is a contrastive learning—based model for neural activity with a convolutional encoder
architecture [17]. To train CEBRA models for the NHP grid reaching task and the visual stimuli
dataset, we followed the tutorial provided by the authors |} To train multimodal models of CEBRA,
we followed the multisession CEBRA training protocol as done in the tutorial. For the visual stimuli
dataset, we used the same hyperparameters as in the tutorial. For the NHP grid-reaching task, we
used offset-36 encoder models as they achieved better performance, and set the output dimensionality
to 64 for fair comparison with other baseline methods.

A.2.9 LFADS training

LFADS is a sequential autoencoder-based model of unimodal neural activity proposed by [3]. We
used the authors’ codebase E] to train LFADS models. Also, we used the hyperparameters in the
second row of Supplementary Table 1 in [3]] with a factor dimension of 64 and used the default
learning rate scheduler and early stopping criterion used in the codebase. We followed two different
approaches to train LFADS models. First, we trained LFADS models on concatenated multimodal
data, which corresponds to treating multimodal data as a single modality. Second, we implemented an
extension of multimodal LFADS (denoted as LFADS-multimodal) by incorporating modality-specific
decoders with appropriate Poisson and Gaussian observation models. Similar to MRINE, we applied
scaling on the Poisson likelihood loss term (i.e., scaled by 3, which was roughly the automatically
selected scale for MRINE) for balancing.

A.3 Latent factor inference times

In addition to enabling real-time inference of latent factors through model design, it is also important
to report per-timestep inference times, as these provide a direct measure of the practical efficiency of
the approach. Thus, we computed per-timestep inference times of MRINE and baseline methods with
an Intel 17-10700K processor, averaged over more than 25,000 timesteps. MRINE’s latent inference
time per timestep is 1.82 £ 0.13 ms, which is smaller than the timestep considered in this study
(10 ms), and smaller than common brain-computer interface (BCI) timesteps (e.g., 50 ms in [54]),
thus suggesting real-time BCI applicability. Also, the latent inference times per timestep are 1.83
+ 0.12 ms for MMGPVAE, 0.03 4 0.008 ms for MSID, and 25.91 + 3.44 ms for mmPLRNN. The
multi-modal GP approach had a similar inference time compared to MRINE, and MSID achieved the
fastest per-timestep latent factor inference due to its simple linear form.

A.4 Stochastic Lorenz attractor simulations
A.4.1 Dynamical system
The following set of dynamical equations defines the stochastic Lorenz attractor system:

dxy = o(xg — x1)dt + 1
dry = (pr1 — x123 — T2)dt + @2 (18)
drs = ((L‘ll‘g — 63’53)dt +q3

where 1, x2, and z3 are the latent factors of the Lorenz attractor dynamics, dt denotes the discretiza-
tion time-step of the continuous system and d is the change of variables in dt time. We used o = 10,
p=28,0= % and dt = 0.006 as in [3]]. q1, g2, and q3 are zero-mean Gaussian dynamic noises with
variances of 0.01. We generated 750 trials each containing 200 time-steps, and the initial condition
of each trial was obtained by running the system for 500 burn-in steps starting from a random point.
Then, we normalized trajectories to have zero mean and a maximum value of 1 across time for each
latent dimension.

2https ://cebra.ai/docs/demo_notebooks/Demo_Allen.html
3https://Ifads.github.io/Ifads-run-manager/
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A.4.2 Generating high dimensional observations

To generate the Gaussian-distributed modalities, we multiplied the normalized latent factors by a
random matrix C,, € R"v*3 and added zero mean Gaussian noise with variance of 5 to generate
noisy observations.

To generate the Poisson-distributed modalities, we first generated firing rates by multiplying the
normalized trajectories by another random matrix Cy € R™*3 and added a log baseline firing rate of
5 spikes/sec with bin-size of 5 ms, followed by exponentiation. We then generated spiking activity
by sampling from the Poisson process whose mean is the simulated firing rates.

A.4.3 Computing the latent reconstruction accuracy

For MRINE and each single-scale network trained only on Poisson or Gaussian modalities, we
obtained the smoothed single-scale or multiscale latent factors xyp, t € {1,2,... , T} for each trial
in the training and test sets. To quantify how well the inferred latent factors can reconstruct the true
latent factors, we fitted a linear regression model from the inferred latent factors of the training set
to the corresponding true latent factors. Using the same linear regression model, we reconstructed
the true latent factors from the inferred latent factors of the test set. Then, we computed the Pearson
correlation coefficient (CC) between the true and reconstructed latent factors for each trial and latent
dimension. The reported values are averaged over trials and latent dimensions.

A.5 Real dataset analyses

A.5.1 Nonhuman primate (NHP) grid reaching dataset

In this publicly available dataset [64] 65]], a macaque monkey performed a 2D target-reaching task
by controlling a cursor in a 2D virtual environment. All experiments were performed in accordance
with the US National Research Council’s Guide for the Care and Use of Laboratory Animals and
were approved by the UCSF Institutional Animal Care and Use Committee. Monkey I was trained
to perform continuous reaches to circular targets with a 5 mm visual radius randomly appearing
on an 8-by-8 square or an 8-by-17 rectangular grid. The cursor was controlled by the monkey’s
fingertips, and the targets were acquired if the cursor stayed within a 7.5 mm-by-7.5 mm target
acceptance zone for 450 ms. Even though there was no inter-trial interval between sequential reaches,
there existed a 200 ms lockout interval after a target acquisition during which no target could be
acquired. After the lockout interval, a new target was randomly drawn from the set of possible targets
with replacement. Fingertip position was recorded with a six-axis electromagnetic position sensor
(Polhemus Liberty, Colchester, VT) at 250 Hz and non-causally low-pass filtered to reject the sensor
noise (4th order Butterworth, with 10 Hz cut-off frequency). The cursor position was computed by a
linear transformation of the fingertip position, and we computed 2D cursor velocity using discrete
differentiation of the 2D cursor position in the x and y directions. In our analysis, we used the 2D
cursor velocity as the behavior variable to decode.

One 96-channel silicon microelectrode array (Blackrock Microsystems) was chronically implanted
into the subject’s right hemisphere primary motor cortex. Each array consisted of 96 electrodes,
spaced at 400 pm and covering a 4mm-by-4mm area. We used multi-unit spiking activity obtained at
a 10 ms timescale, and LFP signals were extracted from the raw neural signals by low-pass filtering
with 300 Hz cut-off frequency, and downsampling to either 100 Hz (10 ms timescale) or 20 Hz (50
ms timescale). In our study, we picked the top spiking and LFP channels based on their individual
behavior prediction accuracies and considered a maximum of 20 channels for each modality. As this
dataset consists of continuous recordings without a clear trial structure, we created 1-second non-
overlapping segments from continuous recordings to form trials so that we could utilize mini-batch
gradient descent during model learning.

A.5.2 NHP center-out reaching dataset

In this publicly available dataset [66], a macaque monkey performed a 2D center-out reaching task
while grasping a two-link manipulandum. All experiments were performed with approval from the
Institutional Animal Care and Use Committee of Northwestern University. Monkey C was trained to
perform reaches from a center position to 2-cm square outer targets in an 8-target environment, where
outer targets were spaced at 45-degree intervals around a 10-cm radius circle. Each trial of the task
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started with the illumination of the center target where the monkey had to hold the manipulandum
for a random hold time of 0.5-0.6 seconds. After, the center target disappeared and an outer target
was randomly selected from the pool of possible 8 targets, which signaled the monkey to start the
reach. To obtain the reward, the monkey had to reach the outer target within 1.5 seconds and hold the
manipulandum at the outer target for a random time of 0.2-0.4 seconds. Then, the monkey returned
back to the center target position and the next trial started. In our analysis, we used 2D manipulandum
velocity as the behavior variable to decode.

One 96-channel silicon microelectrode array (Blackrock Microsystems) was chronically implanted
into the subject’s proximal arm area of primary motor (M1) and premotor (PMd) cortices contralateral
to the arm used to perform the task. We used multi-unit spiking activity obtained at a 10 ms timescale.
LFP signals in the original dataset were extracted from the raw neural signals by band-pass filtering
between 0.5 and 500 Hz and sampled at 2 kHz. From these LFP signals, we computed LFP power
signals with a window of size 256 ms (moved at 10 ms resolution) over 5 bands (0-4, 7-20, 70-115,
130-200 and 200-300 Hz), resulting in LFP power signals at 100 Hz. For the different timescale
analyses, we downsampled LFP power signals to 20 Hz (50 ms timescale). The rest of the dataset
generation details are the same as the previous dataset.

A.5.3 Behavior decoding

In our analyses, we took 2D cursor or manipulandum velocity in the x and y directions as the behavior
variables for downstream decoding. For all methods, after we inferred latent factors for both training
and test sets, we fitted a linear regression model from inferred latent factors of the training set to the
corresponding behavior variables. Then, we used the same linear regression model to decode the
behavior variables from the inferred latent factors in the test set. We quantified the behavior decoding
accuracy by computing the CC between the true and reconstructed behavior variables across time and
averaging over behavior dimensions.

When MRINE was trained with spiking activity and LFP signals with timescales of 10 ms and
50 ms, respectively, behavior decoding was performed at the 10 ms timescale for comparisons
between MRINE and single-scale networks trained with spike channels. To provide a fair comparison
between MRINE and single-scale networks trained with 50 ms LFP signals, inferred latent factors of
MRINE were downsampled to 50 ms from 10 ms, and behavior was decoded at every 50 ms in these
comparisons with LFP. For all baseline comparisons, behavior decoding with MRINE is performed
in real-time (i.e., multiscale latent factors are inferred via real-time/causal Kalman filtering) unless
otherwise stated.

A.5.4 Behavior decoding with same timescale signals

For both NHP grid reaching and NHP center-out reaching datasets, we also trained MRINE models
with various combinations of 5, 10, and 20 channels of the same timescale spike and LFP signals. As
shown in Fig. [4] for both datasets, MRINE again successfully improved behavior decoding accuracies
as LFP channels are fused with primary spike channels (Figs. @,c for NHP grid reaching dataset
and Figs. p,g for NHP center-out reaching dataset), and when spike channels are added to primary
LFP channels (Figs. @b.d for NHP grid reaching dataset and Figs. [f,h for NHP center-out reaching
dataset). These results provide further evidence of MRINE’s information aggregation capabilities
beyond its multiscale modeling.

Further, we performed the same baseline comparisons for all numbers of primary channels of the
same timescale spike and LFP channels (similar to Table[T|for different timescale signals). For this
analysis, we did not perform imputation for mmPLRNN and MMGPVAE models since both spike
and LFP channels have the same timescale, i.e., 10 ms. Note that we did not include MVAE in this
analysis since it is not a dynamical model and it had the lowest performance among all methods in
Table [Tl

As shown in Table[7] MRINE achieves the best behavior decoding performance both with its real-time
and noncausal latent factor inference for the NHP grid reaching dataset across all information regimes
(p < 1075, n = 20, one-sided Wilcoxon signed-rank test). For the NHP center-out reaching dataset,
MRINE achieves the best behavior decoding performance among all methods with noncausal latent
factor inference (p < 0.006, n = 15, one-sided Wilcoxon signed-rank test). When MRINE performs
real-time (causal) latent factor inference, MMGPVAE outperforms MRINE across low (5 channels)
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and high (20 channels) information regimes where MRINE is slightly better in medium (10 channels)
information regime, however, improvements are not statistically significant (p = 0.08 for 5 channels
and MMGPVAE > MRINE, p = 0.12 for 10 channels and MRINE > MMGPVAE, and p = 0.11 for
20 channels and MMGPVAE > MRINE, n = 15, one-sided Wilcoxon signed-rank test).

Beyond the nonlinear multiscale modeling capabilities of MRINE which are crucial for neuroscien-
tific application purposes and are not achieved by recent prior nonlinear benchmark methods (see
performance differences of mmPLRNN and MMGPVAE between Table [I] for different timescale
results and Table [7)for same timescale results), these results suggest that MRINE achieves competi-
tive performance through its encoder design and training objectives even when both modalities are
recorded with the same timescale.

NHP grid reaching NHP center-out reaching

Method 5 Spike 10 Spike 20 Spike 5 Spike 10 Spike 20 Spike

5 LFP 10 LFP 20 LFP 5 LFP 10 LFP 20 LFP
MSID 0.452 £ 0.015 | 0.483 £ 0.015 | 0.544 £ 0.016 | 0.467 £ 0.019 | 0.548 & 0.020 | 0.596 + 0.022
mmPLRNN 0.455+£0.012 | 0.478 £ 0.011 | 0.533 £0.012 | 0.530 & 0.022 | 0.556 +0.024 | 0.591 £ 0.027
MMGPVAE 0.424 £0.012 | 0.511 £0.014 | 0.579 £ 0.010 | 0.558 &+ 0.022 | 0.624 £ 0.022 | 0.670 £ 0.021
MRINE 0.493 + 0.008 | 0.566 + 0.010 | 0.621 £ 0.011 | 0.550 £ 0.021 | 0.628 £ 0.022 | 0.663 £ 0.020
MRINE - noncausal | 0.524 & 0.009 | 0.586 + 0.011 | 0.639 & 0.010 | 0.572 4 0.022 | 0.647 + 0.023 | 0.681 + 0.021

Table 7: Behavior decoding accuracies for the NHP grid reaching and center-out reaching datasets
with 5, 10, and 20 channels of same timescale (10 ms) spike and LFP signals for MSID, mmPLRNN,
MMGPVAE, and MRINE (both with real-time and noncausal inference). The best-performing method
is in bold, the second best-performing method is underlined, 4 represents SEM.

A.5.5 Behavior decoding with missing samples

In this analysis, we first trained all baseline methods with 20 spike and 20 LFP channels with different
timescales (whose behavior decoding accuracies are shown in Table [T when there were no missing
samples). To test the robustness of each method to missing samples, we randomly dropped samples
in time during inference with fixed sample dropping probabilities for both modalities. Then, we
inferred latent factors at all time-steps using only the available observations after sample dropping
and performed behavior decoding as described above. Note that even though time-series observations
were missing in time, behavior variables were available for all time-steps and were decoded at all
time-steps. As shown in Fig. [5} MRINE outperformed all baseline methods for both datasets as it can
leverage learned single-scale dynamics to account for missing samples within each data modality.
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Figure 5: Behavior decoding accuracies all models for the NHP grid reaching dataset (fop row) and
NHP center-out reaching dataset (bottom row) when spike and LFP channels had missing samples
and different timescales. a. Accuracies for models trained with 20 spike and 20 LFP channels.
Sample dropping probability of LFPs was fixed at 0.2 while that of spikes was varied as shown on the
x-axis. Lines represent mean and shaded areas represent SEM. b. Similar to a when sample dropping
probability of spikes was fixed at 0.2 while that of LFPs was varied. ¢, d. Same as a, b but for NHP
center-out reaching dataset.

A.5.6 Behavior decoding with higher channel counts

In our analyses, we mainly focused on channel counts up to 20 due to several reasons. First, this
low- to mid-information regime is quite important for testing multimodal aggregation capabilities,
because the contribution from spikes and LFPs is more balanced and the added value of combining
modalities can be assessed more directly. Second, implantable devices such as chronic BCIs can
experience signal loss over time due to various factors [84}85]], such as scar tissue formation. Indeed,
prior studies have shown that spiking activity from implanted electrodes can degrade faster than
LFPs [86H89]. Thus, multimodal information aggregation is especially helpful for BCIs in these
low- to mid-information regimes because such aggregation can allow patients to continue using their
implanted BCI systems for extended periods. Specifically. multimodal aggregation can improve
BCI accuracy and robustness even in the face of signal loss by combining spikes and LFPs, as also
shown in prior studies [6} 28, |90]]. Finally, some recording devices can have lower channel count.
For example, recent wireless BCI systems have explored lower channel count designs to reduce
bandwidth and power demands, such as a neural system-on-chip using 16 channels with on-chip
feature extraction [91]].

Nevertheless, to show that MRINE’s information aggregation capabilities generalizes beyond low- to
mid- information regimes, we also trained MRINE models on 30 spike and 30 LFP channels (30-30)
as well as on 60 spike and 60 LFP channels (60-60) in the NHP grid reaching dataset, with the LFP
and spikes having different timescales. For comparison, we also trained single-scale models, as well
as MSID and MMGPVAE. In this scenario, we performed behavior decoding from predicted firing
rates () as this yielded better performance, unlike in the analyses with up to 20 channels, where
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decoding directly from latent factors was more accurate. As shown in Table[§] MRINE outperformed
the multimodal baselines and single-scale models across both 30-30 and 60-60 channel regimes,
indicating that its information aggregation capabilities generalize to high-channel count (information)

regimes.

30 Spike 60 Spike

Method 30 LFP 60 LEP
SSLFP | 0482 £ 0.012 | 0456 £ 0.013
5SS Spike | 0.639 £ 0.008 | 0.637 £ 0.006
MSID | 0573 £ 0.012 | 0.597 £ 0.010
MMGPVAE | 0516 £ 0.006 | 0.568 £ 0.006
MRINE | 0.676 £ 0.011 | 0.693 £ 0.010

Table 8: Behavior decoding accuracies for the NHP grid reaching dataset with 30-30 and 60-60
channels of 10 ms spikes and 50 ms LFP for single-scale models (SS), MSID, MMGPVAE, and
MRINE. The best-performing method is in bold, the second best-performing method is underlined, +
represents SEM.

A.5.7 Behavior decoding performance with R? metric

Throughout our analyses, we used CC as the main metric for comparing downstream behavior
decoding performance across methods. In addition to this, we also computed the R? metric for
the 20-channel regime results presented in Table[I]as an example to show that MRINE’s superior
performance is not an artifact of the reported metric. As shown in Table[9] MRINE again outperforms
the baseline methods also when R? metric is used.

NHP grid reaching NHP center-out reaching
Method CC R? CC R?
MVAE 0.425 £0.009 | 0.190 £ 0.009 | 0.544 + 0.018 | 0.298 + 0.022
MSID 0.519 £0.012 | 0.273 £ 0.013 | 0.561 £ 0.020 | 0.343 + 0.030
mmPLRNN | 0.540 + 0.011 | 0.302 £+ 0.013 | 0.538 + 0.032 | 0.294 + 0.036
MMGPVAE | 0.479 £ 0.017 | 0.334 £ 0.012 | 0.601 £ 0.021 | 0.351 4+ 0.029
MRINE 0.611 £+ 0.012 | 0.375 + 0.013 | 0.649 + 0.021 | 0.435 + 0.030

Table 9: Behavior decoding CC and R? accuracies for the NHP grid reaching and center-out
reaching datasets with 20 channels of 10 ms spikes and 50 ms LFP for MVAE, MSID, mmPLRNN,
MMGPVAE, and MRINE. The best-performing method is in bold, the second best-performing
method is underlined, + represents SEM. CC results are the same as in Tablem

A.5.8 Neural reconstruction

To evaluate each method’s information aggregation capabilities beyond behavior decoding, we
computed reconstruction accuracies of both modalities under various sample dropping probabilities
in addition to having different timescales. To do that, the modality of interest was randomly dropped
with varying sample dropping probabilities when the other modality was dropped with a fixed
0.2 probability (Fig. [). Therefore, the reconstructions of the missing modality were generated
by leveraging the learned modality-specific and multiscale dynamics. For all methods, neural
reconstructions were obtained with non-causal smoothing. For mmPLRNN and MMGPVAE, the
missing timesteps for both spike and LFP signals were replaced by zeros, and the reconstruction
metrics were computed between the true signals and model reconstructions of the missing timesteps.
All models were trained with 20 spike and 20 LFP channels. For LFP signals modeled with Gaussian
likelihood, we quantified the reconstruction accuracy by computing the CC between the reconstructed
mean of the Gaussian likelihood distribution (u(at‘T)) and the true observations across time.

For spike signals modeled with Poisson likelihood, reconstruction accuracy was quantified using
the area under the curve (AUC) of the receiver operating characteristic (ROC) measure [1} 24]. We
constructed the ROC by using the reconstructed firing rates, i.e., A(ay7), as the classification scores
to determine whether a time-step contained a spike or not [92]. Both metrics were averaged over
observation dimensions.
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NHP grid reaching | NHP center-out reaching

Spike | LFP | Avg. | Spike | LFP Avg. Total Avg.
2z MSID 2.6 30 | 2.8 2.8 32 3.0 29
S [ mmPLRNN | 2.2 36 | 29 2.2 24 2.3 2.6
s | MMGPVAE | 3.8 24 | 31 4.0 1.8 29 3.0
= MRINE 1.4 1.0 | 1.2 1.0 2.6 1.8 1.5

Table 10: Neural reconstruction average ranks of each method for neural modalities and datasets.
Average ranks for each neural modality and dataset (each cell) are computed by first ranking each
method based on their reconstruction performances at a given sample dropping probability, and then
averaging these ranks across the 5 sample dropping regimes in Fig. [6] Also, we compute the average
rank across neural modalities within each dataset (denoted by Avg.) and across both datasets (denoted
by Total Avg.). The best-performing method is in bold and the second best-performing method is
underlined.

As shown in Table [I0]and Fig. [, MRINE achieved competitive performance compared to baselines.
To quantify each method’s success in reconstructing neural modalities, we computed each method’s
average rank in terms of how well it reconstructed the neural modalities compared with other methods
(Total Avg. in Table[I0). To compute these average ranks in Table[I0] we first ranked each method
based on its reconstruction performance for each given sample dropping probability, neural modality,
and dataset. We then averaged these ranks across all sample-dropping probabilities, neural modalities,
and datasets for each method to obtain the final average rank (Total Avg.). As shown in Fig. [6] there
exists no method achieving the best performance across all sample dropping probabilities for both
modalities and datasets. However, average ranks in Table |10|show that MRINE overall achieves the
best average performance (Total Avg.) compared to baseline methods, indicating its competitive and
robust neural reconstruction performance compared to baseline methods. Therefore, in addition to
MRINE’s superior performance in behavior decoding compared to baselines, these results show that
MRINE is a valuable tool for neuroscientific studies that go beyond behavior decoding and study
neural dynamics as well.

A.5.9 Visualizations of latent dynamics

To compute trial-averaged 3D PCA visualizations, for each algorithm, we first computed 3D PCA
projections of latent factors, split them based on trial start and end indices, interpolated them to a
fixed length (due to variable-length trials), and then computed trial averages of PCA projections for
each of 8 and 4 different reach directions for NHP grid reaching dataset and NHP center-out reaching
dataset, respectively. As expected based on literature [93|94], all models recovered rotational neural
population dynamics (see Fig. [7] for NHP grid reaching dataset and Fig. [§] for NHP center-out
reaching dataset). Among all these algorithms, MRINE had the clearest rotations while each method
revealed noisier trajectories for the NHP center-out reaching dataset, potentially due to consisting of
smaller numbers of trials whose latent factors are averaged to obtain trial-averaged trajectories.

A.5.10 Visual stimuli dataset

To evaluate MRINE'’s generalizability beyond neural datasets during motor tasks, we trained MRINE
models on a high-dimensional (i.e., 800-D) visual stimuli dataset that contained neuropixel spiking
activity and calcium imaging data sampled at 120 Hz and 30 Hz, respectively [67, |68]. Before
training the models, we applied Gaussian smoothing on modalities with a causal kernel with a
standard deviation of 8 ms (and treated both modalities with Gaussian observation models). In
addition to single-scale models trained on either modality, we also trained multisession CEBRA
models using multimodal data. As the downstream task, we used the frame ID decoding task, as done
in [[L7], where the goal is to predict the ID of the frame being shown to the subject, ranging from 1
to 900 (30 Hz and 30s movie). To align the latent factors of MRINE and CEBRA (extracted at 120
Hz following the faster modality) with the downstream target’s frequency (30 Hz), we performed
mean-pooling. For downstream decoding using each method’s latent factors, we used k-nearest
neighbor and Bayes classifiers, and picked the one that achieved better performance. In addition
to single-scale models (rows 3 and 4), CEBRA and MRINE, we also trained downstream decoders
directly on neural activity (rows 1 and 2). To quantify the prediction performance, we used the mean
absolute error (MAE) between the true and predicted frame ID. As shown in Table MRINE
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Figure 6: Neural reconstruction accuracies of 20 spike and 20 LFP channels for the NHP grid reaching
dataset (fop row) and NHP center-out reaching dataset (bottom row) when spike and LFP channels
had different timescales. a. The reconstruction accuracies of the spike channels. Sample dropping
probability of spikes was varied as shown on the x-axis while LFP channels were dropped with 0.2
probability. Lines represent mean and shaded areas represent SEM. b. Similar to a when sample
dropping probability of LFPs was varied while spike channels were dropped with 0.2 probabibility. c,
d Same as a, b but for NHP center-out reaching dataset.

successfully aggregated information across neuropixel spike and calcium imaging modalities of
different timescales. Also, decoders trained on MRINE’s latent factors improved the frame ID
prediction performance over decoders trained on single-scale models’ latent factors and directly on
neural modalities. In addition, MRINE outperformed the CEBRA baseline, potentially due to its
explicit dynamical modeling.

Method MAE
Calcium imaging 151.60
Neuropixel spike 67.76
SS Calcium imaging | 22.66
SS Neuropixel spike | 10.94
CEBRA 9.31
MRINE 5.09
Table 11: Frame ID prediction performance for the visual stimuli dataset. SS denotes single-scale
model. The best performing method is in bold, the second best performing method is underlined.

A.6 Ablation Studies
A.6.1 Effect of Time-Dropout

To test the effectiveness of time-dropout, for the NHP grid reaching dataset, we performed an ablation
study with the same setting used to generate Figs. [5p.b (see Sectionf.4) but we disabled time-dropout
(p¢ = 0). The remaining hyperparameters were as in Table[d] As shown in Fig. Op, without time-
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Figure 7: 3D PCA visualizations of trial-averaged latent factors inferred for NHP grid reaching
dataset by a) MRINE, b) MSID, ¢) mmPLRNN, and d) MMGPVAE.
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Figure 8: 3D PCA visualizations of trial-averaged latent factors inferred for NHP center-out reaching
dataset by a) MRINE, b) MSID, ¢) mmPLRNN, and d) MMGPVAE.

dropout, the behavior decoding accuracies of MRINE decreased by 7.6% and 31.4% when 40% and
80% of spike samples were missing (in addition to 20% of LFP samples missing), whereas MRINE
models trained with time-dropout experienced smaller performance drops of 5.4% and 20.4% in the
same missing samples settings (see Figs. [p,b). Similarly, MRINE models trained with time-dropout
were more robust to missing LFP samples (Fig. Pb vs. Fig. [5p) but the performance drops were
smaller due to spiking activity being the dominant modality for behavior decoding in this dataset. As
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expected, the effect of time-dropout was more prominent in the high sample dropping probability
regimes (i.e., more missing samples).
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Figure 9: Behavior decoding accuracies in the NHP grid reaching dataset when time-dropout was
disabled (p; = 0), and spike and LFP channels had both missing samples and different timescales.
Figure conventions are the same as in Fig. [5]

A.6.2 Effect of loss terms in the behavior decoding performance

To gain intuition on the improved performance with MRINE, for the NHP grid reaching dataset, we
performed an ablation study on the effect of smoothness regularization terms in Eq. [I0]and smoothed
reconstruction term in Eq. 0] on behavior decoding performance. To achieve that, we trained MRINE
models with 20 channels of 10 ms spike and 20 channels of 10 ms LFP signals by removing Eq. 9]
and individual terms in Eq. [I0|from the training objective in Eq. [I2] Then, we performed behavior
decoding with these MRINE models as described in Section[A.5.3]

As shown in Table [I2] both smoothness regularization terms in Eq. [T0]and smoothed reconstruction
term in Eq. [9] are important factors contributing to improved behavior decoding performance as
MRINE model trained without Eq. @] and [E] (row 2) achieve worse performance than that of baseline
methods in Table [/ We observed that applying smoothness regularization on x; is an important
contributing factor to improved performance (row 3 vs row 5) as well as smoothing reconstruction
term (row 2 vs row 3). Even though smoothness regularizations on s; and y,, may seem marginal
when comparing results in rows 3 and 4, they play a crucial role when combined with smoothness
regularization on x; (comparing row 1 and row 5).

Model BehaVi‘(Jélé)ecoding
MRINE 0.621 £ 0.010
quﬁ and ng’ 0.524 +0.013
M‘Eﬂf /0 0.565 = 0.012
MRINEWS ™| 0366+ 0016
s, aﬁﬁR;It\,H;:nva/; 0.598 = 0.012

Table 12: Behavior decoding accuracies for the NHP grid reaching dataset with 20 channels of 10
ms spike and 20 channels of 10 ms LFP signals for MRINE models trained without (w/o) loss terms
denoted in the first column. The best-performing method is in bold, + represents SEM.
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A.6.3 Effect of using different observation models

To better understand MRINE’s performance compared to baseline methods, we trained MRINE
models using Gaussian observation models for both modalities on the NHP grid reaching dataset.
This approach allowed us to evaluate whether the use of distinct observation models for spike and
LFP modalities or multiscale modeling is a primary source of MRINE’s improvements. As shown in
Table [T3] modeling each modality with an appropriate observation model, i.e., Poisson for spikes and
Gaussian for LFPs, significantly improves the performance as MRINE outperformed its variant where
both modalities are modeled with the same (Gaussian) observation model (p < 0.0003,n = 20,
one-sided Wilcoxon signed-rank test). Nonetheless, MRINE with the same observation model still
outperformed the baseline methods shown in Table[I] indicating that MRINE’s improved performance
is mainly caused by its multiscale modeling and other elements in the training objective (see Appendix

A.6.2).

Using the same observation model for both modalities can also enable a direct comparison to
unimodal models, since the two modalities can simply be concatenated at the input level under a
shared Gaussian observation model. To test this, we trained LFADS models using concatenated same
timescale (i.e., 10 ms) spike and LFP signals of the NHP grid reaching dataset (see Appendix[A.2.9]
for details), as well as CEBRA models (see Appendix for details). In this scenario, MRINE
achieved a downstream decoding CC of 0.621 4= 0.011, outperforming both LFADS (0.549 4 0.012),
LFADS-multimodal (0.547 4 0.011), and CEBRA (0.433 4+ 0.002) models. These results further
suggest that MRINE’s superior performance stems from its multiscale architecture and training
objective, rather than from simple input concatenation or observation model choices.

Behavior Decoding
Model (CC)
MRINE 0.611 £0.012
MRINE w/
Same Observation Model 0.604 + 0.011

Table 13: Behavior decoding accuracies for the NHP grid reaching dataset with 20 channels of 10 ms
spike and 20 channels of 50 ms LFP signals for MRINE trained with same and different observation
models. =+ represents SEM.

A.6.4 Effect of multiscale encoder design

As discussed in Section[3.2} accounting for different sampling rates for neural signals is an important
consideration for MRINE’s encoder design shown in Fig. [Tp. To achieve that, we learn modality-
specific LDMs in MRINE’s encoder that can leverage within-modality state dynamics to account for
missing samples whether due to timescale differences or missed measurements. Therefore, MRINE
can perform inference without relying on augmentations to impute missing samples, such as zero-
imputation as done in common practice [53}157] that can yield suboptimal performance [51,152]. Such
suboptimal performance regimes can include either degraded performance due to misinformation
presented by imputed signals or discarding the imputed signal almost completely especially in the
high imputation regimes due to attempting to reconstruct trivial imputations and focusing on only
one neural modality. As shown in Tables[T]and[7} MRINE’s performance degraded less than those of
baseline methods when trained on different timescale signals due to these design choices.

To further investigate this, for the NHP grid reaching dataset, we trained MRINE models in a similar
manner with baseline methods that do not account for training and inference on different timescale
signals (i.e, mmPLRNN and MMGPVAE) where the missing LFP signals due to timescale difference
are imputed by their global mean, i.e., zeros due to z-scoring. In this setting, missing LFP timesteps
are discarded (masked) in the training objective (as done for mmPLRNN and MMGPVAE) but those
timesteps were not treated as missing samples during latent factor inference both during training and
inference. In other words, we let MRINE process the misinformation presented by zero imputation
similar to mmPLRNN and MMGPVAE due to the recurrent nature of latent factor inference (even if
their reconstructions/predictions are masked in the training objective).

In addition, we trained other versions of MRINE, mmPLRNN and MMGPVAE where imputed
(missing) timesteps were not discarded in their training objectives (denoted by w/o Loss Masking in
Table[14)).
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Behavior Decodin

Model (CC) &
MRINE 0.611 + 0.012
MRINE w/ Zero Imputation 0.581 £ 0.014

MRINE w/ Zero Imputation

and w/o Loss Masking 0.523 +0.013
mmPLRNN 0.540 + 0.011
mmPLRNN w/o Loss Masking 0.498 4+ 0.009
MMGPVAE 0.479 £ 0.017
MMGPVAE w/o Loss Masking 0.500 £+ 0.016

Table 14: Behavior decoding accuracies for the NHP grid reaching dataset with 20 channels of 10 ms
spike and 20 channels of 10 ms zero-imputed LFP signals for MRINE, mmPLRNN, and MMGPVAE
where zero-imputed LFP time-steps are either included or masked in the training objective. The
best-performing method is in bold, & represents SEM. MRINE, mmPLRNN, and MMGPVAE
performances are taken from Table [I] for convenience.

As shown in Table [14] the performance of MRINE models trained with zero-imputed LFP signals
degraded compared to MRINE models trained with 50 ms LFP signals (row 1 vs rows 2 and 3). As
expected, masking zero-imputed LFP time-steps in the loss function improved behavior decoding
performance compared to the scenario where they are included in the loss function (row 2 vs row 3).
However, removing zero-imputed LFP time-steps from the training objective still results in degraded
performance for MRINE, showing the importance of multiscale encoder design (row 1 vs row 2).

Even though the performance of mmPLRNN improved significantly when zero-imputed LFP time-
steps were masked in the training objective (row 4 vs row 5), allowing it to achieve performance
comparable to that in Table[T} unlike mmPLRNN, MMGPVAE achieved higher performance when
imputed LFP signals were not masked in its training objective (row 7 vs. row 6). As discussed earlier,
due to operating in a high imputation regime (i.e., 4 out of every 5 LFP signals are imputed), it is
possible that including reconstruction of trivial imputed LFP signals may have led MMGPVAE to
deprioritize LFP signals during latent factor inference, instead, focusing primarily on spike signals.
This behavior suggests that fusing LFP signals with spiking signals can degrade MMGPVAE’s
performance, as including trivial LFP reconstructions in MMGPVAE’s training objective results in
higher performance. Therefore, a carefully designed encoder is essential to process both modalities
effectively and maximize downstream performance.

Overall, MRINE significantly outperformed all models when they were trained with zero-imputed
different timescale signals, including its own variants (p < 0.02,n = 20, one-sided Wilcoxon
signed-rank test). These results show the importance of encoder design when modeling modalities
with different timescales.
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