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Abstract

Automated Grammar Error Correction (GEC)
is an active area of research within the field
of Natural Language Processing (NLP), yet its
scope remains restricted to English and other
resource-rich languages. Urdu is a language
that is widely spoken in South Asia. How-
ever, due to the lack of annotated datasets no
work has been in field of GEC for Urdu lan-
guage. This paper presents an GEC model for
Urdu. In addition, we also present a dataset
that contains 1200 pairs of grammatically cor-
rect and incorrect sentences in Urdu that was
manually curated from children books. More-
over, we also scrapped 400 children stories
from Rekhta, an Urdu Literary website, and
introduced errors probabilistically to create a
dataset with 36,000 pairs of grammatically cor-
rect and incorrect sentences. The model that
we used was mT5, which is a multilingual ver-
sion of TS transformer based model presented
by Google. We trained the model in two stages.
First, we trained the model on the manually cu-
rated dataset. Then, we trained the same model
on the dataset that was scrapped from web. Fi-
nally, we tested the model by on Wikipedia Edit
History dataset containing only grammatical
errors which were identified using ERRANT.
F0.5 Score, GLEU, Recall and Precision were
used as evaluation criteria. The F0.5 scores
for the test dataset after fine tuning the MT5
Base model on Raw + Synthetic Dataset are:
NOUN INFL 0.63, ADP INFL 0.76, VERB
INFL 0.73, VERB FORM 0.66, ADJ INFL
0.76, and PRON INFL 0.74.

Additionally, our study is the first to focus on
GEC systems, as to the best of our knowledge,
no prior work has been done in this field.

1 Introduction

Automated Grammar Error Correction (GEC) is
a natural language processing task that identifies
and corrects grammatical errors in text to improve

writing clarity and quality. GEC has a variety of ap-
plications, including language learning and teach-
ing, writing support, text editing and proofreading,
language translation, and content creation and pub-
lication (Naghshnejad et al., 2020).

Recently, significant progress has been made in
the field of GEC for English and other resource
rich languages because of the availability of an-
notated datasets. However, in case of Indo-Aryan
languages such as Urdu, limited progress has been
made in the field of GEC because of the lack of
availability of annotated datasets.

This paper presents an Automated GEC model
for the Urdu language, aiming to improve accurate
and fluent written communication. The motivation
for undertaking this research comes from the lack
of tools like Grammarly for Urdu, which can au-
tomatically correct grammatical errors in written
English and help users communicate effectively. In
addition, an Automated GEC will have a positive
impact on content creation, digital communication
tools, and learning platforms for Urdu.

Apart from the GEC model, this paper presents
an annotated dataset for GEC in Urdu language.
The remainder of this paper is structured as follows.
Section 2 provides an overview of background in-
formation and related work in the field of GEC.
Section 3 outlines the preparation of the training
and test dataset. Section 4 goes into the details of
our proposed methodology, outlining our system
design, chosen deep learning models, evaluation
criteria, optimization strategies, and implementa-
tion details. Section 5 presents the experimental
setup for training the model. Section 6 discusses
the results obtained, analyzing the effectiveness of
our approach. Finally, Section ?? highlights the
limitations of the study.



2 Background and Related Work

2.1 Related Work

Although there has been significant progress in the
field of GEC for English and other resource rich
languages, to the best of our knowledge no has
work has been in the field of GEC for Urdu lan-
guage. Consequently, our literature review focuses
on works on GEC for other languages. In addi-
tion, we also focus on works that generate synthetic
datasets for low resource languages.

In their paper, (Naghshnejad et al., 2020) pre-
sented a general survey of the recent Deep Learn-
ing based approaches for Grammar Error Handling.
Their findings can be in seen Table 1.

Model Precision | Recall | Fj 5
RNN NMT (Zheng & Briscoe, 2016) - - 39.0
CNN (Chollapatt & Ng, 2018) 65.5 331 | 54.8
RNN-+Transformer (Junczys-Dowmunt, 2018) 66.8 345 | 563
Copy-augmented Transformer (Zhao, et al., 2019) 71.6 38.7 | 612
PIE (Awashthi, et al., 2019) 68.3 432 | 61.2

Table 1: Table reproduced from (Naghshnejad et al.,
2020)

In their paper, (Solyman et al., 2019) proposed
a Deep Learning based GEC model for the Ara-
bic language. The authors introduced an encoder-
decoder model utilizing multiple convolutional lay-
ers and an attention mechanism. They tested the
proposed model on the Qatar Arabic Language
Bank (QALB) test corpus. Precision, recall, and F1
score were used as evaluation criteria. The model
achieved a precision score of 70.23%, a recall score
of 72.10%, and an F1 score of 71.14%.

After focusing on GEC systems for different
languages, we will now focus on different strategies
to create synthetic GEC datasets.

The deliberate injection of errors into grammat-
ically correct sentences has emerged as a critical
strategy for overcoming the limited availability of
training data. Errors can injected by using a variety
of approaches including rule-based systems and
round-trip translation (Izumi et al., 2004; Budi Ir-
mawati, 2017; Foster and Andersen, 2009). The
limitation of deliberate injection of grammatical
errors is that artificial errors should mirror actual
errors closely in order to create a dataset is reliable
for training and reflective of real-world language
use.

Another strategy that is commonly used is
the extraction of edit histories from the websites
that maintain public revision histories such as
Wikipedia. Synthetic dataset generated using this

strategy mimics real world dataset because the ed-
its represent actual grammatical mistakes made by
humans. However, since these edits also contains
other than grammatical mistakes, they need to be
filtered. Consequently, make this process challeng-
ing (Grundkiewicz and Junczys-Dowmunt, 2014;
Boyd, 2018; Faruqui et al., 2018).

In their paper, (Sonawane et al., 2020) combine
the two strategies mentioned above to generate a
synthetic dataset containing inflectional errors for
Hindi language. In addition, they train a base Trans-
former model and two state of the art English GEC
model to create a baseline for GEC in Hindi Lan-
guage. Fj.5 and GLEU score are used as an evalua-
tion criteria. The training dataset is create by using
a rule based framework whereas the test dataset
is filtering Wikipedia Edit History in Hindi using
ERRANT. Since Hindi is similar to Urdu, we fol-
low similar approach as taken by (Sonawane et al.,
2020) to develop a GEC model for Urdu.

2.2 Error Annotation Toolkit (ERRANT)

ERRANT (ERRor ANnotation Toolkit) is an auto-
matic tool for annotating grammatical errors given
an original and corrected sentence pair. (Bryant
et al., 2017). ERRANT works by extracting ed-
its from parallel original and corrected sentences
and then classifying them according to a dataset-
agnostic rule-based framework. ERRANT was ini-
tially designed for the English language, but now
it has been modified for other languages such as
Hindi (Sonawane et al., 2020).

2.3 WikiEdits

WikiEdits is a (Grundkiewicz and Junczys-
Dowmunt, 2014) software uses Wikipedia revision
histories to extract a parallel corpus of errors. Us-
ing this software, we extracted edits in Urdu from
a Wikipedia Revision dump dated October 1, 2023.
After extracting the edits, we filtered the edits using
the following constraints:

* Sentence length should be between 4 and 27.

* Only substitution operations with a Levenstein
edit distance of less than 0.3 will be consid-
ered.

2.4 Urdu Grammar

Urdu, being a morphologically rich language, em-
ploys a complex system of inflections to convey



grammatical relationships and meanings. Inflec-
tional errors occur when these grammatical modifi-
cations are applied incorrectly, leading to sentences
that are grammatically incorrect or unclear. The
following categories of inflectional errors are par-
ticularly significant in Urdu:

* NOUN INFL: Noun inflection errors involve
incorrect modifications of nouns to indicate
gender, number, or case. For example, us-
ing a masculine form of a noun where a femi-
nine form is required, or using a singular noun
where a plural is necessary.

* ADP INFL: Adposition inflection errors per-
tain to the incorrect use of prepositions or
postpositions that indicate relationships be-
tween different parts of a sentence. Errors in
adpositions can lead to ambiguity or incorrect
interpretations of the sentence structure.

* VERB INFL: Verb inflection errors encom-
pass incorrect changes to verbs to reflect tense,
aspect, mood, or agreement with the subject
in terms of number and gender. These errors
can distort the intended time, manner, or com-
pleteness of an action.

* VERB FORM: Verb form errors involve the
use of incorrect verb conjugations or non-
standard verb forms. This can include the use
of the wrong verb tense or an inappropriate
verb form for the grammatical context, affect-
ing the clarity and correctness of the sentence.

* ADJ INFL: Adjective inflection errors occur
when adjectives fail to agree with the nouns
they modify in terms of gender, number, or
case. For instance, using a masculine adjec-
tive with a feminine noun or a singular adjec-
tive with a plural noun.

¢ PRON INFL: Pronoun inflection errors in-
volve the incorrect use of pronouns in terms
of case, number, or gender. Pronouns must
correctly match the nouns they refer to, and
errors in this area can lead to confusion and
misinterpretation of the sentence.

3 Dataset

As no work has been done in the field of GEC for
Urdu language because of the lack of annotated
dataset, we decide to gather one. Our dataset con-
sists of two main parts:

Error Type Examples
b (jana) — L (gaya),
L’/(karna) — A (kiya)
go [inf. — past], do [inf. — past]
I (hua) — (b (hui),
L"/((karta) — Z_/'/(karte)
happen [m.sing. — f.sing.], do [m.sing. — m.pl.]
~—#°(subah) — <—#“(subay),
mkutta) — i(kutte)
province [nom. — oblique], dog [nom. — oblique]
K(ka) — S (ki).
K(ka) — < (ke)
of [m.sing. — f.sing.], of [m.sing. — pl.]
€I (uska) — d:'/ I (uski),
/(apna) — :‘;f!’(aapko)
his [m.sing. — f.sing.], you [erg. — dat.]
¢5Z (chhota) — &—»Z (chhote),
| ~"33(dusra) — «—.~"33(dusre)
small [m.sing. — m.pl.], other [m.sing. — m.pl.]

VERB:FORM

VERB:INFL

NOUN:INFL

ADP:INFL

PRON:INFL

ADJ:INFL

Table 2: Types of Inflectional Errors in Urdu with Ex-
amples

1. Raw dataset consisting of 1200 pairs of gram-
matically correct and incorrect sentences gath-
ered from a variety of primary Urdu text-
books.

2. Synthetic consisting of 3600 pairs of gram-
matically correct and incorrect sentences, col-
lected by web scrapping children stories from
Rekhta and probabilistically introducing er-
rors.

In addition, we also collected a test dataset for
evaluating model using WikiEdits and ERRANT
(Bryant et al., 2017).

3.1 Raw dataset

We initially collected 1200 pairs of correct and in-
correct Urdu sentences. These pairs of sentences
were taken from different primary text books which
are already verified by multiple Urdu experts. Ex-
amples of sentence pairs from the raw dataset can
be seen in Table 3.

Input Output

U = A28

ol — = e Vil — o= 1 &
S ok | Sl oK
§_L'L.2,~j PRy q_LL//—J <

T S e

Jrored e 1TL__zgff)fJ4.f{’.T,T
I = " g s EToT M e S
;.urlﬂdz.;‘//u ;.K!ﬂd?,_-'_ufu

JUs_ £l S8¥sce 2P

Table 3: Examples of grammatically correct and incor-
rect sentence pairs from the raw dataset.



Figure 1: Word Cloud of the most common grammatical
errors in Urdu Language.

However, this process was very cumbersome as
the different Urdu primary textbooks were only
available in paperback format and the sentences
had to by manually. Consequently, we had to create
a synthetic dataset.

3.2 Synthetic Error Generation

In order to create a synthetic dataset, we first
scrapped 400 different children stories in Urdu
from the popular Urdu website Rekhta and then
split each story into separate sentences. Rekhta
is an Urdu literary web portal started by Rekhta
Foundation, a non-profit organisation dedicated to
the preservation and promotion of the Urdu liter-
ature. We chose children stories for creating our
dataset because they are relatively simpler and are
more structured than other texts in Urdu literature,
making model training easier.

After splitting each stories into sentences, we
found the most frequent words in the dataset in
order to introduce synthetic errors. However, since
these common words did not always correlate with
the common grammatical errors in the Urdu lan-
guage, we asked experts in Urdu language to pro-
vide us with the list of most common grammatical
errors in Urdu Language. These errors can be in
the Word Cloud in Figure 1

After determining the list of the most common
grammatical errors, we introduced these errors into
each sentence using a two part process as follows:

1. Determine the total number of errors to be
introduced in the sentence. The details of this
process are highlighted in Algorithm 1.

2. Randomly select a word from the predefined
list of grammatical errors that already exists
in the sentence, and then replace it with the in-
correct word. Decrement the number of errors
by 1. Repeat the process until the number of

Algorithm 1 GenerateNumberofErrors

probability < Random integer between 0 and
100
if probability > 80 then
return 3
else if probability > 50 then
return 2
else
return 1
end if

Algorithm 2 GenerateErrorInSentence(sentence)

Initialise dictionary words
Initialise list ¢ndices from O to the length of the
dictionary words
Shuffle indices
number < GenerateNumberOfErrors()
for each i in indices do
replace + words|i
if replace in sentence then
replacement < words|replace]
Swap replace with replacement in
sentence
number < number — 1
end if
if number = 0 then

return sentence
end if
end for

errors is equal to 0. The details of this process
are highlighted in Algorithm 2.

In the end, our resulting dataset consisted of
36,000 pairs of grammatically correct and incorrect
sentences.

3.3 Test Dataset

In order to create a test dataset, we first gathered
a corpus of Wikipedia Revision using WikiEdits.
Some samples that were obtained using WikiEdits
can be viewed in Figure 2

Since the dataset that was obtained, also con-
tained errors other than grammatical errors, we
filtered it using ERRANT to extract the grammati-
cal errors. The model that we used for Urdu Part Of
Speech (POS) tagging is the StanfordNLP tagger
(Qietal., 2018). The tagger returned Extended Part
Of Speech (XPOS) and Universal Part Of Speech
(UPOS) both for each word, we used the UPOS
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Figure 2: Samples from the Wikipedia Revision History
Dataset

tags because there is no tagset conversion from
XPOS to UPOS for Urdu. The distribution of the
frequency of the different error types as determined
by ERRANT in the Wikipedia Revision History
dataset can be seen in Figure 3
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Figure 3: Frequency of error types as determined by
ERRANT in the Wikipedia Revision History dataset.

However, for the purpose for this study we will
only consider INFLECTIONAL and VERB:FORM
errors as these are more common grammatical er-
rors. In addition, we discarded other edits because
of due to errors in POS tagging. For example,
Dates were incorrectly tagged as ADP, ADIJ. In
the end, our test dataset contained approximately
9,000 pairs of grammatically correct and incorrect
sentences. We also checked the dataset for offen-
sive content by random sampling some pairs and
then checking them manually.

4 Methodology
4.1 System Design

In order to develop an automatic GEC model for
Urdu language, we decided use to the MT5 (Xue
et al., 2021) developed by Google Research ow-
ing to its promising performance for GEC for low
resource languages (Gomez et al., 2023).

Our MT5 model was trained in multiple stages.
Initially, we trained a pre-trained M TS5 model solely

on the Raw Dataset. Subsequently, we conducted
further training on the entire dataset, encompassing
both the Raw and Synthetic datasets. Finally, the
model underwent evaluation using the test dataset.
Evaluation metrics including F0.5 score, GLEU,
Recall, and Precision were computed for each error
type identified by ERRANT, both with and without
the synthetic dataset.

4.2 Transformer Model

The TS5 (Text-To-Text Transfer Transformer) model
is a transformer-based architecture introduced by
Google Research (Raffel et al., 2019). Unlike
previous models that were task-specific, TS is de-
signed to handle various natural language process-
ing tasks through a unified text-to-text framework.
It achieves this by framing all tasks as text-to-text
transformations, where both inputs and outputs are
in natural language text format. TS is trained on
large-scale datasets using a multi-task objective,
enabling it to perform well across a wide range of
NLP tasks such as translation, summarisation, and
question answering.

The Multilingual TS (MT5) model is an exten-
sion of TS5 that is specifically trained on multilin-
gual data (Xue et al., 2021). MTS5 is pre-trained on
a diverse range of languages including Urdu, allow-
ing it to understand and generate text in multiple
languages. This multilingual capability is achieved
by incorporating language-specific tokens during
training, enabling the model to handle language
switching seamlessly. MT5 has been shown to per-
form competitively across various language tasks,
making it a valuable tool for multilingual applica-
tions.

4.3 Evaluation Criteria

Based on the literature review that we conducted,
we decided to the evaluate the performance of our
model using the following criteria:

1. FO.5 Score
2. Precision
3. Recall

4. Generalised Language Evaluation Under-
standing (GLEU) (Napoles et al., 2015)

4.3.1 FO0.5 Score

The F0.5 score is a weighted harmonic mean of
precision and recall, with more emphasis on preci-
sion.



1.95 precision - recall

Fys = .
05 0.25 - precision + recall

4.3.2 Precision

Precision quantifies the number of correct positive
predictions made out of all positive predictions
made.

o True Positives
Precision =

True Positives + False Positives

4.3.3 Recall

Recall measures the number of correct positive
predictions made out of all actual positives in the
dataset.

True Positives
Recall = — : (3)
True Positives + False Negatives

434 GLEU

GLEU (Generalized Language Understanding Eval-
uation) is a metric used to evaluate the performance
of grammatical error correction systems. It com-
pares the generated (corrected) sentence to a ref-
erence sentence (the original, grammatically cor-
rect version) by looking at how many n-grams (se-
quences of words of length n) they share (Napoles
et al., 2015). It is calculated as follows:

1. All sub-sequences of 1, 2, 3, or 4 tokens in
the output and target sequences (n-grams) are
recorded.

2. Recall is calculated as the number of matching
n-grams to the number of total n-grams in the
target (ground truth) sequence.

| Matching n-grams |

Recall = “4)

| Total target n-grams |

3. Precision is computed as the ratio of the num-
ber of matching n-grams to the number of total
n-grams in the generated output sequence.

| Matching n-grams |

Precision =
| Total generated n-grams |

&)

4. The GLEU score is the minimum of recall and
precision. Its range is always between 0 (no
matches) and 1 (all matches).

GLEU = min(Recall, Precision) 6)

4.4 Implementation Details

In order to implement our model, we used Hugging
Face’s Transformers library and the PyTorch frame-
work. Furthermore, we trained our model on the
NVIDIA RTX TITAN GPU with 24GB Ram.

4.5 Optimization Strategies

In order to speed up and stabilize the training pro-
cess, we employed the following strategies:

1. Gradient Clipping
2. Gradient Accumulation

3. Mixed Precision Training

4.5.1 Gradient Clipping

Gradient clipping is a technique used to prevent the
exploding gradient problem during training. It in-
volves setting a threshold value, and if the norm of
the gradients exceeds this threshold, the gradients
are scaled down proportionally to ensure they do
not grow too large. This helps stabilize the train-
ing process and prevents model parameters from
diverging.

4.5.2 Gradient Accumulation

Gradient accumulation is a strategy to effectively
utilize hardware resources during training, particu-
larly when working with limited GPU memory. In-
stead of updating the model’s parameters after pro-
cessing each batch, gradients are accumulated over
multiple batches before performing a single param-
eter update. This reduces the frequency of param-
eter updates and allows for larger effective batch
sizes without increasing memory requirements.

4.5.3 Mixed Precision Training

Mixed precision training leverages the capabilities
of modern GPUs to accelerate training by using
lower precision floating-point numbers (e.g., half-
precision floating-point numbers) for certain com-
putations while maintaining higher precision for
others. This technique reduces memory usage and
computational overhead, resulting in faster training
times. Additionally, mixed precision training often
includes automatic loss scaling to mitigate numeri-
cal stability issues associated with lower precision
arithmetic.

S Experiments

5.1 Train Test Split

The train and validation splits were created by split-
ting the Raw and Synthetic Dataset with a 90:10



ratio. The entire dataset from Wikipedia Revision
after filtration by ERRANT was used as the test
dataset.

5.2 Model Selection

The MTS5 has multiple variants. The different vari-
ants along with the number of parameters are listed
as follows:

1. MT5 Small: 250M parameters

2. MTS5 Base: 580M parameters

3. MTS5 Large: 1.3B parameters

4. MTS5 Extra Large: 2.5B parameters
5. MT5 XXL: 5B parameters

We first tried the MT5 Large but it crashed due
to out of memory error. Then we tried the MT5
Small , but model was outputting random charac-
ters. Consequently, we only used the MT5 Base
model.

5.3 Experimental Setup

We trained the model using a two step process.
First, we fine tuned the MT5 Base model only on
the Raw Dataset for 180 epochs. Second, we fur-
ther trained the MTS Base model on the Raw+Syn-
thetic Dataset for 60 epochs. During the entire
training the process, rest of the hyperparameters
were kept constant and be seen in Table 4.

Hyperparameter Value
Optimizer Adam
Learning Rate 3x 1071
Weight Decay 1x107°
Scheduler Step Learning Rate
Step Size 10
Learning Rate Multiplicative Factor 0.5
Batch Size 4
Gradient Accumulation Steps 4
Max Gradient Norm 1.0
Mixed Precision Training Float16 for loss propagation and Float32 for weights

Table 4: Experimental Setup

The entire training process took us approxi-
mately 33 hours for one run, so we didn’t perform
multiple runs.

6 Results

The individual performance of MT5 Base model
for different error types, both with and without fine
tuning on the Synthetic Dataset is summarised in
Table 5. While analysing these results, we identi-
fied some notable patterns.

6.0.1 Opverall Trends

The results indicate a clear trend of improvement
when the Synthetic dataset is combined with the
Raw dataset during the training process. Across all
metrics, the scores for the training only using the
Raw + Synthetic Datasets are consistently higher
than those training on the Raw dataset alone. This
suggests that incorporating synthetic data enhances
the model’s overall performance, thus enabling it to
deal with grammatical errors more effectively. Fur-
thermore, since the improvements are not limited to
a specific metric or error type, but are rather broad,
shows the robustness of synthetic error generation
for creating a GEC dataset.

6.0.2 Comparison of different evaluation
criteria

Across different evaluation criteria, the inclusion
of synthetic data leads to significant improvements.
GLEU scores, which measure the fluency and ac-
curacy of generated text, show a general upward
trend, indicating better language generation. The
F0.5 scores, which emphasizes precision, also sees
a significant increase, reflecting improved accu-
racy in correcting errors. Precision exhibit the
most dramatic enhancements, suggesting that the
model’s predictions are more accurate with syn-
thetic data. Recall also rises consistently, highlight-
ing the model’s improved capability in identifying
and correcting a broader range of errors, ensuring
that fewer errors are missed.

6.0.3 Comparison of different error types

The inclusion of synthetic dataset impacted some
error types more than others. Some of the key
observations are as follows:

* Pronoun inflection (PRON INFL) and noun
inflection (NOUN INFL) benefit significantly
in terms of both precision and recall.

* Adjective inflection (ADJ INFL) shows the
highest overall gains

* Improvements in verb form (VERB FORM)
are notable, especially in the F0.5 score.

Overall, based on these observations we can con-
clude that synthetic data can be particularly benefi-
cial for injecting grammatical errors.

7 Limitations

In this section, we highlight the major limitations
of our work.



Training only on Raw Dataset Training on Raw + Synthetic Dataset
NOUN INFL | ADP INFL | VERB INFL | VERB FORM | ADJ INFL | PRON INFL | NOUN INFL | ADP INFL | VERB INFL | VERB FORM | ADJ INFL | PRON INFL
Average GLEU Score | 0.51 0.61 0.65 0.61 0.62 0.7 0.6 0.72 0.75 0.71 0.73 0.74
Average F0.5 Score 0.4 0.5 0.49 0.42 0.47 0.57 0.63 0.76 0.73 0.66 0.76 0.74
Average Precision 0.63 0.69 0.69 0.65 0.66 0.74 0.79 0.86 0.85 0.79 0.87 0.85
Average Recall 0.58 0.63 0.62 0.58 0.6 0.69 0.79 0.86 0.85 0.8 0.87 0.85

Table 5: Average GLUE, F0.5, Recall and Precision for various error types on the test dataset.

As stated earlier, there was no existing dataset
for Urdu GEC. This meant that we had to curate a
dataset using manually. However, creating a dataset
manually is a cumbersome process. As a result,
we scrapped a dataset from the website and arti-
ficial injected grammatical errors. Consequently,
our model only deals with substitution INFLEC-
TIONAL errors.

During the data collection phase, we scrapped
children stories from as they contained shorter and
simpler sentences, in order to facilitate model train-
ing. However, this means that our model can only
deal with simple sentences of a moderate length at
one time.

As mentioned earlier, our algorithm for artifi-
cially injecting errors is designed such that a sen-
tence contain either 1, 2 or 3 grammatical. How-
ever, ERRANT returns only a single error per sen-
tence. This means that we cannot effectively evalu-
ate our model for sentences that contain multiple
eITors.
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