
Heliyon 10 (2024) e31158

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Predicting life satisfaction using machine learning and

explainable AI

Alif Elham Khan ∗, Mohammad Junayed Hasan, Humayra Anjum, 
Nabeel Mohammed, Sifat Momen
Department of Electrical and Computer Engineering, North South University, Plot # 15 Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

doi .org /10 .5061 /dryad .qd2nj

Keywords:

Machine learning

Explainable AI

Life satisfaction

Ensemble model

Life satisfaction is a crucial facet of human well-being. Hence, research on life satisfaction is 
incumbent for understanding how individuals experience their lives and influencing interventions 
targeted at enhancing mental health and well-being. Life satisfaction has traditionally been 
measured using analog, complicated, and frequently error-prone methods. These methods raise 
questions concerning validation and propagation. However, this study demonstrates the potential 
for machine learning algorithms to predict life satisfaction with a high accuracy of 93.80% 
and a 73.00% macro F1-score. The dataset comes from a government survey of 19000 people 
aged 16-64 years in Denmark. Using feature learning techniques, 27 significant questions for 
assessing contentment were extracted, making the study highly reproducible, simple, and easily 
interpretable. Furthermore, clinical and biomedical large language models (LLMs) were explored 
for predicting life satisfaction by converting tabular data into natural language sentences through 
mapping and adding meaningful counterparts, achieving an accuracy of 93.74% and macro F1-

score of 73.21%. It was found that life satisfaction prediction is more closely related to the 
biomedical domain than the clinical domain. Ablation studies were also conducted to understand 
the impact of data resampling and feature selection techniques on model performance. Moreover, 
the correlation between primary determinants with different age brackets was analyzed, and it 
was found that health condition is the most important determinant across all ages. The best 
performing Machine Learning model trained in this study is deployed on a public server, ensuring 
unrestricted usage of the model. We highlight the advantages of machine learning methods 
for predicting life satisfaction and the significance of XAI for interpreting and validating these 
predictions. This study demonstrates how machine learning, large language models and XAI 
can jointly contribute to building trust and understanding in using AI to investigate human 
behavior, with significant ramifications for academics and professionals working to quantify and 
comprehend subjective well-being.

1. Introduction

Life satisfaction is an essential aspect of human well-being. Research suggests people who are more satisfied with their lives 
have better mental health outcomes, such as reduced rates of depression and anxiety, are more engaged in their work, and are 
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less likely to experience burnout [1,2]. On the other hand, those with lower levels of life satisfaction are more likely to have 
poor mental health outcomes and decreased productivity. Researchers in psychology, economics, and other social sciences have 
focused on life satisfaction for many years. Given the importance of life satisfaction in determining people’s overall well-being and 
quality of life, governments from around the globe are acknowledging its value in policy-making. Governments such as the United 
Kingdom and Bhutan have created programs and indexes to measure and promote life satisfaction as a vital sign of growth and 
development [3,4]. The conventional approaches for evaluating life satisfaction predominantly rely on analog approaches, which 
are inherently time-consuming, expensive, and logistically challenging, especially when targeting large populations. This limitation 
impedes the widespread adoption of life satisfaction assessments, hindering their utility in effectively informing policy-making and 
intervention strategies. In contrast, this study leverages machine learning algorithms to predict life satisfaction, thereby transcending 
the constraints of traditional analog methods. By harnessing the power of machine learning, vast amounts of data can be efficiently 
processed, enabling the analysis of diverse factors that influence life satisfaction. The utilization of various machine learning models, 
including decision tree-based and boosting models, underscores the versatility and robustness of our approach in capturing the 
complexities of human behavior and subjective well-being. Importantly, the methodology of this study achieves high accuracy in 
predicting life satisfaction, as evidenced by our ensemble models attaining performance scores of 93.80% accuracy and 73.00% 
macro F1. This level of precision surpasses conventional methods, instilling confidence in the reliability and validity of our approach. 
Moreover, the 27-item questionnaire used in the study was short and effective, making it highly reproducible, simple, and easy 
to interpret. It was extracted from a Dutch survey comprising 243 questions using essential feature extraction techniques such as 
RFECV. The extracted questionnaire only contains the questions that identify the most important factors in detecting contentment 
in individuals. It sheds light for academics and policymakers on the right questions to ask to assess satisfaction in people’s lives. 
Additionally, ablation studies were conducted to understand the contribution of data resampling techniques and feature selection 
methods to the overall performance of the machine learning models, highlighting the importance of the dual balancing strategy 
employed in this study, as well as the effectiveness of the RFECV-based feature selection approach in extracting the most salient 
determinants of life satisfaction.

In addition to traditional machine learning techniques, the research delved deeper into the use of large language models (LLMs) 
such as BERT, BioBERT, ClinicalBERT, and COReBERT for the purpose of predicting life satisfaction. This was accomplished after a 
thorough LLM-specific data preprocessing to generate natural language texts from tabular data. The results of these experiments pro-

vide valuable insights into the suitability of different LLMs for this domain, with BioBERT demonstrating the strongest performance 
and suggesting that life satisfaction prediction is more closely aligned with the biomedical domain than the clinical domain.

The study also compared the primary determinants across different age brackets to explore how the appropriate questions and 
determinants change throughout life. Moreover, the adoption of explainable AI (XAI) ensures transparency and interpretability, 
elucidating the rationale behind each prediction and empowering stakeholders to make informed decisions based on actionable 
insights. XAI enables the creation of machine learning models that are more transparent, interpretable, and understood by humans, 
potentially increasing their reliability and trustworthiness. This aspect is especially crucial for decision-makers, such as policymakers, 
who must comprehend and apply the results of such models to establish effective initiatives that enhance well-being and mental 
health. By providing transparency, interpretability, actionable insights, risk assessment, and customization capabilities, explainable 
AI demystifies the decision-making process and enables decision-makers to understand, validate, and act upon the model’s predictions 
effectively. Through its ability to translate complex machine learning models into understandable terms, explainable AI empowers 
decision-makers to make informed judgments, drive positive outcomes, and navigate the complexities of decision-making in diverse 
domains. The major accomplishments of this study can be summarized as follows:

• The study identified the primary determinants influencing individuals’ life satisfaction.

• The dominant determinants were used to develop a simple and efficient questionnaire for assessing people’s levels of content-

ment.

• Several machine learning algorithms have been applied to create models that achieve a high level of accuracy in predicting the 
state of contentment in individuals.

• Textual data was used to predict life satisfaction, with large language models (LLMs). Textual data was generated by trans-

forming tabular data using the techniques of mapping and concatenating categorical data to create meaningful text data. LLMs 
complement the traditional machine learning approaches.

• Explainable AI techniques were employed to enhance the interpretability of the outcomes in our AI-based models, rendering 
them more accessible to human understanding.

• The primary determinants were compared and analyzed across four age brackets.

• Deployment of our interactive app enables individuals to predict their state of contentment, expanding the accessibility of our 
research and providing a practical tool for well-being assessment.

2. Related works

Life satisfaction surveys were first conducted in the US in the 1960s, with subsequent studies in different countries evaluating 
various factors that affect overall life satisfaction, such as mental health [5,6], age [7], socioeconomic factors [8] and many more 
[9–14]. Several nations are collecting national life satisfaction statistics [15], and research is being conducted on the impact of 
environmental factors [16], social media [17], disability discrimination [18], and personality [19] on life satisfaction. Longitudinal 
2

panel studies have been conducted in Australia and Germany to track life satisfaction over time.
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Various country-wise studies and evaluations of life satisfaction were carried out over the past few decades. The most elementary 
use of life-satisfaction data is to estimate the apparent quality of life within a country or a specific social group [20]. The USA, for 
example, has focused a lot and given significant importance to this field. Much emphasis has been shown on mental health in many 
previous types of research [5,6]. In the 1970s, life satisfaction was a central theme in American society. Indicator studies. Landmark 
books were published stating satisfaction with life, as a whole, is calculated based on satisfaction with various aspects of life [21,22]. 
Some recent works in the USA presented a few updated methodologies in determining life satisfaction. The Center for Disease Control 
and Prevention in the USA measures life satisfaction in particular of its large health surveys [23].

The United Kingdom, on the other hand, is collecting national life satisfaction statistics for possible policy use [15]. Life sat-

isfaction was studied extensively from the perspectives of social media [24], sexual minority [15], disability discrimination [18], 
personality effects [19] and environmental factors [25]. Life satisfaction from a social media perspective was carried out using 
random-intercept cross-lagged panel models. The sexual minority study used data to estimate a simultaneous equations model of 
life satisfaction. The model allows for self-reported sexual identity to influence a measure of life satisfaction directly and indirectly. 
The disability discrimination study focused on prospective associations between disability discrimination and well-being through an 
extensive cohort study. The personality effect study was carried out by testing cross-sample affect replication.

Japan [26] and Chile [27] are also taking measures to evaluate life satisfaction. While Japan evaluates life satisfaction using 
prospective cohort studies, Chile measures satisfaction for seven life domains by combining deductive and inductive approaches.

Other nations, such as Germany and Australia, have ongoing longitudinal panel studies in which life satisfaction is tracked over 
time. Germany intended to evaluate life satisfaction based on economic [28], environmental [16] and educational [29] perspectives 
through decomposition analysis, empirical analysis of probit model, and bottom-up analysis, respectively.

Regarding a sense of subjective well-being, researchers have asserted that it consists of two main components: the emotional 
component and the cognitive component [30,31]. The cognitive part has been more closely conceptualized with life satisfaction 
[21]. Despite this, it had not previously received much attention for research. Diener and teammates sought to address this, and 
through developing the SWLS, they created a vital tool for measuring the cognitive components they felt reflected a subjective sense 
of well-being and life satisfaction.

Until now, none of the mentioned works has used any machine learning algorithm to try to predict life satisfaction. Very recent 
work in 2022 in this field included using machine learning to uncover the relation between age and life satisfaction [32]. Another 
research in 2022 focused on Machine learning techniques to identify the correlates of quality of life [33]. Lastly, another work in 
2015 has taken advantage of social media data to evaluate SWL (satisfaction with life and SWB (subjective well-being) where data-

driven supervised learning methods were used to predict SWL from a set of features extracted from Facebook [17]. Table 1 provides 
a detailed analysis of previous works in this field, including their contributions and limitations.

3. Materials and methods

3.1. Objectives

This study intends to approach and unravel a multifaceted view of human contentment, guided by a set of research questions. 
These questions were designed to interweave the realms of human psychology with the precision of machine learning in pursuit of a 
deeper understanding of life satisfaction and ways to measure it accurately. The methodology that was employed aligns neatly with 
our objectives, each of which addresses a corresponding research question.

1. Identification of Life Satisfaction Determinants: In response to the first research question, “What are the most significant 
determinants influencing life satisfaction among individuals, and how do these factors interrelate?”, the primary objective of this study 
was to identify these determinants systematically. Recursive Feature Elimination with Cross-Validation (RFECV) was deployed 
on our comprehensive dataset, narrowing the selection from an initial pool of 243 variables to the most critical 27. The method 
allows us to identify these pivotal factors and gain insight into their interrelationships and relative importance.

2. Optimization of Contentment Prediction: Guided by the second research question, “How effectively can an ensemble of machine 
learning algorithms predict an individual’s state of contentment, and what are the primary indicators contributing to this accuracy?”, 
the second objective of this study was the development of an accurate prediction model. An ensemble of machine learning 
algorithms was employed to combat the imbalanced nature of our dataset and maximize both the accuracy and the F1 score. 
This choice attests to our commitment to ensuring the validity and robustness of the contentment prediction model of this study.

3. Amplification of Model Interpretability with Explainable AI: The last objective of this study, stemming from the third 
research question “In what ways can Explainable AI methodologies enhance the interpretability of AI-based models utilized for predicting 
personal life satisfaction, and what impact does this enhanced understanding has on the application and acceptance of these models?”

sought to bring a layer of transparency to the AI model. This was done through the employment of Explainable AI, a technique 
designed to unveil the underlying decision processes of the model. Two case studies were presented—one in which the model 
predicts contentment and another in which it does not exhibit the Explainable AI’s capacity to make our models understandable 
and trustworthy.

In pursuing these objectives, a multi-pronged approach was employed that combines advanced machine learning methods with 
3

psychological insights, aiming to bring a novel, practical contribution to understanding and measuring life satisfaction.
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Table 1

A comprehensive analysis of the existing literature in life satisfaction prediction. We divide the works into three categories and provide in-depth analyses of the 
main contributions and limitations of the works aimed to be handled in our research.

Methods of 
Data 
Collection

Ref. Subjects Area Main Contribution Limitation

National 
Survey

[21,

22]

5000+ adults Different states 
of the USA

Provide a comprehensive framework 
for measuring well-being using 
objective and subjective indicators

Self-reported data, might be biased or 
inaccurate

Personal 
Interview

[7] 1500 adults USA Establish correlates of life satisfaction 
among older persons

Small sample size, not generalizable

Interview 
survey

[34] 10000+ individuals Scandinavian 
countries

Use ‘welfare state’ to represent life 
satisfaction.

Complex method of surveying

Statistical Analyses

Conceptual 
Analysis

[35] N/A N/A Argue for a broader understanding of 
happiness that includes life satisfaction 
as a crucial component

No empirical analysis

Comprehen-

sive 
Review

[23] People from all ages, 
sex, and gender

More than 150 
nations

Synthesis of existing knowledge on life 
satisfaction scales

Does not explore the relationship 
between objective and subjective 
measures of well-being

Regression, 
Mediation 
Analysis

[15] 45352 people of all ages Australia and 
UK

Provide empirical evidence on the 
relationship between sexual orientation 
and life satisfaction

Biased and unable to establish causality

Fixed-effects 
modeling, 
Sensitivity 
analysis

[24] 12672 adolescents aged 
10 to 15 years

UK Established that relationship between 
social media use and life satisfaction is 
small and often non-existent

Biased, does not consider potentially 
harmful effects of social media

Prospective 
cohort study

[18] 871 people with 
self-reported physical, 
cognitive or sensory 
disability

UK Established that experiencing disability 
discrimination is associated with a 
decline in well-being among older 
adults

Complex methodology, limited 
research domain and biased

Regression 
Analysis

[25] 40000+ survey 
participants

European 
countries

development of a new approach to 
environmental valuation that relies on 
individuals’ life satisfaction

Relies on assumption and unsuitable 
approaches

Cross-

sectional 
analysis

[16] 20000+ individuals Germany Provides evidence that the 
socioeconomic status of a 
neighborhood has a significant impact 
on individuals’ life satisfaction

Causality cannot be inferred due to the 
cross-sectional design of the study.

Hedonic 
approach

[29] 33395 individuals of 
various ages and 
genders

Germany Finds a positive and significant 
relationship between local 
environmental quality and life 
satisfaction

Relies on self-reported data and does 
not account for the potential 
endogeneity of environmental quality.

Conceptual 
framework 
model

[36] Survey participants from 
1981 to 1987

Australia Theorize that subjective life satisfaction 
is fairly stable in financial context

Limited empirical evidence and lacks 
specific measures.

Machine Learning Approaches

Machine 
learning 
algorithms

[37] 2853 individuals Turkey Detect anxiety state using 
socio-economic data with model 
interpretability

May contain linguistic or contextual 
inaccuracies due to the translation of 
the original Turkish dataset.

Machine 
learning and 
deep 
learning

[38] 684 students aged 19 to 
35

Bangladesh Developed a dataset, a hybrid 
depression assessment scale and 
provided model interpretability for 
depression assessment

Applicability is constrained to the 
demographic and cultural context, 
potentially affecting the 
generalizability of the predictive 
models across different populations 
and cultures.

Machine 
Learning, 
Neural 
Networks

[32] 400,000 observations 
from SOEP survey

Germany Assess the relation between life 
satisfaction and age

Based on cross-sectional data. Limits 
the ability to make causal inferences 
about the relationship between age and 
life satisfaction. Unexplained model 
prediction

Multiple 
machine 
learning 
algorithms

[33] 400,000 observations 
from SHARE survey

European 
countries

Identify the correlates of quality of life Limited to European adults older than 
50. Unexplained model prediction.

Machine 
Learning 
Algorithms

[17] 58000 Facebook users All over the 
world

Shows that social media data can be 
used to predict individual levels of life 
satisfaction.

Limited to Facebook users, which may 
affect the generalizability of the 
findings, sparsely recorded and 
unexplained predictions.
4
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Fig. 1. Workflow diagram that outlines the key steps used in applying machine learning algorithms, addressing research objectives, and highlighting the main 
evaluation results.

3.2. Research workflow

Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multi-

dimensional data sets to make generalizable predictions about individuals [39]. In this study, a multidimensional dataset and several 
state-of-the-art machine learning algorithms were used to learn the patterns in detecting well-being and life satisfaction among 
individuals. The proposed methodology is shown in the workflow diagram in Fig. 1.

3.3. Dataset collection

The dataset serving as the foundation for this research was diligently sourced from a comprehensive survey carried out by the 
Government of Denmark. This survey, named SHILD (Survey of Health, Impairment and Living Conditions in Denmark), published 
in 2018 [40], provides robust and diverse information amassed from an extensive pool of participants. The Danish National Centre 
5

collects the SHILD data for Social Research (SFI) and is subject to the Danish Data Protection Act and the EU General Data Protection 
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Table 2

Demographic profile of respondents.

Attributes Category Frequency Percentage (%)

Age 16-20 1654 9.8

21-25 1163 6.9

26-30 973 5.7

31-35 1243 7.3

36-40 1661 9.8

41-45 1464 8.6

46-50 2177 12.8

51-55 2099 12.5

56-60 2208 13.0

61-64 2329 13.7

Gender Male 7989 47.1

Female 8982 52.9

Employment Status Employed 11793 69.5

Unemployed 4728 30.5

Long-term Health Condition Yes 3941 23.2

No 13028 76.8

Marital Status Married / Partnered 13373 78.8

Single 3597 21.2

Regulation. However, the data was publicly released in the study in 2018, making it usable for researchers worldwide. The study 
focuses specifically on disability, disability, and physical and mental health but also contains information on the panelists’ education, 
employment, loneliness, family situation, violence, discrimination, community participation, and experiences of municipal case 
management.

The dataset was collected in 2012 and was based on web questionnaires with telephone follow-up questions. The respondents 
were all Danish citizens, and the response rate of the survey was approximately 50%. The demographic information of the dataset is 
presented in Table 2.

The survey encompasses responses from approximately 19,000 individuals, a substantial sample size that enhances the reliability 
and generalizability of our findings. The age bracket of the respondents ranged from 16 to 64 years, offering a broad perspective 
across different life stages and experiences. This dataset captures a snapshot of critical factors affecting life satisfaction in gen-

eral. Utilizing this dataset in this study strengthens our commitment to basing our research on comprehensive, representative, and 
high-quality data. The Danish government’s meticulous collection process aligns with our endeavor to deliver reliable, significant, 
impactful life satisfaction and contentment findings.

3.4. Data pre-processing

Quality data is pivotal to model performance in machine learning, requiring a rigorous pre-processing pipeline to ensure predictive 
reliability. This research utilized a methodical approach to manage and optimize the collected dataset using the following rigorous 
data pre-processing steps:

3.4.1. Handling missing values

The original dataset contains a lot of missing values. Addressing these missing values is imperative, as many machine learning 
algorithms cannot accommodate them. All the features in the raw dataset comprising more than 20% of null values were dropped. 
Fig. 2a shows a matrix of missing values where each column represents a feature and each white spot represents a missing value in 
the corresponding column. Fig. 2b shows the matrix of missing values after dropping the attributes composed of more than 20% null 
values. The remaining null values were iteratively imputed. In iterative imputation, missing values are sequentially predicted for 
each feature, beginning with the one having the fewest missing values. Employing Bayesian Ridge regression, these predictions are 
made based on the available values of other features. This iterative process continues until all missing values are filled. Furthermore, 
imputing missing values in columns with a moderate percentage of null values (less than 20%) ensures that the majority of the 
dataset is retained, preserving the overall integrity of the data. Iterative imputation, in particular, takes into account the relationships 
between variables, potentially leading to more accurate imputed values. By imputing missing values iteratively, this study aims to 
provide the most accurate estimates possible, which can lead to improved model performance.

3.4.2. Categorical encoding

Categorical encoding converts categorical data into integer format so that the machine learning models relying on mathematical 
formulas can handle the data. Most of the categorical features of our dataset were ordinal. An ordinal encoder was used to maintain 
the ordinality of the data. Categorical responses were converted into a standardized numerical format. For example, health conditions 
6

were encoded using a predefined scale (‘Very well’ = 3, ‘Well’ = 2, down to ‘Very poor’ = 0).
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Fig. 2. Handling missing values. (a) shows several features having a substantial number of missing values before being handled. (b) Only a few features containing 
null values remain after dropping some features and imputing null values.

3.4.3. Train test split

The dataset is split in an 80-20 ratio where 80% of the data is used for training, and the remaining 20% is preserved only for 
validating the predictions made by our learned model. The dataset was shuffled before splitting it, which is generally a good practice 
to avoid any potential biases in the data ordering.

3.4.4. Zero variance

Features with zero variance were removed because they do not provide useful information for predictive modeling or data 
analysis.

3.4.5. Handling outliers

For each feature, values lying twice their standard deviation from their mean are considered outliers. The medians of respective 
features replaced the outliers. Equations (1) and (2) show outliers Z are values that are two times the standard deviation away from 
the mean. These values are replaced with the median. The outlier handling process is shown in Fig. 3a and Fig. 3b.

𝑍 < 𝑋 − 2𝜎 (1)

𝑍 > 𝑋 + 2𝜎 (2)

3.4.6. Resampling imbalanced data

The target outputs are imbalanced in the dataset, so the study uses a resampling strategy to balance the two strata: “Content” and 
“Discontent.” While doing so, it was ensured that samples from each stratum are represented. Empirically, we find that in our machine 
learning pipeline, balancing the outputs results in the machine learning model to predict with higher accuracy. The empirical results 
are reported in Sec. 4.5.1. The study uses a dual balancing strategy where first SMOTE (Synthetic Minority Over-sampling Technique) 
[41] is used to resample the minority class to 40% of the majority class. Next, the number of samples of the majority class is reduced 
7

to that of the minority class using undersampling. The class distribution before and after resampling is shown in Fig. 4a and Fig. 4b.
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Fig. 3. Box plots visually showing the handling of outliers. The box plots in (a) show the data distribution before handling the outliers. The box plots in (b) show that 
the outliers have been handled.

Fig. 4. Bar plots visualizing the class distribution of the classification task after applying the resampling techniques. (a) shows the distribution after applying the 
oversampling strategy using SMOTE. (b) shows the distribution after applying the undersampling strategy.

3.4.7. Feature selection

The study uses a wrapper feature selection method called RFECV (Recursive Feature Elimination and Cross-Validation Selection). 
It is an algorithm that eliminates irrelevant features based on validation scores. Random Forest algorithm was used as the estimator 
for this recursive algorithm. A 5-fold cross-validation was employed. As a result, 27 of the most essential features were extracted. 
These features have been used to produce the final questionnaire with 27 questions. The following RFECV curve in Fig. 5 represents 
the performance of a model as a function of the number of selected features during the Recursive Feature Elimination with Cross-

Validation (RFECV).

The RFECV feature importance in Fig. 6 provides valuable insights into the importance of each feature in contributing to the over-
8

all predictive performance of the model. The height or color of each bar or cell represents the feature’s relative importance, allowing 
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Fig. 5. RFECV curve shows the number of important features vs accuracy. More than 98% accuracy is achievable when there are more than 20 important features.

us to identify the most influential features in the dataset easily. Here, feature A2 (How would you rate your health generally?) has 
the highest importance among all other features.

3.4.8. LifeWell survey

Fig. 7 shows the 27 extracted research questions after data pre-processing and feature selection steps. The questions have been 
further categorized according to different aspects of life. Here, the labels (e.g., A2, C1) represent the code of each question as it 
appears in the original dataset. This compact questionnaire gives us a perspective of the most important questions for analyzing 
people’s contentment.

3.4.9. Data preparation and pre-processing for LLMs

Data preparation and preprocessing are critical steps in the pipeline of utilizing large language models (LLMs) for text-based 
analysis. The following points outline the steps applied to the LifeWell survey dataset to prepare it for analysis using LLMs:

• Mapping: In Sec. 3.4.2, the categorical data in our tabular dataset was transformed to a numerical format using an ordinal 
encoding approach. For creating sentences from encoded tabular data, the encoded values were converted back to textual cate-

gorical data, with additional meaningful texts around them, allowing us to generate one meaningful sentence per data instance. 
This was accomplished using a mapping function that is applied to each column of the dataset, generating 27 meaningful chunks 
for each of the 27 factors in the LifeWell survey. Two examples of such mapping are shown in Fig. 8.

• Sentence Generation: After the mapping, each of the 27 chunks was concatenated to create one single sentence per instance. 
The resulting sentences were stored in a new DataFrame column, serving as the input for LLMs along with their corresponding 
labels. Two examples of such generated sentences can be seen in Fig. 8.

The transformation of structured data into natural language sentences aligns with the input requirements of LLMs, such as BERT 
and its derivatives. This approach optimizes the data format for natural language processing, enhancing both the performance and 
interpretability of the models.

3.5. Machine learning algorithms

3.5.1. Random forest

Random Forest (RF) is an ensemble classifier that solves regression and classification problems. It employs several decision trees 
as base classifiers on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset by 
majority vote. In this experiment, the machine learning model created with this machine learning algorithm produced the confusion 
matrix in Fig. 9.

3.5.2. Gradient boosting

Gradient Boosting is a greedy algorithm that minimizes overall prediction error by relying on the intuition of the best possible 
next model combined with previous models (eq (3)). It is suitable for minimizing the bias error of a model. The confusion matrix 
9

was obtained in Fig. 10 using Gradient Boost.
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Fig. 6. Feature importance obtained from RFECV.
10
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Fig. 7. The survey questionnaire on multidimensional aspects of life as produced by our study. These questions from different aspects of life represent the key 
indicators of life satisfaction, a crucial finding of this research. (a) shows the indicators related to physical health. (b) shows the indicators related to mental and 
psychological health. (c) shows the economic indicators. (d) shows the social indicators, and (e) shows the cultural indicators playing the most significant role in life 
satisfaction.

�̂�(𝑥) =
𝑇∑

𝑡=1
𝜂𝑡ℎ𝑡(𝑥) (3)

3.5.3. Decision tree
A Decision Tree is a supervised machine-learning algorithm used to solve classification problems. In this experiment, the machine 

learning model created with this machine learning algorithm produced the confusion matrix in Fig. 11.

3.5.4. AdaBoost

AdaBoost or Adaptive Boost is an ensemble learning method that can be used for both classification and regression problems. This 
technique combines weak classifiers into a robust classifier (eq (4)). The confusion matrix in Fig. 12 was obtained using AdaBoost in 
11

our pipeline.
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Fig. 8. The pre-processing steps performed in order to generate sentences from tabular data of the LifeWell survey generated by our feature selection methods. The 
categorically encoded numeric values were converted back to the original representation with additional meaningful words to generate the sentences to be fed into 
LLMs for classification.

�̂�(𝑥) = sign

(
𝑇∑

𝑡=1
𝛼𝑡ℎ𝑡(𝑥)

)
(4)

3.5.5. XGBoost

XGBoost is an implementation of gradient boosting used for supervised learning problems (regression, classification, ranking, 
etc.). XGBoost creates decision trees in sequential form, and the individual classifiers 𝑓𝑘(𝑥) give a precise model when they are an 
ensemble (eq (5)).

�̂� =
𝐾∑

𝑘=1
𝑓𝑘(𝑥) (5)
12

The confusion matrix in Fig. 13 was obtained from XGBoost.



Heliyon 10 (2024) e31158A.E. Khan, M.J. Hasan, H. Anjum et al.

Fig. 9. Confusion matrix for Random Forest.

Fig. 10. Confusion matrix for Gradient Boosting.

Fig. 11. Confusion matrix for Decision Tree.

3.5.6. SVC

SVC (Support Vector Classifier) is a binary classification algorithm that identifies the optimal hyperplane for splitting classes. It 
optimizes the distance between the hyperplane and the nearest data points, referred to as support vectors (eq (6)). The confusion 
13

matrix obtained from SVC is shown in Fig. 14.
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Fig. 12. Confusion matrix for AdaBoost.

Fig. 13. Confusion matrix for XGBoost.

Fig. 14. Confusion matrix for SVC.

𝐰 ⋅ 𝐱 + 𝑏 = 0 (6)

3.5.7. Light gradient boosting

Light Gradient Boosting (LightGBM) is a gradient boosting algorithm for regression and classification applications that is fast and 
14

memory-efficient. It creates an ensemble of decision trees. LightGBM is optimized for large-scale datasets, focusing on performance 
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Fig. 15. Confusion matrix for Light Gradient Boosting.

Fig. 16. Confusion matrix for Naive Bayes.

and memory efficiency. In this experiment, the machine learning model created with this machine learning algorithm produced the 
confusion matrix in Fig. 15.

3.5.8. Naive Bayes

Naive Bayes is a simple yet efficient classification algorithm based on Bayes’ theorem. It assumes that features are independent of 
one another and compute probabilities to allocate data points to classes (eq (7)). The confusion matrix in Fig. 16 was obtained using 
Naive Bayes.

𝑃 (𝐶|𝑋) =
𝑃 (𝐶) ⋅

∏𝑛

𝑖=1 𝑃 (𝑥𝑖|𝐶)
𝑃 (𝑋)

(7)

3.5.9. Logistic regression

Logistic Regression is a binary classification algorithm. It predicts probabilities by applying a sigmoid function (eq (8)) to input 
information. In this experiment, the machine learning model created with this machine learning algorithm produced the confusion 
matrix in Fig. 17.

𝑃 (𝑌 = 1|𝑋) = 1
1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+…+𝛽𝑝𝑋𝑝)

(8)

3.6. Hyperparameter tuning

Hyperparameter tuning can improve the performance and generalization of a machine learning model [42]. For each of the mod-

els used in our experiments, rigorous hyper-parameter optimization was performed using Grid Search CV and Randomized Search 
CV to get the best-performing models. Grid search CV works by creating a grid of all possible combinations of the hyperparam-
15

eters and then evaluating the model for each combination using cross-validation. In contrast, a Randomized search CV works by 
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Fig. 17. Confusion matrix for Logistic Regression.

randomly sampling a fixed number of combinations from the hyperparameters and then evaluating the model for each combination 
using cross-validation. The average score of the cross-validations is used to measure the model’s performance and generate optimal 
hyperparameters that can be used. However, Grid search is computationally expensive since it explores the entire hyperparameter 
space. On the contrary, a Randomized search CV explores a subset of the space and tries to estimate the hyperparameters closest to 
the best ones. For certain models like LightGBM, Random Forest, and XGBoost, the types of hyperparameters and their number of 
combinations are abundant. As a result, a Randomized search CV was used to get the best hyperparameters for these models. On 
the other hand, models like Gradient Boosting, AdaBoost, and Logistic Regression require less exploration of the hyperparameters, 
which led us to use Grid search CV for these models. There was a drastic improvement in the performance of the models after using 
hyperparameter optimization compared to default hyperparameters. The best hyperparameters for the different models are displayed 
in Table 3. For the rest of the models, we found that the models performed best with the default parameters.

3.7. Ensemble machine learning model construction

Recent studies have shown that tree-based models and ensemble methods such as Random Forest and boosting algorithms can 
perform very well on tabular data, with problems that have clear decision boundaries and heterogeneous feature spaces [43,44]. 
This robust performance is a result of using decision trees as weak learners and reducing variance (in the case of random forest) and 
bias (in the case of boosting models) by combining multiple models. These models can outperform deep learning-based models by 
a great margin regarding tabular data. Driven by these recent findings and emphasis on ensemble methods, in this research, several 
ensemble models were constructed to predict life satisfaction in people. The ensemble approach combines several models to improve 
the overall performance and reliability of predictions. The created ensemble model incorporated a variety of classifiers, with a focus 
on boosting models like XGBoost, LGBoost, Gradient Boosting, and AdaBoost.

Several combinations of the models mentioned in the previous section were tested, and through empirical experimentation, it 
was found that the combination of RF, GB, and LGB yielded the best performance. The process is illustrated in Fig. 18. In addition, 
hyperparameter optimization was used to determine the class weights that give the best performance, and it was found that a class 
weight of {0: 5, 1: 0.09} for Random Forest gave the optimal outputs.

3.8. Large language models

3.8.1. BERT

BERT, or Bidirectional Encoder Representations from Transformers, is a transformer-based machine learning architecture for 
natural language processing (NLP) pre-training [45]. Developed by Google, BERT’s architecture consists of a multi-layer bidirectional 
Transformer encoder. For the BERT-Base model, there are 12 layers (transformer blocks), 768 hidden units, 12 self-attention heads, 
and a total of 110 million parameters. BERT is pre-trained on the BooksCorpus and English Wikipedia, which contain a combined 
total of 3.3 billion words.

In this study, BERT was chosen for life satisfaction prediction due to its deep bidirectional nature, allowing it to understand the 
context of words based on their surrounding text. It is particularly beneficial for interpreting the information embedded in texts. 
BERT currently holds state-of-the-art for several NLP tasks including question answering, natural language inference, text prediction, 
named entity recognition, sentiment analysis, language translation, text summarization, and text classification.

3.8.2. BioBERT

BioBERT extends BERT’s capabilities to the biomedical domain by pre-training on large-scale biomedical corpora [46]. It shares 
the same architecture as BERT but is further trained on biomedical texts such as PubMed abstracts and PMC full-text articles, enabling 
16

it to capture biomedical semantics more effectively.



Heliyon 10 (2024) e31158A.E. Khan, M.J. Hasan, H. Anjum et al.

Table 3

Best hyperparameters found using hyperparameter tuning on vari-

ous models used in this research.

Model Hyperparameters

LightGBM (LGB) boosting_type: gbdt

objective: binary

metric: binary_logloss

num_leaves: 31

learning_rate: 0.05

feature_fraction: 0.9

Random Forest (RF) n_estimators: 600

min_samples_split: 2

min_samples_leaf: 1

max_features: log2

max_depth: 780

criterion: gini

Gradient Boosting (GB) n_estimators: 500

learning_rate: 1

max_depth: 1

AdaBoost base_estimator: clf

n_estimators: 600

random_state: 21

learning_rate: 1

Logistic Regression solver: liblinear

penalty: l2

XGBoost learning_rate: [0.05, 0.10, ..., 0.30]

max_depth: [3, 4, ..., 15]

min_child_weight: [1, 3, ..., 7]

gamma: [0.0, 0.1, ..., 0.4]

colsample_bytree: [0.3, 0.4, ..., 0.7]

booster: [gbtree, gblinear, dart]

Fig. 18. The technique employed to get the best-performing ensemble model from a combination of all the models used.

The use of BioBERT is justified for life satisfaction prediction tasks that may involve biomedical terminology, especially when 
analyzing physical and mental health-related factors that significantly impact life satisfaction (Sec. 3.4.8).

3.8.3. ClinicalBERT

ClinicalBERT adapts BERT to the clinical domain by continuing the pre-training on clinical notes [47]. It utilizes the same 
transformer-based architecture as BERT but is fine-tuned on datasets comprising electronic health records (EHRs), which enables it 
to grasp medical jargon and patient narratives.

ClinicalBERT is pertinent for the classification task as the life satisfaction assessment involves physical and mental health-related 
17

data, and since it can better understand and process such specialized language.
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3.8.4. COReBERT

CORe, or Clinical Outcome Representations, is a model designed to capture representations of clinical and biomedical outcomes 
[48]. It is initialized with BERT-Base and fine-tuned on 20.6B words from 2.1M clinical notes and 4.5M biomedical abstracts.

CORe could be advantageous for predicting life satisfaction when the outcomes are closely tied to clinical and biomedical events 
or patient health trajectories.

3.9. Implementation details for LLM experiments

All the experiments were run on the online platform Kaggle, with an NVIDIA P100 15 GB Tensor Core GPU having 29 GB of RAM. 
PyTorch [49] was used as the framework to conduct the experiments and to load the pre-trained base models from Hugging Face 
[50] using the Transformers [51] library. The WordPiece [52] tokenizers available for each model were used to tokenize the texts 
for processing by the language models and use the first 512 tokens due to the input limitation of BERT-like models. Each experiment 
was repeated five times and the mean with the standard deviation was reported in our results. All the models were trained for 200 
epochs with an early stopping method. To avoid overfitting and boost model generalization on unobserved data, an early stopping 
strategy was used, keeping the macro averaged F1-score% as the monitor since we are working with imbalanced data. Furthermore, 
the AdamW [53] optimizer was used with a batch size of 16, and thorough hyperparameter tuning was conducted to find the best 
value of all the following: gradient accumulation steps = 10, learning rate of 1 × 10−5, weight decay factor = 0.01, linear warm-up 
learning rate scheduler steps = 50, minimum delta for early stopping = 0.0001, and patience for early stopping = 10 epochs.

For the hyperparameter tuning, randomized search CV [54] was used, and the following ranges were defined for each hyperpa-

rameter: gradient accumulation steps ∈ {5, 10, 15, 20}, learning rate ∈ [10−6, 10−2], weight decay factor ∈ [0, 0.1], linear warm-up 
learning rate scheduler steps ∈ {10, 20, 50, 100}, minimum delta for early stopping ∈ [10−4, 10−2], and patience for early stopping 
∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 10 random combinations of hyperparameters were sampled from these ranges, and evaluated on a vali-

dation set by dividing the training set in a ratio of 80:20. The best hyperparameter combination was selected based on the highest 
macro F1-score% on the validation set.

3.10. Performance metrics

The machine learning models used in this study were evaluated using the performance metrics precision, recall, accuracy, F1-

score, and AUC ROC.

Precision: Positive Predictive Value or Precision, as shown in eq (9), is the ratio of correctly predicted positive samples to the 
total number of predicted positive values.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑃
(9)

Recall: Sensitivity or Recall is calculated as the ratio between the number of positive samples to the total number of positive samples. 
The high recall represents more positive samples. It helps to detect positive samples, and is given in eq (10) as:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑁
(10)

F1-score: F1-score is considered a more reliable performance metric. It represents the combination of precision and recall, which 
gives a score between 0 and 1. It is represented in eq (11) as:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑇 𝑃

2 × 𝑇 𝑃 + 𝐹𝑃 + 𝐹𝑁
(11)

= 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy: Eq (12) shows the formula for accuracy with respect to True Positives (TP), True Negatives (TN), False Positives (FP), and 
False Negatives (FN):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝑇 𝑁 + 𝐹𝑃 + 𝐹𝑁
(12)

ROC: ROC or Receiver Operator Characteristics curve is a performance metric graph that plots the TP rate (Sensitivity) against the 
FP rate (Specificity), shown respectively in eq (13) and eq (14), where,

𝑇 𝑃𝑅 = 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑁
(13)

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇 𝑁
(14)

AUC, or Area Under The Curve, provides an aggregated measure at all classification thresholds. This study uses the AUC ROC score as 
an evaluation metric. It is plotted as subplots for DecisionTreeClassifier, Random Forest, Gradient Boosting, AdaBoost, and XGBoost, 
18

and scores are obtained, respectively.
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Fig. 19. Comparison between accuracy and macro F1 score for different models.

Table 4

Comparative evaluation of all the machine learning models used in this study. The mean of five experiments with different 
random seeds is reported with the standard deviation to provide a statistically significant representation of the results.

Model Accuracy (%) F1 (%) Precision (%) Recall (%) ROC (%)

Random Forest 93.80 ± 0.1000 70.60 ± 0.5000 72.00 ± 0.6000 69.30 ± 0.4000 89.11 ± 0.1000

Gradient Boosting 92.20 ± 0.0000 70.30 ± 0.0000 67.90 ± 0.0000 73.70 ± 0.0000 88.40 ± 0.0000

Decision Tree 84.30 ± 0.4000 58.60 ± 0.2000 57.10 ± 0.2000 66.40 ± 0.4000 66.40 ± 0.4000

AdaBoost 92.00 ± 0.0000 70.10 ± 0.0000 67.50 ± 0.0000 74.30 ± 0.0000 86.60 ± 0.0000

XGBoost 93.00 ± 0.2000 68.50 ± 0.6000 68.70 ± 0.9000 68.20 ± 0.5000 88.00 ± 0.4000

SVC 47.70 ± 0.0000 37.50 ± 0.0000 51.40 ± 0.0000 56.10 ± 0.0000 60.70 ± 0.0000

LGB 93.10 ± 0.1000 71.20 ± 0.2000 70.00 ± 0.3000 72.70 ± 0.6000 89.10 ± 0.1000

Naive Bayes 73.90 ± 0.0000 55.10 ± 0.0000 56.90 ± 0.0000 75.30 ± 0.0000 83.00 ± 0.0000

Logistic Regression 77.20 ± 0.0000 58.60 ± 0.0000 58.80 ± 0.0000 80.70 ± 0.0000 88.80 ± 0.0000

Ensemble 93.60 ± 0.1000 73.00 ± 0.400 71.90 ± 0.4000 74.30 ± 0.5000 89.70 ± 0.0000

4. Performance and evaluation

4.1. Performance on machine learning algorithms

The accuracy of the predictions made by the different machine learning models in this study has been measured using five 
performance metrics, namely, precision (eq (9)), recall (eq (10)), F1-score (eq (11)) accuracy (eq (12)) and ROC score. Using the 
confusion matrix of all the models, we calculated the performance metrics, which have been listed in Table 4. To better represent 
the performance of our models, the comparison of macro F1 and accuracy scores were shown in Fig. 19. The F1-score is a harmonic 
mean of precision and recall, and it provides a balanced measure of the classifier’s performance for imbalanced datasets. Accuracy, 
on the other hand, is the ratio of correctly predicted samples to the total number of samples. In conclusion, the ensemble classifier 
beat all other models regarding F1-score and precision, which are important in case of imbalanced data such as ours. More detailed 
analysis and discussion of the results are presented in Sec. 5.1.

4.2. Performance on large language models

We present the results of the experiments performed with the LLMs using the generated sentences from Sec. 3.4.9 in Table 5. 
The table shows the accuracy, macro-averaged f1-score, precision, recall, and ROC of the binary text classification performed on the 
sentences in percentage. Detailed analysis and discussion of the results are presented in Sec. 5.2.

4.3. Statistical significance of model performance

To assess the statistical significance of the differences in performance between the machine learning models and the large language 
models, paired t-tests were conducted for the Accuracy, F1-score, Precision, Recall, and ROC metrics using the SciPy library [55]. 
The p-values from the paired t-tests are reported in Table 6.

For the machine learning models, the results show that the Random Forest model performed significantly better than the Gradient 
Boosting model in terms of Accuracy, Precision, Recall, and ROC (p < 0.05). However, the differences in F1-score were not statisti-
19

cally significant. Additionally, the differences in performance between the LGB, XGBoost, and Ensemble models were not statistically 
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Table 5

Model performance and evaluation results on the large language models, represented in percentage. The best results are 
marked in bold. The mean of five experiments with different random seeds is reported with the standard deviation to 
provide a statistically significant representation of the results.

Model Accuracy (%) F1 (%) Precision (%) Recall (%) ROC (%)

BERT 93.58 ± 0.0012 71.45 ± 0.0022 71.45 ± 0.0011 71.45 ± 0.0032 89.06 ± 0.0101

BioBERT 93.53 ± 0.0019 73.21 ± 0.0034 71.81 ± 0.0036 74.87 ± 0.0023 89.12 ± 0.0015

ClinicalBERT 93.74 ± 0.0021 71.24 ± 0.0032 71.92 ± 0.0023 70.63 ± 0.0013 88.72 ± 0.0027

COReBERT 93.56 ± 0.0012 70.98 ± 0.0034 71.23 ± 0.0017 70.74 ± 0.0034 87.96 ± 0.0017

Table 6

P-values from the paired t-tests comparing the performance metrics of the machine learning models 
and large language models.

Model Comparison Accuracy F1-score Precision Recall ROC

Machine Learning Models

Random Forest vs. Gradient Boosting 0.001 0.678 0.033 0.019 0.002

LGB vs. Ensemble 0.002 0.116 0.234 0.123 0.112

XGBoost vs. Ensemble 0.003 0.274 0.287 0.089 0.090

Large Language Models

BioBERT vs. BERT 0.270 0.003 0.277 0.001 0.223

ClinicalBERT vs. BioBERT 0.015 0.071 0.045 0.001 0.087

COReBERT vs. ClinicalBERT 0.053 0.123 0.072 0.372 0.051

significant for most of the metrics, except for Accuracy, where the Ensemble model outperformed the LGB and XGBoost models (p 
< 0.05).

For the large language models, the results indicate that BioBERT significantly outperformed BERT in terms of F1-score and Recall 
(p < 0.05), while ClinicalBERT had significantly higher Accuracy and Precision compared to BioBERT (p < 0.05). The differences 
in performance between ClinicalBERT and COReBERT were not statistically significant for most of the metrics.

These findings suggest that the Random Forest model and the BioBERT model are the top-performing models in the machine 
learning and large language model categories, respectively, for the task of life satisfaction prediction. The superior performance 
of these models highlights their suitability and effectiveness in capturing the complex and multifaceted determinants of subjective 
well-being.

4.4. Error analysis

This section provides an in-depth error analysis of the machine-learning models used in this study. Fig. 20 represents a stacked 
bar plot with the false positives and false negatives of the different models used in our research. The analysis aims to provide insights 
into the performance and characteristics of these models, shedding light on their strengths and weaknesses. The observations made 
here contribute to a better understanding of the predictive capabilities of the models, enhancing the overall validity and reliability 
of our research findings.

The stacked bar plot demonstrates that all models exhibit more false positives than false negatives. This observation indicates 
a tendency for the models to erroneously predict positive instances of life satisfaction when they are, in fact, negative. While false 
positives can be undesirable, exploring the extent of this imbalance and its implications is crucial. Further examination of the stacked 
bar plot reveals that some models (LGB, RF, GB, AB, XGB, Ensemble) demonstrate a nearly equal number of false positives and 
false negatives. This suggests a certain level of consistency in their predictive performance, as they display comparable errors in 
both directions. On the other hand, one specific model stands out with significantly higher occurrences of false positives and false 
negatives. This model requires closer scrutiny to identify potential sources of bias or limitations in its design. A notable distinction 
between the boosting algorithms and the other models regarding the structure of false positives and false negatives can be seen. 
The boosting algorithms exhibit a symmetrical pattern, indicating a relatively balanced misclassification behavior. In contrast, the 
remaining models display an asymmetric structure, implying a varying degree of bias towards either false positives or false negatives. 
This discrepancy could indicate inherent differences in the learning and decision-making mechanisms employed by these algorithms. 
The error analysis based on the stacked bar plot offers valuable insights into the performance characteristics of the models utilized 
in our research. The prevalence of false positives across all models warrants further investigation to determine potential factors 
contributing to this trend. Understanding the reasons behind such misclassifications can facilitate improvements in future iterations 
of the models, leading to more accurate predictions and enhanced practical utility. Acknowledging that the error analysis presented 
here is based on a specific dataset and modeling approach is essential. The generalizability of the findings to other datasets or model 
architectures may vary. Nonetheless, these observations contribute to the broader body of knowledge in the field of machine learning, 
and the observed trends, including the prevalence of false positives and the varying characteristics between models, provide valuable 
20

insights for understanding and improving the performance of predictive models in the domain of life satisfaction prediction.
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Fig. 20. Error analysis of various machine learning models for life satisfaction.

Table 7

Ablation results of the machine learning models comparing different data resampling techniques. The best results are shown 
in bold.

Without Resampling Oversampling Only Undersampling Only Over & under sampling

Model Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%)

Random Forest 89.20 68.30 94.10 71.80 75.90 57.60 93.80 70.60

Gradient Boosting 94.60 67.40 94.30 65.90 76.20 57.60 92.20 70.30

Decision Tree 88.20 58.90 89.00 60.80 69.60 52.10 84.30 58.60

AdaBoost 93.40 68.60 94.00 71.80 75.00 57.10 92.00 70.10

XGBoost 94.40 62.80 94.60 66.00 76.00 57.30 93.00 68.50

SVC 94.10 48.50 83.40 54.30 58.40 43.80 47.70 37.50

LGB 93.90 69.70 94.00 70.50 76.10 58.00 93.10 71.20

Naive Bayes 79.20 59.40 79.40 59.40 68.40 52.50 73.90 55.10

Logistic Regression 94.40 72.60 85.60 65.20 75.00 57.10 77.20 58.60

Ensemble Classifiers 94.80 68.80 94.70 70.02 75.30 57.20 93.60 73.00

4.5. Ablation studies

In this section, we perform ablation studies to examine the effect and contribution of the following factors on the overall perfor-

mance of the machine learning models: (i) the applied data resampling techniques and (ii) the feature selection methods.

4.5.1. Ablation on data resampling

In Sec. 3.4.6, a dual balancing strategy was applied to resample the data by applying both oversampling and undersampling to 
the original data distribution. Table 7 shows the results of the models without applying any data resampling technique, applying 
only oversampling and only undersampling, respectively.

The ablation experiments reveal significant insights into the impact of resampling strategies on model performance. Without 
resampling, most models exhibit high accuracy, yet the F1 scores are not optimal, indicating a potential imbalance in the precision-

recall trade-off. Oversampling alone appears to improve the F1 scores for certain models like SVC and Gradient Boosting, suggesting 
that increasing the representation of minority classes aids in achieving a more balanced classification. However, this comes at the 
cost of reduced accuracy, which may be attributed to the models’ overfitting of the oversampled data.

Undersampling solely shows a marked decrease in both accuracy and F1 scores across all models. This decline indicates that 
while reducing the majority class can help mitigate the class imbalance, it may also lead to the loss of valuable information, thereby 
impairing the model’s ability to generalize. The combined approach of oversampling and undersampling presents a mixed outcome. 
For instance, the Ensemble Classifiers demonstrate an improvement in F1 score, achieving the best result among all resampling tech-

niques, which underscores the efficacy of a dual balancing strategy in managing class distribution without significantly compromising 
the accuracy.

These observations highlight the necessity of a balanced approach to data resampling in predicting life satisfaction from the 
21

dataset at hand. It is imperative to consider the trade-offs between accuracy and F1 score and to select a resampling strategy that 
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Table 8

Ablation results of the machine learning models comparing different feature elimination and reduction techniques. 
The best results are shown in bold.

Without RFECV PCA (95%) PCA (90%) With RFECV

Model Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%)

Random Forest 94.30 70.30 89.10 56.00 88.50 57.40 93.80 70.60

Gradient Boosting 93.40 72.50 84.10 59.30 84.20 59.50 92.20 70.30

Decision Tree 84.10 57.60 78.70 52.10 78.70 53.20 84.30 58.60

AdaBoost 90.50 67.80 83.00 55.60 83.20 55.10 92.00 70.10

XGBoost 93.40 69.90 89.70 55.60 88.80 56.50 93.00 68.50

SVC 49.20 38.50 88.10 55.60 88.00 57.00 47.70 37.50

LGB 91.40 69.40 83.00 57.10 83.40 55.50 93.10 71.20

Naive Bayes 82.60 59.60 82.20 54.90 80.70 55.80 73.90 55.10

Logistic Regression 79.50 60.00 77.20 58.50 77.10 58.40 77.20 58.60

Ensemble 93.20 71.90 81.60 59.80 81.80 60.20 93.60 73.00

Fig. 21. Case-1 Prediction probability shows high probability for ‘Content’ class.

aligns with the specific requirements of the application domain. Furthermore, the results advocate for the exploration of hybrid 
resampling methods that can harness the strengths of both oversampling and undersampling to optimize model performance, which 
was ultimately adopted in this study.

4.5.2. Ablation on feature selection techniques

In our experimental pipeline, several feature selection and feature elimination techniques were employed to extract and find 
the most important determinants for predicting life satisfaction. These techniques include removing features having zero variance 
and applying recursive feature elimination using cross-validation (RFECV). However, it is crucial to examine how well the models 
perform without applying any feature elimination technique in order to understand the contribution of these methods to the overall 
model performance and to justify the robustness and strength of our approach. Moreover, it is important to explore other feature 
reduction techniques, such as principal component analysis (PCA), to show that the methods that were used gave the best possible 
results.

To this goal, three ablation experiments were performed with all the machine learning models: (i) Without applying RFECV. (ii) 
PCA (with 95% variance) instead of RFECV, and (iii) PCA (with 90% variance) instead of RFECV. Table 8 shows the results of these 
experiments, compared to the original results with RFECV. After data preprocessing steps, without applying RFECV, the number of 
features found was 100. By applying PCA with 95% and 90% variance, the number of features found were 24 and 22, respectively, 
which is close to the number of features found using RFECV, which was 27.

Without applying any feature elimination, the models exhibit a significant drop in performance, particularly in terms of F1 score. 
For instance, the Ensemble Classifiers model’s F1 score decreases from 73.00% to 71.90% when RFECV is not used. This highlights 
the importance of feature selection in enhancing the models’ ability to focus on the most salient determinants of life satisfaction, 
thereby improving their overall predictive accuracy and generalization capabilities.

Furthermore, the experiments with PCA-based feature reduction demonstrate that the RFECV approach outperforms these alter-

native techniques. Even with PCA retaining 95% of the variance, the model performance lags behind the RFECV-based results. This 
suggests that the feature selection process employed in this study, which leverages the inherent relationships between the features 
and the target variable, is more effective in identifying the critical predictors of life satisfaction than the more generic dimensionality 
reduction offered by PCA. Thus, our streamlined feature set using RFECV not only enhances the computational efficiency of the 
models but also promotes interpretability, a crucial aspect for real-world applications in the mental health domain.

4.6. Explainable AI

Although decisions made by a machine learning model might be very accurate, they often come with a question asking how 
the model made this particular decision. The study uses explainable AI to get explanations for the decisions made by the machine 
learning model. The decision-making process for different cases has been explained in the sample investigations 4.6.1 and 4.6.2, 
along with their prediction probabilities.

4.6.1. Case-1

The machine learning model predicts with a probability of 89% that the person is content with his life, as illustrated in Fig. 21.

The answers made by the subject have associated values that either reward or penalize the probability of them being identified 
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as content/discontent depending on whether these values fall within the positive thresholds learned by the machine learning model. 
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Fig. 22. Case-1 explanation threshold. The majority of decision scores are negative for the ‘Content’ class.

Fig. 23. Case-2 Prediction probability shows high probability for the ‘Discontent’ class.

Fig. 22 shows the thresholds along with the rewards as green bars and penalties as red bars in calculating the sample’s class. For 
example, the person in observation reports his health condition as ‘Average’ (𝐴2 <= 1.0) and that he finds himself rarely worrying 
(𝐷8 <= 1.0). These two values lie in the threshold that penalizes the ‘discontent’ class. However, he also reports that he had rarely 
been to cinemas, theaters, or any similar form of amusement (𝐽9 <= 1.0), which is the threshold that rewards the ‘discontent’ class. 
Similarly, the answers to the remaining questions provided by the subject either reward or penalize the total score. The sum of all 
these rewards and penalties is taken as the total score. Here, the score is highly negative for the discontent class, so the subject is 
predicted to be content in life. It can be seen from this example how Explainable AI justifies the decisions made by the machine 
learning model and, in doing so, makes our approach trustworthy and reliable.

4.6.2. Case-2

The machine learning model predicts with a probability of 71% that the person in case-1 is Discontent with his life, as illustrated 
in Fig. 23.

Similar to case-1, the answers made by the subject have associated values that either reward or penalize the probability of her 
being identified as content/discontent. Fig. 24 shows the thresholds along with the rewards as green bars and penalties as red 
bars in calculating which class the sample belongs to. The person in observation reports that she sometimes finds herself depressed 
(𝐷2 > 1.6) and that she often worries (𝐷8 > 2.5), which lies in the threshold that rewards the discontent class. Nevertheless, she also 
reports that she primarily talks to her spouse about personal and serious problems (𝐸17 > 1.19), which is the threshold that penalizes 
the Discontent class. Likewise, the sum of the rest of the rewards and penalties for the answers to the remaining questions provided 
by the subject show that the score is highly positive for the discontent class, so the subject is predicted to be discontent in life.

4.7. Age group insights

One can estimate that the primary determinants of life satisfaction are not the same across different age brackets. So, the primary 
determinants across four different age brackets were explored, and it was compared how they change throughout one’s lifetime. 
The selected age brackets are as follows: young age (ages 16-21), early adulthood (ages 22–34), middle age (ages 35–44), old age 
(ages 45–64) [56]. Fig. 25 compares these primary determinants we have extracted for the four different age brackets. These were 
extracted using RFECV feature importance analysis for the different age brackets. In this figure, the four radar plots represent the 
importance of the top five features extracted within the age brackets. It can be observed that for every age bracket, health is the most 
important determinant of life satisfaction. For the younger population (16-34), depression is the next most important determinant, 
while for those in their later adulthood, worrying is the next primary concern. The radar plots further show that in the case of the 
population in the age range 16-21, tension, mood, and worry play very important roles in determining life satisfaction. During these 
periods, people usually go through major physical and mental changes, which explains why mood is an important factor. Moreover, 
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during this period, they step on to adulthood, passing from teenagehood, learning to take responsibility, and thus, worrying about 
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Fig. 24. Case-2 explanation threshold. The majority of decision scores are positive for the ‘Discontent’ class.

Fig. 25. Radar plots showcasing the importance of the top five features extracted for each age bracket. The more a point is towards a feature, the greater its importance, 
24

and vice-versa. Shown in (a), (b), (c), and (d) are the plots representing the age ranges of 16 to 21, 22 to 32, 35 to 44, and 45 to 64, respectively.
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Fig. 26. Case-1 Prediction for ‘Content’ class.

Fig. 27. Case-2 Prediction for ‘Discontent’ class.

life and reality. When reality hits hard, it is incumbent that they go through mental pressure and tension, which is also observed in 
the plots. Furthermore, in a slightly older population ranging from age 22 to 34, the primary sources of income, employment status, 
and emotional stability play crucial roles in determining their state of contentment. During this period, a person starts building their 
own life, perhaps even a family. As a result, the ability to provide for themselves or their family plays a massive role in determining 
their life satisfaction. This is greatly affected by their employment status since unemployment leads to smaller or no sources of 
income. Lastly, all these changes naturally take a toll on a person’s emotional stability, another important factor in determining the 
person’s life contentment, as depicted in the radar plots. Another interesting observation is that the top five determinants for the two 
age groups, middle age and old age, are the same, including health, worrying, depression, tension, and long-term health problems. 
This suggests that physical and mental health dominantly dictate life satisfaction for those above 35. However, it can be seen that 
physical health is more important in middle age, while mental health is more important in old age.

4.8. Deployment

An interactive app was developed in this study to extend the reach and impact of the research on predicting life satisfaction using 
machine learning. The Gradio [57] powered application features a user-friendly interface for answering the questionnaire prepared in 
this study. It allows individuals to answer a carefully crafted questionnaire that aligns with the objectives of our research. Fig. 26 and 
27 illustrate the outcomes of the application, showcasing the dichotomous classification of individuals into content and discontent 
states based on their responses. Users will get the prediction of the state of contentment in their lives. Behind the scenes, the 
machine learning models analyze these inputs and provide real-time predictions of life satisfaction. The app was hosted on a secure 
25

platform, ensuring data privacy, and we plan to offer continuous maintenance and updates. This deployment makes the research 
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findings accessible to a broader audience and encourages the use of machine learning and Explainable AI to understand and enhance 
subjective well-being. The app can be found at: https://huggingface .co /spaces /humayrak97 /Life -Satisfaction -ML -XAI.

5. Discussion

5.1. Performance analysis of machine learning algorithms

A closer look at Table 4 suggests that the deployed ensemble model performs best among all the machine learning models 
in terms of F1 score, giving 73.00%. This shows the superiority of the ensemble model over any other model since the dataset 
we used is imbalanced. The F1 score, a harmonic mean of precision and recall, reflects the model’s balanced capability to navigate 
false positives and false negatives. Specifically, an elevated F1 score of 73.00%indicates that the model has effectively harmonized its 
predictive capacity between false positives (instances wrongly identified as positive) and false negatives (positive instances incorrectly 
deemed negative), which is of paramount importance in contexts where both type I and type II errors carry significant implications. 
Particularly for life satisfaction prediction, misclassifications (either in the form of false positives or false negatives) could potentially 
skew analyses or interventions based on these predictions. Hence, the necessity for a model that proficiently manages this trade-off 
is evident.

This study employs decision tree-based and boosting models, including gradient boosting, LGB, AdaBoost, and XGBoost, due to 
their notable advantages in predictive performance and robustness. Boosting models, in particular, demonstrate a significant perfor-

mance advantage over other models, with gradient boosting leading the pack. These models optimize performance by sequentially 
combining weak learners, typically decision trees, to build a robust predictive model. This sequential process allows boosting al-

gorithms to refine predictive accuracy by correcting errors made by previous models. Additionally, boosting algorithms adaptively 
assign more weight to misclassified instances in successive trees, enabling them to effectively capture intricate patterns and nuanced 
relationships within the data. This adaptability is crucial for predicting life satisfaction from complex, multifaceted datasets, as it 
allows the models to manage potential noise and complexities inherent in the data while maintaining refined predictive accuracy. 
On the other hand, the efficacy of the Random Forest model in our study can be attributed to its ensemble nature, which aggregates 
the outputs of multiple decision trees to mitigate the risk of overfitting and provide a stabilizing effect, especially beneficial for high-

dimensional datasets. Furthermore, Random Forests exhibit resilience against overfitting, robustness to outliers, and non-linearities, 
owing to their randomized bootstrapping and feature selection techniques. These characteristics enable Random Forests to manage 
unbalanced datasets effectively while maintaining predictive accuracy and providing a degree of model interpretability. This is con-

firmed from the ablation study presented in Table 7, where the Random Forest model demonstrates a high accuracy and F1 score 
even without applying any data resampling technique, suggesting an intrinsic robustness to class imbalance.

Table 4 further reveals that the Support Vector Classifier (SVC) performs poorly with regard to our classification task at hand, 
compared to all other models. It exhibits an F1 score of only 37.50%. The nature of the classification task and the characteristics of 
the dataset can have a significant impact on the performance of different machine learning algorithms. In the context of this study, 
the prediction of life satisfaction as a binary outcome represents a challenging classification problem, particularly due to the inherent 
complexities and subtleties involved in quantifying subjective well-being. The SVC model, while generally effective in capturing non-

linear relationships and handling high-dimensional data, may struggle when faced with imbalanced datasets [58], as is the case in 
this study. Life satisfaction, being a multifaceted construct, can exhibit a complex decision boundary that may not be easily captured 
by the SVC’s hyperplane-based approach. Moreover, from Fig. 7, we identify that the extracted feature list used in our classification 
task contains five kinds of data (physical, mental, social, economic, and cultural). The SVC’s sensitivity to outliers and its underlying 
assumptions of linearity and Gaussian distributions may not be well-suited to the heterogeneous nature of the features involved in 
predicting life satisfaction, resulting in lower performance of the model.

Lastly, by distilling our feature set down to 27 key questions from the initial 243, our approach ensured computational efficiency, 
minimized the risk of overfitting, and enhanced model interpretability. The experimental results of Table 7 reveal that the dimen-

sionality reduction was accomplished without a notable compromise in predictive accuracy, affirming that the extracted features 
possessed a heightened signal about life satisfaction. Furthermore, our approach’s merger of machine learning with explainable AI 
(XAI) anchored the model’s predictive capacity within a framework of interpretability and trust. It crafted a bridge between high-

dimensional data and actionable insights and ensured that the predictive decisions were transparent, thereby maintaining ethical 
and user-trust considerations. This reciprocity in comprehension is pivotal for real-world applicability, ensuring the translation of 
our findings into practical, ethical, and user-centered applications in the mental health domain.

5.2. Performance analysis of LLMs

The performance of the large language models (LLMs) in predicting life satisfaction, as presented in Table 5, provides valuable 
insights into the nature of the task and the suitability of different models for this purpose. Among the tested LLMs, BioBERT achieves 
the highest macro-averaged F1-score of 73.21%, indicating its superior ability to balance precision and recall in the binary classifica-

tion of life satisfaction. This result suggests that the detection of life satisfaction, as expressed through the generated sentences, can 
be considered a task more closely aligned with the biomedical domain rather than the clinical domain represented by ClinicalBERT.

The strong performance of BioBERT can be attributed to the breadth and diversity of its training corpus, which includes a wide 
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range of biomedical literature, including scientific publications, clinical notes, and health-related web content. This broad exposure 
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to various aspects of human well-being, health, and lifestyle factors may have equipped BioBERT with a more comprehensive under-

standing of the multifaceted determinants of life satisfaction, ultimately leading to its superior predictive capabilities. In contrast, 
the relatively lower performance of ClinicalBERT and COReBERT suggests that their training corpora, which are more specialized 
in the clinical domain, may not capture the full scope of factors influencing life satisfaction. While these models excel in clinical 
tasks, their narrower focus may limit their ability to generalize and identify the social, psychological, and lifestyle-related aspects 
that contribute to an individual’s overall life satisfaction.

The consistent performance across all LLMs, with accuracy around 93.5% and ROC around 88.5%, highlights the inherent suit-

ability of these powerful language models for the task of life satisfaction prediction. However, the divergence in their F1 scores and 
precision-recall characteristics underscores the importance of model selection based on the specific requirements and priorities of 
the application domain. Thus, the results suggest that life satisfaction prediction is a diverse task that extends beyond the clinical 
domain, requiring a more comprehensive understanding of the biomedical and psychosocial factors contributing to an individual’s 
well-being. The superior performance of BioBERT in this context emphasizes the value of leveraging language models trained on 
diverse corpora that capture the broader aspects of human life and experience.

The results of the large language models (LLMs) provide a valuable complement to the insights gained from the machine learning 
models in the previous subsection. While the machine learning models were trained on a structured dataset of features, the LLMs are 
able to leverage the rich information contained within natural language sentences to predict life satisfaction. This allows the LLMs 
to capture the complex, multifaceted aspects of life satisfaction that may not be fully represented in the structured data alone. By 
combining the strengths of both approaches, we gain a more comprehensive understanding of the factors influencing life satisfaction 
and the suitability of different model architectures for this prediction task.

5.3. Feature analysis

5.3.1. Social and economic implications

The LifeWell survey shown in Fig. 7 highlights key factors linked to life satisfaction in this study. This questionnaire helps indi-

viduals identify critical factors influencing their happiness. Furthermore, our machine learning approach can scale mental healthcare 
and support individuals who cannot afford a therapist [59]. A deeper dive into the radar charts of Fig. 25 reveals how significant 
social and economic indicators like employment status are in measuring the life satisfaction of people. This study finds that economic 
factors, such as job status, satisfaction (F15), and financial well-being (M2, M6, M8), significantly impact life satisfaction. Employ-

ment and job contentment offer purpose and stability, fostering social integration. Financial wellness, seen in income, healthcare 
spending, and self-rated financial status, enables resource access and meets basic needs, further influencing life satisfaction. More-

over, we have shown the direct impact of the social indicators on people’s physical and mental health, which is also noticeable from 
the figure. Social factors, like support (E17), relationship status (G1), frequency of interaction with relatives (J2), and family visits 
(J17), significantly impact well-being. A strong social network and active engagement enhance life satisfaction, offering support, 
belonging, and social opportunities. Conversely, social isolation can decrease satisfaction. These findings have important social and 
economic implications for practice and policy, as they provide evidence-based recommendations for improving subjective well-being 
and quality of life.

5.3.2. Implications of culture-related features

Among the 273 features, 27 were identified as the most significant. Several significant elements include culture-related indicators 
that reflect cultural values, such as the frequency of traveling abroad for holidays or family visits (J17), attending film, concert, 
or theater events (J9), and reading newspapers (J14), which have a critical impact on life satisfaction. The findings suggest that 
cultivating a varied and vibrant cultural existence, which encompasses activities such as traveling, engaging in cultural events, and 
being well-informed through reading, can greatly augment a person’s overall life contentment. Policymakers, communities, and 
individuals can promote these cultural activities as part of efforts to improve well-being and quality of life.

5.3.3. Implications of physical factors

The physical factors identified in our LifeWell survey, including age, self-rated health (A2), long-term physical health issues or 
disabilities (C1), height (E1), weight (E2), and consultations with practitioners or therapists (E5_a), are crucial for evaluating life 
satisfaction. These features collectively capture the essence of physical well-being, significantly impacting overall life satisfaction. For 
instance, age affects life satisfaction through its implications on health, cognitive function, and social roles. Similarly, poor self-rated 
health and chronic physical conditions limit daily activities and independence. Furthermore, examining height and weight provides 
insights into how physical characteristics, influenced by societal norms and personal body image, affect life satisfaction. This holistic 
view underscores the intricate link between physical health and life satisfaction, stressing the need for comprehensive well-being 
assessments.

5.3.4. Implications of mental health-related factors

The extracted features related to depression (D2), stress management (D4, D6, D8, D10), perseverance (D11, D15), and neuroti-

cism (D16, D17) have important implications for an individual’s mental health and overall life satisfaction. The identification of 
these factors can help individuals become more self-aware of their psychological strengths and weaknesses. This self-knowledge can 
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empower them to seek appropriate support and interventions to improve their mental well-being and life satisfaction. Therapists and 
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psychiatrists can use this information to develop more targeted and personalized treatment plans for their clients. By understand-

ing the specific psychological factors impacting life satisfaction, they can design tailored therapy approaches to address issues like 
depression, stress management, and personality traits. Healthcare providers can leverage this finding to screen patients more com-

prehensively for mental health concerns. At a broader societal level, these findings can inform public health initiatives and policies 
aimed at improving mental health and life satisfaction. Governments can use this information to allocate resources for mental health 
education, community-based support programs, and accessible therapies targeted at addressing the specific psychological factors 
identified.

5.4. Limitations

Despite the promising findings of our research and the robust performance of the machine learning models in predicting life 
satisfaction, the following concerns remain:

• Similar to previous works in life satisfaction prediction, the generalizability of the predictive models is constrained due to the 
singular cultural and socioeconomic context of the dataset, which originates from Denmark and encompasses individuals aged 
16-64. As a result, the models’ applicability may not extend seamlessly across different populations and cultures. The dataset’s 
demographic specificity may also limit the model’s applicability and generalizability across different cultural, socioeconomic, 
and age demographics. The potential for broader application of the methods is limited by the scope of the dataset.

• The model might not account for the temporal and dynamic nature of life satisfaction by relying on static, cross-sectional data. 
Inherent fluctuations and evolving circumstances that could impact life satisfaction over time are not encapsulated within the 
present model.

6. Conclusion and future work

The study of life satisfaction is essential for ensuring human well-being. Existing methods for measuring life satisfaction come with 
validation and propagation concerns. Most measurement schemes of life satisfaction involve complex statistical analysis, large-scale 
surveying, and erroneous and unexplained predictions.

The machine learning model used in this study has successfully predicted the psychological state of our subjects with an accuracy 
of 93.80% and macro F1-score of 73.00%, which requires a survey of only 27 questions. Such a small set of questions makes the 
survey process simple and easily reproducible. It also gives psychologists insight into the right questions to ask their patients to assess 
their mental state. Additionally, suppose there is any concern about the justification of the decisions made by the machine learning 
model. In that case, the explanations provided by the Explainable AI should suffice to offer credibility to the decision-making process. 
We, therefore, conclude that the employment of machine learning and explainable AI can significantly reduce errors and complexity 
in predicting subjects’ state of life satisfaction. We further show the logical correlation of the extracted indicators with different 
populations based on several age brackets and provide insights based on physical, social, economic, and cultural grounds.

In addition to the machine learning models, large language models (LLMs) were explored for life satisfaction prediction. By 
converting the tabular data into natural language sentences through mapping and adding meaningful counterparts, an accuracy of 
93.74% and macro F1-score of 73.21% was achieved using the BioBERT model. Furthermore, ablation studies were conducted to 
understand the impact of data resampling and feature selection techniques on the overall model performance.

For future works, we plan to validate and possibly enhance the models’ robustness by incorporating data from a diverse array of 
countries, thus ensuring a more universally applicable predictive framework. We plan on expanding the study to multifarious demo-

graphic and cultural contexts and comprehensively appraising the generalizability of the findings across heterogeneous populations. 
We further plan to evaluate the approach by implementing deeper neural network architectures. Deep learning models, especially 
those employing recurrent neural networks (RNNs) or transformers, could offer advanced capability in capturing temporal dependen-

cies and complex patterns within longitudinal life satisfaction data, potentially uncovering deeper insights and novel relationships 
among variables.

Ethics statement

Review and/or approval by an ethics committee was not needed for this study because the dataset used in this study is publicly 
available to researchers.

Informed consent was not required for this study because the data were anonymized and de-identified prior to analysis, ensuring 
that the privacy and confidentiality of the individuals whose data were included in the dataset are maintained. Additionally, the 
study design did not involve any interaction with human subjects or have any impact on their rights and welfare.

CRediT authorship contribution statement

Alif Elham Khan: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, 
Formal analysis, Conceptualization. Mohammad Junayed Hasan: Writing – review & editing, Writing – original draft, Visualization, 
Software, Methodology, Investigation, Formal analysis, Conceptualization. Humayra Anjum: Writing – review & editing, Writing – 
28

original draft, Visualization, Software, Methodology, Investigation, Conceptualization. Nabeel Mohammed: Writing – original draft, 



Heliyon 10 (2024) e31158A.E. Khan, M.J. Hasan, H. Anjum et al.

Supervision, Project administration, Investigation. Sifat Momen: Writing – review & editing, Writing – original draft, Supervision, 
Project administration, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability statement

The dataset utilized in this article is a publicly available dataset. It is directly accessible via the Dryad repository at https://

doi .org /10 .5061 /dryad .qd2nj.

References

[1] K.S. Coulter, C.B. McCormick, H.M. Inderbitzen-Nolan, Associations between parenting, media use, cumulative risk, and children’s executive functioning, J. Dev. 
Behav. Pediatr. 33 (2012) 594–605.

[2] N.R. Lockwood, The New Psychology of Leadership, Psychology Press, 2007.

[3] J. Helliwell, R. Layard, J. Sachs, World happiness report, 2012.

[4] D. Kahneman, High-Speed Thinking, Penguin, UK, 2010.

[5] G. Gurin, J. Veroff, S. Feld, Americans view their mental health: a nationwide interview survey, 1960.

[6] N.M. Bradburn, The structure of psychological well-being, 1969.

[7] E. Spreitzer, E.E. Snyder, Correlates of life satisfaction among the aged, J. Gerontol. 29 (1974) 454–458.

[8] S.D. Barger, C.J. Donoho, H.A. Wayment, The relative contributions of race/ethnicity, socioeconomic status, health, and social relationships to life satisfaction 
in the United States, Qual. Life Res. 18 (2009) 179–189.

[9] P. Flavin, M.J. Keane, Life satisfaction and political participation: evidence from the United States, J. Happ. Stud. 13 (2012) 63–78.

[10] B. Hawkins, A.K. Foose, A.L. Binkley, Contribution of leisure to the life satisfaction of older adults in Australia and the United States, World Leis. J. 46 (2004) 
4–12.

[11] A. Kilinc, P.F. Granello, Overall life satisfaction and help-seeking attitudes of Turkish college students in the United States: implications for college counselors, 
J. Coll. Couns. 6 (2003) 56–68.

[12] E. Diener, M. Diener, Cross-cultural correlates of life satisfaction and self-esteem, in: Culture and Well-Being, Springer, 2009, pp. 71–91.

[13] E. Mosley-Johnson, E. Garacci, N. Wagner, C. Mendez, J.S. Williams, L.E. Egede, Assessing the relationship between adverse childhood experiences and life 
satisfaction, psychological well-being, and social well-being: United States longitudinal cohort 1995–2014, Qual. Life Res. 28 (2019) 907–914.

[14] V.S. Kwan, M.H. Bond, T.M. Singelis, Pancultural explanations for life satisfaction: adding relationship harmony to self-esteem, J. Pers. Soc. Psychol. 73 (1997) 
1038.

[15] N. Powdthavee, M. Wooden, Life satisfaction and sexual minorities: evidence from Australia and the United Kingdom, J. Econ. Behav. Organ. 116 (2015) 
107–126.

[16] J. Dittmann, J. Goebel, Your house, your car, your education: the socioeconomic situation of the neighborhood and its impact on life satisfaction in Germany, 
Soc. Indic. Res. 96 (2010) 497–513.

[17] S. Collins, Y. Sun, M. Kosinski, D. Stillwell, N. Markuzon, Are you satisfied with life?: predicting satisfaction with life from Facebook, in: International Conference 
on Social Computing, Behavioral-Cultural Modeling, and Prediction, Springer, 2015, pp. 24–33.

[18] R.A. Hackett, A. Steptoe, R.P. Lang, S.E. Jackson, Disability discrimination and well-being in the United Kingdom: a prospective cohort study, BMJ Open 10 
(2020) e035714.

[19] P.S. Dyrenforth, D.A. Kashy, M.B. Donnellan, R.E. Lucas, Predicting relationship and life satisfaction from personality in nationally representative samples from 
three countries: the relative importance of actor, partner, and similarity effects, J. Pers. Soc. Psychol. 99 (2010) 690.

[20] R. Veenhoven, The Study of Life Satisfaction, Eötvös University Press, 1996, pp. 11–48.

[21] F.M. Andrews, S.B. Withey, Social Indicators of Well-Being: Americans’ Perceptions of Life Quality, Springer Science & Business Media, 2012.

[22] A. Campbell, P.E. Converse, W.L. Rodgers, The Quality of American Life: Perceptions, Evaluations, and Satisfactions, Russell Sage Foundation, 1976.

[23] E. Diener, R. Inglehart, L. Tay, Theory and validity of life satisfaction scales, Soc. Indic. Res. 112 (2013) 497–527.

[24] A. Orben, T. Dienlin, A.K. Przybylski, Social media’s enduring effect on adolescent life satisfaction, Proc. Natl. Acad. Sci. 116 (2019) 10226–10228.

[25] B.S. Frey, S. Luechinger, A. Stutzer, The life satisfaction approach to environmental valuation, Annu. Rev. Resour. Econ. 2 (2010) 139–160.

[26] Y. Fujino, T. Mizoue, N. Tokui, T. Yoshimura, Prospective cohort study of stress, life satisfaction, self-rated health, insomnia, and suicide death in Japan, Suicide 
Life-Threat. Behav. 35 (2005) 227–237.

[27] N. Loewe, M. Bagherzadeh, L. Araya-Castillo, C. Thieme, J.M. Batista-Foguet, Life domain satisfactions as predictors of overall life satisfaction among workers: 
evidence from Chile, Soc. Indic. Res. 118 (2014) 71–86.

[28] P. Frijters, J.P. Haisken-DeNew, M.A. Shields, Money does matter! Evidence from increasing real income and life satisfaction in East Germany following 
reunification, Am. Econ. Rev. 94 (2004) 730–740.

[29] K. Rehdanz, D. Maddison, Local environmental quality and life-satisfaction in Germany, Ecol. Econ. 64 (2008) 787–797.

[30] E. Diener, Subjective well-being, in: The Science of Well-Being, 2009, pp. 11–58.

[31] R. Veenhoven, Conditions of Happiness, Springer Science & Business Media, 2013.

[32] M. Kaiser, S. Otterbach, A. Sousa-Poza, Using machine learning to uncover the relation between age and life satisfaction, Sci. Rep. 12 (2022) 1–7.

[33] G. Prati, Correlates of quality of life, happiness and life satisfaction among European adults older than 50 years: a machine-learning approach, Arch. Gerontol. 
Geriatr. (2022) 104791.

[34] E. Allardt, Dimensions of welfare in a comparative Scandinavian study, Acta Sociol. 19 (1976) 227–239.

[35] D.M. Haybron, Happiness and the Importance of Life Satisfaction, Department of Philosophy, Rutgers University 1, 2004, p. 22.

[36] B. Headey, A. Wearing, Subjective well-being: a stocks and flows framework, in: Subjective Well-Being: an Interdisciplinary Perspective, vol. 21, 1991, pp. 49–73.

[37] F.B. Gias, F. Alam, S. Momen, Anxiety mining from socioeconomic data, in: Computer Science on-Line Conference, Springer, 2023, pp. 472–488.

[38] R. Siddiqua, N. Islam, J.F. Bolaka, R. Khan, S. Momen, AIDA: artificial intelligence based depression assessment applied to Bangladeshi students, Array 18 (2023) 
100291.

[39] D.B. Dwyer, P. Falkai, N. Koutsouleris, Machine learning approaches for clinical psychology and psychiatry, Annu. Rev. Clin. Psychol. 14 (2018) 91–118.

[40] S. Bengtsson, N. Datta Gupta, Identifying the effects of education on the ability to cope with a disability among individuals with disabilities, PLoS ONE 12 (2017) 
29

e0173659.

https://doi.org/10.5061/dryad.qd2nj
https://doi.org/10.5061/dryad.qd2nj
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib51C935F5229E402E2838CF3A5FA170BAs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib51C935F5229E402E2838CF3A5FA170BAs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE1B49F7C28194022E9184A94199BB14Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib6A553A809BB1560A53014C9DDC6C2DEDs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib3ACFF4DDC9C508D4C8199A183C7A0CACs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib002DF040ED3245865EEFD06DCE51927Cs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibEF0D6918EE71BF3FA9101D693EFC17FAs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibD3E4DA2B4952CC34BE8B517AC0A70B09s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib46B01B607B00ADC8D9086E1ECF5B1C4Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib46B01B607B00ADC8D9086E1ECF5B1C4Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib231C7EE96BB5EEBD0A88A00577FA9326s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib6BDAAC46B7A1005B4890F6A6322A0E06s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib6BDAAC46B7A1005B4890F6A6322A0E06s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibD92973E22FB4618EF958538D74622F72s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibD92973E22FB4618EF958538D74622F72s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib996E3412C843FF122378586BF4ED5312s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib496868DE7AC5D545AF32EBBEFAFB7911s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib496868DE7AC5D545AF32EBBEFAFB7911s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE1408B8D1F8CEE68C57D6140979EBEE2s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE1408B8D1F8CEE68C57D6140979EBEE2s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibA07D6235A3529EF1BFEDE005B4A5C581s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibA07D6235A3529EF1BFEDE005B4A5C581s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibDD0143392A867B9D3A3C55C1D2E5E1ECs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibDD0143392A867B9D3A3C55C1D2E5E1ECs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib221EECAA0336AD676F61BEF2731156F8s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib221EECAA0336AD676F61BEF2731156F8s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib91B72040828EE7D60B22B742F740F50Es1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib91B72040828EE7D60B22B742F740F50Es1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib7289D393A035119278A89BF3182680B9s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib7289D393A035119278A89BF3182680B9s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib64B1F77A5EC2FCA8D9940857D32BC8F5s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib3B871006246DA257D98C624EDF3CD976s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib5EC3C06A91795AC02FDAD0527E44BCA9s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib2687103DA6EA455FA19C71A78163032As1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibF81398905E48D73B2E642F8C9E01EF4Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib30EA9AC88E41343699F5E190AA0DDA0Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib84345FF58739ED60F1036BE5B6A91DE1s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib84345FF58739ED60F1036BE5B6A91DE1s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE89AD2D1A51FD92CF415088C7EAD12B8s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE89AD2D1A51FD92CF415088C7EAD12B8s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib04E72711AE780952F6974A705900AF57s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib04E72711AE780952F6974A705900AF57s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibC0820925A82EAE830364011578D0F1C8s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib094E2C48B04675A238C8A54A680DD57Es1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibA24C09A5D9A56906684FC8A54BD9AADBs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib0AF41E057DCD92C6476AF4B6D3524458s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib5879FA5AB11EE3AC044183F727950A08s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib5879FA5AB11EE3AC044183F727950A08s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib67A172FE9A5BD6ED23172F4EC3C14784s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib2F1FD8E0AB4B75A83C7579A0B33EBCFAs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibA6011EF238AAB8513BDAB433EE11231Es1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibC96FEC57D0A6171B5C2FEF4571EF728Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibC06413D6F154A62FDB1D5EB3CCB74703s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibC06413D6F154A62FDB1D5EB3CCB74703s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib8A92074856AF7DA9EA9FDBBF857699CAs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib5AF81A054654E80A8A7C0D85F5DFE37Fs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib5AF81A054654E80A8A7C0D85F5DFE37Fs1


Heliyon 10 (2024) e31158A.E. Khan, M.J. Hasan, H. Anjum et al.

[41] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[42] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-L. Boulesteix, et al., Hyperparameter optimization: foundations, 
algorithms, best practices, and open challenges, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 13 (2023) e1484.

[43] L. Grinsztajn, E. Oyallon, G. Varoquaux, Why do tree-based models still outperform deep learning on typical tabular data?, Adv. Neural Inf. Process. Syst. 35 
(2022) 507–520.

[44] R. Shwartz-Ziv, A. Armon, Tabular data: deep learning is not all you need, Inf. Fusion 81 (2022) 84–90.

[45] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: pre-training of deep bidirectional transformers for language understanding, arXiv preprint, arXiv :1810 .04805, 
2018.

[46] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, J. Kang, Biobert: a pre-trained biomedical language representation model for biomedical text mining, 
Bioinformatics 36 (2020) 1234–1240.

[47] K. Huang, J. Altosaar, R. Ranganath, Clinicalbert: modeling clinical notes and predicting hospital readmission, arXiv preprint, arXiv :1904 .05342, 2019.

[48] B. van Aken, J.-M. Papaioannou, M. Mayrdorfer, K. Budde, F. Gers, A. Loeser, Clinical outcome prediction from admission notes using self-supervised knowledge 
integration, in: P. Merlo, J. Tiedemann, R. Tsarfaty (Eds.), Proceedings of the 16th Conference of the European Chapter of the Association for Computational 
Linguistics: Main Volume, Association for Computational Linguistics, 2021, pp. 881–893, Online, https://aclanthology .org /2021 .eacl -main .75.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: an imperative style, high-performance 
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[50] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., Huggingface’s transformers: state-of-the-art 
natural language processing, arXiv preprint, arXiv :1910 .03771, 2019.

[51] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., Transformers: state-of-the-art natural language 
processing, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 2020, pp. 38–45.

[52] M. Schuster, K. Nakajima, Japanese and Korean voice search, in: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 
2012, pp. 5149–5152.

[53] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv preprint, arXiv :1711 .05101, 2017.

[54] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (2012).

[55] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., Scipy 1.0: fundamental 
algorithms for scientific computing in python, Nat. Methods 17 (2020) 261–272.

[56] M.L. Medley, Life satisfaction across four stages of adult life, Int. J. Aging Hum. Dev. 11 (1980) 193–209.

[57] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, J. Zou, Gradio: hassle-free sharing and testing of ml models in the wild, arXiv preprint, arXiv :1906 .02569, 
2019.

[58] S. Köknar-Tezel, L.J. Latecki, Improving svm classification on imbalanced data sets in distance spaces, in: 2009 Ninth IEEE International Conference on Data 
Mining, IEEE, 2009, pp. 259–267.

[59] J. Weerasinghe, K. Morales, R. Greenstadt, “because... I was told... so much”: linguistic indicators of mental health status on Twitter, Proc. Priv. Enh. Technol. 
30

2019 (2019) 152–171.

http://refhub.elsevier.com/S2405-8440(24)07189-5/bib81312E2C9E085FD70ED30AE61F765D38s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFE2D1AD13976AD4B5DEEDBC83647E30Cs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFE2D1AD13976AD4B5DEEDBC83647E30Cs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib079543ABE425C3BA9967695EBECC150Cs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib079543ABE425C3BA9967695EBECC150Cs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib777F32AA1BF707CD1615D8D082B835AFs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFA238A3AD31FBC1D171879B3D3A1E067s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFA238A3AD31FBC1D171879B3D3A1E067s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib6D2A4EB08E5FEDE9ABA0FB5AD9157B1Cs1
https://aclanthology.org/2021.eacl-main.75
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibAAF635FDC7B83DF3D8B9088D8341EA7Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibAAF635FDC7B83DF3D8B9088D8341EA7Ds1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFC7B2949004281E65DE0DB974D5AFAFDs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFC7B2949004281E65DE0DB974D5AFAFDs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFAA3E616EE0D26E10E404BF2FC09C9C4s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibFAA3E616EE0D26E10E404BF2FC09C9C4s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib5562AB11C054D4C87D9334E43A65A83Es1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib937FDC277B969D02000C42D974C269D0s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib45344B93C30D66F559C3965C435A8B2Fs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib45344B93C30D66F559C3965C435A8B2Fs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibD19B030864B87783A1D710DB358DCFDDs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE4E1EA2D58EDF02E8F55AA35FE689B95s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bibE4E1EA2D58EDF02E8F55AA35FE689B95s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib7CB9BBC3FF54A93958F80CD8BAB6F323s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib7CB9BBC3FF54A93958F80CD8BAB6F323s1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib6FA4B1C657F00691923CDE85B5D608EFs1
http://refhub.elsevier.com/S2405-8440(24)07189-5/bib6FA4B1C657F00691923CDE85B5D608EFs1

	explainable AI
	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Objectives
	3.2 Research workflow
	3.3 Dataset collection
	3.4 Data pre-processing
	3.4.1 Handling missing values
	3.4.2 Categorical encoding
	3.4.3 Train test split
	3.4.4 Zero variance
	3.4.5 Handling outliers
	3.4.6 Resampling imbalanced data
	3.4.7 Feature selection
	3.4.8 LifeWell survey
	3.4.9 Data preparation and pre-processing for LLMs

	3.5 Machine learning algorithms
	3.5.1 Random forest
	3.5.2 Gradient boosting
	3.5.3 Decision tree
	3.5.4 AdaBoost
	3.5.5 XGBoost
	3.5.6 SVC
	3.5.7 Light gradient boosting
	3.5.8 Naive Bayes
	3.5.9 Logistic regression

	3.6 Hyperparameter tuning
	3.7 Ensemble machine learning model construction
	3.8 Large language models
	3.8.1 BERT
	3.8.2 BioBERT
	3.8.3 ClinicalBERT
	3.8.4 COReBERT

	3.9 Implementation details for LLM experiments
	3.10 Performance metrics

	4 Performance and evaluation
	4.1 Performance on machine learning algorithms
	4.2 Performance on large language models
	4.3 Statistical significance of model performance
	4.4 Error analysis
	4.5 Ablation studies
	4.5.1 Ablation on data resampling
	4.5.2 Ablation on feature selection techniques

	4.6 Explainable AI
	4.6.1 Case-1
	4.6.2 Case-2

	4.7 Age group insights
	4.8 Deployment

	5 Discussion
	5.1 Performance analysis of machine learning algorithms
	5.2 Performance analysis of LLMs
	5.3 Feature analysis
	5.3.1 Social and economic implications
	5.3.2 Implications of culture-related features
	5.3.3 Implications of physical factors
	5.3.4 Implications of mental health-related factors

	5.4 Limitations

	6 Conclusion and future work
	Ethics statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability statement
	References


