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ABSTRACT

The practical performance of generative diffusion models depends on the appro-
priate choice of the noise scheduling function, which can also be equivalently
expressed as a time reparameterization. In this paper, we present a time scheduler
that selects sampling points based on entropy rather than uniform time spacing,
ensuring that each point contributes an equal amount of information to the fi-
nal generation. We prove that this time reparameterization does not depend on
the initial choice of time. Furthermore, we provide a tractable exact formula to
estimate this entropic time for a trained model using the training loss without sub-
stantial overhead. Alongside the entropic time, inspired by the optimality results,
we introduce a rescaled entropic time. In our experiments with mixtures of Gaus-
sian distributions and ImageNet, we show that using the (rescaled) entropic times
greatly improves the inference performance of trained models. In particular, we
found that the image quality in pretrained EDM2 models, as evaluated by FID
and FD-DINO scores, can be substantially increased by the rescaled entropic time
reparameterization without increasing the number of function evaluations, with
greater improvements in the few NFEs regime.

1 INTRODUCTION

Generative diffusion models (Sohl-Dickstein et al.,2015), and especially score-based diffusion mod-
els, have achieved state-of-the-art performance in image (Dhariwal & Nichol,2021; Rombach et al.,
2022; [Song et al., [2021)) and video generation (Ho et al., 2022} [Singer et al., 2022). Generative
diffusion models are obtained by reverting a forward diffusion process, which injects noise into the
distribution of the data until all information has been lost. In practice, the performance of these
models is highly dependent on the choice of a noise scheduling function that regulates the rate of
noise-injection (Song et al.l [2022). In most commonly used models, a change of noise scheduling
is mathematically equivalent to a change of time parameterization. From a theoretical perspective,
the choice of time parametrization, or equivalently of noise scheduling, is not constrained by the-
ory since any change of time in the forward process is automatically corrected in reverse dynamics
(Song et al., 2021). However, as explained above, the choice of time is very important practically
since it affects both the temporal weighting during training and the discretization scheme during in-
ference. Consequently, an ’incorrect’ choice of time variable can lead to severe inefficiencies due to
the under-sampling of some temporal windows and the redundant over-sampling of others. This is
particularly problematic since recent theoretical and experimental work suggested that ’generative
decisions’ tend to be clustered in critical time windows (Raya & Ambrogioni, [2023; [Li & Chen)
2024), which have been connected to symmetry-breaking phase transitions in physics (Raya & Am-
brogioni, [2023} |Ambrogioni} [2024; [Biroli et al., [2024} [Sclocchi et al.,[2024). The “triviality” of the
first phase of diffusion prior to the initial phase transitions has led to the idea that this early phase can
be skipped in one ’jump’ using a pre-trained initialization [Lyu et al.| (2022)); [Raya & Ambrogioni
(2023). These late initialization schemes can be seen as a special case of time re-scheduling that
compresses the high-noise part of the original schedule.

The idea of changing the diffusion time in a data dependent way, also known as time-warping, was
first introduced in [Dieleman et al.| (2022)) in the context of a class of diffusion models for sequences
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of discrete tokens. However, their implementation required the used of special architectures trained
with cross-entropy loss instead of the standard denoising score matching. In this paper, we show
that a natural data-dependent time parametrization can be tractably obtained for any continuous
generative diffusion model as the (rescaled) conditional entropy of xg given x;. This choice of time
leads to a constant entropy rate, meaning that each time point contributes to the final generation
in an equal amount. Furthermore, we show that this entropic time is invariant, meaning that it
does not depend on the original choice of time parameterization. Examples of the same SDE in
the entropic time and standard time are given in figure [I] Furthermore, inspired by the optimality
results, we introduce a rescaled entropic time. We provide an exact tractable formula that relates

these quantities to the empirical EDM (Karras et al, 2022) and DDPM (Song et al. [2022) loss,

which can be used to easily define the entropic time for any given trained network.

Standard Time Entropic Time

Space

Entropy

Figure 1: An example of the same SDE and its conditional entropy in the standard and entropic time.

2 RELATED WORK

Accelerated Sampling Procedures One of the most significant challenges in current diffusion mod-
els is the slow generative process. Since the introduction of the connection between the diffusion
models and SDEs 2021), a wide array of research has aimed to address this issue by de-
signing better numerical integrators. Some of the research in that direction includes the works of
let al| (2022) and|Lu et al|(2022). An alternative line of research focuses on optimizing the sampling
time schedule itself. [Sabour et al| (2024) presents a principled approach to optimizing sampling
schedules in diffusion models by aligning them with stochastic solvers, enabling higher efficiency.
splits the generation process into three categories (acceleration, deceleration, and
convergence steps), identifies imbalances in time step allocation, and introduces methods to address
them, leading to faster training and sampling. uses spectral analysis of images
to design a sampling strategy that prioritizes critical time steps, improving quality while reducing
the number of steps. (2023) explores joint optimization of time steps and architectures
for more efficient generation without additional training. While much of this research focuses on
learning or empirically determining optimal sampling schedules, our work provides a more theo-
retical perspective based on ideas from information theory. The closest work to ours is
(2022)), in which they use a cross-entropy loss to deduce a time-warping function for diffusion
language models. However, our work differs since we analyze the standard diffusion models, where
cross-entropy is not available. Furthermore, their expression for the entropy is not exact as it implies
an assumption of conditional independence of the tokens given the noisy state. On the other hand,

[\
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here we provide exact formulas that can be applied to any generative diffusion model trained with
denoising score matching, both in the continuous and in the discrete regime.

Connection Between Entropy, Information Theory, and Diffusion Models Diffusion models are
inherently tied to concepts from information theory, particularly in the context of denoising Gaussian
noise, which is a fundamental operation in information-theoretic frameworks. This connection has
inspired a growing body of work exploring the interplay between diffusion models and information
theory. Premkumar| (2024) investigates entropy-based objectives for learning more robust generative
models. |[Kong et al.| (2023a) and [Kong et al.|(2023b) aim to provide a clearer understanding of dif-
fusion models through an information-theoretic lens. Although these works explore the connection
between information theory and diffusion models, our focus diverges slightly. We use information
theory as a guide to design better sampling algorithms. Work exploring a similar direction to ours is
Li et al.| (2025). However, they explore the conditional entropy between two consecutive time steps
given a fixed discretization grid, while we look at the conditional entropy between the current time
step and time zero in a way that is invariant under the change of time and discretization.

3 BACKGROUND ON SCORE-MATCHING GENERATIVE DIFFUSION

The mathematics of generative diffusion models can be elegantly formalized in term of stochastic
differential equations (SDE). Consider a target distribution p(x() defined by a data source such as
a distribution of, for example, natural images, sound waves, or linguistic strings. We interpret this
data source as the initial distribution of a diffusion process governed by the SDE:

X, = £(X¢,t)dt + g(t)dW (1)

where dW is a standard Wiener process, (X4, t) is a vector-valued drift function, and g(¢) is a
scalar volatility function, which regulates the standard deviation of the input noise. The marginal
densities of the process can be obtained from the Fokker-Planck equation:

d

Orpe(x¢) = Zam_j (*fj (xt,t) + g(t)axj) Pe(xt) , (2)

=1

where 9, is the partial derivative with the spect to time and 0, is the partial derivative with respect
to the j-th component of x;. We denote the forward “solution kernel” of the diffusion process as
p(x¢ | y), which is the solution of the Fokker-Plank equation for py(y) = d(y — xo). The core
idea of generative diffusion is to sample from x by initializing an asymptotic noise state x7 (where
T is large enough for the SDE to reach its stationary distribution) and by “inverting” the temporal
dynamic. This can be done using the reverse SDE:

dX; = (f(Xp,t) — g(t)*Vlog p(Xy)) dt + g(t)dW 3)

which can be proven to give the same marginal densities of Eq. [3] when initialized with the appro-
priate stationary distribution, which is usually Gaussian white noise. We denote the reverse solution
kernel of the reverse dynamics as ¢(xg | x;), which can be interpreted as the optimal denoising dis-
tribution. The data-dependent key component of the reverse dynamics is the so-called score function,
which can be written as an expectation over the optimal denoising distribution:

Vlogpt(xt) = IEq(xo|x,,) [V logpt(xt | Xo)] . 4

In most practical forms of generative diffusion, the score function is approximated using a deep
network sg(x¢,t), where the parameters @ are optimized by minimizing an upper bound on the
quadratic score-matching loss:

Lsm(0) = Epg (20),ton(t) |:||30(Xt7t) - Vlogpt(xt)HQ}
®)
< Epo (w0),p(i|20), t~A (1) [HSG(Xtat) — Vlogps(x; | XO)HQ} = Lpsm(0)

where A(t) is a density defined on the time axis. Note that Ly, (6) and £(0) only differ by a constant
and therefore have the same gradients and optima. However, £(0) is substantially more tractable as
it does not require to sample from the unknown optimal denoiser g(xg | x;).
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4 OPTIMAL SAMPLING SCHEDULE AS A CHANGE OF TIME

In this section, we revisit a result from |Sabour et al.|2024| and notice some interesting features. In-
spired by it, we formalize what we mean by the change of time. Obtaining the analytical expression
for the optimal sampling schedule is difficult and, in most practical cases, impossible. However,
Sabour et al.|[2024] shows that for the EDM noise schedule (Karras et al., 2022), the optimal sam-
pling schedule for the ODE flow when data comes from a normal distribution with variance c? has
an analytical expression. More precisely, the sampling schedule, [t,in, t1, ...tmaz], that minimize
the KL divergence is given by

t; 1
t — | = Umin 7 GEmaz — Omin 6
arcan(c> e —|—N(a Qnin) (6)

where Qmin/maz = arctan (t’""%) (see theorem 3.1 in|Sabour et al.[2024). From here, we can

see that even in the simple case, the optimal schedule depends on the data distribution. In addition,
this result frames the optimization of a sampling schedule as a problem of time change. Rather
than selecting timesteps differently for different numbers of sampling steps (e.g. EDM scheduler),
Theorem 3.1 shows that one should think of the sampling schedule as a transformation of time such
that the sampling schedule becomes linear in the new time. Furthermore, in section we will
connect equation [6] with the conditional entropy production.

4.1 CHANGE OF TIME

The change of time in SDEs is a powerful technique used to simplify their analysis and solutions.
By altering the time variable, the dynamics of the SDE can be transformed into a more manageable
form. More information can be found in section 8.3 in|Lawler|(2010).

Definition 4.1. We say a function ¢ is a proper time change if it is continuous and strictly increasing.

It can be shown that given a proper time change, f, and a random process, X, that solves the
SDE dX; = fi(X,t)dt + g:(t)dW; , then Yy = Xy solves dY; = ¢(t)fi(Ys, ¢(t))dt +

\/ @(t)g:(6(t))dW; . Guided by the theory of time change, we define an equivalence between SDEs.

Definition 4.2. Given two SDEs dX; = f(Xy,t)dt + g(t)dW; and dXs = f(Xs, s)ds + §(s)dW ,
we say that they are equivalent up to a time change if there exists a proper time change, ¢ : t — s,
such that

1. ¢(t)f($,¢(t)) = f(J?,t)

2.4/ o(1)g(e(t) = g(t).

Furthermore, we can require f(0) = 0 without affecting anything (since it is equivalent to subtract-
ing a constant from the original function). By requiring that, we get that a time change between two
SDEs is unique if it exists. Under a time change, the forward kernels stay the same, in the sense that
pe(x|T0) = qg(t)(z]|20) holds (this follows from Y; = X, ;). Essentially, time change squeezes
and stretches the time axis but does not fundamentally change the diffusion process. Hence, the
natural question is whether there is a natural time parameterization that should be used. We argue
that a conditional entropy, H[zo|z;], and quantities derived from it are good candidates. However,
for H[xo|z;] to make sense, we assume that we are given an initial distribution, po(z) (that is, a data
set). Therefore, besides an SDE, we require a dataset for the entropic time. In the further text, we
will always assume that the dataset is given and is the same for different time parameterizations of
SDE.

5 ENTROPIC TIME SCHEDULES

In this section, we introduce the concepts of entropic time and rescaled entropic time. First, we pro-
vide some reasons for using the conditional entropy as a new time parameterization. Then, we show
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how to obtain the conditional entropy in practice and show its connection with commonly used quan-
tities in diffusion literature. Furthermore, we demonstrate that the entropic time parameterizations
are well-defined and invariant under the initial time parameterization of the SDE.

There are serval possible choices for the entropy function, which highlights different aspects of
information transfer. The most straightforward choice is the information transfer 7;. Consider an
initial source xg ~ po is transmitted through a noisy channel p(x; | xo), which is determined by
the solution of the SDE given in Eq.[3] The noise-corrupted signal is received and decoded using
q(Xx0 | x¢). The amount of information transferred at time ¢ can be quantified as the difference
between the prior and posterior entropy:

T = Hlxo] — H[xo|x¢] = I[X0; X¢] (7)

where H[xo] = E;, () [log p(x0)] is the entropy of the source, H[xo[X¢] = Eyp(z.2,) [l0g p(x0[%¢)]
is the conditional entropy under the optimal denoising distribution, and I[x¢; x;] is a mutual infor-
mation. Therefore, it is natural to interpret this quantity as the amount of information available at
time ¢ concerning the identity of the source data. Up to a constant shift, this is equivalent to using
the time variable ¢(t) = H[xo|x;] in the forward process. This time axis is defined by having a
constant conditional entropy rate between the final generated image and the noisy state at time ¢.

5.1 CHARACTERIZING THE CONDITIONAL ENTROPY

Having established that a conditional entropy makes sense as a new time parameterization, a ques-
tion arises: How do we calculate it in practice? In general, conditional entropy can be written as
H[xo|x:] = H[xo] — I|x0;x:¢] = H[xo] + H[x¢|x0] — H[x¢] .

In practice, H[x;|xo] is easy to get once the forward kernel is known, but it is difficult to obtain a
numerical value of H[x;]. However, by looking at a time derivative of the conditional entropy, we
get a method for obtaining a numerical value. The time derivative is given by

H|xo|x:] = H[x¢|x0] — H[x,]. (8)

Hence, to know the time derivative, we need to calculate the time derivative of H[x;]. In case when
an SDE is given by [4.1] the entropy production is given by

2
FIfxi] = By, o (VU] + LBy 0 1V g plx)| ©)

The equation is a well-known expression in nonequilibrium thermodynamics for entropy production
(Premkumar, [2024). The derivation of the expression can be found in the appendix [A] Similarly, we
can obtain the similar expression for H[x;|x(]. Combining these two expressions, we obtain

2
- g
H[X0|Xt] = ?t (Ep(wt,Io)[HvIng(Xt‘XO)HQ] - Ept(:vt)[HVlng(Xt)HQD . (10)

Note that this expression depends on the data distribution only through the Euclidean norm of the
score function, which is approximated by a neural network in diffusion models.

5.2 ESTIMATING THE ENTROPY RATE FROM THE TRAINING LOSS

In this section, we present a connection between the conditional entropy rate and training loss. For
more details on the derivation of these results, see the Appendix [D] In practice, most diffusion mod-
els can be written using the framework introduced in Karras et al.[(2022). In this framework, the SDE
is written as dX; = {3 Xdt + 5(£)\/26 (D)o () dW , with p(ay|z0) = N (w4 s(t)ao, s(t)20 (£)*1)
as a forward kernel. This leads to the following conditional entropy production
. Do (t .

o] = 4150 = (0200008, o [V og ) b
where D is a dimension of the space (e.g. for the MNIST dataset, it would be 282). In the rest of
this paper, we will be using this framework.

The squared error, €7, encapsulates our uncertainty at time ¢ about the final sample ¢ and is given

by
€t2 = ]Ept(Zt)[Ep(zolxt) [l[x0 — Ep(yo\rt)[y(ﬂ”z“ = Ept(mt)[tr(aio\xt>]' (12)
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Using the fact that we can write 07 | as o(t)?(I + s(t)?0(t)* H[log p;(2¢)]) (see Appendix @), we

X

get
: o(t) o
H = . 13
[xo|x¢] o (t)3 €t (13)
Recognizing that SNR = — 2 and Hxo|x;] = —I[x;; %], equation |13 becomes a well-known

I — mmse relation in information theory (Guo et al., [2005)).

The previous results provide a simple way of estimating the conditional entropy rate from the stan-
dard loss function of a trained diffusion model due to a close connection between the squared error
and the loss. This provides a tractable way to estimate the conditional entropy from the training
error. Note that, using the error of the model entails an approximation since the entropy is defined
with respect to the true score function and, therefore, does not take into account the discrepancy
between the learned and true score.

To analyze this deviation, we start from a striking result: the conditional entropy production is, up
to a multiplicative factor, the gap between the explicit and denoising score matching loss in 3]l In
fact, following the steps from [Vincent| (201 1)) and keeping track of the terms that are constant in 6,
we have

Lsu(0) = Losw(8) = Ep(ag 20|V 1og p(xelx0) | = |V log p(3xt) |I°]. (14)
Using expression[I0] we can rewrite the above equality as
2 .
Cos(6) = Lan(®) + Ex | o] (15)
&

This expression can also be given for a single time point ¢:

2 2

Hfxofxi] + $-07(8) = L Ex, x, [lI30(x1:1) — Vlog pu(xc | x0)]*] (16)
where 02(8) = By, (s, |lls0(x:,1) — Vlogpi(x:)]”
and the neural estimate and the left hand side is our estimate of the conditional entropy production.
This implies that the estimated entropy production is always larger than the true value. In this sense,

we can interpret H[x0|xt] as the "unavoidable’ component of the loss, which is caused by intrinsic
undecidability in the optimal denoising.

} is the squared error between the true score

5.3 THE ENTROPIC AND RESCALED ENTROPIC TIMES

Here, we introduce a rescaled entropy and show that both rescaled entropy and conditional entropy
are proper changes of times and are invariant under different time parameterizations of SDE. Proofs
can be found in the Appendix B}

First, we notice that in the case of continuous data, the conditional entropy goes to negative in-
finity. In practice, this is not observed since diffusion models always start from a non-zero initial
time. However, it adds arbitrariness to the overall curve of the conditional entropy. To combat this
problem, guided by the observation that the change of time for the optimal sampling schedule for
normally distributed data, eq. [6] is equal to the rescaled entropy (see Appendix [C)), we introduce a

rescaled entropy as fg o (T)H[xo|x,dr.

Theorem 5.1. Given an SDE and initial data distribution po(x), ¢(t) = Hlxg|xs] and ¢(t) =
fot o(T)H[x¢|x,|dT are proper time changes.

We call these time parameterizations an entropic time and rescaled entropic time, respectively.

Naturally, an important question emerges: How does the time parameterization of an initial SDE
influence its reparameterized form? We show that an SDE written in entropic time is unique and
does not rely on its initial parameterization. More precisely, given two SDEs equivalent up to a time
change, the SDEs expressed in their respective entropic times are equivalent up to a time change,
with the time change being the identity function (i.e. drift and noise terms of SDEs in entropic times
are related by conditions 1. and 2. from definition 4.2} and are the same since the time derivative of
the time change is one).
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Theorem 5.2. Given two SDEs as given in definition[4d.2] and following time changes

L ¢t s=f(t)
2. @yt Hylxo|x]

3. D, s Hgxo|xs],

it follows that
F:=®,0¢o0 CI)t_l s Hy[xo|xt] — Hg[X0|Xs)

is a proper time change implementing the equivalence and is equal to the identity map, F' = id.

A similar result holds for the rescaled entropic time as well. Therefore, once reparameterized in
entropic time (or rescaled entropic time), no matter the starting SDE time parameterization, drift
and noise are always the same.

6 EXPERIMENTS

We compare the performance of a few-step generation in the standard, entropic, and rescaled en-
tropic times for several low-dimensional examples where an analytic expression for a score is easy
to calculate. Next, we compare the performance of a trained EDM2 models (Karras et al.| [2024)
on ImageNet-64 using the FID (Heusel et al.,|2017) and FD-DINOv2 (Oquab et al.| |2023) scores.
More details can be found in appendix [F|

6.1 ONE-DIMENSIONAL EXPERIMENTS

We used an analytic expression of a score function to compare the performance of a few-step gener-
ation process in different time parameterizations in one dimension. We used equidistant steps in the
standard, entropic, and rescaled entropic times. We used the stochastic DDIM solver (Song et al.,
2022). We compared those schedules for discrete data and a mixture of Gaussians. We used the
Kullback-Leibler divergence to compare results for different schedules. An example of KL diver-
gence behavior against the number of generative steps is given in figure [2| In general, we can see
that in the discrete case, the entropic time outperforms other schedules by a large margin, while the
standard schedule gives the worst results. Furthermore, we noticed that when variances of Gaussians
are much smaller than the distance between them (i.e. there is no significant overlap between Gaus-
sians), the entropic schedule gives better results. However, when the variances are not negligible in
the mixture of Gaussians case, we can see that the rescaled entropic schedule gives the best results,
while the entropic schedule underperforms. This suggests that the entropic time might significantly
improve certain discrete diffusion models.

\\ 10°
g 1 g
Q Q
107! ‘

—— Entropic Time —— Entropic Time
10 Rescaled Entropic Time ol Rescaled Entropic Time L
] 10 f
—}— Standard Time —}— Standard Time
10° 10! 10° 10!
Number of generative steps Number of generative steps
(a) Discrete (b) Continuous

Figure 2: Kullback-Leibler divergence against the number of generative steps for different time
parameterizations for mixture of 15 data points (discrete) and 15 Gaussians (continuous).
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Figure 3: Images generated with the deterministic DDIM sampler using the rescaled entropic sched-
ule over 64 steps, with the EDM2-L model.

6.2 IMAGENET

We compared the performance of the EDM2-S and EDM2-L ImageNet-64 models for different num-
bers of generative steps using standard, entropic, and rescaled entropic times. To sample, we used
the deterministic and stochastic DDIM solver. An example of generated images is given in figure[3]
The results are given in table[T} We observed that the entropic time produced unrecognizable images
(see Appendix E) therefore, we have not included it in the table with the results. From the table,
we can see that the schedule based on rescaled entropy consistently produces better results. More
examples of generated images are given in Appendix[F

Table 1: FID and FD-DINOV?2 scores for different sampling schedules for ImageNet-64

Solver Network  Schedule FID | FD-DINOv2 |
NFE=16 NFE=32 NFE=64 NFE=16 NFE=32 NFE=64
EDM2-S EDM 20.03 8.18 3.81 263.60 135.67 86.32
Stochastic DDIM Rescaled Entropy 11.69 4.95 2.75 194.02 109.55 81.25
EDM?2-L EDM 22.60 9.46 4.44 284.74 141.70 79.86
Rescaled Entropy 13.56 5.59 3.06 208.27 108.31 72.06
EDM2-S EDM 5.00 2.49 1.90 128.25 99.64 92.88
Deterministic DDIM Rescaled Entropy 3.46 2.15 1.77 117.26 98.28 93.34
EDM?2-L EDM 5.49 2.55 1.82 120.35 84.57 74.87
Rescaled Entropy 3.63 2.09 1.65 104.88 81.98 75.87

7 CONCLUSIONS

In this paper, we introduced the concept of entropic time as a natural time reparameterization for
generative diffusion models. By ensuring a constant entropy rate across sampling points, entropic
time equalizes the contribution of each time step to the generative process. Following the observation
that the entropic time can be connected to the optimal sampling schedule for Gaussian data, we
introduced the rescaled entropic time. Theoretical results demonstrated the invariance of these times,
making them invariant to the initial parameterization of the stochastic differential equations.

Empirical results in the toy dataset show the promise of entropic time, especially when the data is
discrete. Furthermore, experiments on ImageNet-64 show that the rescaled entropic time can achieve
substantial improvements in FID and FD-DINOv2 scores when compared with the standard EDM
schedule. These findings highlight the potential for incorporating information-theoretic principles
into the design of sampling schedules for diffusion models. In future work, it would be interesting
to combine the idea of entropic time and discrete diffusion, something akin to time warping in

Dieleman et al.|(2022).
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A ENTROPY PRODUCTION

Here, we show

2
Fix] = By, V()] + Ly, 0 1V Tog ()| (7

By looking inside the integral of H[x,], we get

iix] - - [ (pm) logp(z,) +p<xt>p(“’> e,

d
= - /p(ift) log p(z¢)dx; — o p(ze)dxy (18)

_ / p(ae) log plar)dae.

Assuming our dynamic is determined by the SDE we can use the Fokker-Planck equation to
simplify the derivative as follows

1] = - [ (=9 (5~ L9 10pt00)) ) )0l

_/ (ft - ngIogp(xt)) Vlog p(zt)p(we)dae

2
— [ 5 ogpleap(ede, + [ %5 log p(an) log p(ar o) da
19)

g2
= —/fth(xt)dxt+/?tHVlogp(xt)HQp(xt)dJ;t
2
= [ V(foptandn + LBy 19 logp(x) |7

2
9
= By, (e (VU] + By (o |1V og (1)

which is exactly what we wanted to show. We used integration by parts in going from the first line
to the second and from the fourth to the fifth.

B PROOFS FROM SECTION

Theorem B.1. Given an SDE and initial data distribution po(x), ¢(t) = Hlxg|x:] and ¢(t) =
fot dso H[xo|x] are proper time changes.

Proof. As already mentioned, a proper time change must be a strictly increasing continuous func-
tion. Since H[x|z;] has a derivative (see section[5.1)), we need to show that it is positive. However,
our claim follows from equation |13|(the squared error is equal to zero only when an initial distribu-
tion consists of one data point). O

Theorem B.2. Given two SDEs as given in definition4.2) and following time changes
I ¢:t—s= f(t)
2. @yt — Hy[xo|xy]
3. D, s Hxo|xs],

it follows that
F:=®,0¢0®, ' : H;xo|x:] — H,[x0|x,]

is a proper time change implementing the equivalence and is equal to the identity map, F' = id.
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Proof. Immediately, we can see that g is a proper time change since it is composed of other time
changes. Similarly, using a chain rule, it is observed that g implements the equivalence. Further-
more,

F(He[xolx:]) = (@5 0 ¢)(P; ' (He[xo[x:])) = @s(()) = Halxo[x4()]. (20)

However, since p;(z) = q4()(z) and p(2¢|z0) = q(z 1) |20), it follows

H,[xo|x:] = — (e, x0) In (p(zo| ) )dzodas
0 // 0 0 0 on

= —// q(T ), o) In (q(xo| Ty (r)))drodr sy = Hy[XolXg(1)],

where x; = x4(;) (i.e. are the same spatial point) and time subscripts represent at which point in
time probability distribution is evaluated. This proves that F' = id. O

Similarly, we can prove the same claim for the rescaled entropic time since o (t) = o(¢(t)) for any
proper change of time ¢.

C RESCALED ENTROPY FOR GAUSSIAN DATA

Here, we show that, in the case of the EDM noise schedule, the rescaled entropic time is the optimal
sampling schedule for the ODE flow when data comes from a normal distribution with variance c?

(equation [G).
Recall the expression for the rescaled entropy, fot o(7)H[xo|x,]dr. From equation|11, we have

/ o(T)H[xo|x,]dr = / (Do (1) = s(1)*6(1)0(7)°Eyp, (2 [||V log pr (%) |?]) dT. (22)
0 0

Using the facts that o(7) = s, s(7) = 1 and Vlogp-(z,) = ST sEeE s We get

t . t D
/ o(T)H[xq|x,]dT = / (D — 7222) dr
0 0 T4 +C

t 2

D t
%dT = Dcarctan (> .
o T +c¢ c

(23)

Therefore, a linear sampling schedule, (¢, t1, -..tmaz], in the rescaled entropic time is given by

" .
Dcarctan (;) = Dc (amm + %(amaw - amin)) (24)

o tmin/max .
Where i /mae = arctan (% . Exactly the same as equation

D CONNECTION WITH A SQUARED ERROR AND LOSS

In this Appendix, we show connections between conditional entropy production and some com-
monly used expressions in the diffusion literature. Firstly, we show how the conditional entropy
production is related to the squared error at time ¢, €2.

€ = Ep(ao,ae) [l1%0 — %o (x0)[1%] = / |lzo = 2o () |[*p(a]x0)p(20)dzdag

I/

The squared error encapsulates our uncertainty at time ¢ about the final sample xy. The following
simplification of the above equation gives a more precise meaning.

25(£)2V (log n(z 2 2
gy Tt %)V(l gp(1)) H (@ |zo)p(ao)dz.do
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¢ = Em(acn[Ep(xomf,)[on — Ep(yole) yol[1*]]

(26)
- ]Ept(fvt) [t’r‘( x0|x, )]

From Appendix [E] we know

Vary(aolzy) [Xo] = o (t)*(I + s(t)?0 (t)* Hlog pi(21))). 27)
Hence,

€ = By o 17(02, )] = 0By, (1 + 5(8) %0 (1) Hllog p(x))
= 0{t2(D = s{tY0(By o) [ og(pr(x,) )
U(t)3 o(t) —s(t)%5(t)o 0 x))||? (28)
0 (228 — sta2o 1o 008y, o 1V o (x|
U(t)3
5@ H[X0|Xt].

Following notation from [Karras et al.|(2022) for the loss at time ¢, we have

L(t) = Epgag) (60,0 N0 [Cout () Fo = s(t)z0 + conip(D)(s()z0 + s(B)o ()] (29)

The formula for a prediction Zq(x) is given by

N _ Cout(t)FO (mt) + Cskip(t)l't
To(xy) = s . (30)

We can express the loss at time ¢ using the squared error as

L(t) = MOE[lls(t)x0 — s(1)%o(x:)[|*] = Mt)s(t)*e;. (1)

Furthermore, using the connection between a squared error and a conditional entropy production,
we get

o(t

NOROE s 42

Hixo|x] =

E TWEEDIE’S SECOND ORDER FORMULA

Assume we are given a distribution p(y) that is obtained by adding a Gaussian noise to a distribution
q(x), ie. q(ylz) = N (y; sz, s°0°).

Now given some y ~ p(y), if we are interested in which z ~ ¢(z) generated it, the best we can do
is guess Z(y) = Ey(q|y) [z]. Tweedie’s formula gives us

y + 5?02V, log p(y)
S

Eq(aiy 2] = (33)

Now, we might ask how sure we are in our guess. To answer that question, we need to look at the
variance, Varq () (2] = Eq(zjy) [#2] — Eq(a)y) [2]?. In this section, we derive the following result

Vary iy @] = 50>V Eyy 2] = 0°(1 + s*0>Hllog p(y)]). (34)
However, a more general result regarding the cumulants of ¢(x|y) holds (Dytso et al.,[2022). That

is, all the cumulants can be calculated using the score function and its derivatives.
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Since we already have E(,,)[z], we need to find an expression for Eqy|y)[2?].

21 _ xwﬁ = mm T)x
Eq(afy) [27] —/d o(v) /d p(y) W)

_ /dxmq(:c) yq(y|z) + s202Vyq(y|z)
p(y)

(35)

_ VBl
S

] 5202
+ Sp(y)vy/de(y|x)Q(x)x

Where in going from the first line to the second, we used V,q(y|z) = 25=¥q(y|x). However, we
seem to have encountered a problem with the second term in our expression. However, by using

q(z,y) = q(y|lx)q(z) = q(x|y)p(y), for the second term we get

Vy/dxq(y|x)q(x)x = Vy/dxq(x|y)p(y)x

~v, (p<y> / dxq<x|y>x) V0Bl GO

= ]Eq(x\y) [x}vyp(y) + p(y)vyEq(l‘\y) [.T]

Hence,

yIE al; [x} 820.2
]EQ(:v\y) [:CZ] = Q(S\TI) + sp(y) (Eq(as|y) [a:]Vyp(y) +p(y)vyEq(w\y) [l‘])
_ VBeinle] | 520 By [#]1Vy 10g (1) + Vi By [2])
S S (37)

2 2
= Eq(apy 2]

y+ 5202V, logp(y) s%o
’ + — ViEq(aiy 7]

S
820'2
VyEq iy []-

= Eqaiy 2] + —

Now, we get an elegant expression for the variance

Varg(ylz] = SUQVyEQ(IIy) [z] = o’ (1+ 52028@/1/ log p(y))- (38)

So far, we have been dealing with one-dimensional random variables, but it is easy to generalize all
the steps to arbitrary dimensions, which gives us the general formula

Vary(ay (2] = s0°Vy Eqay [2] = 0*(I + s°0* H[log p(y))). (39)

F EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

F.1 ONE-DIMENSIONAL EXPERIMENTS

We used an analytic expression of a score function to compare the performance of a few-step gener-
ation process in different time parameterizations in one dimension. We used equidistant steps in the
standard time, entropic time, and rescaled entropic time. All entropic quantities were obtained from
the squared error using equation The squared error was estimated at 10* equidistant timesteps
with 10% samples at each timestep. We used a mixture of data points (discrete case) and a mixture
of Gaussians (continuous case). In both cases, data had a mean of zero and a standard deviation of
one. For sample generation we used the stochastic DDIM (Song et al.| 2022). Results are given in

figure 4]

For the discrete case, the performance was measured by creating nonoverlapping bins around data
points, [a; —e€, a;+¢€], and calculating the Kullback-Leibler divergence between the initial distribution
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Figure 4: Kullback-Leibler divergence against the number of generative steps for different time
parameterizations for mixture of data points (discrete) and Gaussians (continuous).

and the binned distribution (py;,,(a;) = probability of a generated sample ending up in the i-th
bin). A variance-preserving SDE and EDM SDE were used for our experiments. Datapoints were
randomly initialized and Kullback-Leibler divergence was estimated 102 times using 10* different
paths, so mean and variance of KL estimate could be obtained.

For the continuous case, the performance was measured by estimating the SDE-generated distribu-
tion using Gaussian kernal density estimation (with a standard deviation of 10~2) and then evaluat-
ing the KL divergence using Monte-Carlo methods with 10% samples. Similarly to the discrete case,
the KL divergence was estimated 10? times using 10 different paths to estimate the SDE-generated
distribution.

F.2 IMAGENET

We used EDM2-S and EDM2-L models for ImageNet-64 (Karras et al| (2024), https://
github.com/NVlabs/edm2). For generating samples, we used the stochastic and determin-
istic DDIM (Song et al., 2022). To compare performance between different runs we used the FID
(Heusel et al., 2017) and FD-DINOv2 (Oquab et al., 2023) scores provided by [Karras et al.| (2024)
implementation. We generated 50, 000 images and compared them with pre-computed reference
statistics. Class labels were drawn from a uniform distribution.

Entropy and rescaled entropy were calculated using an estimation of squared error using equation
[[3] The squared error was estimated at 128 time points according to the EDM schedule (p = 7,
Omin = 0.002, 0 e = 80) using the Monte-Carlo method with 1024 samples at each timestep.
Entropy and rescaled entropy were calculated with both network sizes, S and L, and there was no
significant difference between them, as expected.

As already stated in the main text, the entropic time generated blurry images and was not used for
the comparison in table[I] An example of images generated with the deterministic DDIM sampler
using the entropic schedule over 64 steps, with the EDM2-L model, is given in figure 5| Examples
of generated images using the EDM and rescaled entropy schedules are given in figures and|[§]
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Figure 5: Images generated with the deterministic DDIM sampler using the entropic schedule over
64 steps, with the EDM2-L model.
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(a) EDM (b) Rescaled Entropy

Figure 6: Images generated with the stochastic DDIM sampler using the EDM schedule (left) and
rescaled entropic schedule (right) over 64 steps, with the EDM2-S model.

(a) EDM (b) Rescaled Entropy

Figure 7: Images generated with the stochastic DDIM sampler using the EDM schedule (left) and
rescaled entropic schedule (right) over 64 steps, with the EDM2-L model.
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(a) EDM (b) Rescaled Entropy

Figure 8: Images generated with the deterministic DDIM sampler using the EDM schedule (left)
and rescaled entropic schedule (right) over 64 steps, with the EDM2-L model.
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