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ABSTRACT

Many data mining and analytical tasks rely on the abstraction of networks (graphs)
to summarize relational structures among individuals (nodes). Since relational
data are often sensitive, we aim to seek effective approaches to release utility-
preserved yet privacy-protected structured data. In this paper, we leverage the
differential privacy (DP) framework to formulate and enforce rigorous privacy
constraints on deep graph generation models, with a focus on edge-DP to guarantee
individual link privacy. In particular, we enforce edge-DP by injecting Gaussian
noise to the gradients of a link reconstruction based graph generation model, while
ensuring data utility by improving structure learning with structure-oriented graph
comparison. Extensive experiments on two real-world network datasets show
that our proposed DPGGAN model is able to generate networks with effectively
preserved global structure and rigorously protected individual link privacy.

1 INTRODUCTION

Nowadays, open data of networks play a pivotal role in data mining and data analytics (Tang et al.,
2008; Sen et al., 2008; Blum et al., 2013; Leskovec & Krevl, 2014). By releasing and sharing
structured relational data with research facilities and enterprise partners, data companies harvest
the enormous potential value from their data, which benefits decision-making on various aspects,
including social, financial, environmental, through collectively improved ads, recommendation,
retention, and so on (Yang et al., 2017; 2018; Sigurbjörnsson & Van Zwol, 2008; Kuhn, 2009).
However, network data usually encode sensitive information not only about individuals but also their
interactions, which makes direct release and exploitation rather unsafe. More importantly, even with
careful anonymization, individual privacy is still at stake under collective attack models facilitated by
the underlying network structure (Zhang et al., 2019; Cai et al., 2018). Can we find a way to securely
release network data without drastic sanitization that essentially renders the released data useless?

In dealing with such tension between the need to release utilizable data and the concern of data
owners’ privacy, quite a few models have been proposed recently, focusing on grid-based data like
images, texts and gene sequences (Frigerio et al., 2019; Papernot et al., 2018; Triastcyn & Faltings,
2018; Narayanan & Shmatikov, 2008; Xie et al., 2018; Chen et al., 2018; Boob et al., 2018; Dy &
Krause, 2018; Lecuyer et al., 2018; Zhang et al., 2018). However, none of the existing models can
be directly applied to the network (graph) setting. While a secure generative model on grid-based
data apparently aims to preserve high-level semantics (e.g., class distributions) and protect detailed
training data (e.g., exact images or sentences), it remains obtuse what to be preserved and what to be
protected for network data, due to its modeling of complex interactive objects.

Motivating scenario. In Figure 1, a bank aims to encourage public studies on its customers’
community structures. It does so by firstly anonymizing all customers and then sharing the network
(i.e., (a) in Figure 1) to the public. However, an attacker interested in knowing the financial interactions
(e.g., money transfer) between particular customers in the bank may happen to have access to another
network of a similar set of customers (e.g., a malicious employee of another financial company).
The similarity of simple graph properties like node degree distribution and triangle count between
the two networks can then be used to identify specific customers with high accuracy in the released
network (e.g., customer A as the only node with degree 5 and within 1 triangle, and customer B as
the only node with degree 2 and within 1 triangle). Thus, the attacker confidently knows the A and
B’s identities and the fact that they have financial interactions in the bank, which seriously harms
customers’ privacy and poses potential crises.
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(a) Anonymized original net. (b) DPGGAN generated net.

Figure 1: A toy pair of anonymized and generated networks.

As the first contribution in this work, we define and formulate secure network release goals as
preserving global network structure while protecting individual link privacy. Continue with the toy
example, the solution we propose is to train a graph neural network model on the original network and
release the generated networks (e.g., (b) in Figure 1). Towards the utility of generated networks, we
require them to be similar to the original networks from a global perspective, which can be measured
by various graph global properties (e.g., network (b) has very similar degree distribution and the same
triangle count as (a)). In this way, we expect many downstream data-mining and analytical tasks on
them to produce similar results as on the original networks. As for privacy protection, we require that
the information in the generated networks cannot confidently reveal the existence or absence of any
individual links in the original networks (e.g., the attacker may still identify customers A and B in
network (b), but their link structure has changed).

Subsequently, there are two unique challenges in learning such structure-preserved and privacy-
protected graph generation models, which have not been explored by existing literature so far.

Challenge 1: Rigorous protection of individual link privacy. The rich relational structures in
graph data often allow attackers to recover private information through various ways of collective
inference (Zhang et al., 2014; Narayanan & Shmatikov, 2009; Backstrom et al., 2007). Moreover,
graph structure can always be converted to numerical features such as spectral embedding, after
which most attacks on grid-based data like model inversion (Fredrikson et al., 2015) and membership
inference (Shokri et al., 2017) can be directly applied for link identification. How can we design an
effective mechanism with rigorous privacy protection on links in networks against various attacks?

Challenge 2: Effective preservation of global network structure. To capture the global network
structure, the model has to constantly compare the structures of the input graphs and currently
generated graphs during training. However, unlike images and other grid-based data, graphs have
flexible structures, and thus they lack efficient universal representations (Dong et al., 2019). How can
we allow a network generation model to effectively learn from the structural difference between two
graphs, without conducting very time-costly operations like isomorphism tests all the time?

Present work. In this work, for the first time, we draw attention to the secure release of network
data with deep generative models. Technically, towards the aforementioned two challenges, we
develop Differentially Private Graph Generative Nets (DPGGAN), which imposes DP training
over a link reconstruction based network generation model for rigorous individual link privacy
protection, and further ensures structure-oriented graph comparison for effective global network
structure preservation. In particular, we first formulate and enforce edge-DP via Gaussian gradient
distortion by injecting designed noise into the sensitive modules during model training. Then we
leverage graph convolutional networks (Kipf & Welling, 2017) through a variational generative
adversarial network architecture (Gu et al., 2019; Larsen et al., 2016) to enable structure-oriented
network comparison.

To evaluate the effectiveness of DPGGAN, we conduct extensive experiments on two real-world
network datasets. On one hand, we evaluate the utility of generated networks by computing a suite of
commonly concerned graph properties to compare the global structure of generated networks with
the original ones. On the other hand, we validate the privacy of individual links by evaluating links
predicted from the generated networks on the original networks. Consistent experimental results
show that DPGGAN is able to effectively generate networks that are similar to the original ones
regarding global network structure, while at the same time useless towards individual link prediction.
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2 RELATED WORK

Differential Privacy (DP). Differential privacy is a statistical approach in addressing the paradox of
learning nothing about an individual while learning useful information about a population (Dwork
et al., 2006). Recent advances in deep learning have led to the rapid development of DP-oriented
learning schemes. Among them, the Gaussian Mechanism (Dwork et al., 2014), defined as follows,
provides a neat and compatible framework for DP analysis over machine learning models.
Definition 1 (Gaussian Mechanism (Dwork et al., 2014)). For a deterministic function f with its
`2-norm sensitivity as ∆2f = max

‖G−G′‖1=1
‖f(G)− f(G′)‖2, we have:

Mf (G) , f(G) +N (0,∆2f
2σ2), (1)

where N (0,∆2f
2σ2) is a random variable obeying the Gaussian distribution with mean 0

and standard deviation ∆2fσ. The randomized mechanism Mf (G) is (ε, δ)-DP if σ ≥
∆2f

√
2 ln(1.25/δ)/ε and ε < 1.

Following this framework, (Abadi et al., 2016) proposes a general training strategy called DPSGD,
which looses the condition on the overall privacy loss than that in Definition 1 by tracking detailed
information of the SGD process to achieve an adaptive Gaussian Mechanism.

DP learning has also been widely adapted to generative models (Frigerio et al., 2019; Papernot et al.,
2018; Triastcyn & Faltings, 2018; Narayanan & Shmatikov, 2008; Mohammed et al., 2011; Xie et al.,
2018; Chen et al., 2018; Boob et al., 2018; Dy & Krause, 2018; Lecuyer et al., 2018; Zhang et al.,
2018). For example, (Frigerio et al., 2019; Chen et al., 2018; Boob et al., 2018; Zhang et al., 2018)
share the same spirit by enforcing DP on the discriminators, and thus inductively on the generators,
in a generative adversarial network (GAN) scheme. However, none of them can be directly applied to
graph data due to the lack of consideration of structure generation.

For graphs’ structural data, two types of privacy constraints can be applied, i.e., node-DP (Ka-
siviswanathan et al., 2013) and edge-DP (Blocki et al., 2012), which define two neighboring graphs
to differ by at most one node or edge. In this work, we aim at the secure release of network data, and
particularly, we focus on edge privacy because it is essential for the protection of object interactions
unique for network data compared with other types of data. Several existing works have studied
the protection of edge-DP. For example, (Sala et al., 2011) generates graphs based on the statistical
representations extracted from the original graphs blurred by designed noise, whereas (Wang & Wu,
2013) enforces the parameters of dK-graph models to be private. However, based on shallow graph
generation models, they do not flexibly capture global network structure that can support various
unknown downstream analytical tasks (Zhang et al., 2019; Wasserman & Zhou, 2010).

Graph Generation (GGen). GGen has been studied for decades and is widely used to synthesize
network data used to develop various collective analysis and mining models (Evans & Lambiotte,
2009; Hallac et al., 2017). Earlier works mainly use probabilistic models to generate graphs with
certain properties (Erdős & Rényi, 1960; Watts & Strogatz, 1998; Barabási & Albert, 1999; Newman,
2001), which are manually designed based on sheer observations and prior assumptions.

Thanks to the surge of deep learning, many advanced GGen models have been developed recently,
which leverage different powerful neural networks in a learn-to-generate manner (Kipf & Welling,
2016; Bojchevski et al., 2018; You et al., 2018b; Simonovsky & Komodakis, 2018; Li et al., 2018;
You et al., 2018a; Jin et al., 2018; Grover et al., 2017; De Cao & Kipf, 2018; Zou & Lerman, 2018;
Ma et al., 2018). For example, NetGAN (Bojchevski et al., 2018) converts graphs into biased random
walks, learns the generation of walks with GAN, and assembles the generated walks into graphs;
GraphRNN (You et al., 2018b) regards the generation of graphs as node-and-edge addition sequences,
and models it with a heuristic breadth-first-search scheme and hierarchical RNN. These neural
network based models can often generate graphs with much richer properties, and flexible structures
learned from real-world graphs.

To the best of our knowledge, no existing work on deep GGen has looked into the potential privacy
threats laid during the learning and releasing of the powerful models. Such concerns are rather
urgent in the network setting, where sensitive information can often be more easily compromised in a
collective manner (Dai et al., 2018; Backstrom et al., 2007; Zhang et al., 2014) and privacy leakage
can easily further propagate (Narayanan & Shmatikov, 2009; Zügner et al., 2018).
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3 DPGGAN

In this work, we propose DPGGAN for the secure release of generated networks, whose global graph
structures are similar to the original sensitive networks, but the individual links (edges) between
objects (nodes) are safely protected. To provide robust privacy guarantees towards various graph
attacks, we propose to leverage the well-studied technique of differential privacy (DP) (Dwork et al.,
2014) by enforcing the edge-DP defined as follows.
Definition 2 (Edge Differential Privacy (Blocki et al., 2012)). A randomized mechanismM satisfies
(ε, δ)-edge-DP if for any two neighboring graphs G1,G2 ∈ G, which differ by at most one edge,
Pr[M(G1) ∈ S] ≤ exp(ε)× Pr[M(G2) ∈ S] + δ, where S ⊂ range(M).

Our key insight is, a graph generation model M satisfying the above edge-DP should learn to
generate similar graphs given the input of two neighboring graphs that differ by at most one edge; as
a consequence, the information in the generated graph does not confidently reveal the existence or
absence of any one particular edge in the original graph, thus protecting individual link privacy.

To ensure DP on individual links, we exploit the existing link reconstruction based graph generation
model GVAE (Kipf & Welling, 2016), and design a training algorithm to dynamically distort the
gradients of its sensitive model parameters by injecting proper amounts of Gaussian noise based
on the framework of DPSGD (Abadi et al., 2016). We provide theoretical analysis on applying
DPSGD to achieve edge-DP with GVAE based on the nature of graph data and the link reconstruction
loss. Moreover, to improve the capturing of global graph structures, we replace the direct binary
cross-entropy (BCE) loss on graph adjacency matrices in GVAE with a structure-oriented graph
discriminator based on GCN (Kipf & Welling, 2017) and the framework of VAEGAN (Gu et al.,
2019; Larsen et al., 2016). We further prove the improved model to maintain the same edge-DP.

Backbone GVAE. Recent research on graph models has been primarily focused around GCN (Kipf &
Welling, 2017), which is shown to be promising in calculating universal graph representations (Maron
et al., 2019; Xu et al., 2019; Chen et al., 2019; Keriven & Peyré, 2019). In this work, we harness the
power of GCN under the consideration of edge-DP by adapting the link reconstruction based graph
variational autoencoder (GVAE) (Kipf & Welling, 2016) as our backbone graph generation model.

Notably, we are given a graph G = {V,E}, where V is the set of N nodes (vertices), and E is
the set of M links (edges), which can be further modeled by a binary adjacency matrix A. As a
common practice (Hamilton et al., 2017), we set the node features X simply as the one-hot node
identity matrix. The autoencoder architecture of GVAE consists of a GCN-based graph encoder to
guide the learning of a feedforward neural network (FNN) based adjacency matrix decoder, which
can be trained to directly reconstruct graphs with similar links as in the input graphs. A stochastic
latent variable Z is further introduced as the latent representation of A as

q(Z|X,A) =

N∏
i=1

q(Zi|X,A) =

N∏
i

N (zi|µi, diag(σ2
i )), (2)

where µ = gµ(X,A) is the matrix of mean vectors µi, and σ = gσ(X,A) is the matrix of standard
deviation vectors σi. g•(X,A) = ÃReLU(ÃXW0)W1 is a two-layer GCN model. gµ and gσ
share the first-layer parameters W0. Ã = D−

1
2AD−

1
2 is the symmetrically normalized adjacency

matrix of G, with degree matrix Dii =
∑N
j=1 Aij . gµ and gσ form the encoder network.

To generate a graph G′, a reconstructed adjacency matrix A′ is computed from Z by an FNN decoder

p(A|Z) =

N∏
i=1

N∏
j=1

p(Aij |zi, zj) =

N∏
i=1

N∏
j=1

σ(f(zi)
T f(zj)), (3)

where σ(z) = 1/(1 + e−z), f is a two-layer FNN appended to Z before the logistic sigmoid function.
The whole model is trained through optimizing the following variational lower bound

Lvae = Lrec + Lprior (4)
= Eq(Z|X,A)[log p(A|Z)]−DKL(q(Z|X,A)‖p(Z)),

where Lrec is implemented as the sum of an element-wise binary cross entropy (BCE) loss between
the adjacency matrices of the input and generated graphs, and Lprior is a prior loss based on the
Kullback-Leibler divergence towards the Gaussian prior p(Z) =

∏N
i=1 p(zi) =

∏N
i N (zi|0, I).
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Enforcing DP. The probabilistic nature of Z allows the model to be generative, meaning that after
training the model with an input graph G, we can detach and disregard the encoder, and then freely
generate an unlimited amount of graphs G′ with similar links to G, by solely drawing random
samples of Z from the prior distributionN (0, I) and computing A′ with the learned decoder network
w.r.t. Eq. (3). However, as shown in (Kurakin et al., 2017; Gondim-Ribeiro et al., 2018), powerful
neural network models like VAE can easily overfit training data, so directly releasing a trained GVAE
model poses potential privacy threats, as links in its generated graphs may be highly indicative
towards links in the training graphs.

In this work, we care about the generation model’s rigorously protecting the privacy of individual
links in the training data, i.e., ensuring edge-DP. Particularly, in Definition 2, the inequality guarantees
that the distinguishability of any one edge in the graph will be restricted to the privacy leak level
proportional to ε, quantifying the absolute value of privacy information possibly to be leaked by a
graph generation model.

According to Eq. (3), GVAE essentially takes a graph G, in particular, the links E among the nodes
V in G, as input and generates a new graph G′ by reconstructing the links E′ among the same set of
nodes V. Therefore, if we regard GVAE as the mechanismM, as long as its model parameters are
properly randomized, the framework satisfies edge-DP. To be specific, any two input graphs G1 and
G2 differing by at most one link in principle lead to similar generated graphs G′, so information in
G′ does not confidently reveal the existence or absence of any particular link in G1 or G2.

To exploit the well-structured graph generation framework of GVAE, we leverage the Gaussian
mechanism (Definition 1) (Dwork et al., 2014) and DPSGD (Abadi et al., 2016) to enforce edge-DP on
it. In our setting, G is the original training graph. Then Eq. (1) tells us that a link reconstruction based
graph generation modelM can be randomized to ensure (ε, δ)-edge-DP with properly parameterized
Gaussian noise. Prominently, we follow DPSGD (Abadi et al., 2016) to inject a designed Gaussian
noise to the gradients of our decoder network clipped by a hyper-parameter C as follows.

g̃θ,L =
1

N

(
N∑
i=1

(
∇vi,θL/max(1,

‖∇vi,θL‖2
C

)

)
+N (0, σ2C2I)

)
, (5)

where L is the loss function of a link reconstruction based graph generation model, C is the clipping
hyper-parameter for the model’s original gradient to bound the influence of each link, and σ is the
noise scale hyper-parameter. In the following theorem, we analyze and prove that the noised clipped
gradient g̃θ,L applied as above guarantees the learned graph generation model to be edge-DP, with a
different condition from that in Definition 1 due to the learning process of link based graph generation
model.
Theorem 1. In training a link reconstruction based graph generation model on a graph with N
nodes with batch size B, given the sampling probability q = B/N , and the number of steps T , there
exist explicit constants c1 and c2 that for any ε < c1q

2T , iteratively updating the model T times with
g̃θ,L attains it with (ε, δ)-edge-DP for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
,

where c1 ≥ 1
c0

log 1
qσ , c2 ≤ 1/

√
c0(1− c0) for any c0 ∈ (0, 1).

The proofs of Theorem 1 are detailed in Appendix A.

For the training of the DPGVAE decoder, L in Eq. (5) is specified as Lrec in Eq. (4). Due to the link
reconstruction nature of DPGVAE, we derive Corollary 1.1 from Theorem 1 as follows.
Corollary 1.1 (DPGVAE edge-DP). Under the same conditions in Theorem 1, iteratively updating
the decoder in DPGVAE for T times with g̃θ,Lrec attains it with (ε, δ)-edge-DP.

In the generation stage, we can disregard the encoder and only use the decoder to generate an
unlimited amount of graphs from randomly sampled vectors from the prior distribution N (0, I).
Due to the randomness of the normal Gaussian distribution, the sampling process can be regarded
as (0, 0)-DP. By the composability property of DP (Dwork et al., 2014), generating graphs from
random noises with the DPGVAE decoder satisfies (ε, δ)-edge-DP, whose release in principle does
not disclose sensitive information regarding individual links in the original sensitive networks. Since
we do not release the encoder network, we do not need to clip and perturb its gradients during training
to induce minimum interruptions.
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Figure 2: Neural architecture of DPGGAN (best viewed in color): Our novel graph generation
model consists of a GCN-based encoder, an FNN-based decoder (generator), and a GCN+FNN-based
discriminator. Sensitive data and modules are marked as red, while safe operations (i.e., gradient
clipping, noise injection and sampling) are marked as green, leading to DP modules and data.

Improving structure learning. Besides individual link privacy, we also aim to preserve the global
network structure to ensure the utility of released data. As we discuss before, original GVAE
computes the reconstruction loss between input and generated graphs based on the element-wise
BCE between their adjacency matrices. Such a computation is specified on each link, rather than the
graph structure as a whole. To improve the global graph structure learning, we leverage GCN again,
which has been shown universally powerful in capturing graph-level structures (Maron et al., 2019;
Xu et al., 2019; Chen et al., 2019; Keriven & Peyré, 2019). In particular, we borrow the framework of
VAEGAN from recent research (Gu et al., 2019; Larsen et al., 2016; Yang et al., 2019), and compute
a structure-oriented generative adversarial network (GAN) loss as

Lgan = log(D(A)) + log(1−D(A′))

with D(A) = f ′(g′(X,A)), (6)

where g′ and f ′ are GCN and FNN networks similar as defined before, besides at the end of g′
the node-level representations are summed up as the graph-level representation, which resembles
the recently proposed GIN model for graph-level representation learning (Xu et al., 2019). In this
DPGGAN framework, the decoder also serves as the generator, while D = f ′ · g′ is the discriminator.

Following (Gu et al., 2019), the encoder is trained w.r.t. Lrec +λ1Lprior, the generator w.r.t. Lrec−
λ2Lgan, and the discriminator w.r.t. λ2Lgan, where λ1 and λ2 are hyper-parameters. To enforce
DP constraints and complete our proposed DPGGAN framework, Eq. (5) with Lrec substituted by
Lrec − λ2Lgan is applied to distort the gradients of the generator and guarantee edge-DP, which can
be used to securely generate networks with the other parts disregarded after training. The overall
framework of DPGGAN is shown in Figure 2, and the training process is detailed in Appendix B.

The intuition behind the novel design of DPGGAN is, the GCN encodings g′(A) and g′(A′) capture
the graph structures of G and G′, so a reconstruction loss Lrec = ‖g′(A)− g′(A′)‖22 captures the
intrinsic structural difference between G and G′ instead of the simple sum of the differences over
their individual links. Note that the effectiveness of our structure-oriented discriminator is critical not
only because it can directly enforce effective training of the graph generator through the minimax
game in Eq. (6), but also because it can learn to relax the penalty on certain individual links through
flexible and diverse configurations of the whole graph as long as the global structures remain similar,
which exactly fulfills our goals of secure network release. The benefits of such diversity enabled by
the VAEGAN have also been discussed in image generation (Gu et al., 2019; Larsen et al., 2016).

Compared with DPGVAE, DPGGAN does not directly compute the link reconstruction loss based
on BCE in Eq. (4), but rather computes it based on the graph discriminator D. However, the link
reconstruction based graph generator of DPGGAN is exactly the same as DPGVAE. Since we also
do not release D after training, we can simply retrieve Corollary 1.2 from Theorem 1 as follows.
Corollary 1.2 (DPGGAN edge-DP). Under the same conditions in Theorem 1, iteratively updating
the generator in DPGGAN for T times with g̃θ,(Lrec−λ2Lgan) attains it with (ε, δ)-edge-DP.

With Corollary 1.2, we attain DPGGAN with the same (ε, δ)-edge-DP protection of DPGVAE. For
both DPGVAE and DPGGAN, the decoder/generator networks only get exposed to the noised and
clipped gradients, representing the partial sensitive information within the training graphs. Hence, it
prevents the inference of training graphs from both learned model parameters and generated graphs.
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4 EXPERIMENTAL EVALUATIONS

We conduct two sets of experiments to evaluate the effectiveness of DPGGAN in preserving global
network structure and protecting individual link privacy. All code and data are also in the submission.

Experimental settings. To provide a side-to-side comparison between the original networks and
generated networks, we use two standard datasets of real-world networks, i.e., DBLP, and IMDB.
DBLP includes 72 networks of author nodes and co-author links, where the average numbers of
nodes and links are 177.2 and 258; IMDB includes 1500 networks of actor/actress nodes and co-star
links, with average node and link numbers 13 and 65.9.

To show that DPGGAN effectively captures global network structures, we compare it and DPG-
VAE under different privacy budgets (controlled by ε in Eq. (32)), regarding a suite of graph statistics
commonly used to evaluate the performance of graph generation models, especially from a global
perspective (Bojchevski et al., 2018; You et al., 2018b; Yang et al., 2019).1 In particular, we train all
models from scratch to convergence for K times, where K is the number of networks in the datasets.
Each time, the trained model is used to generate one network, which is compared with the original
network regarding the suite of graph statistics. Then we average the absolute differences between the
generated networks and the original networks, ensuring that the positive and negative differences do
not cancel out. The results are summarized in Table 1.

Beyond the single value statistics, we also compare the generated graph regarding degree distribution
and motif counts. For degree distribution, we convert each graph into a 50-dim vector (all nodes with
degree larger than 50 are binned together); for motif counts, we enumerate all 29 undirected motifs
with 3-5 nodes and convert each graph into a 29-dim vector by motif matching. We compute the
average cosine similarity between pairs of original graphs and generated graphs. Furthermore, we
use the most widely studied graph-level downstream task, i.e., graph classification, to evaluate the
global utilities of generated graphs. In particular, we evaluate the accuracy of the state-of-the-art
graph classification model, i.e., GIN (Xu et al., 2019), with the default parameter setting and 4:1
training-testing ratio. The results are summarized in Table 2.

To facilitate a better understanding towards how the graph statistics reflect the global network
structure captured by the models, we also provide results of two recent deep network generation
methods, i.e., NetGAN (Bojchevski et al., 2018) and GraphRNN (You et al., 2018b), with default
parameter settings and no DP constraints at all. In this experiment, we expect to see the more effective
structure-preserving models generate networks that are more similar to the original ones regarding
various global and distributional graph properties and achieve high graph classification accuracy,
thus maintaining high network data utility.

To show that DPGGAN effectively guarantees individual link privacy, we train all models for another
K times on each dataset. Instead of complete networks, we randomly sample 80% of the original
networks’ links to train the models. After training and generation, we use degree distribution to
align the nodes in the generated networks with those in the original networks. Then we evaluate the
standard AUC metric on the task of individual link prediction by comparing links predicted in the
generated networks and links hidden during training in the original networks. In this experiment, we
expect to see the more effective privacy-protecting models generate networks that are less useful for
predicting individual links in the original networks, thus guaranteeing network data privacy.

All experiments are done with four GeForce GTX 1080 GPUs and a 12-core 2.2GHz CPU. The
training time of DP-enforced models is often slightly shorter due to early stops when the privacy
budget runs out, (e.g., a typical train of GVAE, DPGVAE, and DPGGAN takes 60, 42 and 53 seconds
on average on DBLP). The generation times of the three models are roughly the same (e.g., 0.02
second on average on DBLP). As a direct comparison, NetGAN and GraphRNN take longer times
under the same settings, especially for the generation (e.g., 89, and 4.5 seconds for NetGAN to train
and generate, and 75 and 2.4 seconds for GraphRNN, on DBLP). Although efficiency is not our
primary concern, short runtimes (especially for generation) are favorable for efficient data share.

Due to space limitation, detailed settings of the neural architectures and hyper-parameters of our
models are put into Appendix C.

1Statistics we use including LCC (size of the largest connected component), TC (triangle count), CPL
(characteristic path length), GINI (gini index) and REDE (relative edge distribution entropy).
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DBLP Networks IMDB Networks
Models LCC TC CPL GINI REDE LCC TC CPL GINI REDE
Original 107.5 59.90 3.6943 0.3248 0.9385 13.001 305.9 1.2275 0.1222 0.9894
GVAE(no DP) 7.51 66.93 0.1330 0.0213 0.0084 0.0145 25.83 0.0121 0.0030 0.0016
NetGAN(no DP) 9.66 39.87 0.1943 0.0105 0.0022 0.0083 27.54 0.0192 0.0042 0.0011
GraphRNN(no DP) 10.27 57.43 0.2043 0.0415 0.0052 0.0594 27.26 0.0214 0.0155 0.0094
DPGVAE(ε=10) 21.96 175.29 0.2471 0.0339 0.0153 0.0147 43.63 0.0367 0.0036 0.0030
DPGVAE(ε=1) 23.80 187.20 0.3059 0.0343 0.0156 0.0253 43.73 0.0373 0.0038 0.0031
DPGVAE(ε=0.1) 26.07 215.13 0.3342 0.0344 0.0158 0.0320 44.12 0.0392 0.0042 0.0032
DPGGAN(ε=10) 10.61 64.75 0.2035 0.0224 0.0093 0.0040 22.89 0.0164 0.0010 0.0017
DPGGAN(ε=1) 12.38 70.97 0.2643 0.0353 0.0117 0.0053 23.81 0.0168 0.0029 0.0023
DPGGAN(ε=0.1) 24.62 77.41 0.2713 0.0485 0.0191 0.0113 24.91 0.0168 0.0029 0.0025

Table 1: Performance evaluation over compared models regarding a suite of important graph structural
statistics. The Original rows include the values of original networks, while the rest rows are the
average absolute difference between generated networks by different models and the original networks.
Therefore, smaller values indicate better capturing of global network structure and thus better global
data utility. Bold font is used for values ranked top-3.

DBLP Networks IMDB Networks
Models Degree dist. Motif ct. GIN acc. Degree dist. Motif ct. GIN acc.
GVAE(no DP) 0.6171 0.4093 0.3029 0.5132 0.4129 0.4698
NetGAN(no DP) 0.5754 0.4109 0.3471 0.4921 0.3891 0.4350
GraphRNN(no DP) 0.5454 0.3672 0.3210 0.4635 0.3721 0.3875
DPGVAE(ε=1) 0.5476 0.4038 0.3043 0.5081 0.4021 0.4625
DPGGAN(ε=1) 0.6092 0.4150 0.3261 0.5486 0.4150 0.4725

Table 2: Performance evaluation regarding degree distribution, motif counts and GIN accuracy.
Larger values for both cosine similarity and classification accuracy indicate better graph utility. Bold
font is used for values ranked top-2.

Preserving global structures. In Table 1, our strictly DP-constrained models constantly yield highly
competitive and even better results compared with the strongest DP-free baselines regarding global
network structural similarity between generated and original networks on both datasets, clearly
showing the effectiveness of our models on global network structure preservation. As we gradually
increase the privacy budget ε, our two models (especially DPGGAN) apparently perform better,
showing the effectiveness of our privacy constraints and a clear trade-off between privacy and utility.
Furthermore, as in Table 2, the graphs generated by DPGGAN are competitively similar to the
original graphs regarding both degree distributions and motif counts, while achieving satisfactory
graph classification accuracy. The improvements of DPGGAN all passed t-tests with p-value 0.01,
which corroborates our novel design of the structure-oriented graph generation framework.

Protecting individual links. For both datasets, links predicted on the networks generated by DPG-
GAN are much less accurate than those predicted on the original networks (26%-35% and 15%-20%
AUC drops on DBLP and IMDB, respectively) as well as the networks generated by all baselines.
This means even if the attackers identify nodes in the generated (released) networks of DPGGAN,
they cannot leverage the information there to accurately infer the existence or absence of links
between particular pairs of nodes on the original networks. This directly corroborates our claim that
DPGGAN is effective in protecting individual link privacy.

Due to space limit, more details and discussions regarding the experimental results are put into
Appendix D. In Appendix E, we also provide graph visualizations for qualitative visual inspections.

5 CONCLUSION
Due to the recent development of deep graph generation models, synthetic networks are generated and
released for granted, without the concern about possible privacy leakage over the original networks
used for model training. In this work, for the first time, we pay attention to the task of secure network
release and formulate its goals as preserving global network structure while protecting individual
link privacy. Subsequently, we adopt the well-studied DP framework and develop DPGGAN, which
protects individual link privacy by enforcing edge-DP on the graph generation model while preserving
global network structure with a structure-oriented graph discriminator. Comprehensive experiments
show that DPGGAN is advantageous in generating networks that are globally similar to the original
ones (thus effectively maintaining network data utility), and at the same time, useless for predicting
individual links in the original network (thus rigorously protecting network data privacy).
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A APPENDIX: PROOFS FOR THEOREM 1

In this appendix, we provide proofs for Theorem 1, and derive Corollary 1.1 and Corollary 1.2. Theorem 1
indicates the link privacy protection achieved through updating model’s parameters with clipped and noised
gradient (latter referred to as DP learning) for link reconstruction based graph generation models. Corollary
1.1 and Corollary 1.2 derived from Theorem 1 support us to guarantee (ε, δ)-edge-DP for DPGVAE and
DPGGAN with DP learning in Theorem 1.

The proof for Theorem 1 is divided into three steps. We first briefly introduce the definition of the moment
accountant privacy analysis and respective properties in Section A.1, for it being the fundamentals of our proof.
Note that in (Abadi et al., 2016), DPSGD is originally designed for classical machine learning tasks, such as
image classification. Therefore, in Section A.2, we leverage moment accountant to conduct the extended privacy
analysis of DPSGD for general types of data and loss functions. Then in Section A.3, we apply the conclusion
from Section A.2 on graph data and the link reconstruction loss function to derive the theoretical analysis over
edge-DP achieved by link reconstruction based graph generation models and finish our proof for Theorem
1. Following the conclusion in Theorem 1, we tune gradient representations to certain gradient functions
leveraged in training DPGVAE decoder and DPGGAN generator to derive Corollary 1.1 and Corollary 1.2, as
the theoretical support for the (ε, δ)-edge-DP held by respective models.

A.1 MOMENT ACCOUNTANT

Our proof for Theorem 1 is mainly based on moment accountant (Abadi et al., 2016). The definition of moment
accountant and the properties leveraged in our proof are listed below.
Definition 3. LetM : D → R be a randomized mechanism and d, d′ a pair of adjacent databases. Let aux
denote an auxiliary input. For an outcome o ∈ R, the privacy loss at o is defined as:

c
(
o;M, aux, d, d′

)
, log

Pr[M(aux, d) = o]

Pr [M (aux, d′) = o]
(7)

The privacy loss random variable C (M, aux, d, d′) is defined as c (M(d);M, aux, d, d′), i.e.the random
variable defined by evaluating the privacy loss at an outcome sampled fromM(d).
Definition 4. LetM : D → R be a randomized mechanism and d, d′ a pair of adjacent databases. Let aux
denote an auxiliary input. The moments accountant is defined as:

αM(λ) , max
aux,d,d′

αM
(
λ; aux, d, d′

)
(8)

where αM (λ; aux, d, d′) , logE [exp (λC (M, aux, d, d′))] is the moment generating function of the privacy
loss random variable.

The following properties of the moments accountant are proved in (Abadi et al., 2016).
Property 4.1. [Composability] Suppose that a mechanismM consists of a sequence of adaptive mechanisms
M1, . . . ,Mk whereMi :

∏i−1
j=1Rj ×D → Ri. Then, for any output sequence o1, . . . , ok−1 and any λ, we

have

αM
(
λ; d, d′

)
=

k∑
i=1

αMi

(
λ; o1, . . . , oi−1, d, d

′) (9)

where αM is conditioned onMi ’s output being oi for i < k.
Property 4.2. [Tail bound] For any ε > 0, the mechanismM is (ε, δ)-DP for

δ = min
λ

exp (αM(λ)− λε) (10)

A.2 THE GENERALIZED PRIVACY ANALYSIS OF DPSGD

To achieve (ε, δ)-edge-DP for graph data, we exploit DPSGD (Abadi et al., 2016) with necessary adaptions
according to the special nature of graph data compared to other types of data (e.g., images), for which DPSGD
was originally designed. The original DPSGD only provides DP proof for gradient function f clipped by C with
its `2-norm sensitivity as ∆2f = 1 · C = C. For classical tasks of machine learning like image classification,
∆2f = C is obvious. However, in a more complex task like graph learning, a minor change in the training
dataset can probably induce a different gap according to the chosen measurement. To explore the potential of
DPSGD with customized machine learning tasks, we further prove the privacy performance of DPSGD with a
gradient function f with `2-norm sensitivity ∆2f = s.

Therefore, to prepare for the proof for Theorem 1, we first leverage moments accountant to derive the upper
bound of privacy loss for a Gaussian Mechanism as below.
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Lemma 1. Suppose that f : D → Rp with ‖f(·)‖2 ≤ s. Let σ ≥ s and let J be a sample from [n] where each
i ∈ [n] is chosen independently with probability q < s

16σ
. Then for any positive integer λ ≤ σ2

s2
ln s

qσ
, the

Gaussian MechanismM(d) =
∑
i∈J f (di) +N

(
0, σ2I

)
satisfies

αM(λ) ≤ s2q2λ(λ+ 1)

(1− q)σ2
+O

(
s3q3λ3/σ3) (11)

Proof. Fix d′ and let d = d′ ∪ {dn}. Without loss of generality, we assume f (dn) = s · e1 and∑
i∈J\[n] f (di) = 0. Thus M(d) and M (d′) are distributed identically except for the first coordinate

and hence we have a one-dimensional problem. Let µ0 denote the pdf ofN
(
0, σ2

)
and let µs denote the pdf of

N
(
s, σ2

)
. We have

M
(
d′
)
∼ µ0,

M(d) ∼ µ , (1− q)µ0 + qµs.
(12)

We want to show that

Ez∼µ
[
(µ(z)/µ0(z))λ

]
≤ α,

and Ez∼µ0

[
(µ0(z)/µ(z))λ

]
≤ α,

(13)

where α is a value to be determined. We will use the same method as in (Abadi et al., 2016) to prove both
bounds. Assume we have two distributions ν0 and νs, and we wish to bound

Ez∼ν0
[
(ν0(z)/νs(z))

λ
]

= Ez∼νs
[
(ν0(z)/νs(z))

λ+1
]
. (14)

Leveraging binomial expansion, we obtain

Ez∼νs
[
(ν0(z)/νs(z))

λ+1
]

=Ez∼νs
[
(1 + (ν0(z)− νs(z)) /νs(z))λ+1

]
=Ez∼νs

[
(1 + (ν0(z)− νs(z)) /νs(z))λ+1

]
=

λ+1∑
t=0

(
λ+ 1
t

)
Ez∼νs

[
((ν0(z)− νs(z)) /νs(z))t

]
.

(15)

The first term in Eq. (15) is 1, and the second term is

(λ+ 1)Ez∼νs
[
ν0(z)− νs(z)

νs(z)

]
=

∫ +∞

−∞
νs(z)

ν0(z)− νs(z)
νs(z)

dz

= (λ+ 1)

∫ +∞

−∞
ν0(z)dz −

∫ +∞

−∞
νs(z)dz

= (λ+ 1)(1− 1) = 0.

(16)

Regarding conditions stated in the lemma, for both cases, where ν0 = µ, ν1 = µ0 and ν0 = µ0, ν1 = µ, the
third term is bounded by q2λ(λ+ 1)/(1− q)σ2 and this bound dominates the sum of the remaining terms. We
provide the proof for the case of (ν0 = µ0, νs = µ), and the proof of the other case is similar.
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To upper bound the third term in 15, we note that µ(z) ≥ (1− q)µ0(z), and write

Ez∼µ

[(
µ0(z)− µ(z)

µ(z)

)2
]

= q2Ez∼µ

[(
µ0(z)− µs(z)

µ(z)

)2
]

= q2
∫ +∞

−∞

(µ0(z)− µs(z))2

µ(z)
dz

≤ q2

1− q

∫ +∞

−∞

(µ0(z)− µs(z))2

µ0(z)
dz =

q2

1− qEz∼µ0

[(
µ0(z)− µs(z)

µ0(z)

)2
]
.

(17)

Recalling the definition of µ0 and the normal distribution, we have

Ez∼µ0

[(
µ0(z)− µ1(z)

µ0(z)

)2
]

=Ez∼µ0

[(
1− exp

(
2sz − s2

2σ2

))2
]

=1− 2Ez∼µ0

[
exp

(
2sz − s2

2σ2

)]
+ Ez∼µ0

[
exp

(
4sz − 2s2

2σ2

)]
.

(18)

For the second term in Eq. (18) Ez∼µ0

[
exp

(
2sz−s2

2σ2

)]
, we have

Ez∼µ0

[
exp

(
2sz − s2

2σ2

)]
=

∫ +∞

−∞

1

σ
√

2π
exp

(
−(z − s)2

2σ2

)
dz = 1. (19)

For the third term in Eq. (18), we have

Ez∼µ0

[
exp

(
4sz − 2s2

2σ2

)]
= exp

(
s2

σ2

)∫ +∞

−∞

1

σ
√

2π
exp

(
−(z − 2s)2

2σ2

)
dz

= exp

(
s2

σ2

)
.

(20)

Thus, for Eq. (18), we have

Ez∼µ0

[(
µ0(z)− µ1(z)

µ0(z)

)2
]

= exp
(
s2/σ2)− 1. (21)

Hence, the third term in the binomial expansion of Eq. (15) is

(
1 + λ

2

)
Ez∈µ

[(
µ0(z)− µ(z)

µ(z)

)2
]
≤ λ(λ+ 1)q2

2(1− q)

(
exp(

s2

σ2
)− 1

)
(22)

For σ ≥ s, it is easy to get exp( s
2

σ2 )− 1 ≤ 2s2

σ2 . Therefore, we retrieve that(
1 + λ

2

)
Ez∈µ

[(
µ0(z)− µ(z)

µ(z)

)2
]
≤ λ(λ+ 1)q2s2

(1− q)σ2
. (23)

By standard calculus, we get |µ0(z)− µs(z)| =
∣∣∣∫ zz−s µ′0(z)dz

∣∣∣. Note that µ′0(z) is monotonically decreasing

in (−∞,+∞). Thus, to bound the remaining terms, we derive

∀z ≤ 0 : |µ0(z)− µs(z)| ≤ −s(z − s)µs(z)/σ2

∀z ≥ s : |µ0(z)− µs(z)| ≤ zsµ0(z)/σ2

∀0 ≤ z ≤ s : |µ0(z)− µs(z)| ≤ µ0(z)
(
exp

(
s2/2σ2)− 1

)
≤ s2µ0(z)/σ2.

(24)
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We can then write

Ez∼µ

[(
µ0(z)− µ(z)

µ(z)

)t]

≤
∫ 0

−∞
µ(z)

∣∣∣∣∣
(
µ0(z)− µ(z)

µ(z)

)t∣∣∣∣∣dz
+

∫ s

0

µ(z)

∣∣∣∣∣
(
µ0(z)− µ(z)

µ(z)

)t∣∣∣∣∣dz
+

∫ +∞

s

µ(z)

∣∣∣∣∣
(
µ0(z)− µ(z)

µ(z)

)t∣∣∣∣∣ dz.

(25)

We consider these terms individually. We repeatedly make use of three observations: (1) µ0 − µ =
q (µ0 − µs),(2)µ ≥ (1 − q)µ0, (3)µ ≥ qµs, and (4) Eµ0

[
|z|t
]
≤ σt(t − 1)!!. The first term can then

be bounded by
qt

(1− q)t−1σ2t

∫ 0

−∞
µ0(z)|z − 1|tdz

≤
∫ 0

−∞
qµs

∣∣∣∣∣
(
µ0 − µs
µs

)t∣∣∣∣∣ dz
≤ qst

σ2t

∫ 0

−∞
µs
∣∣(z − s)t∣∣ dz

≤ qst(t− 1)!!

2σt
.

(26)

Then the second term is at most

qt

(1− q)t

∫ s

0

µ(z)

∣∣∣∣∣
(
µ0(z)− µ1(z)

µ0(z)

)t∣∣∣∣∣dz ≤ qt

(1− q)t

∫ s

0

µ(z)
∣∣∣(s2/σ2)t∣∣∣ dz

≤ qts2t

(1− q)tσ2t
.

(27)

Similarly, the third term is at most

qtst

(1− q)t−1σ2t

∫ +∞

s

µ0(z)
∣∣zt∣∣ dz ≤ qtst(t− 1)!!

(1− q)t−1σt
. (28)

Under the assumptions on q, σ, and λ, it is easy to check that the three terms, and their sum, drop off geometrically
fast in t for t > 3. Hence the binomial expansion (5) is dominated by the t = 3 term, which is O

(
s3q3λ3/σ3

)
.

Therefore, the lemma is proved.

With Lemma 1, we retrieve the upper bound of privacy loss of the Gaussian Mechanism. Hence, based on
Lemma 1 and Property 4.1, we provide the generalized privacy analysis of DPSGD with different learning tasks,
which iteratively performs multiple times of the Gaussian Mechanism.

Lemma 2. Suppose that f : D → Rp with ‖f(·)‖2 ≤ s. Let J be a sample from [N ] that each i ∈ [N ] is
chosen independently in probability q = |J |/N , given the number of steps T , for any c0 ∈ (0, 1), there exist
explicit constants c1 and c2 that with any ε < c1q

2T , iteratively computing T times ofM(d) in Lemma 1
attains it with (ε, δ)-DP for any δ > 0 if we choose

σ ≥ c2
qs
√
T log(1/δ)

ε
, (29)

where c1 ≥ 1
c0

log s
qσ

and c2 ≤ 1√
c0(1−c0)

for any c0 ∈ (0, 1).

Proof. Assume for now that σ, λ satisfy the conditions in Lemma 1. After T times of iteration, with Property
4.1 we derive that α(λ) ≤ Tq2s2λ2/σ2. In order to to guarantee the whole training process to be (ε, δ) -DP,
combining α(λ) with Property 4.2, for any c0 ∈ (0, 1), we choose

Tq2s2λ2/σ2 = c0λε,

exp((c0 − 1)λε) ≤ δ.
(30)
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Plugging the condition λ ≤ σ2

s2
log s

qσ
into Eq. (30), we derive the bound for ε as ε < 1

c0
log s

qσ
q2T to

accomplish (ε, δ)-DP by setting

σ =
1√

c0(1− c0)
·
qs
√
T log(1/δ)

ε
, (31)

where c0 ∈ (0, 1).

A.3 PRIVACY ANALYSIS FOR THE LINK RECONSTRUCTION BASED GRAPH GENERATION
MODELS WITH DPSGD

In this section, we conduct the theoretical privacy analysis for link reconstruction based graph generation model
based on Lemma 2 and obtain the conclusion of Theorem 1.

Theorem 1. In training a link reconstruction based graph generation model on a graph with N nodes with
batch size as B, given the sampling probability q = B/N , and the number of steps T , there exist explicit
constants c1 and c2 that for any ε < c1q

2T , iteratively updating the model T times with g̃θ,L attains it with
(ε, δ)-edge-DP for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
,

where c1 ≥ 1
c0

log 1
qσ

, c2 ≤ 1/
√
c0(1− c0) for any c0 ∈ (0, 1).

Proof. Recall the expression of g̃θ,L as in Eq. (5)

g̃θ,L =
1

N

(
N∑
i=1

(
∇vi,θL/max(1,

‖∇vi,θL‖2
C

)

)
+N (0, σ2C2I)

)
,

where L is the loss function for a link reconstruction based graph generation model, C is the clipping hyper-
parameter for the model’s original gradient to bound the influence of each node, and σ is the noise scale
hyper-parameter. According to Definition 1, g̃θ,L is a Gaussian mechanism. Therefore, we first analyze the
`2-norm sensitivity of the clipped gradient function g̃θ,L, and then plug the sensitivity value to Lemma 2 and
conclude the privacy cost of training DPGVAE, thus finishing the proof for Thereom 1.

Following the graph reconstruction procedure in (Simonovsky & Komodakis, 2018), a single value in the
adjacency matrix is sufficient to represent one edge in the respective graph for both directed and undirected
graphs. Therefore, referring to Definition 2, though changing an edge in the graph affects 2 nodes for node
classification tasks, for a structural inference task, i.e., graph reconstruction, as our work targeting at, adding or
removing an edge only results to at most 1 record difference. Together with∇vi,fL being clipped as its `2-norm

no more than C, we obtain the sensitivity of
∑N
i=1∇vi,fL/max(1,

‖∇vi,fL‖2
C

) as C.

With plugging in the clipped∇vi,fL’s sensitivity (s = C) into Lemma 2, we derive Theorem 1. We prove that,
given the sampling probability q = B/N and the number of steps T , with explicit constants c1 ≥ 1

c0
log 1

qσ

and c2 ≤ 1√
c0(1−c0)

, where c0 ∈ (0, 1), through iteratively updating model T times with Eq. (5), the outcome

generation model achieves (ε, δ)-edge-DP for any ε < c1q
2T , and δ > 0 when we choose

σ ≥ c2
q
√
T log(1/δ)

ε
. (32)

Recall the training process for the decoder in DPGVAE and the generator in DPGGAN in Section 3. L in g̃θ,L
is substituted with Lrec and Lrec + λ2Lgan, respectively. For both Lrec and Lrec + λ2Lgan, their gradients
are clipped with C and adding Gaussian noises during the training process. Based on Theorem 1, we derive
Corollary 1.1 and 1.2 for the decoder in DPGVAE and the generator in DPGGAN respectively as below.

Corollary 1.1 (DPGVAE edge-DP). Under the same conditions in Theorem 1,iteratively updating the decoder
in DPGVAE T times with g̃θ,Lrec attains it with (ε, δ)-edge-DP.

Corollary 1.2 (DPGGAN edge-DP). Under the same conditions in Theorem 1, iteratively updating the generator
in DPGGAN T times with g̃θ,(Lrec−λ2Lgan) attains it with (ε, δ)-edge-DP.

With Corollary 1.1 and 1.2, under specified conditions, the public model (either the decoder in DPGVAE or the
generator in DPGGAN) is guaranteed with (ε, δ)-edge-DP by the DP training process. For both DPGVAE de-
coder and DPGGAN generator updated with noised and clipped representations of the sensitive training graph,

16



Under review as a conference paper at ICLR 2021

they only record noised and partial sensitive information. DPGVAE decoder and DPGGAN generator’s link
reconstruction procedures, reflecting its training information, only allude to the desensitize information rather
than the true sensitive training information. Thus, DPGVAE decoder and DPGGAN generator not only prevent
privacy leakage from their inner parameters with DP learning but also preserve the raw private training graphs
from being accurately inferred through the respective outputs.

B APPENDIX: DETAILED TRAINING ALGORITHM

The overall architecture of DPGGAN is shown in Figure 2 in the main content. In Figure 2, the original graph is
fed into the GCN-based encoder network g to compute node embeddings, which is then compared with the prior
distributionN (0, I) and fed into the FNN-based decoder/generator network f to produce the reconstructed graph
and generated graph. After going through the GCN-based discriminator network part 1 (g′), a reconstruction
loss is computed between the reconstructed graph and the original graph, and a discrimination loss is computed
for the generated graph and original graph after the FNN-based discriminator network part 2 (f ′).

Algorithm 1 DPGGAN

Input : Graph data G(A,X), clipping parameter C, decay ratio γ, privacy budget ε, noise scale σ, total
number of nodes N , batch size B = qN , learning rate η, maximum number of training epochs T , loss
weighing parameters λ1 and λ2

Output :Differentially private decoder f .
1 Initialize weights randomly for gµ, gσ , f , g′ and f ′.
2 for epoch t = 0 to T do
3 for iteration i = 0 to N/B do
4 Sample a subgraph Gsub(Asub,Xsub) of size B
5 Mean vector: µ← gµ(Xsub,Asub)
6 Standard deviation vector: σ ← gσ(Xsub,Asub)

7 Update q(Z|X,A)←
∏N
i=1N (zi|µi, diag(σ2

i ))
8 Sample zi, zj ∼ q(Z|X,A)

9 Reconstruct adjacent matrix A′ ← σ(f(zi)
T , f(zj))

10 Lprior = DKL(q(Z|X,A)‖p(Z))
11 Lgan = log(D(A)) + log(1−D(A′))
12 for node xi ∈ Gsub do
13 Compute gθ(xi)← ∂(Lrec − λ2Lgan)/∂xi
14 end
15 Clip gradient: ḡθ(xi)← gθ(xi)/max(1, ‖gθ(xi)‖2

C
)

16 Perturb gradient g̃θ ← 1
B

(
∑
i ḡθ(xi) + N(0, σ2C2I))

17 Average gradient: gθ ← 1
B

∑
i gθ(xi)

18 Update f
+←− η · g̃θ; f ′,g′

+←− η · ∇g′·f ′λ2Lgan; //apply DP learning to the generator

19 Update gµ,gσ
+←− η · ∇g(Lrec + λ1Lprior)

20 end
21 Update C = C ∗ γ
22 end

Here, we give more details towards its training procedures in Algorithm 1. For a better description, we shorten
gθ,(Lrec−λ2Lgan) ( g̃θ,(Lrec−λ2Lgan) ) as gθ ( g̃θ ). In the algorithm, for proper gradient distortion, we devise
gradient clipping in Line 15 and noise injection in Line 16, which is only applied to the generator network f in
Line 18. In Line 21, we gradually reduce the clipping hyper-parameter C as the volume of gradients decreases
along training.

In the experimental analysis, existing works often fix δ as a dataset-specific value like 10−5, and then analyze
the performance of models based on fixed privacy budget ε (Abadi et al., 2016) or fixed noise scale σ (Papernot
et al., 2018). According to Theorem 1, our experiments are conducted with fixing the noise scale σ =

2q
√
T log(1/δ)/ε, where ε < 2 log 1

qσ
q2T . In this work, other than the noise scale σ, to control the variance,

we also fix δ, the sampling ratio q, for better analysis of the model’s privacy loss. Note that we vary the number
of training iterations (query number) T to study the relation between the model’s performance and the privacy
budget.
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(a) DBLP (b) IMDB

Figure 3: Accuracy of links predicted based on networks generated by DPGGAN with varying
hyper-parameters and evaluated on the original networks. Lower AUC means the information in the
generated networks is less useful in revealing the true existence or absence of links in the original
networks, thus better individual data privacy.

C APPENDIX: MORE DETAILS OF EXPERIMENTAL SETTINGS

For GVAE and our models, we use two-layer GCNs with sizes 32 → 16 for both gµ and gσ of the encoder
network, where the first layer is shared, and we use two-layer FNNs with sizes 16→ 32 for f of the decoder
(generator) network. For DPGGAN, we use another two-layer GCN with the same sizes for g′ and a three-layer
FNN with sizes 16→ 32→ 1 for f ′. For DP-related hyper-parameters, we follow existing works (Abadi et al.,
2016; Shokri & Shmatikov, 2015) to fix δ to 10−5, σ to 5, and q to 0.01 (which determines the batch size B as
B = qN with N as the graph size). Then we vary ε from 0.1 to 10 to see how much graph-level utilities are
preserved under different privacy budgets. According to Eq. (32), we terminate the training of DPGGAN at T
iterations when ε is depleted. Other than the essential parameters in Eq. (32), we empirically set the clipping
parameter C to 5, decay ratio γ to 0.99, learning rate η to 10−3, and the loss weighing parameters λ1 and λ2

both to 0.1. We do not observe the model to be very sensitive to the setting of these non-essential parameters.

D APPENDIX: MORE DETAILS OF EXPERIMENTAL RESULTS

In this work, we define the goals of secure network release as preserving global network structure while
protecting individual link privacy. In the main content, we have presented experimental results to support the
effectiveness of DPGGAN in both perspectives. That is, for global network structure preservation, we show
that the generated graphs of DPGGAN are competitively similar to the original graphs in comparison with
the DP-free state-of-the-art graph generative models regarding a suite of commonly concerned global graph
statistics, and for individual link privacy protection, we show that the links predicted in the generated graphs of
DPGGAN are useless (with low accuracy) when evaluated in the original graphs.

The suite of statistics measures the global network structure from different perspectives. As can be inferred from
TC, CPL, and GINI, the IMDB networks are in general smaller, tighter, and likely more structurally complex than
the DBLP networks, which favors link generation models (e.g., GVAE) over sequence generation models (e.g.,
NetGAN, and GraphRNN). Consequently, DPGGAN also performs better on the IMDB networks, indicating its
advantages in modeling complex link structures as a whole.

In addition to the graph statistics, we further demonstrate the data utility of networks generated by DPGGAN
with graph classification, which is the most widely studied graph-level downstream task. We deem this task
important towards evaluating network data utility, especially under our consideration of global network structure
preservation, because correct graph classification requires the generated graphs to share essential structural
properties with the original graphs. As we can see from Table 2 in the main paper, the data utilities evaluated
with graph classification are consistent with those evaluated with global graph statistics, as shown in Table 1
in the main paper. Our two DP-constrained models yield highly competitive performance compared with the
DP-free state-of-the-art graph generative models.

As for privacy protection, we conduct more detailed inspections of the performance of individual link prediction.
In particular, we vary two of the major hyper-parameters, i.e., the privacy budget ε, and sampling ratio q.
Consistently with the results in Table 1, larger privacy budgets lead to more privacy leakage, which allows
attackers to infer individual links in the original networks with higher accuracy. While some DP-constrained
deep learning models are observed to be sensitive to the sampling ratio during training (Abadi et al., 2016; Shokri
& Shmatikov, 2015), the privacy protection of DPGGAN is robust when q is changed in large ranges in practice.
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E APPENDIX: QUALITATIVE GRAPH VISUALIZATIONS

To understand the behaviors and performances of compared algorithms, we conduct visualizations between the
original graphs and graphs generated graphs by different algorithms. We mainly focus on the visualization of
DBLP author networks, since they are in general smaller, sparser and thus easier to visually inspect. We draw
the graphs with NetworkX2.

In general, as we can observe in Figure 4-10:

1. The graphs generated by algorithms without DP constraints like NetGAN and GraphRNN are more
similar to the original graphs, which is consistent with our results in Table 1 and 2 in the main paper.

2. After enforcing the DP constraints, the graphs generated by DPGVAE are significantly different from
the graphs generated by GVAE, especially regarding local structures around individual nodes.

3. The graphs generated by DPGGAN, while also having different local structures compared with those
generated by GVAE, have more similar global structures with the original graphs.

Figure 4: Visualizations on DBLP author network 1.

2https://networkx.github.io/
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Figure 5: Visualizations on DBLP author network 2.

Figure 6: Visualizations on DBLP author network 3.
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Figure 7: Visualizations on DBLP author network 4.

Figure 8: Visualizations on DBLP author network 5.
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Figure 9: Visualizations on DBLP author network 7.

Figure 10: Visualizations on DBLP author network 7.
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