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ABSTRACT

Log files record computational events that reflect system state and behavior, mak-
ing them a primary source of operational insights in modern computer systems.
Automated anomaly detection on logs is therefore critical, yet most established
methods rely on log parsers that collapse messages into discrete templates. This
discretization discards valuable information. Variable log values are ignored, se-
mantic variation is lost. We propose ContraLog, a parser-free and self-supervised
method that reframes log anomaly detection as predicting continuous message
embeddings rather than discrete template IDs. ContraLog combines a message
encoder that produces rich embeddings for individual log messages with a se-
quence encoder to model temporal dependencies across sequences. ContraLog is
trained with a combination of masked language modeling and contrastive learn-
ing to predict masked message embeddings based on the surrounding context.
Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empiri-
cally demonstrate ContraLogs effectiveness on complex datasets with diverse log
messages. Additionally, we find that message embeddings generated by Contra-
Log carry meaningful information and are predictive of anomalies even without
sequence context. These results highlight embedding-level prediction as an ap-
proach for log anomaly detection, with potential applicability to other event se-
quences such as IoT telemetry and audit trails.

1 INTRODUCTION

Log files contain human-readable text snippets that record runtime events reflecting the internal state
and computational events ranging from configuration changes and user requests to error messages.
These logs are the primary record of past system activity and are often the main source of informa-
tion for remotely operated systems. For security-critical applications, sufficient logging can even be
required by regulatory guidelines such as the Payment Card Industry Data Security Standard (PCI
Security Standards Council, 2022).

As systems grow in size, so does the number of generated logs, some producing millions of logs
per minute (Mi et al., 2013). The increasing volume, complexity, and diversity of these logs make
manual assessment impractical, thereby amplifying the need for robust, automated anomaly detec-
tion systems. Such automated approaches are crucial for the timely identification of abnormal events
that could signal security breaches, system failures, or performance issues.

Anomalies in log files can manifest in various forms, including point anomalies, contextual anoma-
lies, and collective anomalies (Landauer et al., 2023). Point anomalies are individual log entries that
deviate significantly from the norm, while contextual anomalies are log entries that appear normal in
isolation but are anomalous in the context they appear in. Collective anomalies represent abnormal
deviations of entire log sequences.

Since anomaly labels are rarely available in real-world logs (He et al., 2016), we use a self-
supervised method that models normal behavior and detects deviations without relying on labeled
anomalies.
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Figure 1: Overview of ContraLog. (1) Log messages of a sequence are individually embedded.
Then, random embeddings are masked, and the SequenceEncoder predicts the original masked rep-
resentations based on the context they occur in. (2) Both encoders are trained end-to-end using
contrastive learning. We aim to maximize the similarity between the observed and the predicted
embedding. (3) Anomalies are evaluated by two criteria. The point anomaly score estimates how
similar a new embedding is to those seen during training. The contextual anomaly score measures
how close the predicted embedding is to the observed one. (4) At inference, each message in a se-
quence is masked one after another, resulting in two anomaly scores for each message. For anomaly
detection, we aggregate the scores into sequence-level features, which are standardized with robust
z-scores and combined via the L2 norm into a single anomaly score.

Traditional anomaly detection methods, whether based on classical statistical techniques or deep
learning, often rely on log parsers such as Drain (He et al., 2017) or Spell (Du & Li, 2016) to
organize log messages into a more structured format. Log files are typically generated using a
consistent pattern, where each entry consists of a fixed message template (log key) and variable log
values that depend on the context in which the message is recorded. Log parsers take advantage of
this pattern by estimating the template used for individual messages based on a dataset of log entries.

These parsers are used in log anomaly detection because they provide a structured and simplified
representation of log messages. By converting raw logs into a discrete set of unique templates,
log parsers reduce the complexity of the data and make it more manageable for machine learning
models.

Despite their widespread use, log parsers introduce several challenges:
Information Loss: Regardless of the log values, messages of the same type are represented by the
same key, leading to a potential loss of information. For example, a voltage reading of 10 V is not
equal to 100 V, but log parsers may treat them identically if the same template was used to generate
logs for both measurements.
Parsing Errors: Parsers require dataset-specific rules and frequent updates as log schemas evolve.
Semantic Similarity: Templates with different IDs may be semantically similar, yet such similarity
is ignored after discretization.

In short, log anomaly detection has been treated as a discrete prediction problem, even though log
events are rich in continuous information. This approach leads to methods that ignore variations
where anomalies can occur. To address these limitations, we ask:

Can log anomaly detection be reframed from predicting discrete tokens to predicting continuous
embeddings of raw messages?

To this end, we propose ContraLog, a novel approach to log file anomaly detection that combines
contrastive learning with masked language modeling to work directly on raw log messages. Con-
traLog consists of a MessageEncoder that encodes individual log messages and a SequenceEncoder
to capture sequential patterns within a sequence of message embeddings. This hierarchical design
additionally shortens the effective sequence length compared to concatenating entire log messages
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into one sequence. By training the model to predict masked message embeddings from the context
they occur in, ContraLog learns to generate meaningful representations of log messages.

We argue that if a model is capable of predicting the masked embedding based purely on the context
in which it appears, the associated message is an expected one and thus normal. If the model fails to
predict the message embedding, the log is unexpected and likely not normal in the context it appears
in. Additionally, message embeddings that deviate from known normal messages can provide an
additional signal for anomaly detection, regardless of context.

By focusing on continuous embeddings rather than discrete IDs, ContraLog retains semantic and
variable log parameters. We find that on the BGL and Thunderbird datasets, these embeddings
themselves already separate normal from abnormal messages, yielding strong predictive power even
without context.

Our work makes the following main contributions:

• A parser-free and self-supervised approach to log file anomaly detection trained with con-
trastive learning and masked language modeling.

• A detailed evaluation of ContraLog on three datasets, demonstrating its effectiveness with-
out dataset-specific preprocessing.

• Evidence that meaningful embeddings alone carry predictive power, particularly on BGL
and Thunderbird.

2 RELATED WORK

Rule-Based Methods: Historically, methods for detecting unusual workloads and resource us-
age (Barham et al., 2004; Reynolds et al., 2006; Thereska & Ganger, 2008) have relied heavily
on domain knowledge. These approaches can be highly effective when the types of anomalies are
well understood, and experts can establish clear rule sets. However, manual rule creation is time-
consuming and requires expertise with the target system, making it difficult to scale to large and
evolving datasets.

To address these limitations, more automated and data-driven methods have been developed.

Machine Learning Methods: These methods often parse the messages and then analyze windows
of logs. They count how often each message type appears in a window and use the counts to create
a feature vector for each sequence. Alternatively, Term Frequency-Inverse Document Frequency
(TF-IDF) (Aizawa, 2003) can be used to create a feature matrix. For this approach, each window
can be treated as a document. Supervised learning techniques, such as Support Vector Machines
(SVM) (Liang et al., 2007), Nearest Neighbor (Liang et al., 2007), and Decision Trees (Chen
et al., 2004) have been employed for log file anomaly detection. These methods require labeled data
to train models that can classify log messages as normal or abnormal. While supervised methods
can achieve high accuracy, they are limited by the need for labeled data, which is often not available
in real-world scenarios (He et al., 2016). Unsupervised learning techniques, such as Log Cluster
(Lin et al., 2016) and Principal Component Analysis (PCA) (Xu et al., 2009), do not require labeled
data. These methods identify anomalies based on the inherent structure of the log data. Log Cluster
groups similar log messages together, while PCA reduces the dimensionality of the log features to
more easily identify unusual log sequences. Other unsupervised approaches for log-based anomaly
detection include Isolation Forest (Liu et al., 2008), One-Class SVM (OCSVM) (Schölkopf et al.,
2001; Li et al., 2003), and k-nearest neighbors with automatically labeled samples (Ying et al.,
2021).

Deep Learning Methods: Deep learning methods have shown promise in capturing the complex
contextual and temporal dependencies found in log sequences (Landauer et al., 2023). Early ap-
proaches use recurrent neural networks to model the sequential nature of log data. For example,
DeepLog (Du et al., 2017) employs a Long Short-Term Memory (LSTM) network to predict the
next log message in a sequence. Deviations from the predicted sequence are flagged as anomalies.
LogAnomaly (Meng et al., 2019) follows a similar strategy but enhances the model by encoding the
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semantic meaning of log templates, which helps generate more meaningful representations of the
log data.

More recent methods rely on the transformer architecture (Vaswani et al., 2017) to capture contex-
tual information. LogBERT (Guo et al., 2021), for instance, adopts a BERT-based model (Devlin
et al., 2019) to learn contextual representations from parsed log messages. In this framework, the
model is trained using self-supervised tasks, specifically masked log key prediction and volume of
hypersphere minimization, which enable it to model the common patterns of normal log sequences.
Rather than working on the actual raw log messages, LogBERT operates on log keys by assigning
each template a learnable embedding. In contrast, LogFit (Almodovar et al., 2024) bypasses the
parsing step and applies masked language modeling directly to the tokens of concatenated log se-
quences. In both cases, the prediction target is part of a discrete set. LogELECTRA (Yamanaka
et al., 2024) focuses on the detection of point anomalies by estimating how likely each token in a
message has been replaced.

An alternative direction is represented by supervised approaches such as NeuralLog (Le & Zhang,
2021), which embeds individual log messages using a pretrained BERT model and then feeds a
sequence of representations into another transformer to classify them as normal or abnormal.

Self-supervised representation learning has increasingly favored predicting embeddings rather than
reconstructing raw inputs. The Joint-Embedding Predictive Architecture (Assran et al., 2023) uses
separate context and target encoders plus a predictor to align latent representations, demonstrating
greater efficiency and robustness. In the text domain, SimCSE (Gao et al., 2021) applies con-
trastive learning directly at the sentence-embedding level, producing semantically rich representa-
tions. However, log anomaly detection has so far focused primarily on discrete template prediction
or raw message reconstruction, omitting the potential benefits of embedding-level prediction.

3 METHODS

3.1 MODEL

ContraLog1 consists of three main components, a byte pair encoding (BPE) tokenizer (Sennrich
et al., 2016), along with the MessageEncoder, and the SequenceEncoder, both of which are trans-
former encoders.

Tokenizer: Log messages generated with the same template usually share common phrases, re-
sulting in a repetitive text corpus that lacks the variability typically found in most natural language
datasets. This characteristic presents a challenge for many pretrained tokenizers, which are typically
trained on diverse natural language corpora. As a result, log messages are often split into numerous
fine-grained tokens, leading to inefficiencies. Moreover, log messages generally have a less diverse
vocabulary compared to natural text, causing many tokens from pretrained tokenizers to occur rarely
or not at all. To address these issues, we fit a new byte pair encoding tokenizer (Sennrich et al., 2016)
to each dataset individually. This approach effectively compresses repetitive parts of log message
templates into fewer tokens, reducing the number of input tokens and the required vocabulary size
(see Figure 3 in the Appendix). Importantly, we do not pretokenize messages on spaces, allowing
the tokenizer to build long tokens that can represent larger parts of log templates.

MessageEncoder: After tokenization, each log message is processed by a transformer encoder,
referred to as the MessageEncoder. This step converts individual log messages into correspond-
ing representations. Each tokenized log message Xi is encoded as Ti = MessageEncoder(Xi),
where Ti ∈ Rl×d with l as the length of the token sequence and d as the dimensionality of the
representation space. i ∈ 1, ..., n refers to the position of a message in a chronologically ordered
sequence of n total messages. The MessageEncoder also incorporates a learnable positional encod-
ing to retain token order within each message. To obtain a single representation Ei for each log
message, we perform mean pooling over each token sequence Ti, followed by a linear layer, such
that Ei = Linear(MeanPool(Ti)), with Ei ∈ Rd.

1https://anonymous.4open.science/r/ContraLog-anonymous-repo-130E
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SequenceEncoder: The sequence of log message representations is then added to another set of
fixed positional encodings and fed into a second transformer encoder, which we refer to as the
SequenceEncoder. This second encoder captures the temporal dependencies and contextual infor-
mation across the sequence of log messages. Outputs from the SequenceEncoder are then used to
train both encoders via a variation of masked language modeling as described in section 3.2.

3.2 TRAINING

Unlike established parser-based approaches which predict a probability distribution over a set of
discrete log keys, ContraLog encodes log messages into continuous embeddings. To train the Mes-
sageEncoder and SequenceEncoder, we therefore rely on a combination of masked language mod-
eling and contrastive learning with a version of the InfoNCE loss (Oord et al., 2018). Let |M | be
the number of masked messages in a minibatch and index them by j, i ∈ {1, . . . , |M |}. For each
masked position j the SequenceEncoder predicts Êj ∈ Rd and the MessageEncoder provides target
embeddings Ei ∈ Rd, which are both normalized to unit length. We form the similarity matrix
S ∈ R|M |×|M | with Sj,i = sim(Êj , Ei) = (ÊT

j Ei)/(||Êj || ||Ei||)/τ with τ as a temperature
parameter.

We define the row-wise cross-entropy loss

Lrow(S) = − 1

|M |

|M |∑
j=1

log
exp(Sj,j)∑|M |
k=1 exp(Sj,k)

, (1)

which treats the diagonal element Sj,j as the positive logit (or similarity) for row j. Analogously,
define the column-wise cross-entropy loss by applying the same formula to the transpose S⊤:

Lcol(S) = Lrow(S
⊤) = − 1

|M |

|M |∑
i=1

log
exp(Si,i)∑|M |

k=1 exp(Sk,i)
. (2)

Finally, the symmetric loss used for training is the average of the two directions:

Lsym =
1

2

(
Lrow(S) + Lcol(S)

)
. (3)

3.3 INFERENCE

During inference, our method applies the learned MessageEncoder and SequenceEncoder to detect
anomalies in log sequences by combining both contextual and point anomaly detection.

Contextual Anomaly Detection: For each masked log message in a sequence, the SequenceEn-
coder predicts a representation Ê from the context it occurs in. A high dissimilarity between the
predicted and actual representations indicates a message not seen during training or one that is un-
expected given the context in which it occurs, and thus a potential anomaly. We define an anomaly
score for each log message as ContextScore(Ej) = 1− sim(Êj , Ej).

To compute an anomaly score for the entire sequence S, we mask each of the n messages one by
one and perform one forward pass. This results in a contextual anomaly score for each message.
We then aggregate these scores to obtain a single score for the entire sequence, either by taking the
maximum or the mean of the individual scores

SequenceScorecontext
max (S) = max

j∈{1,...,n}
ContextScore(Ej) (4)

SequenceScorecontext
mean (S) =

1

n

n∑
j=1

ContextScore(Ej) . (5)

Point Anomaly Detection: While contextual anomaly detection captures temporal and contextual
dependencies within log sequences, it has limitations. Specifically, when a sequence consists of
entirely identical messages, the model can reasonably assume that the masked out message also
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contains the same message. To fill the mask, the SequenceEncoder can then reproduce the message
representations of the other messages in the sequence. This issue can arise even with message types
not seen during training, potentially leading to false negatives where abnormal messages are not
detected due to the context in which they occur.

HDFS BGL Thunderbird

From Abnormal SequencesFrom Normal Sequences

Figure 2: Visualization of the embedding spaces for messages from the HDFS, BGL, and Thun-
derbird datasets using UMAP dimensionality reduction (McInnes et al., 2018). Orange embeddings
originate from abnormal sequences and blue embeddings from normal sequences.

To address this limitation, we introduce point anomaly detection. This method operates directly on
the embeddings generated by the MessageEncoder, focusing on the intrinsic properties of individual
log messages rather than their context. Looking at the embedding space of individual log messages
(see Figure 2), we can see a partial separation between the embeddings of log messages from nor-
mal and abnormal sequences. By fitting an anomaly detection model to a subset of embeddings
from normal sequences, we can detect messages that deviate from the expected distribution in the
embedding space. To detect outliers, we calculate the distance to the closest embedding seen in a
random subset of the training set.

The distance for embedding Ej is defined as PointScore(Ej) = 1− sim(Ej , Enearest), Enearest is the
closest embedding in the subset of normal training sequences. To aggregate scores for a sequence,
we calculate the mean and maximum of these scores

SequenceScorepoint
max (S) = max

j∈{1,...,n}
PointScore(Ej) (6)

SequenceScorepoint
mean(S) =

1

n

n∑
j=1

PointScore(Ej) . (7)

3.4 ANOMALY DETECTION

Let Ycal ∈ Rm×4 be the matrix of sequence-level scores from normal sequences used for calibration,
where each row corresponds to a sequence and each column to one of the four SequenceScores
(mean and maximum, point and context scores).

For each feature f ∈ {1, 2, 3, 4} we compute the median and the median absolute deviation (MAD)
on Ycal:

µ̃f = median
(
(Ycal):,f

)
, MADf = median

(
|(Ycal):,f − µ̃f |

)
. (8)

The feature-wise robust z-score for sequence s is

rzs,f =

∣∣ys,f − µ̃f

∣∣
max

(
MADf , ε

) , (9)

where ys,f denotes the f -th score of sequence s and ε > 0 is a small constant introduced to avoid
division by zero. The calibration quantities µ̃f and MADf are computed once on Ycal and stored.

6
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We aggregate the four feature-wise robust z-scores for each sequence s using the L2 norm:

scores =

√√√√ 4∑
f=1

rz2s,f . (10)

The detection threshold θ is set to the empirical 95th percentile of the calibrated scores computed
on Ycal. At inference, rzs,f and scores for new sequences are computed using the stored µ̃f , MADf

and θ. A sequence is classified as anomalous if scores > θ. Appendix A.2 gives further details on
threshold selection.

By combining both contextual and point anomaly detection, our approach captures temporal de-
pendencies and intrinsic message-level deviations. The mean anomaly scores enables the model to
capture collective anomalies. For these anomalies log message in a sequence may appear normal
when considered in isolation, but abnormal when considered collectively, as described by Ruff et al.
(2021). The relative magnitude of the feature-wise robust z-scores indicates which anomaly score
contributes most to the overall detection. This allows us to characterize whether an anomaly is
primarily contextual, point-based, or a mixture of both. A more detailed analysis of feature contri-
butions is provided in Appendix A.3.

Some messages are exactly repeated throughout the datasets multiple times (see Table 1). During
inference, we can prevent redundant calculations by the MessageEncoder by building a dictionary
of embeddings with the message text as a key. Once a message has been processed, its embedding
is stored and reused for subsequent occurrences, effectively skipping the embedding step. For the
Thunderbird dataset, caching can reduce embedding steps by up to 89.1%. Appendix A.4 provides
more details on the effects of caching.

4 EXPERIMENTS

To evaluate the effectiveness of our approach, we compared the ability of ContraLog in detecting
abnormal log sequences to that of several baseline methods:
LogBERT: A transformer-based model that learns contextual representations via masked language
modeling. Unlike ContraLog, LogBERT requires log parsers to structure the input data and uses
a more classical masked language modeling approach to predict the probability of a masked log
belonging to a certain log template.
DeepLog: An LSTM-based approach that models sequential log behavior by predicting the next log
event. DeepLog also depends on log parsers to extract event sequences and flags anomalies when
predictions do not match observed logs.
Statistical Machine Learning: Methods such as One-Class SVM (OCSVM) and Isolation Forest
are applied on count vectors that record the frequency of each log message type in a sequence. These
features ignore the order and temporal dependencies of messages, detecting anomalies based solely
on deviations from expected log key distributions.

Data We evaluate all methods on three datasets: HDFS, BGL, and Thunderbird (Xu et al., 2009;
Oliner & Stearley, 2007), which provide a wide range of sequence lengths, log types, and complexity
levels. Sources for all these datasets can be found on LogHub (Zhu et al., 2023). For more detailed
information about the number of sequences and sequence length, see Table 1 and the Data section
in the Appendix A.5.

Preprocessing For methods that rely on log IDs, we adhere to the parsing parameters established
by LogBERT, including dataset-specific regular expressions, tree depth, and similarity threshold.
The regular expressions remove block IDs for messages from the HDFS dataset, hexadecimal num-
bers for the BGL dataset, and specific warning patterns for the Thunderbird dataset.

Instead of fitting the parser on the entire dataset, we only fit the parser on the training set. In
doing so we do not artificially prevent out-of-vocabulary issues as highlighted in previous work by
Almodovar et al. (2024).

ContraLog requires minimal preprocessing. The only step we take is the extraction of the core
message from the entire log line, ignoring metadata such as log creation timestamps and labels. By

7
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working directly on raw log messages, we eliminate the possibility of parsing-related errors and aim
to achieve anomaly detection without domain-specific preprocessing.

For the statistical machine learning baselines, feature vectors are built by counting how often each
log key appears in a sequence. This is similar to a bag-of-words approach and ignores the order in
which messages occur in, losing temporal information.

All methods were evaluated on a held-out test set with an equal number of normal and abnormal
sequences.

Table 1: Dataset statistics including the number of normal and abnormal log sequences, the average
number of messages per sequence, the total and unique numbers of log messages (ratio in paren-
theses), and the number of unique log keys identified by a Drain parser. Not every message in the
HDFS dataset is part of a labeled sequence, resulting in a mismatch between session count, average
sequence length, and total message number. By filtering out the session identifier Block IDs from
the HDFS messages, the number of unique messages could be reduced to 1.802.378, resulting in a
ratio of just 16.1%.

Dataset Normal/ Abnormal
Sessions

Average Sequence
Length

Total/Unique
Messages

Log
Keys

HDFS 558,223/16,838 18.2 11.2M/10.3M - (92.4%) 16
BGL 51,667/6,203 81.0 4.7M/1.8M - (37.8%) 155

Thunderbird 488,137/89,446 233.09 211.2M/23.0M - (10.9%) 4282

Table 2: Performance of various models evaluated on the HDFS, BGL, and Thunderbird datasets.
The models include ContraLog, LogBERT, DeepLog, One-Class SVM (OCSVM), and Isolation
Forest. For each dataset, the best F1 score is given in bold.

Model HDFS BGL Thunderbird
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

ContraLog 85.52 83.58 83.35 96.59 96.47 96.47 97.68 97.62 97.62
LogBERT 96.44 38.97 55.51 99.67 36.55 53.49 62.28 99.78 76.69
DeepLog 38.81 81.39 52.56 54.86 100.00 70.85 80.09 96.40 87.49
OCSVM 50.07 99.16 66.54 57.03 66.88 61.56 51.26 54.13 52.66

Isolation Forest 66.80 65.92 66.36 88.89 00.96 01.90 00.00 00.00 00.00

5 RESULTS

Table 2 summarizes the performance of various models on detecting abnormal log sequences in
a held-out test set. We evaluated five approaches: ContraLog, LogBERT, DeepLog, as well as
statistical methods, OCSVM and Isolation Forest. LogBERT and DeepLog were assessed using
their respective open-source implementations.

ContraLog achieves consistently high F1 scores on all datasets. In our experiments, both DeepLog
and LogBERT performed notably worse on HDFS compared to the metrics originally reported. This
behavior can likely be attributed to our adjusted parsing practices, where the parser was exclusively
fitted on the training sets. As noted by Le & Zhang (2022) model performance is highly influenced
by the parsing step. Additionally, we do not impose a minimum sequence length requirement and
split datasets chronologically, potentially increasing the domain shift between training and test set.

Although the performance of the statistical methods depends greatly on the dataset and selected hy-
perparameters (see Table 3 in the Appendix), they can perform comparably to deep learning meth-
ods. On the HDFS dataset, they perform better than both LogBERT and DeepLog, suggesting that
the sequential order of messages may not be critical for identifying some anomalies. Specifically, a
short HDFS sequence is a strong indicator of an abnormal session that terminates prematurely.

The results indicate that predicting latent embeddings can be as effective as, or even preferable to,
predicting the exact log key. For instance, in cases where two log types appear almost interchange-
ably, a model that relies on latent embedding similarity can capture the overlap in meaning without
having to decide on a unique log key to predict.

8
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Figure 2 illustrates a projection of the learned message embeddings for normal and abnormal se-
quences. While many clusters contain messages from both normal and abnormal sequences, some
clusters exclusively contain abnormal messages. Especially for the BGL and Thunderbird datasets, a
large proportion of abnormal sequences contain messages from these clusters, allowing the proposed
point anomaly detection to identify them effectively. This works to such a degree that the exclusion
of contextual anomaly scores does not decrease performance on the Thunderbird dataset and even
slightly improves performance on the BGL dataset (see ablation study in the Appendix A.7).

Additionally, we find that the MessageEncoder does perform a task comparable to that of a parser,
as it groups related log messages together in the embedding space. However, other than purely
parser-based methods, the MessageEncoder can assign different representations to logs with the
same template, but different parameters. In other cases, the encoder assigns similar embeddings
to messages with different templates, if they occur in similar contexts (see Appendix A.8 for more
details).

An additional benefit of our hierarchical approach is its computational efficiency. By processing
individual log messages with the MessageEncoder and operating on a much shorter sequence of
embeddings with the SequenceEncoder, our method reduces the effective sequence length. Since
the computational complexity of transformer models scales quadratically with sequence length, this
design offers efficiency gains over the alternative approach where messages from a sequence are
concatenated and then processed.

Overall, the experimental results validate the core hypothesis that predicting latent embeddings can
be an effective alternative to exact log key prediction. ContraLog consistently achieves high perfor-
mance across multiple datasets, supporting its applicability in diverse log analysis scenarios.

6 CONCLUSION

We introduced ContraLog, a parser-free approach for log file anomaly detection trained with con-
trastive learning and masked language modeling. By operating directly on raw log messages, Con-
traLog avoids the challenges associated with traditional parser-based methods. Our approach instead
focuses on predicting continuous message embeddings, capturing semantic information and tempo-
ral dependencies of normal logs.

A central contribution of ContraLog is its two-pronged anomaly detection strategy, which combines
contextual and point-based scoring. We show that especially point anomaly detection contributes to
the overall performance on the BGL and Thunderbird datasets.

Another key advantage of ContraLog lies in its hierarchical processing strategy that keeps the input
sequence length for the MessageEncoder and SequenceEncoder short. This architecture also enables
efficient reuse of message embeddings through caching.The use of custom tokenizers furthermore
reduce input length when compared to pretrained tokenizers.

Experimental evaluations on the HDFS, BGL, and Thunderbird datasets demonstrate that Contra-
Log achieves competitive performance across diverse logging scenarios. In particular, our method
consistently attains high F1-scores on complex datasets, thereby validating the effectiveness of pre-
dicting latent embeddings over explicit log key prediction.

Overall, the combination of masked language modeling and contrastive learning in our approach
yields meaningful representations that improve anomaly detection. By enabling early detection of
deviations in system behavior, our method can support predictive maintenance, strengthen system
security by flagging suspicious activity, and ultimately help to reduce downtime in critical infras-
tructure.

7 REPRODUCIBILITY

We provide a reference implementation for all components required to reproduce the main results.
This includes code for data processing and labeling, model definitions, training and evaluation
scripts, as well as configuration files. Key hyperparameters and computational requirements are
listed in Appendix A.9. Labeling rules are described in Appendix A.5. Used datasets are publicly
available.
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A APPENDIX

A.1 TOKENIZER

Figure 3 visualizes the fitting behavior of our BPE tokenizer for different datasets. As the dictionary
size increases, the average number of tokens required to tokenize a log message decreases. For
this comparison, only the number of tokens that occur at least once in the corresponding dataset is
displayed. The BPE tokenizer starts with a base dictionary of Unicode characters and merges tokens
until the unpruned dictionary size reaches 4,096. For comparison, the unpruned dictionary of the
BERT-Base Uncased tokenizer contains more than 30,000 tokens.
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Figure 3: Comparison of log message compression rates between a custom Byte Pair Encoding
(BPE) tokenizer and the pre-fitted BERT-Base Uncased (Devlin et al., 2019) tokenizer across dif-
ferent datasets.

A.2 THRESHOLD SENSITIVITY ANALYSIS
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Figure 4: F1 scores achieved on the test set when using different percentiles of the anomaly score
distribution on the training set as a threshold.

While we report results using a 95th percentile threshold for all datasets, using the label information
in the test set we can analyze how performance depends on the chosen threshold. Figure 4 shows
the F1 scores achieved on the test set when using different percentiles of the normal anomaly score
distribution on the training set as a threshold. Metrics were calculated using the full feature set of
mean and maximum, point and context anomaly scores.

In practice, the optimal threshold depends on the distribution shift between normal and abnormal
logs and the contamination of the training set with abnormal logs. If labeled information is available,
the choice of threshold can have a significant influence on the performance. The theoretically opti-
mal F1 scores could be 96.84 for BGL with a threshold of 97.04, 84.73 for HDFS with a threshold
of 99.12 and 98.15 for Thunderbird with a threshold of 96.48.
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Figure 5: Distributions of the ratio different anomaly scores contribute to the classification of abnor-
mal test sequences.

A.3 SCORE FRACTIONS

By normalizing the robust z-scores of a log sequence, we can estimate how much each anomaly
score contributes to the final classification of a sequence. Figure 5 shows the distributions of the ra-
tio different anomaly scores contribute to the classification. For different datasets, different anomaly
scores hold different importance. While score contributions for HDFS are mostly balanced, BGL
and Thunderbird heavily rely on the mean and max point anomaly scores. Especially for the Thun-
derbird dataset, context anomaly scores play only a minor role. These observations align with the
results of the ablation study in Appendix A.7. When detecting anomalies based on a single feature
alone, the anomaly score with the highest average contribution per dataset achieves the best results.

A.4 CACHE HIT RATES
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Figure 6: Cache hit rates for different configurations.

Figure 6 shows the log message cache hit rates for different cache sizes. For this experiment, we
process datasets in chronological order. Two versions of the HDFS dataset were considered. One
with the original unaltered messages (HDFS) and one with the session identifying block ids removed
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(HDFS no blk). Due to the repetitive nature of log messages, where identical messages appear
multiple times, potentially in quick succession, caching of the LogEmbedder outputs can benefit
even from small cache sizes. The cache hit rate is defined as the ratio of embeddings that were found
in the cache (from previous identical messages) at the time the message appears in the dataset.

A.5 DATA

The HDFS, BGL, and Thunderbird datasets (Xu et al., 2009; Oliner & Stearley, 2007) provide a
wide range of sequence lengths, log types, and complexity levels. Sources for all these datasets
can be found on LogHub2 (Zhu et al., 2023). For more detailed information about the number of
sequences and sequence length, see Table 1.

HDFS Dataset The HDFS dataset (Xu et al., 2009) consists of logs from the Hadoop Distributed
File System. This dataset is organized into session windows, where each session contains a sequence
of log messages. The dataset includes labels indicating whether each session is normal or abnormal.
Since sessions are already clearly defined, we apply no further windowing. Instead, sessions longer
than 256 messages are truncated while maintaining the original session label.

BGL Dataset The BGL dataset (Oliner & Stearley, 2007) contains logs from the Blue Gene/L
supercomputer. For this dataset, we used time windows of 60 seconds, capped to a maximum of 256
log messages per window. Each log message in the BGL dataset is labeled as normal or abnormal. If
any message within a window is abnormal, the entire sequence is labeled as abnormal. This dataset is
challenging because some windows are highly repetitive, with the same message appearing multiple
times.

Thunderbird Dataset The Thunderbird dataset (Oliner & Stearley, 2007) comprises logs from
the Thunderbird supercomputer. Similar to the BGL dataset, we used time windows of 60 seconds,
capped to a maximum of 256 log messages per window. The labeling works identically to the BGL
Dataset.

The Thunderbird system creates more numerous and more complex logs compared to the other
systems. The result is a higher average sequence length and a larger overall dataset. Furthermore,
the structure of the log messages is more complex. Our Drain parsers (for more information, see
Preprocessing in the Experiments Section 4) fitted on the training set was able to detect 4282 unique
log types. Although the parsing parameters greatly influence the number of unique log IDs, this
shows the difference in semantic complexity between the datasets.

This higher complexity creates a potentially more challenging environment for anomaly detection,
although the overall difficulty also depends on the similarity between normal and abnormal se-
quences.

A.6 TUNING STATISTICAL MACHINE LEARNING METHODS

For the statistical machine learning methods, we note that the selected hyperparameters can greatly
influence the performance (see Table 3). To give a better overview of the potential performance, we
performed a grid search using a subset of normal and abnormal sequences.

In some cases, these statistical approaches perform comparably to deep learning methods, suggest-
ing that for certain datasets, the sequential order of messages may not be critical for identifying
anomalies. Count vectors also allow the easy detection of unusually short or long sequences, which
can be an indicator of anomalies.

Still, the performance of ContraLogs remains better than that of the tuned statistical methods.

In real-world settings, labeled data is often only available in limited quantities, making this type of
hyperparameter tuning difficult.
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Table 3: Performance of One-Class SVM (OCSVM), and Isolation Forest.

Model HDFS BGL Thunderbird
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

OCSVMT 86.81 72.55 79.03 69.35 86.35 76.92 80.34 93.57 86.46
Isolation ForestT 66.84 66.04 66.44 65.80 38.58 48.64 80.45 85.71 83.00

with T indicating experiments with tuned hyperparameters.

Table 4: F1 score for anomaly detection with different combinations of anomaly scores. Pmax and
Pmean represent the max and mean point anomaly scores, and Cmax and Cmean the max and mean
context anomaly scores. Only features marked with a checkmark were used to compute the metrics
in the respective row.

Pmax Pmean Cmax Cmean HDFS BGL Thunderbird
- - - ✓ 81.932 84.579 72.964
- - ✓ - 82.675 47.610 33.417
- - ✓ ✓ 82.675 47.872 72.359
- ✓ - - 74.971 97.372 97.250
- ✓ - ✓ 83.739 96.625 97.250
- ✓ ✓ - 83.059 96.734 97.473
- ✓ ✓ ✓ 83.204 94.637 97.473
✓ - - - 74.739 97.060 97.473
✓ - - ✓ 83.575 95.926 97.250
✓ - ✓ - 83.088 94.731 97.473
✓ - ✓ ✓ 83.212 94.637 97.473
✓ ✓ - - 74.907 97.201 97.624
✓ ✓ - ✓ 83.910 96.532 97.624
✓ ✓ ✓ - 83.330 97.076 97.624
✓ ✓ ✓ ✓ 83.354 96.470 97.624

A.7 SEQUENCESCORE ABLATION STUDY

Table 4 presents the results of an ablation study examining the impact of different combinations
of anomaly scores on the F1 score for anomaly detection. The study evaluates the importance of
different anomaly scores across the HDFS, BGL, and Thunderbird datasets.

While combining all scores generally provides robust results, there are cases where a subset of scores
performs equally well or better. The results show that the optimal combination of scores varies by
dataset. The HDFS dataset achieves its highest F1 score (83.178) using only Cmax and Cmean, while
the BGL dataset performs best (97.372) with Pmean alone. In contrast, the Thunderbird dataset
achieves its highest F1 score (97.624) when both point anomaly scores (Pmean, Pmax) are included.

Without labeled data however, it is challenging to determine the optimal combination of scores for
a given dataset. These observations align with the observations in Appendix A.3, where features
that achieve a high F1 score on their own tend to also play an important role when combined with
other features. Also, Wittkopp et al. (2021) found that most anomalies in the BGL and Thunderbird
datasets can be considered as point anomalies, which aligns with our observations.

A.8 EMBEDDING SPACE ANALYSIS

Figure 7 visualizes the embedding space for HDFS log messages using a UMAP dimensionality
reduction. Samples for this experiment were drawn from 1000 normal and 1000 abnormal sessions
from the test set. To better understand how ContraLog groups messages, we manually analyze
the embedding space. For the following analysis, variable log parameters are replaced with
placeholders (e.g., <IP+Port>, <Block ID>). We find messages are approximately grouped into
the following logical groups:
A+B: Messages from two different templates appear in this cluster. One set of messages about

2https://github.com/logpai/loghub
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Figure 7: UMAP projection of the embedding space for messages from 2,000 HDFS sequences.
Colors indicate manual groupings of messages with similar semantics.

DataNodes serving blocks, e.g., ”INFO dfs.DataNode$DataXceiver: <IP+Port> Served block
<Block ID> to <IP>” and one set of messages about DataNodes encountering an exception
while serving a block, e.g., ”WARN dfs.DataNode$DataXceiver: <IP+Port> :Got exception while
serving <Block ID> to /<IP> :”. Both messages appear in normal and abnormal sequences. Both
clusters overlap, indicating the corresponding messages appear in similar contexts. Instead of a
confirmation of the successful serving of a block, an exception might occur in its place.
C: Messages about the start of a block transfer, e.g., ”INFO dfs.DataNode: <IP+Port> Starting
thread to transfer block <Block ID> to <IP+Port>”. This group is split into multiple clusters,
depending on the values of parameters. Variants with two target addresses (”[...] <Block ID> to
<IP+Port>, <IP+Port>”) form their own cluster. Most messages of these cluster originate from
abnormal sequences.
D: Messages about the replication of blocks to other data nodes, e.g.,”INFO dfs.FSNamesystem:
BLOCK* ask <IP+Port> to replicate <Block ID> to datanode(s) <IP+Port>”.
E: Messages about updating block maps, e.g., ”INFO dfs.FSNamesystem: BLOCK* NameSys-
tem.addStoredBlock: blockMap updated: <IP+Port> is added to <Block ID> size <Block Size>”.
F: Messages about blocks not belonging to any file, e.g., ”INFO dfs.FSNamesystem: BLOCK*
NameSystem.addStoredBlock: addStoredBlock request received for <Block ID> on <IP+Port>
size <Block Size> But it does not belong to any file.”. All messages in this cluster only appear in
abnormal sequences, making it suitable for point anomaly detection.
G: Messages about redundant requests, e.g., ”WARN dfs.FSNamesystem: BLOCK* NameSys-
tem.addStoredBlock: Redundant addStoredBlock request received for <IP> on <IP+Port> size
<Block Size>”. All messages of this cluster originate from abnormal sequences.
H: Messages about blocks being marked as invalid, e.g., ”INFO dfs.FSNamesystem: BLOCK*
NameSystem.delete: <Block ID> is added to invalidSet of <IP+Port>”.
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I: Messages about deleting blocks, e.g., ” INFO dfs.FSDataset: Deleting block <Block ID> file
/mnt/hadoop/dfs/data/current/subdir<Subdir Nr.>/<IP+Port>”.
J: Messages about PacketResponders terminating, e.g., ” INFO dfs.DataNode$PacketResponder:
PacketResponder <Responder ID> for block <Block ID> terminating”. Each of the three clusters
corresponds to one Responder ID (0, 1, 2). All three variants of the message use the same template,
but do not appear interchangeably, causing them to be embedded slightly differently. Notably,
each cluster can also contain embeddings of messages indicating the corresponding responder was
interrupted, e.g., ”INFO dfs.DataNode$PacketResponder: PacketResponder <Responder ID> for
block <Block ID> Interrupted.”. This message appears in normal and abnormal sequences and
seems to appear interchangeably with the terminating message from the PacketResponder with the
same ID.
K: Messages about java.io.IO Exceptions, e.g., ”INFO dfs.DataNode$DataXceiver: writeBlock
<Block ID> received exception java.io.IOException: Could not read from stream”. All messages
from this cluster only appear in abnormal sequences.
L+M: Messages about PacketResponders receiving blocks with information about the block size
and source, e.g., ”INFO dfs.DataNode$PacketResponder: Received block <Block ID> of size
<Block Size> from /<IP>”. While all the messages in this group use the same template, they
are embedded into multiple distinct clusters. The clustering is based on the source IP address and
the block size. For example, clusters in group L contain messages about blocks with a size of
67,108,864, while messages from clusters in group M reference smaller blocks.
N: Messages about the DataXceiver receiving blocks with information about source, destination and
block size, e.g., ”INFO dfs.DataNode$DataXceiver: Received block <Block ID> src: /<IP+Port>
dest: /<IP+Port> of size <Block Size>”.
O: Messages about receiving a block, e.g., ”INFO dfs.DataNode$DataXceiver: Receiving block
<Block ID> sre: /<IP+Port> dest: /<IP+Port> ”. These messages typically form the start of a
log session.
P:Messages about transmitting blocks, e.g., ”INFO dfs.DataNode$DataTransfer. <IP+Port>
:Transmitted block <Block ID> to /<IP+Port>”. This group is split into two clusters, depending
on the values of parameters. Most messages of this cluster originate from abnormal sequences.
Q: Messages of this group contain various rare exceptions and messages about metafile modifica-
tions. All messages only appear in abnormal sequences.

Summarizing the observations, the MessageEmbedder performs a function related to that of
a log parser. Many of the clusters in the embedding space are formed by messages that share a
common template. In some cases messages that might appear in the same context occupy the same
region in the embedding space, e.g., messages about successfully served blocks and messages about
exceptions while serving blocks. Other than parser based methods, ContraLog can embed messages
of the same template differently depending on the values of parameters, e.g., different embeddings
for different PacketResponders terminating.

Figure 8 compares the sequences of normal and abnormal HDFS log messages embeddings. A
typical normal sequence might look like this: A block is written to three DataNodes, creating three
logs belonging to group O. Each PacketResponder terminates and confirms the transfer of the block
(often 64MB), generating 6 messages, three from group J and three from group K. The NameSystem
updates its block map with the new block locations and size, creating three messages of group E.
Eventually, the NameSystem adds the blocks to an invalid set (three messages of group H) and they
are deleted (three messages of group I). Sequences can deviate from this pattern and still be normal,
e.g., skip the declaration as invalid and deletion of a block, as shown in the fourth image of Figure
8a. Abnormal sequences often, but not always, deviate from this general pattern. An easy to spot
example would be a very short session that ends abruptly with an exception, as shown in the first
image of Figure 8b.

A.9 IMPLEMENTATION DETAILS AND REPRODUCIBILITY

This section will give information about parameters used for training and testing. ContraLog was
trained on a Quadro RTX 6000 with 24GB of VRAM. The memory requirements mainly depend on
the model size, sequence and message length and batch size. The batch size was set to the largest
value that fit within the memory constraints during training. Table 5 shows the hyperparameters
used for the experimental evaluation. These parameters were mostly set to satisfy computational
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Figure 8: Comparison of sample normal and abnormal HDFS sequences in the embedding space.
Each line visualizes the chronological order in which messages of a session were generated.

constraints. An extensive hyperparameter search was not conducted. The tokenizer vocabulary
size was set to ensure the average log message can fit into the 64 token context window. Model
parameters were optimized by AdamW with β1 as 0.9, β2 as 0.999, and a weight decay of 0.01. The
parameter gradient norm (ℓ2) was clipped to a value of one. The temperature parameter τ was set to
0.25. Model training was done with the help of PyTorch. The overall parameter counts range from
almost 500,000 to more than 4.5M, remaining well below the size of many transformer-based NLP
models. Yet, due to the up to 16,000 cumulative tokens that can be contained in a single sequence,
the memory requirements can grow for the Thunderbird dataset. The number of attention heads and
layers for the MessageEncoder and the SequenceEncodes was set to be identical.

Table 5: ContraLog hyperparameters for different datasets

Hyperparameter HDFS BGL Thunderbird
max. message length (BPE tokens) 64 64 64
max. sequence length 64 256 256
tokenizer vocab size 512 1024 2048
BPE token embedding size 126 64 128
message embedding size 512 256 512
number of layers (both encoders) 6 4 4
number of heads (both encoders) 6 4 4
learning rate 1e-4 1e-4 5e-5
masking ratio (train) 15% 15% 15%
batch size 256 128 32

Training time varies between datasets. Using the described configuration, the HDFS model con-
verges after 163 epochs, taking around 36 hours. On the BGL dataset loss converges at around 260
epochs (18 hours). Training on the full Thunderbird dataset poses much more of a challenge. To
achieve the reported results, we trained for 6 epochs (36 hours). Mixed precision with autocast to
16-bit was applied to improve memory usage and computational efficiency.

Sequences are split 60%, 5%, 30%, 5% for training, validation, testing, and as a reference for
calculating anomaly score distributions. Sequences are split in sequential order, meaning the newest
sequences are used for testing and the oldest for training. This approach better simulates real-
world scenarios and prevents data leakage. Abnormal sequences are discarded during the training,
validation, and reference phases. For the test split, an equal ratio of normal and abnormal sequences
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is maintained. Normal sequences are randomly selected from the full test split, and any normal
surplus sequences are discarded. For the HDFS dataset the timestamp of the first message in a
session was used as a reference for the entire sequence. Table 6 summarizes the number of sequences
in the final data splits.

Table 6: Number of sequences in the final data splits.

Dataset Train Validation Normal Test Abnormal Test
Thunderbird 467,483 38,857 31,624 31,624
HDFS 333,877 27,618 3,235 3,235
BGL 32,398 2,709 1,617 1,617

A.10 SEQUENCE AND MESSAGE MODIFICATIONS
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Figure 9: Anomaly score distributions of normal HDFS sequences after modifications on sequence
and message-level.

Figure 9 shows the change in anomaly score when normal HDFS test sequences are modified. For
these experiments, 2500 normal test sequences were used.
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Message Position Changes shows the contextual anomaly score for sequences where the position of
a single log messages in the sequence was changed by a certain number of positions. Zero position
changes represents the baseline scores for the original unmodified sequences. The scores for most
sequences remain low when a message is moved by just one position. However, moving some
messages by just one position can cause a significant increase in the anomaly score.

Message Deletions shows the anomaly score for sequences with a certain number of messages
removed. While the removal of some messages has little influence over the score, the deletion of
most messages causes a large increase in the sequence anomaly score. Together with the previous
experiment, this indicates that most messages in a sequence play an important role in identifying a
sequence as normal, with some flexibility in the order they appear in.

Message Duplications and Message Duplications Adj. show the anomaly scores for sequences
where a certain number of random messages were duplicated. In the adjacent variant, the duplicate
message was inserted directly after the original message. In the non-adjacent variant, the duplicate
message was inserted at a random position in the sequence. The anomaly scores increase with the
number of duplicated messages. As with the message deletions, average anomaly score increases
quickly even with just a single duplicate message. Only few modified sequences remain with a low
anomaly score. Inserting messages adjacent to the original message causes slightly smaller scores
when just one or two messages are duplicated.

Message Insertions shows the anomaly scores when a certain number of random messages were
inserted into the sequence at random positions. The inserted messages were sampled from the entire
test set. Just like in the previous examples, the addition of just a single message increases the average
anomaly score significantly.

The remaining experiments regard message-level modifications. For this, words in a message were
defined as consecutive characters separated by whitespaces.

Word Deletions shows the anomaly scores for sequences where a certain number of words in a
certain fraction of messages were deleted. The experiment was repeated with deletions in 1%, 10%
and 20% of messages in a sequence. The deletion of a single crucial word from a single message
can already increase the anomaly score. In other cases, the sequence score remains low even with
multiple words removed. The deletion of words in a larger fraction of messages tends to increase
the average anomaly score. Notably, at least one word per message was always kept, so that the
message did not become empty.

Random Word Add. shows the anomaly scores when a certain number of random words were
added to either 1% or 10% of messages in a sequence. The added words are randomly drawn from
the 1,000 most common words in the English language. The majority of these words never appear
in the HDFS dataset.

HDFS Word Add. also shows the anomaly scores when a certain number of words were added to
either 1% or 10% of messages in a sequence. However, the words for this experiment were sampled
from the HDFS test set, with a sampling probability proportional to the word frequency. Compared
to the addition of random words, the anomaly scores increase more slowly with the number of added
words. Notably, while the addition of many completely random words almost never results in a low
anomaly score, even with 20 added words from the HDFS dataset, some sequences remain with a
low anomaly score.

Word Pos. Changes show the anomaly scores for sequences where a certain number of words in
a certain fraction of sequences (1%, 10%) were moved to a different position in the same message.
While the average anomaly score for sequences with unaltered messages is 0.005030. Shuffling
eight words in a message only increases the average score to 0.008245. This indicates that the
MessageEmbedder is robust to changes in word order. We attribute this behavior to the fact that
messages in the HDFS dataset can usually be identified just by the combination of tokens present in
the message, not their order.

Word Duplicate shows the anomaly scores for sequences where a certain number of words in a
certain fraction of messages (1%, 10%) were duplicated. The duplication of words has only a small
influence on the anomaly score, even when multiple words are duplicated in multiple messages.
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A.11 SEQUENCE LENGTH ANALYSIS
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Figure 10: F1 scores achieved on on different test sequences grouped by sequence length.

Figure 10 shows the F1 scores achieved on different test sequences grouped by sequence length. The
performance on the HDFS dataset is especially good for short sequences. This is likely because a
short sequence length is a strong indicator of abnormal sessions that terminate prematurely. On the
Thunderbird dataset, the performance only slightly decreases for longer sequences.

A.12 LIMITATIONS

Dependence on Normal-Only Training Data Our approach assumes access to a sufficient
amount of normal log sequences for self-supervised training. In practice, real-world log files are
rarely labeled, and separating out purely normal data can be difficult. If abnormal entries leak into
the training set, detection quality can decrease, potentially leading to higher false negative rates. Ad-
ditionally, an underrepresentation of certain normal logs might introduce a bias and falsely flag them
as abnormal. This might be the case for older/less common software or non-standard configurations.

Computational Cost The hierarchical design of ContraLog reduces the sequence length for
the transformers, but the quadratic complexity of self-attention in both MessageEncoder and Se-
quenceEncoder still imposes limits on very long sequences. If an Anomaly only manifests over long
time spans and a number of messages greater than the maximum context length, it is undetectable
for ContraLog.

Caching Memory Requirements During inference, we cache embeddings for repeated messages
to avoid redundant computations. However, in environments with a large number of unique mes-
sages, the cache can grow large and consume significant memory. While this trade-off improves
runtime performance, it may become impractical in some scenarios, unless additional pruning or
eviction strategies are employed.
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