
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CONTRALOG: LOG FILE ANOMALY DETECTION WITH
CONTRASTIVE LEARNING AND MASKED LANGUAGE
MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Log files record computational events that reflect system state and behavior, mak-
ing them a primary source of operational insights in modern computer systems.
Automated anomaly detection on logs is therefore critical, yet most established
methods rely on log parsers that collapse messages into discrete templates. This
discretization discards valuable information. Variable log values are ignored, se-
mantic variation is lost. We propose ContraLog, a parser-free and self-supervised
method that reframes log anomaly detection as predicting continuous message
embeddings rather than discrete template IDs. ContraLog combines a message
encoder that produces rich embeddings for individual log messages with a se-
quence encoder to model temporal dependencies across sequences. ContraLog is
trained with a combination of masked language modeling and contrastive learn-
ing to predict masked message embeddings based on the surrounding context.
Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empiri-
cally demonstrate ContraLogs effectiveness on complex datasets with diverse log
messages. Additionally, we find that message embeddings generated by Contra-
Log carry meaningful information and are predictive of anomalies even without
sequence context. These results highlight embedding-level prediction as an ap-
proach for log anomaly detection, with potential applicability to other event se-
quences such as IoT telemetry and audit trails.

1 INTRODUCTION

Log files contain human-readable text snippets that record runtime events reflecting the internal state
and computational events ranging from configuration changes and user requests to error messages.
These logs are the primary record of past system activity and are often the main source of informa-
tion for remotely operated systems. For security-critical applications, sufficient logging can even be
required by regulatory guidelines such as the Payment Card Industry Data Security Standard (PCI
Security Standards Council, 2022).

As systems grow in size, so does the number of generated logs, some producing millions of logs
per minute (Mi et al., 2013). The increasing volume, complexity, and diversity of these logs make
manual assessment impractical, thereby amplifying the need for robust, automated anomaly detec-
tion systems. Such automated approaches are crucial for the timely identification of abnormal events
that could signal security breaches, system failures, or performance issues.

Anomalies in log files can manifest in various forms, including point anomalies, contextual anoma-
lies, and collective anomalies (Landauer et al., 2023). Point anomalies are individual log entries that
deviate significantly from the norm, while contextual anomalies are log entries that appear normal in
isolation but are anomalous in the context they appear in. Collective anomalies represent abnormal
deviations of entire log sequences.

Since anomaly labels are rarely available in real-world logs (He et al., 2016), we use a self-
supervised method that models normal behavior and detects deviations without relying on labeled
anomalies.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Point Anomaly
Evaluation

ee

e

Contextual
Anomaly Evaluation

m

bbbb ccccaaaa dddd

Message
Encoder

Sequence
Encoder

1

Predicted Embedding

Log Embedding

Target Embedding

Positional Encoding

m Masking Token

Log Messagexxxx

Contrastive Learning

3

A
n

o
m

al
y

S
co

re
s

Anomaly
Detection

4

2

t

P

P

t
e

e

e
p

pppp

te e

ee

e

t
t

P P

e

P
t

bbbbaaaa cccc dddd

Figure 1: Overview of ContraLog. (1) Log messages of a sequence are individually embedded.
Then, random embeddings are masked, and the SequenceEncoder predicts the original masked rep-
resentations based on the context they occur in. (2) Both encoders are trained end-to-end using
contrastive learning. We aim to maximize the similarity between the observed and the predicted
embedding. (3) Anomalies are evaluated by two criteria. The point anomaly score estimates how
similar a new embedding is to those seen during training. The contextual anomaly score measures
how close the predicted embedding is to the observed one. (4) At inference, each message in a se-
quence is masked one after another, resulting in two anomaly scores for each message. For anomaly
detection, we aggregate the scores into sequence-level features, which are standardized with robust
z-scores and combined via the L2 norm into a single anomaly score.

Traditional anomaly detection methods, whether based on classical statistical techniques or deep
learning, often rely on log parsers such as Drain (He et al., 2017) or Spell (Du & Li, 2016) to
organize log messages into a more structured format. Log files are typically generated using a
consistent pattern, where each entry consists of a fixed message template (log key) and variable log
values that depend on the context in which the message is recorded. Log parsers take advantage of
this pattern by estimating the template used for individual messages based on a dataset of log entries.

These parsers are used in log anomaly detection because they provide a structured and simplified
representation of log messages. By converting raw logs into a discrete set of unique templates,
log parsers reduce the complexity of the data and make it more manageable for machine learning
models.

Despite their widespread use, log parsers introduce several challenges:
Information Loss: Regardless of the log values, messages of the same type are represented by the
same key, leading to a potential loss of information. For example, a voltage reading of 10 V is not
equal to 100 V, but log parsers may treat them identically if the same template was used to generate
logs for both measurements.
Parsing Errors: Parsers require dataset-specific rules and frequent updates as log schemas evolve.
Semantic Similarity: Templates with different IDs may be semantically similar, yet such similarity
is ignored after discretization.

In short, log anomaly detection has been treated as a discrete prediction problem, even though log
events are rich in continuous information. This approach leads to methods that ignore variations
where anomalies can occur. To address these limitations, we ask:

Can log anomaly detection be reframed from predicting discrete tokens to predicting continuous
embeddings of raw messages?

To this end, we propose ContraLog, a novel approach to log file anomaly detection that combines
contrastive learning with masked language modeling to work directly on raw log messages. Con-
traLog consists of a MessageEncoder that encodes individual log messages and a SequenceEncoder
to capture sequential patterns within a sequence of message embeddings. This hierarchical design
additionally shortens the effective sequence length compared to concatenating entire log messages

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

into one sequence. By training the model to predict masked message embeddings from the context
they occur in, ContraLog learns to generate meaningful representations of log messages.

We argue that if a model is capable of predicting the masked embedding based purely on the context
in which it appears, the associated message is an expected one and thus normal. If the model fails to
predict the message embedding, the log is unexpected and likely not normal in the context it appears
in. Additionally, message embeddings that deviate from known normal messages can provide an
additional signal for anomaly detection, regardless of context.

By focusing on continuous embeddings rather than discrete IDs, ContraLog retains semantic and
variable log parameters. We find that on the BGL and Thunderbird datasets, these embeddings
themselves already separate normal from abnormal messages, yielding strong predictive power even
without context.

Our work makes the following main contributions:

• A parser-free and self-supervised approach to log file anomaly detection trained with con-
trastive learning and masked language modeling.

• A detailed evaluation of ContraLog on three datasets, demonstrating its effectiveness with-
out dataset-specific preprocessing.

• Evidence that meaningful embeddings alone carry predictive power, particularly on BGL
and Thunderbird.

2 RELATED WORK

Rule-Based Methods: Historically, methods for detecting unusual workloads and resource us-
age (Barham et al., 2004; Reynolds et al., 2006; Thereska & Ganger, 2008) have relied heavily
on domain knowledge. These approaches can be highly effective when the types of anomalies are
well understood, and experts can establish clear rule sets. However, manual rule creation is time-
consuming and requires expertise with the target system, making it difficult to scale to large and
evolving datasets.

To address these limitations, more automated and data-driven methods have been developed.

Machine Learning Methods: These methods often parse the messages and then analyze windows
of logs. They count how often each message type appears in a window and use the counts to create
a feature vector for each sequence. Alternatively, Term Frequency-Inverse Document Frequency
(TF-IDF) (Aizawa, 2003) can be used to create a feature matrix. For this approach, each window
can be treated as a document. Supervised learning techniques, such as Support Vector Machines
(SVM) (Liang et al., 2007), Nearest Neighbor (Liang et al., 2007), and Decision Trees (Chen
et al., 2004) have been employed for log file anomaly detection. These methods require labeled data
to train models that can classify log messages as normal or abnormal. While supervised methods
can achieve high accuracy, they are limited by the need for labeled data, which is often not available
in real-world scenarios (He et al., 2016). Unsupervised learning techniques, such as Log Cluster
(Lin et al., 2016) and Principal Component Analysis (PCA) (Xu et al., 2009), do not require labeled
data. These methods identify anomalies based on the inherent structure of the log data. Log Cluster
groups similar log messages together, while PCA reduces the dimensionality of the log features to
more easily identify unusual log sequences. Other unsupervised approaches for log-based anomaly
detection include Isolation Forest (Liu et al., 2008), One-Class SVM (OCSVM) (Schölkopf et al.,
2001; Li et al., 2003), and k-nearest neighbors with automatically labeled samples (Ying et al.,
2021).

Deep Learning Methods: Deep learning methods have shown promise in capturing the complex
contextual and temporal dependencies found in log sequences (Landauer et al., 2023). Early ap-
proaches use recurrent neural networks to model the sequential nature of log data. For example,
DeepLog (Du et al., 2017) employs a Long Short-Term Memory (LSTM) network to predict the
next log message in a sequence. Deviations from the predicted sequence are flagged as anomalies.
LogAnomaly (Meng et al., 2019) follows a similar strategy but enhances the model by encoding the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

semantic meaning of log templates, which helps generate more meaningful representations of the
log data.

More recent methods rely on the transformer architecture (Vaswani et al., 2017) to capture contex-
tual information. LogBERT (Guo et al., 2021), for instance, adopts a BERT-based model (Devlin
et al., 2019) to learn contextual representations from parsed log messages. In this framework, the
model is trained using self-supervised tasks, specifically masked log key prediction and volume of
hypersphere minimization, which enable it to model the common patterns of normal log sequences.
Rather than working on the actual raw log messages, LogBERT operates on log keys by assigning
each template a learnable embedding. In contrast, LogFit (Almodovar et al., 2024) bypasses the
parsing step and applies masked language modeling directly to the tokens of concatenated log se-
quences. In both cases, the prediction target is part of a discrete set. LogELECTRA (Yamanaka
et al., 2024) focuses on the detection of point anomalies by estimating how likely each token in a
message has been replaced.

An alternative direction is represented by supervised approaches such as NeuralLog (Le & Zhang,
2021), which embeds individual log messages using a pretrained BERT model and then feeds a
sequence of representations into another transformer to classify them as normal or abnormal.

Self-supervised representation learning has increasingly favored predicting embeddings rather than
reconstructing raw inputs. The Joint-Embedding Predictive Architecture (Assran et al., 2023) uses
separate context and target encoders plus a predictor to align latent representations, demonstrating
greater efficiency and robustness. In the text domain, SimCSE (Gao et al., 2021) applies con-
trastive learning directly at the sentence-embedding level, producing semantically rich representa-
tions. However, log anomaly detection has so far focused primarily on discrete template prediction
or raw message reconstruction, omitting the potential benefits of embedding-level prediction.

3 METHODS

3.1 MODEL

ContraLog1 consists of three main components, a byte pair encoding (BPE) tokenizer (Sennrich
et al., 2016), along with the MessageEncoder, and the SequenceEncoder, both of which are trans-
former encoders.

Tokenizer: Log messages generated with the same template usually share common phrases, re-
sulting in a repetitive text corpus that lacks the variability typically found in most natural language
datasets. This characteristic presents a challenge for many pretrained tokenizers, which are typically
trained on diverse natural language corpora. As a result, log messages are often split into numerous
fine-grained tokens, leading to inefficiencies. Moreover, log messages generally have a less diverse
vocabulary compared to natural text, causing many tokens from pretrained tokenizers to occur rarely
or not at all. To address these issues, we fit a new byte pair encoding tokenizer (Sennrich et al., 2016)
to each dataset individually. This approach effectively compresses repetitive parts of log message
templates into fewer tokens, reducing the number of input tokens and the required vocabulary size
(see Figure 3 in the Appendix). Importantly, we do not pretokenize messages on spaces, allowing
the tokenizer to build long tokens that can represent larger parts of log templates.

MessageEncoder: After tokenization, each log message is processed by a transformer encoder,
referred to as the MessageEncoder. This step converts individual log messages into correspond-
ing representations. Each tokenized log message Xi is encoded as Ti = MessageEncoder(Xi),
where Ti ∈ Rl×d with l as the length of the token sequence and d as the dimensionality of the
representation space. i ∈ 1, ..., n refers to the position of a message in a chronologically ordered
sequence of n total messages. The MessageEncoder also incorporates a learnable positional encod-
ing to retain token order within each message. To obtain a single representation Ei for each log
message, we perform mean pooling over each token sequence Ti, followed by a linear layer, such
that Ei = Linear(MeanPool(Ti)), with Ei ∈ Rd.

1https://anonymous.4open.science/r/ContraLog-anonymous-repo-130E

4

https://anonymous.4open.science/r/ContraLog-anonymous-repo-130E

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

SequenceEncoder: The sequence of log message representations is then added to another set of
fixed positional encodings and fed into a second transformer encoder, which we refer to as the
SequenceEncoder. This second encoder captures the temporal dependencies and contextual infor-
mation across the sequence of log messages. Outputs from the SequenceEncoder are then used to
train both encoders via a variation of masked language modeling as described in section 3.2.

3.2 TRAINING

Unlike established parser-based approaches which predict a probability distribution over a set of
discrete log keys, ContraLog encodes log messages into continuous embeddings. To train the Mes-
sageEncoder and SequenceEncoder, we therefore rely on a combination of masked language mod-
eling and contrastive learning with a version of the InfoNCE loss (Oord et al., 2018). Let |M | be
the number of masked messages in a minibatch and index them by j, i ∈ {1, . . . , |M |}. For each
masked position j the SequenceEncoder predicts Êj ∈ Rd and the MessageEncoder provides target
embeddings Ei ∈ Rd, which are both normalized to unit length. We form the similarity matrix
S ∈ R|M |×|M | with Sj,i = sim(Êj , Ei) = (ÊT

j Ei)/(||Êj || ||Ei||)/τ with τ as a temperature
parameter.

We define the row-wise cross-entropy loss

Lrow(S) = − 1

|M |

|M |∑
j=1

log
exp(Sj,j)∑|M |
k=1 exp(Sj,k)

, (1)

which treats the diagonal element Sj,j as the positive logit (or similarity) for row j. Analogously,
define the column-wise cross-entropy loss by applying the same formula to the transpose S⊤:

Lcol(S) = Lrow(S
⊤) = − 1

|M |

|M |∑
i=1

log
exp(Si,i)∑|M |

k=1 exp(Sk,i)
. (2)

Finally, the symmetric loss used for training is the average of the two directions:

Lsym =
1

2

(
Lrow(S) + Lcol(S)

)
. (3)

3.3 INFERENCE

During inference, our method applies the learned MessageEncoder and SequenceEncoder to detect
anomalies in log sequences by combining both contextual and point anomaly detection.

Contextual Anomaly Detection: For each masked log message in a sequence, the SequenceEn-
coder predicts a representation Ê from the context it occurs in. A high dissimilarity between the
predicted and actual representations indicates a message not seen during training or one that is un-
expected given the context in which it occurs, and thus a potential anomaly. We define an anomaly
score for each log message as ContextScore(Ej) = 1− sim(Êj , Ej).

To compute an anomaly score for the entire sequence S, we mask each of the n messages one by
one and perform one forward pass. This results in a contextual anomaly score for each message.
We then aggregate these scores to obtain a single score for the entire sequence, either by taking the
maximum or the mean of the individual scores

SequenceScorecontext
max (S) = max

j∈{1,...,n}
ContextScore(Ej) (4)

SequenceScorecontext
mean (S) =

1

n

n∑
j=1

ContextScore(Ej) . (5)

Point Anomaly Detection: While contextual anomaly detection captures temporal and contextual
dependencies within log sequences, it has limitations. Specifically, when a sequence consists of
entirely identical messages, the model can reasonably assume that the masked out message also

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

contains the same message. To fill the mask, the SequenceEncoder can then reproduce the message
representations of the other messages in the sequence. This issue can arise even with message types
not seen during training, potentially leading to false negatives where abnormal messages are not
detected due to the context in which they occur.

HDFS BGL Thunderbird

From Abnormal SequencesFrom Normal Sequences

Figure 2: Visualization of the embedding spaces for messages from the HDFS, BGL, and Thun-
derbird datasets using UMAP dimensionality reduction (McInnes et al., 2018). Orange embeddings
originate from abnormal sequences and blue embeddings from normal sequences.

To address this limitation, we introduce point anomaly detection. This method operates directly on
the embeddings generated by the MessageEncoder, focusing on the intrinsic properties of individual
log messages rather than their context. Looking at the embedding space of individual log messages
(see Figure 2), we can see a partial separation between the embeddings of log messages from nor-
mal and abnormal sequences. By fitting an anomaly detection model to a subset of embeddings
from normal sequences, we can detect messages that deviate from the expected distribution in the
embedding space. To detect outliers, we calculate the distance to the closest embedding seen in a
random subset of the training set.

The distance for embedding Ej is defined as PointScore(Ej) = 1− sim(Ej , Enearest), Enearest is the
closest embedding in the subset of normal training sequences. To aggregate scores for a sequence,
we calculate the mean and maximum of these scores

SequenceScorepoint
max (S) = max

j∈{1,...,n}
PointScore(Ej) (6)

SequenceScorepoint
mean(S) =

1

n

n∑
j=1

PointScore(Ej) . (7)

3.4 ANOMALY DETECTION

Let Ycal ∈ Rm×4 be the matrix of sequence-level scores from normal sequences used for calibration,
where each row corresponds to a sequence and each column to one of the four SequenceScores
(mean and maximum, point and context scores).

For each feature f ∈ {1, 2, 3, 4} we compute the median and the median absolute deviation (MAD)
on Ycal:

µ̃f = median
(
(Ycal):,f

)
, MADf = median

(
|(Ycal):,f − µ̃f |

)
. (8)

The feature-wise robust z-score for sequence s is

rzs,f =

∣∣ys,f − µ̃f

∣∣
max

(
MADf , ε

) , (9)

where ys,f denotes the f -th score of sequence s and ε > 0 is a small constant introduced to avoid
division by zero. The calibration quantities µ̃f and MADf are computed once on Ycal and stored.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

We aggregate the four feature-wise robust z-scores for each sequence s using the L2 norm:

scores =

√√√√ 4∑
f=1

rz2s,f . (10)

The detection threshold θ is set to the empirical 95th percentile of the calibrated scores computed
on Ycal. At inference, rzs,f and scores for new sequences are computed using the stored µ̃f , MADf

and θ. A sequence is classified as anomalous if scores > θ. Appendix A.2 gives further details on
threshold selection.

By combining both contextual and point anomaly detection, our approach captures temporal de-
pendencies and intrinsic message-level deviations. The mean anomaly scores enables the model to
capture collective anomalies. For these anomalies log message in a sequence may appear normal
when considered in isolation, but abnormal when considered collectively, as described by Ruff et al.
(2021). The relative magnitude of the feature-wise robust z-scores indicates which anomaly score
contributes most to the overall detection. This allows us to characterize whether an anomaly is
primarily contextual, point-based, or a mixture of both. A more detailed analysis of feature contri-
butions is provided in Appendix A.3.

Some messages are exactly repeated throughout the datasets multiple times (see Table 1). During
inference, we can prevent redundant calculations by the MessageEncoder by building a dictionary
of embeddings with the message text as a key. Once a message has been processed, its embedding
is stored and reused for subsequent occurrences, effectively skipping the embedding step. For the
Thunderbird dataset, caching can reduce embedding steps by up to 89.1%. Appendix A.4 provides
more details on the effects of caching.

4 EXPERIMENTS

To evaluate the effectiveness of our approach, we compared the ability of ContraLog in detecting
abnormal log sequences to that of several baseline methods:
LogBERT: A transformer-based model that learns contextual representations via masked language
modeling. Unlike ContraLog, LogBERT requires log parsers to structure the input data and uses
a more classical masked language modeling approach to predict the probability of a masked log
belonging to a certain log template.
DeepLog: An LSTM-based approach that models sequential log behavior by predicting the next log
event. DeepLog also depends on log parsers to extract event sequences and flags anomalies when
predictions do not match observed logs.
Statistical Machine Learning: Methods such as One-Class SVM (OCSVM) and Isolation Forest
are applied on count vectors that record the frequency of each log message type in a sequence. These
features ignore the order and temporal dependencies of messages, detecting anomalies based solely
on deviations from expected log key distributions.

Data We evaluate all methods on three datasets: HDFS, BGL, and Thunderbird (Xu et al., 2009;
Oliner & Stearley, 2007), which provide a wide range of sequence lengths, log types, and complexity
levels. Sources for all these datasets can be found on LogHub (Zhu et al., 2023). For more detailed
information about the number of sequences and sequence length, see Table 1 and the Data section
in the Appendix A.5.

Preprocessing For methods that rely on log IDs, we adhere to the parsing parameters established
by LogBERT, including dataset-specific regular expressions, tree depth, and similarity threshold.
The regular expressions remove block IDs for messages from the HDFS dataset, hexadecimal num-
bers for the BGL dataset, and specific warning patterns for the Thunderbird dataset.

Instead of fitting the parser on the entire dataset, we only fit the parser on the training set. In
doing so we do not artificially prevent out-of-vocabulary issues as highlighted in previous work by
Almodovar et al. (2024).

ContraLog requires minimal preprocessing. The only step we take is the extraction of the core
message from the entire log line, ignoring metadata such as log creation timestamps and labels. By

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

working directly on raw log messages, we eliminate the possibility of parsing-related errors and aim
to achieve anomaly detection without domain-specific preprocessing.

For the statistical machine learning baselines, feature vectors are built by counting how often each
log key appears in a sequence. This is similar to a bag-of-words approach and ignores the order in
which messages occur in, losing temporal information.

All methods were evaluated on a held-out test set with an equal number of normal and abnormal
sequences.

Table 1: Dataset statistics including the number of normal and abnormal log sequences, the average
number of messages per sequence, the total and unique numbers of log messages (ratio in paren-
theses), and the number of unique log keys identified by a Drain parser. Not every message in the
HDFS dataset is part of a labeled sequence, resulting in a mismatch between session count, average
sequence length, and total message number. By filtering out the session identifier Block IDs from
the HDFS messages, the number of unique messages could be reduced to 1.802.378, resulting in a
ratio of just 16.1%.

Dataset Normal/ Abnormal
Sessions

Average Sequence
Length

Total/Unique
Messages

Log
Keys

HDFS 558,223/16,838 18.2 11.2M/10.3M - (92.4%) 16
BGL 51,667/6,203 81.0 4.7M/1.8M - (37.8%) 155

Thunderbird 488,137/89,446 233.09 211.2M/23.0M - (10.9%) 4282

Table 2: Performance of various models evaluated on the HDFS, BGL, and Thunderbird datasets.
The models include ContraLog, LogBERT, DeepLog, One-Class SVM (OCSVM), and Isolation
Forest. For each dataset, the best F1 score is given in bold.

Model HDFS BGL Thunderbird
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

ContraLog 85.52 83.58 83.35 96.59 96.47 96.47 97.68 97.62 97.62
LogBERT 96.44 38.97 55.51 99.67 36.55 53.49 62.28 99.78 76.69
DeepLog 38.81 81.39 52.56 54.86 100.00 70.85 80.09 96.40 87.49
OCSVM 50.07 99.16 66.54 57.03 66.88 61.56 51.26 54.13 52.66

Isolation Forest 66.80 65.92 66.36 88.89 00.96 01.90 00.00 00.00 00.00

5 RESULTS

Table 2 summarizes the performance of various models on detecting abnormal log sequences in
a held-out test set. We evaluated five approaches: ContraLog, LogBERT, DeepLog, as well as
statistical methods, OCSVM and Isolation Forest. LogBERT and DeepLog were assessed using
their respective open-source implementations.

ContraLog achieves consistently high F1 scores on all datasets. In our experiments, both DeepLog
and LogBERT performed notably worse on HDFS compared to the metrics originally reported. This
behavior can likely be attributed to our adjusted parsing practices, where the parser was exclusively
fitted on the training sets. As noted by Le & Zhang (2022) model performance is highly influenced
by the parsing step. Additionally, we do not impose a minimum sequence length requirement and
split datasets chronologically, potentially increasing the domain shift between training and test set.

Although the performance of the statistical methods depends greatly on the dataset and selected hy-
perparameters (see Table 3 in the Appendix), they can perform comparably to deep learning meth-
ods. On the HDFS dataset, they perform better than both LogBERT and DeepLog, suggesting that
the sequential order of messages may not be critical for identifying some anomalies. Specifically, a
short HDFS sequence is a strong indicator of an abnormal session that terminates prematurely.

The results indicate that predicting latent embeddings can be as effective as, or even preferable to,
predicting the exact log key. For instance, in cases where two log types appear almost interchange-
ably, a model that relies on latent embedding similarity can capture the overlap in meaning without
having to decide on a unique log key to predict.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2 illustrates a projection of the learned message embeddings for normal and abnormal se-
quences. While many clusters contain messages from both normal and abnormal sequences, some
clusters exclusively contain abnormal messages. Especially for the BGL and Thunderbird datasets, a
large proportion of abnormal sequences contain messages from these clusters, allowing the proposed
point anomaly detection to identify them effectively. This works to such a degree that the exclusion
of contextual anomaly scores does not decrease performance on the Thunderbird dataset and even
slightly improves performance on the BGL dataset (see ablation study in the Appendix A.7).

Additionally, we find that the MessageEncoder does perform a task comparable to that of a parser,
as it groups related log messages together in the embedding space. However, other than purely
parser-based methods, the MessageEncoder can assign different representations to logs with the
same template, but different parameters. In other cases, the encoder assigns similar embeddings
to messages with different templates, if they occur in similar contexts (see Appendix A.8 for more
details).

An additional benefit of our hierarchical approach is its computational efficiency. By processing
individual log messages with the MessageEncoder and operating on a much shorter sequence of
embeddings with the SequenceEncoder, our method reduces the effective sequence length. Since
the computational complexity of transformer models scales quadratically with sequence length, this
design offers efficiency gains over the alternative approach where messages from a sequence are
concatenated and then processed.

Overall, the experimental results validate the core hypothesis that predicting latent embeddings can
be an effective alternative to exact log key prediction. ContraLog consistently achieves high perfor-
mance across multiple datasets, supporting its applicability in diverse log analysis scenarios.

6 CONCLUSION

We introduced ContraLog, a parser-free approach for log file anomaly detection trained with con-
trastive learning and masked language modeling. By operating directly on raw log messages, Con-
traLog avoids the challenges associated with traditional parser-based methods. Our approach instead
focuses on predicting continuous message embeddings, capturing semantic information and tempo-
ral dependencies of normal logs.

A central contribution of ContraLog is its two-pronged anomaly detection strategy, which combines
contextual and point-based scoring. We show that especially point anomaly detection contributes to
the overall performance on the BGL and Thunderbird datasets.

Another key advantage of ContraLog lies in its hierarchical processing strategy that keeps the input
sequence length for the MessageEncoder and SequenceEncoder short. This architecture also enables
efficient reuse of message embeddings through caching.The use of custom tokenizers furthermore
reduce input length when compared to pretrained tokenizers.

Experimental evaluations on the HDFS, BGL, and Thunderbird datasets demonstrate that Contra-
Log achieves competitive performance across diverse logging scenarios. In particular, our method
consistently attains high F1-scores on complex datasets, thereby validating the effectiveness of pre-
dicting latent embeddings over explicit log key prediction.

Overall, the combination of masked language modeling and contrastive learning in our approach
yields meaningful representations that improve anomaly detection. By enabling early detection of
deviations in system behavior, our method can support predictive maintenance, strengthen system
security by flagging suspicious activity, and ultimately help to reduce downtime in critical infras-
tructure.

7 REPRODUCIBILITY

We provide a reference implementation for all components required to reproduce the main results.
This includes code for data processing and labeling, model definitions, training and evaluation
scripts, as well as configuration files. Key hyperparameters and computational requirements are
listed in Appendix A.9. Labeling rules are described in Appendix A.5. Used datasets are publicly
available.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Akiko Aizawa. An information-theoretic perspective of tf–idf measures. Information Processing &
Management, 39(1):45–65, 2003.

Crispin Almodovar, Fariza Sabrina, Sarvnaz Karimi, and Salahuddin Azad. Logfit: Log anomaly
detection using fine-tuned language models. IEEE Transactions on Network and Service Man-
agement, 21:1715–1723, 2024.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie for request
extraction and workload modelling. In OSDI, volume 4, pp. 18–18, 2004.

Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. Failure diagnosis using
decision trees. In International Conference on Autonomic Computing, 2004. Proceedings., pp.
36–43. IEEE, 2004.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, pp. 4171–4186, 2019.

Min Du and Feifei Li. Spell: Streaming parsing of system event logs. In 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM), pp. 859–864. IEEE, 2016.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pp. 1285–1298, 2017.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6894–6910. Association for Computational Linguistics, 2021.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert. In 2021
International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2021.

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log parsing approach
with fixed depth tree. In 2017 IEEE international conference on web services (ICWS), pp. 33–40.
IEEE, 2017.

Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. Experience report: System log analy-
sis for anomaly detection. In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pp. 207–218, 2016. doi: 10.1109/ISSRE.2016.21.

Max Landauer, Sebastian Onder, Florian Skopik, and Markus Wurzenberger. Deep learning for
anomaly detection in log data: A survey. Machine Learning with Applications, 12:100470, 2023.

Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection without log parsing. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 492–504.
IEEE, 2021.

Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection with deep learning: How far are
we? In Proceedings of the 44th international conference on software engineering, pp. 1356–1367,
2022.

Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and Wei Xu. Improving one-class svm for
anomaly detection. In Proceedings of the 2003 international conference on machine learning
and cybernetics (IEEE Cat. No. 03EX693), volume 5, pp. 3077–3081. IEEE, 2003.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. Failure prediction in ibm
bluegene/l event logs. In Seventh IEEE International Conference on Data Mining (ICDM 2007),
pp. 583–588. IEEE, 2007.

Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. Log clustering based
problem identification for online service systems. In Proceedings of the 38th international con-
ference on software engineering companion, pp. 102–111, 2016.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pp. 413–422. IEEE, 2008.

L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. ArXiv e-prints, 2018.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi
Zhang, Shimin Tao, Pei Sun, and Rong Zhou. Loganomaly: unsupervised detection of sequential
and quantitative anomalies in unstructured logs. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI’19, pp. 4739–4745, 2019.

Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu, and Hua Cai. Toward fine-
grained, unsupervised, scalable performance diagnosis for production cloud computing systems.
IEEE Transactions on Parallel and Distributed Systems, 24(6):1245–1255, 2013.

Adam Oliner and Jon Stearley. What supercomputers say: A study of five system logs. In 37th
annual IEEE/IFIP international conference on dependable systems and networks (DSN’07), pp.
575–584. IEEE, 2007.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

PCI Security Standards Council. Payment Card Industry Data Security Standard: Requirements and
testing procedures, version 4.0, 2022.

Patrick Reynolds, Charles Edwin Killian, Janet L Wiener, Jeffrey C Mogul, Mehul A Shah, and
Amin Vahdat. Pip: Detecting the unexpected in distributed systems. In NSDI, volume 6, pp. 9–9,
2006.

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek,
Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE, 109(5):756–795, 2021.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson.
Estimating the support of a high-dimensional distribution. Neural computation, 13(7):1443–1471,
2001.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, pp. 1715–1725. Association for Computational Linguistics, 2016.

Eno Thereska and Gregory R. Ganger. Ironmodel: robust performance models in the wild. In Pro-
ceedings of the 2008 ACM SIGMETRICS International Conference on Measurement and Model-
ing of Computer Systems, SIGMETRICS ’08, pp. 253–264. Association for Computing Machin-
ery, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thorsten Wittkopp, Philipp Wiesner, Dominik Scheinert, and Odej Kao. A taxonomy of anomalies
in log data. In International Conference on Service-Oriented Computing, pp. 153–164. Springer,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. Detecting large-scale
system problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pp. 117–132, 2009.

Yuuki Yamanaka, Tomokatsu Takahashi, Takuya Minami, and Yoshiaki Nakajima. Logelectra: self-
supervised anomaly detection for unstructured logs. arXiv preprint arXiv:2402.10397, 2024.

Shi Ying, Bingming Wang, Lu Wang, Qingshan Li, Yishi Zhao, Jianga Shang, Hao Huang, Guoli
Cheng, Zhe Yang, and Jiangyi Geng. An improved knn-based efficient log anomaly detection
method with automatically labeled samples. ACM Transactions on Knowledge Discovery from
Data (TKDD), 15(3):1–22, 2021.

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R. Lyu. Loghub: A large collection
of system log datasets for ai-driven log analytics. In IEEE International Symposium on Software
Reliability Engineering (ISSRE), 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 TOKENIZER

Figure 3 visualizes the fitting behavior of our BPE tokenizer for different datasets. As the dictionary
size increases, the average number of tokens required to tokenize a log message decreases. For
this comparison, only the number of tokens that occur at least once in the corresponding dataset is
displayed. The BPE tokenizer starts with a base dictionary of Unicode characters and merges tokens
until the unpruned dictionary size reaches 4,096. For comparison, the unpruned dictionary of the
BERT-Base Uncased tokenizer contains more than 30,000 tokens.

25
merges

0 500 1000 1500 2000 2500 3000
Unique Occuring Tokens

40

60

80

A
v
e
ra

g
e
 T

o
ke

n
s

p
e
r

Lo
g BPE HDFS

BERT HDFS

BPE BGL

BERT BGL

BPE TBird

BERT TBird

Difference

Figure 3: Comparison of log message compression rates between a custom Byte Pair Encoding
(BPE) tokenizer and the pre-fitted BERT-Base Uncased (Devlin et al., 2019) tokenizer across dif-
ferent datasets.

A.2 THRESHOLD SENSITIVITY ANALYSIS

80 85 90 95 100
Percentile Threshold

65

70

75

80

85

F1
 S

co
re

HDFS

80 85 90 95 100
Percentile Threshold

84

86

88

90

92

94

96

F1
 S

co
re

BGL

80 85 90 95 100
Percentile Threshold

40

50

60

70

80

90

100

F1
 S

co
re

Thunderbird

Figure 4: F1 scores achieved on the test set when using different percentiles of the anomaly score
distribution on the training set as a threshold.

While we report results using a 95th percentile threshold for all datasets, using the label information
in the test set we can analyze how performance depends on the chosen threshold. Figure 4 shows
the F1 scores achieved on the test set when using different percentiles of the normal anomaly score
distribution on the training set as a threshold. Metrics were calculated using the full feature set of
mean and maximum, point and context anomaly scores.

In practice, the optimal threshold depends on the distribution shift between normal and abnormal
logs and the contamination of the training set with abnormal logs. If labeled information is available,
the choice of threshold can have a significant influence on the performance. The theoretically opti-
mal F1 scores could be 96.84 for BGL with a threshold of 97.04, 84.73 for HDFS with a threshold
of 99.12 and 98.15 for Thunderbird with a threshold of 96.48.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Poi
nt

Mea
n

Poi
nt

Max

Con
tex

t M
ea

n

Con
tex

t M
ax

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
Fr

ac
tio

n

HDFS

Poi
nt

Mea
n

Poi
nt

Max

Con
tex

t M
ea

n

Con
tex

t M
ax

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
Fr

ac
tio

n

BGL

Poi
nt

Mea
n

Poi
nt

Max

Con
tex

t M
ea

n

Con
tex

t M
ax

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
Fr

ac
tio

n

Thunderbird

Figure 5: Distributions of the ratio different anomaly scores contribute to the classification of abnor-
mal test sequences.

A.3 SCORE FRACTIONS

By normalizing the robust z-scores of a log sequence, we can estimate how much each anomaly
score contributes to the final classification of a sequence. Figure 5 shows the distributions of the ra-
tio different anomaly scores contribute to the classification. For different datasets, different anomaly
scores hold different importance. While score contributions for HDFS are mostly balanced, BGL
and Thunderbird heavily rely on the mean and max point anomaly scores. Especially for the Thun-
derbird dataset, context anomaly scores play only a minor role. These observations align with the
results of the ablation study in Appendix A.7. When detecting anomalies based on a single feature
alone, the anomaly score with the highest average contribution per dataset achieves the best results.

A.4 CACHE HIT RATES

103 104 105 106 107 108

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Hi
t R

at
e

Thunderbird

103 104 105 106 107

0.2

0.3

0.4

0.5

0.6

BGL

103 104 105 106 107 108

Cache Size

0.055

0.060

0.065

0.070

0.075

Hi
t R

at
e

HDFS

103 104 105 106 107 108

Cache Size

0.700

0.725

0.750

0.775

0.800

0.825

HDFS no blk

Figure 6: Cache hit rates for different configurations.

Figure 6 shows the log message cache hit rates for different cache sizes. For this experiment, we
process datasets in chronological order. Two versions of the HDFS dataset were considered. One
with the original unaltered messages (HDFS) and one with the session identifying block ids removed

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(HDFS no blk). Due to the repetitive nature of log messages, where identical messages appear
multiple times, potentially in quick succession, caching of the LogEmbedder outputs can benefit
even from small cache sizes. The cache hit rate is defined as the ratio of embeddings that were found
in the cache (from previous identical messages) at the time the message appears in the dataset.

A.5 DATA

The HDFS, BGL, and Thunderbird datasets (Xu et al., 2009; Oliner & Stearley, 2007) provide a
wide range of sequence lengths, log types, and complexity levels. Sources for all these datasets
can be found on LogHub2 (Zhu et al., 2023). For more detailed information about the number of
sequences and sequence length, see Table 1.

HDFS Dataset The HDFS dataset (Xu et al., 2009) consists of logs from the Hadoop Distributed
File System. This dataset is organized into session windows, where each session contains a sequence
of log messages. The dataset includes labels indicating whether each session is normal or abnormal.
Since sessions are already clearly defined, we apply no further windowing. Instead, sessions longer
than 256 messages are truncated while maintaining the original session label.

BGL Dataset The BGL dataset (Oliner & Stearley, 2007) contains logs from the Blue Gene/L
supercomputer. For this dataset, we used time windows of 60 seconds, capped to a maximum of 256
log messages per window. Each log message in the BGL dataset is labeled as normal or abnormal. If
any message within a window is abnormal, the entire sequence is labeled as abnormal. This dataset is
challenging because some windows are highly repetitive, with the same message appearing multiple
times.

Thunderbird Dataset The Thunderbird dataset (Oliner & Stearley, 2007) comprises logs from
the Thunderbird supercomputer. Similar to the BGL dataset, we used time windows of 60 seconds,
capped to a maximum of 256 log messages per window. The labeling works identically to the BGL
Dataset.

The Thunderbird system creates more numerous and more complex logs compared to the other
systems. The result is a higher average sequence length and a larger overall dataset. Furthermore,
the structure of the log messages is more complex. Our Drain parsers (for more information, see
Preprocessing in the Experiments Section 4) fitted on the training set was able to detect 4282 unique
log types. Although the parsing parameters greatly influence the number of unique log IDs, this
shows the difference in semantic complexity between the datasets.

This higher complexity creates a potentially more challenging environment for anomaly detection,
although the overall difficulty also depends on the similarity between normal and abnormal se-
quences.

A.6 TUNING STATISTICAL MACHINE LEARNING METHODS

For the statistical machine learning methods, we note that the selected hyperparameters can greatly
influence the performance (see Table 3). To give a better overview of the potential performance, we
performed a grid search using a subset of normal and abnormal sequences.

In some cases, these statistical approaches perform comparably to deep learning methods, suggest-
ing that for certain datasets, the sequential order of messages may not be critical for identifying
anomalies. Count vectors also allow the easy detection of unusually short or long sequences, which
can be an indicator of anomalies.

Still, the performance of ContraLogs remains better than that of the tuned statistical methods.

In real-world settings, labeled data is often only available in limited quantities, making this type of
hyperparameter tuning difficult.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 3: Performance of One-Class SVM (OCSVM), and Isolation Forest.

Model HDFS BGL Thunderbird
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

OCSVMT 86.81 72.55 79.03 69.35 86.35 76.92 80.34 93.57 86.46
Isolation ForestT 66.84 66.04 66.44 65.80 38.58 48.64 80.45 85.71 83.00

with T indicating experiments with tuned hyperparameters.

Table 4: F1 score for anomaly detection with different combinations of anomaly scores. Pmax and
Pmean represent the max and mean point anomaly scores, and Cmax and Cmean the max and mean
context anomaly scores. Only features marked with a checkmark were used to compute the metrics
in the respective row.

Pmax Pmean Cmax Cmean HDFS BGL Thunderbird
- - - ✓ 81.932 84.579 72.964
- - ✓ - 82.675 47.610 33.417
- - ✓ ✓ 82.675 47.872 72.359
- ✓ - - 74.971 97.372 97.250
- ✓ - ✓ 83.739 96.625 97.250
- ✓ ✓ - 83.059 96.734 97.473
- ✓ ✓ ✓ 83.204 94.637 97.473
✓ - - - 74.739 97.060 97.473
✓ - - ✓ 83.575 95.926 97.250
✓ - ✓ - 83.088 94.731 97.473
✓ - ✓ ✓ 83.212 94.637 97.473
✓ ✓ - - 74.907 97.201 97.624
✓ ✓ - ✓ 83.910 96.532 97.624
✓ ✓ ✓ - 83.330 97.076 97.624
✓ ✓ ✓ ✓ 83.354 96.470 97.624

A.7 SEQUENCESCORE ABLATION STUDY

Table 4 presents the results of an ablation study examining the impact of different combinations
of anomaly scores on the F1 score for anomaly detection. The study evaluates the importance of
different anomaly scores across the HDFS, BGL, and Thunderbird datasets.

While combining all scores generally provides robust results, there are cases where a subset of scores
performs equally well or better. The results show that the optimal combination of scores varies by
dataset. The HDFS dataset achieves its highest F1 score (83.178) using only Cmax and Cmean, while
the BGL dataset performs best (97.372) with Pmean alone. In contrast, the Thunderbird dataset
achieves its highest F1 score (97.624) when both point anomaly scores (Pmean, Pmax) are included.

Without labeled data however, it is challenging to determine the optimal combination of scores for
a given dataset. These observations align with the observations in Appendix A.3, where features
that achieve a high F1 score on their own tend to also play an important role when combined with
other features. Also, Wittkopp et al. (2021) found that most anomalies in the BGL and Thunderbird
datasets can be considered as point anomalies, which aligns with our observations.

A.8 EMBEDDING SPACE ANALYSIS

Figure 7 visualizes the embedding space for HDFS log messages using a UMAP dimensionality
reduction. Samples for this experiment were drawn from 1000 normal and 1000 abnormal sessions
from the test set. To better understand how ContraLog groups messages, we manually analyze
the embedding space. For the following analysis, variable log parameters are replaced with
placeholders (e.g., <IP+Port>, <Block ID>). We find messages are approximately grouped into
the following logical groups:
A+B: Messages from two different templates appear in this cluster. One set of messages about

2https://github.com/logpai/loghub

16

https://github.com/logpai/loghub

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

HDFS Embedding Space

Group
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q

Figure 7: UMAP projection of the embedding space for messages from 2,000 HDFS sequences.
Colors indicate manual groupings of messages with similar semantics.

DataNodes serving blocks, e.g., ”INFO dfs.DataNode$DataXceiver: <IP+Port> Served block
<Block ID> to <IP>” and one set of messages about DataNodes encountering an exception
while serving a block, e.g., ”WARN dfs.DataNode$DataXceiver: <IP+Port> :Got exception while
serving <Block ID> to /<IP> :”. Both messages appear in normal and abnormal sequences. Both
clusters overlap, indicating the corresponding messages appear in similar contexts. Instead of a
confirmation of the successful serving of a block, an exception might occur in its place.
C: Messages about the start of a block transfer, e.g., ”INFO dfs.DataNode: <IP+Port> Starting
thread to transfer block <Block ID> to <IP+Port>”. This group is split into multiple clusters,
depending on the values of parameters. Variants with two target addresses (”[...] <Block ID> to
<IP+Port>, <IP+Port>”) form their own cluster. Most messages of these cluster originate from
abnormal sequences.
D: Messages about the replication of blocks to other data nodes, e.g.,”INFO dfs.FSNamesystem:
BLOCK* ask <IP+Port> to replicate <Block ID> to datanode(s) <IP+Port>”.
E: Messages about updating block maps, e.g., ”INFO dfs.FSNamesystem: BLOCK* NameSys-
tem.addStoredBlock: blockMap updated: <IP+Port> is added to <Block ID> size <Block Size>”.
F: Messages about blocks not belonging to any file, e.g., ”INFO dfs.FSNamesystem: BLOCK*
NameSystem.addStoredBlock: addStoredBlock request received for <Block ID> on <IP+Port>
size <Block Size> But it does not belong to any file.”. All messages in this cluster only appear in
abnormal sequences, making it suitable for point anomaly detection.
G: Messages about redundant requests, e.g., ”WARN dfs.FSNamesystem: BLOCK* NameSys-
tem.addStoredBlock: Redundant addStoredBlock request received for <IP> on <IP+Port> size
<Block Size>”. All messages of this cluster originate from abnormal sequences.
H: Messages about blocks being marked as invalid, e.g., ”INFO dfs.FSNamesystem: BLOCK*
NameSystem.delete: <Block ID> is added to invalidSet of <IP+Port>”.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

I: Messages about deleting blocks, e.g., ” INFO dfs.FSDataset: Deleting block <Block ID> file
/mnt/hadoop/dfs/data/current/subdir<Subdir Nr.>/<IP+Port>”.
J: Messages about PacketResponders terminating, e.g., ” INFO dfs.DataNode$PacketResponder:
PacketResponder <Responder ID> for block <Block ID> terminating”. Each of the three clusters
corresponds to one Responder ID (0, 1, 2). All three variants of the message use the same template,
but do not appear interchangeably, causing them to be embedded slightly differently. Notably,
each cluster can also contain embeddings of messages indicating the corresponding responder was
interrupted, e.g., ”INFO dfs.DataNode$PacketResponder: PacketResponder <Responder ID> for
block <Block ID> Interrupted.”. This message appears in normal and abnormal sequences and
seems to appear interchangeably with the terminating message from the PacketResponder with the
same ID.
K: Messages about java.io.IO Exceptions, e.g., ”INFO dfs.DataNode$DataXceiver: writeBlock
<Block ID> received exception java.io.IOException: Could not read from stream”. All messages
from this cluster only appear in abnormal sequences.
L+M: Messages about PacketResponders receiving blocks with information about the block size
and source, e.g., ”INFO dfs.DataNode$PacketResponder: Received block <Block ID> of size
<Block Size> from /<IP>”. While all the messages in this group use the same template, they
are embedded into multiple distinct clusters. The clustering is based on the source IP address and
the block size. For example, clusters in group L contain messages about blocks with a size of
67,108,864, while messages from clusters in group M reference smaller blocks.
N: Messages about the DataXceiver receiving blocks with information about source, destination and
block size, e.g., ”INFO dfs.DataNode$DataXceiver: Received block <Block ID> src: /<IP+Port>
dest: /<IP+Port> of size <Block Size>”.
O: Messages about receiving a block, e.g., ”INFO dfs.DataNode$DataXceiver: Receiving block
<Block ID> sre: /<IP+Port> dest: /<IP+Port> ”. These messages typically form the start of a
log session.
P:Messages about transmitting blocks, e.g., ”INFO dfs.DataNode$DataTransfer. <IP+Port>
:Transmitted block <Block ID> to /<IP+Port>”. This group is split into two clusters, depending
on the values of parameters. Most messages of this cluster originate from abnormal sequences.
Q: Messages of this group contain various rare exceptions and messages about metafile modifica-
tions. All messages only appear in abnormal sequences.

Summarizing the observations, the MessageEmbedder performs a function related to that of
a log parser. Many of the clusters in the embedding space are formed by messages that share a
common template. In some cases messages that might appear in the same context occupy the same
region in the embedding space, e.g., messages about successfully served blocks and messages about
exceptions while serving blocks. Other than parser based methods, ContraLog can embed messages
of the same template differently depending on the values of parameters, e.g., different embeddings
for different PacketResponders terminating.

Figure 8 compares the sequences of normal and abnormal HDFS log messages embeddings. A
typical normal sequence might look like this: A block is written to three DataNodes, creating three
logs belonging to group O. Each PacketResponder terminates and confirms the transfer of the block
(often 64MB), generating 6 messages, three from group J and three from group K. The NameSystem
updates its block map with the new block locations and size, creating three messages of group E.
Eventually, the NameSystem adds the blocks to an invalid set (three messages of group H) and they
are deleted (three messages of group I). Sequences can deviate from this pattern and still be normal,
e.g., skip the declaration as invalid and deletion of a block, as shown in the fourth image of Figure
8a. Abnormal sequences often, but not always, deviate from this general pattern. An easy to spot
example would be a very short session that ends abruptly with an exception, as shown in the first
image of Figure 8b.

A.9 IMPLEMENTATION DETAILS AND REPRODUCIBILITY

This section will give information about parameters used for training and testing. ContraLog was
trained on a Quadro RTX 6000 with 24GB of VRAM. The memory requirements mainly depend on
the model size, sequence and message length and batch size. The batch size was set to the largest
value that fit within the memory constraints during training. Table 5 shows the hyperparameters
used for the experimental evaluation. These parameters were mostly set to satisfy computational

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Start
End

(a) HDFS Normal Sequences
Start
End

(b) HDFS Abnormal Sequences

Figure 8: Comparison of sample normal and abnormal HDFS sequences in the embedding space.
Each line visualizes the chronological order in which messages of a session were generated.

constraints. An extensive hyperparameter search was not conducted. The tokenizer vocabulary
size was set to ensure the average log message can fit into the 64 token context window. Model
parameters were optimized by AdamW with β1 as 0.9, β2 as 0.999, and a weight decay of 0.01. The
parameter gradient norm (ℓ2) was clipped to a value of one. The temperature parameter τ was set to
0.25. Model training was done with the help of PyTorch. The overall parameter counts range from
almost 500,000 to more than 4.5M, remaining well below the size of many transformer-based NLP
models. Yet, due to the up to 16,000 cumulative tokens that can be contained in a single sequence,
the memory requirements can grow for the Thunderbird dataset. The number of attention heads and
layers for the MessageEncoder and the SequenceEncodes was set to be identical.

Table 5: ContraLog hyperparameters for different datasets

Hyperparameter HDFS BGL Thunderbird
max. message length (BPE tokens) 64 64 64
max. sequence length 64 256 256
tokenizer vocab size 512 1024 2048
BPE token embedding size 126 64 128
message embedding size 512 256 512
number of layers (both encoders) 6 4 4
number of heads (both encoders) 6 4 4
learning rate 1e-4 1e-4 5e-5
masking ratio (train) 15% 15% 15%
batch size 256 128 32

Training time varies between datasets. Using the described configuration, the HDFS model con-
verges after 163 epochs, taking around 36 hours. On the BGL dataset loss converges at around 260
epochs (18 hours). Training on the full Thunderbird dataset poses much more of a challenge. To
achieve the reported results, we trained for 6 epochs (36 hours). Mixed precision with autocast to
16-bit was applied to improve memory usage and computational efficiency.

Sequences are split 60%, 5%, 30%, 5% for training, validation, testing, and as a reference for
calculating anomaly score distributions. Sequences are split in sequential order, meaning the newest
sequences are used for testing and the oldest for training. This approach better simulates real-
world scenarios and prevents data leakage. Abnormal sequences are discarded during the training,
validation, and reference phases. For the test split, an equal ratio of normal and abnormal sequences

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

is maintained. Normal sequences are randomly selected from the full test split, and any normal
surplus sequences are discarded. For the HDFS dataset the timestamp of the first message in a
session was used as a reference for the entire sequence. Table 6 summarizes the number of sequences
in the final data splits.

Table 6: Number of sequences in the final data splits.

Dataset Train Validation Normal Test Abnormal Test
Thunderbird 467,483 38,857 31,624 31,624
HDFS 333,877 27,618 3,235 3,235
BGL 32,398 2,709 1,617 1,617

A.10 SEQUENCE AND MESSAGE MODIFICATIONS

0 4 8 12 16 20
Positions Moved

0.0

0.5

1.0

1.5

An
om

al
y

Sc
or

e

Message Position Changes

0 1 2 3 4 5 6 7 8
Deleted Messages

Message Deletions

0 1 2 3 4 5 6 7 8
Message Duplications

Message Duplications

0 1 2 3 4 5 6 7 8
Message Duplications

Message Duplications Adj.

0 1 2 3 4 5 6 7 8
Inserted Messages

0.0

0.5

1.0

1.5

An
om

al
y

Sc
or

e

Message Insertions

0 4 8 12 16 20
Deleted Words

Word Deletions (1%)

0 4 8 12 16 20
Deleted Words

Word Deletions (10%)

0 4 8 12 16 20
Deleted Words

Word Deletions (20%)

0 4 8 12 16 20
Added Words

0.0

0.5

1.0

1.5

An
om

al
y

Sc
or

e

Random Word Add. (1%)

0 4 8 12 16 20
Added Words

Random Word Add. (10%)

0 4 8 12 16 20
Added Words

HDFS Word Add. (1%)

0 4 8 12 16 20
Added Words

HDFS Word Add. (10%)

0 1 2 3 4 5 6 7 8
Words Moved

10 2

10 1

100

An
om

al
y

Sc
or

e

Word Pos. Changes (1%)

0 1 2 3 4 5 6 7 8
Words Moved

Word Pos. Changes (10%)

0 4 8 12 16 20
Duplicated Words

Word Duplications (1%)

0 4 8 12 16 20
Duplicated Words

Word Duplications (10%)

Scores Mean Scores

Figure 9: Anomaly score distributions of normal HDFS sequences after modifications on sequence
and message-level.

Figure 9 shows the change in anomaly score when normal HDFS test sequences are modified. For
these experiments, 2500 normal test sequences were used.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Message Position Changes shows the contextual anomaly score for sequences where the position of
a single log messages in the sequence was changed by a certain number of positions. Zero position
changes represents the baseline scores for the original unmodified sequences. The scores for most
sequences remain low when a message is moved by just one position. However, moving some
messages by just one position can cause a significant increase in the anomaly score.

Message Deletions shows the anomaly score for sequences with a certain number of messages
removed. While the removal of some messages has little influence over the score, the deletion of
most messages causes a large increase in the sequence anomaly score. Together with the previous
experiment, this indicates that most messages in a sequence play an important role in identifying a
sequence as normal, with some flexibility in the order they appear in.

Message Duplications and Message Duplications Adj. show the anomaly scores for sequences
where a certain number of random messages were duplicated. In the adjacent variant, the duplicate
message was inserted directly after the original message. In the non-adjacent variant, the duplicate
message was inserted at a random position in the sequence. The anomaly scores increase with the
number of duplicated messages. As with the message deletions, average anomaly score increases
quickly even with just a single duplicate message. Only few modified sequences remain with a low
anomaly score. Inserting messages adjacent to the original message causes slightly smaller scores
when just one or two messages are duplicated.

Message Insertions shows the anomaly scores when a certain number of random messages were
inserted into the sequence at random positions. The inserted messages were sampled from the entire
test set. Just like in the previous examples, the addition of just a single message increases the average
anomaly score significantly.

The remaining experiments regard message-level modifications. For this, words in a message were
defined as consecutive characters separated by whitespaces.

Word Deletions shows the anomaly scores for sequences where a certain number of words in a
certain fraction of messages were deleted. The experiment was repeated with deletions in 1%, 10%
and 20% of messages in a sequence. The deletion of a single crucial word from a single message
can already increase the anomaly score. In other cases, the sequence score remains low even with
multiple words removed. The deletion of words in a larger fraction of messages tends to increase
the average anomaly score. Notably, at least one word per message was always kept, so that the
message did not become empty.

Random Word Add. shows the anomaly scores when a certain number of random words were
added to either 1% or 10% of messages in a sequence. The added words are randomly drawn from
the 1,000 most common words in the English language. The majority of these words never appear
in the HDFS dataset.

HDFS Word Add. also shows the anomaly scores when a certain number of words were added to
either 1% or 10% of messages in a sequence. However, the words for this experiment were sampled
from the HDFS test set, with a sampling probability proportional to the word frequency. Compared
to the addition of random words, the anomaly scores increase more slowly with the number of added
words. Notably, while the addition of many completely random words almost never results in a low
anomaly score, even with 20 added words from the HDFS dataset, some sequences remain with a
low anomaly score.

Word Pos. Changes show the anomaly scores for sequences where a certain number of words in
a certain fraction of sequences (1%, 10%) were moved to a different position in the same message.
While the average anomaly score for sequences with unaltered messages is 0.005030. Shuffling
eight words in a message only increases the average score to 0.008245. This indicates that the
MessageEmbedder is robust to changes in word order. We attribute this behavior to the fact that
messages in the HDFS dataset can usually be identified just by the combination of tokens present in
the message, not their order.

Word Duplicate shows the anomaly scores for sequences where a certain number of words in a
certain fraction of messages (1%, 10%) were duplicated. The duplication of words has only a small
influence on the anomaly score, even when multiple words are duplicated in multiple messages.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

A.11 SEQUENCE LENGTH ANALYSIS

1-
64

65
-1

28

12
9-

19
2

>
19

2

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

1-
10

11
-2

0

21
-3

0
>
30

Sequence Length

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

1-
64

65
-1

28

12
9-

19
2

>
19

2

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

BGLHDFS Thunderbird

Figure 10: F1 scores achieved on on different test sequences grouped by sequence length.

Figure 10 shows the F1 scores achieved on different test sequences grouped by sequence length. The
performance on the HDFS dataset is especially good for short sequences. This is likely because a
short sequence length is a strong indicator of abnormal sessions that terminate prematurely. On the
Thunderbird dataset, the performance only slightly decreases for longer sequences.

A.12 LIMITATIONS

Dependence on Normal-Only Training Data Our approach assumes access to a sufficient
amount of normal log sequences for self-supervised training. In practice, real-world log files are
rarely labeled, and separating out purely normal data can be difficult. If abnormal entries leak into
the training set, detection quality can decrease, potentially leading to higher false negative rates. Ad-
ditionally, an underrepresentation of certain normal logs might introduce a bias and falsely flag them
as abnormal. This might be the case for older/less common software or non-standard configurations.

Computational Cost The hierarchical design of ContraLog reduces the sequence length for
the transformers, but the quadratic complexity of self-attention in both MessageEncoder and Se-
quenceEncoder still imposes limits on very long sequences. If an Anomaly only manifests over long
time spans and a number of messages greater than the maximum context length, it is undetectable
for ContraLog.

Caching Memory Requirements During inference, we cache embeddings for repeated messages
to avoid redundant computations. However, in environments with a large number of unique mes-
sages, the cache can grow large and consume significant memory. While this trade-off improves
runtime performance, it may become impractical in some scenarios, unless additional pruning or
eviction strategies are employed.

22

	Introduction
	Related Work
	Methods
	Model
	Training
	Inference
	Anomaly Detection

	Experiments
	Results
	Conclusion
	Reproducibility
	Appendix
	Tokenizer
	Threshold Sensitivity Analysis
	Score Fractions
	Cache Hit Rates
	Data
	Tuning Statistical Machine Learning Methods
	SequenceScore Ablation Study
	Embedding Space Analysis
	Implementation Details and Reproducibility
	Sequence and Message Modifications
	Sequence Length Analysis
	Limitations

