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ABSTRACT

Pre-trained vision-language models (VLMs), such as CLIP, have shown remark-
able success in the text-video retrieval task due to their strong vision-language
representations learned from large-scale paired image-text samples. However,
compared to videos, text is often short and concise, making it difficult to fully
capture the rich and redundant semantics present in a video with thousands of
frames. Recent advances have focused on utilizing text features to extract key in-
formation from these redundant video frames. However, text representation gen-
erated without considering video information can suffer from bias and lack the
expressiveness needed to capture key words that could enhance retrieval perfor-
mance. In this study, we first conduct preliminary experiments to demonstrate
the importance of enhancing text representations. These experiments reveal that
text representation only generated from text input often misinterpret critical infor-
mation. To address this, we propose a simple yet efficient method, VICTER, i.e.,
video-conditioned text representation refinement, to enrich text representation us-
ing a versatile module. Specifically, we introduce a video abstraction module that
extracts representative features from multiple video frames. This is followed by
a video-conditioned text enhancement module that refines the original text fea-
tures by reassessing individual word features and extracting key words using the
generated video features. Empirical evidence shows that VICTER not only ef-
fectively captures relevant key words from the input text but also complements
various existing frameworks. Our experimental results demonstrate a significant
improvement of VICTER over several baseline frameworks (with 0.4% ∼ 1.0%
improvements on R@1). Furthermore, VICTER achieves state-of-the-art perfor-
mance on three benchmark datasets, including MSRVTT, DiDeMo, and LSMDC.
Code will be made available.

1 INTRODUCTION

Text-video retrieval aims to find the most relevant video or text based on a given query (Gabeur
et al., 2020; Luo et al., 2022; Zhu et al., 2023a; Ging et al., 2020). With the exponential growth
of online video content on platforms like YouTube, Netflix, and TikTok, text-video retrieval has
gained increasing attention and plays a vital role in modern applications, such as search engines and
recommendation systems (Davidson et al., 2010; Gomez-Uribe & Hunt, 2015).

The emergence of vision-language models (VLMs) like CLIP (Radford et al., 2021), which are
pretrained on large-scale image-text datasets, offers a powerful solution to this problem. These
models have demonstrated remarkable cross-modal representation capabilities, making it feasible to
transfer their knowledge from images to videos (Luo et al., 2022; Gan et al., 2023). Specifically,
CLIP uses a dual-branch structure, comprising a text encoder and an image encoder, to learn cross-
modal alignment. However, CLIP’s image encoder can only generate frame-level features, which
fail to capture the temporal information inherent in videos. As a result, one research direction has
been to explore better ways to leverage this temporal information (Bain et al., 2021; Liu et al., 2022).

A video typically contains hundreds of frames, while text descriptions—such as captions or subti-
tles—are often much shorter and consist of only a few words (Lin et al., 2022; Wang et al., 2024).
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Figure 1: Illustration of the proposed
VICTER, i.e., video-conditioned text repre-
sentation refinement. Previous frameworks
generate text representations without incor-
porating video information, which can lead
to suboptimal biases inherent in pretrained
VLMs. We propose leveraging video infor-
mation to further refine the text representa-
tion for improving retrieval performance.

This imbalance between the vast amount of visual data
and the concise nature of textual descriptions poses a sig-
nificant challenge for accurate retrieval. Consequently,
another key trend in the field has focused on using text
to identify key information in videos while filtering out
redundant or noisy frames (Guan et al., 2023; Gorti et al.,
2022; Jin et al., 2023a).

While much of the prior research has concentrated on
improving video representations, we argue that refining
the text representation is equally important, yet has been
underexplored. Through a preliminary experiment, we
demonstrate that a more concise and precise text descrip-
tion can significantly enhance retrieval performance. Cru-
cially, this refinement can only be effective when paired
with corresponding video information. Instead of relying
on users to provide long and detailed text descriptions in real-world applications, we aim to re-
fine the text representation itself using video context, ensuring that the enhancement happens at the
feature level rather than altering the original text. Moreover, we observe that current methods, par-
ticularly those based on CLIP, exhibit a bias towards nouns in text descriptions. This bias can lead
to suboptimal results, as key aspects of the text—such as verbs and even prepositions—are often
overlooked, despite being crucial for retrieval. Inspired by this observation, we propose a simple
yet effective solution, VICTER, i.e., video-conditioned text representation refinement, as shwon in
Figure 1. Our approach aims to enrich text representations using video information in a flexible,
modular framework.

The core idea is to use the video features to re-weight the word embeddings generated by CLIP,
highlighting key words that are more relevant to the video content. However, since CLIP’s video
features are based on frame-level representations, using simple non-parametric methods like mean
pooling can dilute the relevance of the extracted features with unrelated information. To address
this, we introduce a video abstraction module, which extracts a more meaningful video represen-
tation by leveraging the prior assumption that important content within a video tends to appear
more frequently or occupies a larger proportion of the frames. Following this, we design a video-
conditioned text enhancement module that refines the original text features by reassessing individual
word embeddings and extracting the key words using the abstracted video features. During testing,
this enhancement module only adds a negligible computational cost, as it operates on top of the
standard text-video similarity matching process by performing an additional weighted summation
over the word features. Our method is not limited to CLIP but can also be applied to other video-text
frameworks (Xue et al., 2022b; Wang et al., 2023), making it a versatile approach for various re-
trieval tasks. By efficiently refining the text representation using video content, VICTER bridges the
gap between concise text descriptions and rich video data, significantly improving retrieval accuracy
with minimal additional computation. We summarize the contributions of this work as follows:

• This work demonstrates that pretrained image-text models exhibit a bias towards nouns in text
descriptions. As a result, relying solely on the text encoder for feature extraction overlooks other
important words, distorting the focus of the description and leading to suboptimal results. To
address this issue, we propose a video-conditioned text enhancement module to leverage the video
context to reassess and refine the text representation.

• We show that the primary content of a video typically occupies a larger portion of its frames.
Based on this observation, we introduce a video abstraction module that integrates representative
video features from frame-level data, without relying on any additional text information.

• Our VICTER is versatile and can be applied to various frameworks, including pretrained image-
text and video-text models. It significantly improves performance over baselines, setting new
state-of-the-art results on three benchmark datasets: MSR-VTT, LSMDC, and DiDeMo.

2 RELATED WORK

Pretrained Vision-Language Model. Vision-language pre-training aims to understand and process
the relationship between image and text modalities. Early research works utilized sequence en-
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coders, such as Long Short-Term Memory (LSTM) (Graves & Graves, 2012) and Gated Recurrent
Units (GRU) (Chung et al., 2014), to learn language representations. With the success of BERT (De-
vlin, 2018) in learning contextual text representations, many vision-language works (Gabeur et al.,
2020; Sun et al., 2019; Zhu & Yang, 2020; Wang et al., 2021b) began leveraging pre-trained BERT
features to enhance language representation capabilities. More recently, contrastive image-text pre-
training (Tan & Bansal, 2019; Radford et al., 2021) on large-scale web data has significantly ad-
vanced performance in vision-language tasks. CLIP (Radford et al., 2021), one of the most promi-
nent pre-trained models, has demonstrated powerful zero-shot capabilities (Luo et al., 2022; Deng
et al., 2023) for video-language understanding and has become a de facto baseline for text-video
retrieval tasks.

Text-to-video Retrieval. The goal of the retrieval task is to retrieve relevant videos from a database
of video clips based on a text query (Rohrbach et al., 2015; Xu et al., 2016; Wang et al., 2019;
Anne Hendricks et al., 2017). Previous studies (Chen et al., 2020; Mithun et al., 2018) primarily
focused on developing fusion strategies to align pre-extracted text and video features. With the
introduction of CLIP, more recent approaches have concentrated on enhancing video and text rep-
resentations (Croitoru et al., 2021; Lei et al., 2021; Bain et al., 2021; Liu et al., 2022; Li et al.,
2023b). For example, X-Pool (Gorti et al., 2022) utilizes text-conditioned feature fusion across
video frames, while PIDRo (Guan et al., 2023) models fine-grained semantic clues between video
and text. UATVR (Fang et al., 2023) addresses the inherent uncertainties in both text and image
modalities. DiffusionRet (Jin et al., 2023b) advances retrieval by integrating diffusion models into
the text-video retrieval pipeline, and T-MASS (Wang et al., 2024) enriches text embeddings by treat-
ing them as stochastic embeddings. In contrast to previous methods focused on carefully selecting
video features, our VICTER takes a complementary approach by refining the text features to address
the inherent limitations of the CLIP’s text encoder.

Video-Language Post-Pretraining. To better leverage the temporal information in video data and
overcome the limitations of CLIP’s image-text pretraining, several works (Wang et al., 2023; Cheng
et al., 2023) re-pretrain a unified backbone architecture to directly output video-level features in-
stead of frame-level ones. For instance, CLIP-ViP (Xue et al., 2022b) introduces a proxy-guided
video attention mechanism and re-pretrains the entire framework on large datasets like WebVid-
2.5M (Bain et al., 2021) and HDVILA-100M (Xue et al., 2022a) to generate richer video represen-
tations. Cap4Video (Wu et al., 2023), on the other hand, enhances video representations by incorpo-
rating auxiliary captions. Our VICTER requires no large-scale post-pretraining overhead. Instead,
it serves as a plug-and-play module that can be seamlessly integrated into existing frameworks.

Fine-grained Interaction between Words and Frames. There is a research trend that closely
relates to our VICTER, focusing on semantic alignments through fine-grained interactions (Wang
et al., 2021a;b; Zhu & Yang, 2020; Ma et al., 2022) between word and frame features. However,
many of these approaches introduce complex cross-modal fusion modules that emphasize specific
entities within the language (e.g., words and phrases) and video (e.g., frames and regions) (Chen
et al., 2020). While these methods have demonstrated significant performance improvements, they
often come with prohibitive computational costs. In this paper, we propose a lightweight and ver-
satile video-conditioned text enhancement module that refines the global text representation by ad-
dressing the attention bias introduced by the text encoder’s emphasis on certain words.

3 PRELIMINARY STUDY

In this section, we first revisit the workflow for adapting pre-trained vision-language models (VLMs)
to retrieval task. Next, we investigate how improving the description gap impacts performance, fol-
lowed by an analysis of the challenges posed by suboptimal priors in extracting text representations.

3.1 PRETRAINED VLMS FOR TEXT-VIDEO RETRIEVAL

Here we introduce the generic framework for adapting pre-trained VLMs to video, and discuss
how prior works fit within this framework. We use CLIP (Radford et al., 2021) as a representative
VLM, given its strong performance and the availability of open-source models. CLIP comprises
two encoders—one for images and one for text—that are jointly optimized on large-scale, internet-
sourced image-text pairs. For a given input sentence, the text encoder produces a representation
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for each word, including the ⟨EOS⟩ token (i.e., end-of-sequence). Typically, the ⟨EOS⟩ token is
used as the sentence embedding, denoted as t⟨eos⟩ ∈ Rd, where d represents the feature dimension.
The image encoder processes each video frame, outputting frame-level representations, which we
denote as {v1,v2, ...,vT }. To derive the overall video representation, prior works apply either text-
agnostic pooling (Luo et al., 2022) or text-conditioned pooling (Gorti et al., 2022), resulting in a
pooled video feature vpool ∈ Rd. For retrieval, a similarity function s(·), such as cosine similarity,
is employed to measure the relevance between text and video features. Given a training dataset with
N distinct text-video pairs, D = {(t⟨eos⟩i , vpooli )}Ni=1, the model is optimized using the InfoNCE
loss (Oord et al., 2018), where both text-to-video (Lt → v) and video-to-text (Lv→t) retrieval losses
are jointly minimized:

Lt→v = − 1

B

B∑
i=1

log
es(t

⟨eos⟩
i ,vpool

i )∑
j e

s(t
⟨eos⟩
i ,vpool

j )
, Lv→t = − 1

B

B∑
i=1

log
es(v

pool
i ,t

⟨eos⟩
i )∑

j e
s(vpool

i ,t
⟨eos⟩
j )

, (1)

where B denotes the number of text-video pairs in a batch. The overall loss combines both direc-
tions:

Lretrieval =
1

2
(Lt→v + Lv→t). (2)

This loss reaches its minimum when all relevant text-video pairs in a batch are perfectly aligned, a
result that heavily relies on the quality of both the text and video representations.

3.2 ENHANCED TEXT FOR IMPROVED RETRIEVAL

Method R@1 R@5 R@10
X-Pool (Gorti et al., 2022) 46.9 72.8 82.2
→ Enhanced text via VLM 57.3 (+10.4) 79.5 (+6.7) 88.2 (+6.0)
→ Enhanced text via LLM 36.2 (-10.7) 62.4 (-10.4) 73.0 (-9.2)
T-MASS (Wang et al., 2024) 50.2 75.3 85.1
→ Enhanced text via VLM 63.1 (+12.9) 82.4 (+7.1) 90.0 (+4.9)
→ Enhanced text via LLM 39.6 (-10.6) 66.8 (-8.5) 78.2 (-6.9)

Table 1: Text-to-video retrieval results on MSR-VTT. Enhanc-
ing the text with relevant video significantly boosts the accuracy
of existing methods.

The task of text-video retrieval involves
training a model to learn a similarity
function between text and video rep-
resentations. However, there exists a
notable discrepancy between these two
modalities, as text is often short and
concise, containing much less seman-
tic information compared to its corre-
sponding video. This makes it diffi-
cult for the text representation to fully
capture the rich semantics embedded
within the video. Intuitively, we hypothesize that enriching the text itself can significantly
boost retrieval performance. To test this hypothesis, we leverage an image captioning model,
MiniGPT1 (Zhu et al., 2023b), to generate more precise and detailed textual descriptions for the
paired videos, replacing the original captions in the dataset, such as MSR-VTT (Xu et al., 2016).
Some examples are shown in Figure 2, where the generated text is approximately three times longer
than the original captions. We opted for an image captioning model instead of a video captioning
model for three key reasons: (1) In video-text retrieval benchmarks, one video typically corresponds
to multiple captions, so it’s intuitive to generate diverse captions from different frames; (2) most
state-of-the-art video captioning models are trained on the same video-text datasets we use (e.g.,
MSR-VTT), so employing them could introduce data leakage, compromising fairness; and (3) the
output of existing video captioning models remains far from satisfactory compared to their image
captioning counterparts.

As shown in Table 1, we replaced the original text in the dataset with more informative descriptions
generated using corresponding videos, while keeping the training recipe unchanged. This approach
leads to substantial performance gains across different retrieval frameworks, such as X-Pool (Gorti
et al., 2022) and T-MASS (Wang et al., 2024). Additionally, we explored enhancing the text using
a large language model, i.e., GPT-4 (Achiam et al., 2023), to generate longer descriptions without
leveraging video information. The enhanced text and corresponding results are also presented in
Figure 2 and Table 1. Our findings reveal that without the context provided by video, generating
longer text does not effectively improve the retrieval performance, underscoring the critical role of
video-specific information in enhancing text representations for retrieval tasks. However, our goal

1The vision encoder used here is the combination of BLIPv2’s Q-former (Li et al., 2023a) and ViT (Doso-
vitskiy, 2020), the language decoder is LLAMA-2 (Touvron et al., 2023).
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• Enhanced text via language model
“Three women were engaged in lively conversation with each other, exchanging thoughts and ideas as they enjoyed each other's company.”
“The woman dressed in a stylish coat and a beautifully patterned scarf wrapped around her neck, exuded an air of elegance as she strolled down the bustling city street on a crisp autumn afternoon.”

• Original Text
“three women talk to each other”
“woman wearing a scarf”

• Enhanced text via vision-language model
“Two women sitting on a couch, one of them is wearing a black and white striped shirt and the other is wearing a pink scarf.”
“The image shows a living room with a couch, coffee table, and TV. There are two women sitting on the couch, one wearing a pink scarf and the other wearing a blue shirt.” 

Figure 2: Comparison between original text, enhanced text generated by an image captioning model, and
enhanced text produced by a language model. Original text and video are sourced from MSR-VTT dataset.

“a person is connecting something to system”
Input Text                                                   Top-1 Retrieved Video                                    Ground Truth Video

“a man is giving a review on a vehicle”

“a man grabs at snakes and throws them around the room”

Figure 3: Visualization of attention scores across different layers in the text encoder of the ViT-B/32-based
X-Pool model. We illustrate the attention maps from the 1st, 6th, and 12th layers, highlighting how attention
distribution evolves throughout the text encoding process. Darker colors indicate higher attention scores.

is not to modify the text input itself, as in real-world applications, we cannot expect users to provide
fully detailed descriptions. Therefore, in the next steps, we will explore how to leverage video
information to enhance text representation, as this remains a crucial area of text-to-video retrieval.

3.3 FLAWED KEYWORD ATTENTION IN TEXT ENCODER

An input sentence consists of multiple words, and intuitively, focusing on different words can lead to
varying interpretations of the sentence. Sometimes, even as humans, we need to carefully compare
the text against several similar videos, repeatedly analyzing the text to find the correct text-video
pair. In most retrieval frameworks, input texts are abstracted into latent features extracted by a text
encoder. As discussed in Sec 3.1, the embedding t⟨eos⟩ ∈ Rd of the ⟨EOS⟩ token is commonly used
as the representation of the entire text. Specifically, this representation is generated through the self-
attention mechanism, which computes a weighted sum of all word embeddings in the sentence. We
naturally hypothesize that a critical limitation of this approach lies in the self-attention mechanism
of the text encoder, which, if it inaccurately emphasizes certain words, can lead to a distortion
of the text’s intended meaning. As illustrated in Figure 3, we visualize the attention scores of the
text feature t⟨eos⟩ across different layers in the text encoder. Specifically, we removed the scores
of the ⟨BOS⟩ token and the ⟨EOS⟩ token itself, normalizing the remaining scores to ensure they
sum to one. For instance, in the first example, the text encoder predominantly focuses on the word
“system”, resulting in a retrieved video that aligns more closely with this word than with the ground
truth video, which should match the phrase “connecting something”. In the third case, the encoder
gives higher attention to the word “snakes,” but words like “throw”, “around”, and “room” more
accurately reflect the target video.

Additionally, we observe that the pretrained text encoder (Radford et al., 2021) tends to prioritize
nouns, possibly due to biases from its pretraining dataset. However, in text-video retrieval, other
words in the sentence, such as verbs and even prepositions, are often critical for identifying the
correct video. Determining which words are truly keywords often requires guidance from the video
content itself, beyond just the input sentence. This highlights the need to explore how video in-
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formation can be leveraged to refine text representations, a direction that remains underexplored in
previous works.

MSR-VTT DiDeMo
Avg k=1 k=2 k=3 k=4 k=5 k=6 Attn Avg k=1 k=2 k=3 k=4 k=5 k=6 Attn
30.9 31.2 32.1 32.9 33.5 32.4 32.2 33.0 24.8 24.6 24.9 25.2 25.1 25.0 24.6 25.6

Table 2: R@1 text-to-video retrieval results on MSR-VTT (Xu et al., 2016) and DiDeMo (Anne Hendricks
et al., 2017) benchmarks, where 12 frames are uniformly sampled from each video. “Avg” means average
pooling, “k” means top-k pooling, and “Attn” represents the weighted sum approach.

3.4 IDENTIFYING KEY FRAMES FOR ADAPTING PRETRAINED IMAGE-TEXT MODELS

Given that the pretrained image-text model CLIP serves as the de facto encoder for extract-
ing video representations {v1,v2, . . . ,vT }, a persistent challenge in text-to-video retrieval is
determining how to identify and fuse (Ni et al., 2022; Gorti et al., 2022; Luo et al., 2022;
Bain et al., 2021) the most semantically relevant sub-regions of a video—represented as a
subset of frames—that align with concise text descriptions. To illustrate the importance of
key frames, we first conduct a toy experiment using the MSR-VTT and DiDeMo bench-
marks, extracting text and frame-level features with the original pretrained CLIP encoders.

3                   7                  9                12                  5                  11                 6          10                 8                   2                  1                 4

12,11,8,9,10,7,5,6,1,3,4,2
Text: “a man is driving a car through the countryside”

Text: “a man is giving a review on a vehicle”

Text: “a little girl does gymnastics”

12 11 8 9 10 7 5 6 1 3 4 2

1 6 2 4 3 5 9 11 12 10 8 7

Figure 4: The similarity ranking between the text features and frame features,
which are extracted by original pretrained CLIP encoder. We observe that the
key frames, which are more relevant to the text description, make up a larger
proportion of the video content.

Given the text feature, we
compare the results of three
methods: (i) directly aver-
age pooling all the frame-
level features; (ii) selecting
the top-k frames most simi-
lar to the text and averaging
these k features; and (iii)
applying cosine similarity
to assign weights for a
weighted sum of all frames.
Table 2 shows the corre-
sponding results. From the
results, we observe that:
(i) a single frame is insuf-
ficient for satisfactory re-
trieval performance; (ii) treating all frames equally introduces irrelevant frames, leading to degraded
performance; and (iii) identifying and leveraging key frames significantly improves results. As dis-
cussed in Sec. 3.3, we aim to utilize video information to refine the text representation. However,
beyond the content-agnostic method of average pooling, the text feature must help identify key
frames, using methods such as top-k pooling or weighted sum.

Our hypothesis is that key frames, or critical content, should comprise the majority of the video.
This is because text descriptions tend to focus on the most important information, which often occu-
pies the largest portion of the video. To support this, we randomly selected several text-video pairs
from the MSR-VTT dataset and ranked the frames by their similarity to the text feature (based on
cosine similarity), as shown in Figure 4. Our findings indicate that the most similar “key frames”
often constitute a significant portion of the video sequence, further validating our hypothesis. Ac-
cordingly, we propose a video abstraction method that relies solely on the video itself to fuse the
frame-level features, without requiring additional modalities. This method will be introduced in
detail in Sec. 4.2.

4 OUR WORK

In this section, we outline the key components of our proposed VICTER framework, designed for
video-conditioned text representation refinement in text-to-video retrieval. We start with the basic
feature extraction process in Sec.4.1, followed by the video abstraction method in Sec.4.2. Next, we
detail the video-conditioned text enhancement mechanism in Sec.4.3. Finally, we present the overall
architecture in Sec.4.4, as illustrated in Figure 7 in appendix.
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4.1 FEATURE REPRESENTATION

The objective of text-to-video retrieval is to align text and video features within a shared latent
space. We use CLIP (Radford et al., 2021) as the base model for extracting multi-modal represen-
tations (Gorti et al., 2022; Xue et al., 2022b). As introduced in Sec. 3.1, given a video consisting of
hundreds of frames, the common approach is to sample T frames and input them into CLIP, gener-
ating T frame representations: {v1,v2, . . . ,vT }. Let ϕv and ϕt represent CLIP’s image and text
encoders, respectively. The feature extraction process can be formulated as:

vi = ϕv(Frame i), i = 1, ..., T ; {t⟨bos⟩, t1, ..., tK, t⟨eos⟩} = ϕt(Text), (3)

where vi, ti ∈ Rd, and K denotes the number of words in the input text. Previous works typically
use t⟨eos⟩ as the representation of the entire text. However, as shown in Sec. 3.3, this approach often
inaccurately emphasizes specific words, distorting the intended meaning of the text. This motivates
us to revisit and utilize individual word representations in the following sections.

4.2 VIDEO ABSTRACTION MODULE

As discussed in Sec.3.2, we need a video feature to help enhance the text representation. Given T
frame video features {v1,v2, . . . ,vT }, it’s intuitive to directly apply average pooling(Luo et al.,
2022) to obtain an abstracted video representation vpool. However, as discussed in Sec.3.4, this
content-agnostic method cannot effectively capture the key information of the video, leading to sub-
optimal results. In VICTER, we propose a self-content-aware video abstraction module, as shown
in Figure7(b). Given v = [v1,v2, . . . ,vT ] ∈ RT ×d, we first compute the affinity score among all
the video representations:

v̄ =
v

|v|
, A = v̄v̄⊤, S =

∑T

i=1
A:,i, (4)

where v̄ represents the normalized video feature vectors. The attention matrix A ∈ RT ×T is
computed by the dot product of the normalized video features with their transpose. The final affinity
score S ∈ RT is then obtained by summing the attention matrix across the last dimension. Then,
the abstracted representation is obtained as:

vabs =
∑T

i=1
si · vi, (5)

where si denotes the affinity score corresponding to each frame vi, and vabs ∈ Rd encapsulates the
entire video through this content-conditioned process.

4.3 VIDEO-CONDITIONED TEXT ENHANCEMENT MODULE

After getting our abstracted video representation, we use it to enhance the text representation in our
video-conditioned module, as shown in Figure 7(c). We first project the video embedding vabs ∈ Rd

into a single query Qv ∈ R1×d and word embeddings t = [t1, t2, . . . , tK] ∈ RK×d into key
Kt ∈ RK×d and value Vt ∈ RK×d matrices, where we set the size of the projection dimension the
same as the model’s latent dimension d. The projections are defined as:

Qv = LN(vabs)WQ, Kt = LN(t)WK , Vt = LN(t)WV , (6)

where LN denotes the layer normalization (Lei Ba et al., 2016), WQ, WK , and WV are projection
matrices in Rd×d. We employ dot product attention (Vaswani, 2017) to compute relevance weights
between the abstracted video representation and each word in the text, which are used to aggregate
the word embeddings:

zt|vabs = Attention(Qv,Kt,Vt) = softmax
(
QvK

⊤
t /

√
d
)
Vt, (7)

where the query Qv is derived from the abstracted video representation, guiding the attention to
identify and weigh the most relevant words through the key Kt. The value Vt encapsulates the word
representations, enabling the selection and aggregation of key words based on the corresponding
video context. To further enhance the aggregated word embeddings, we apply a linear transformation
with a residual connection, incorporating the capacity of a feed-forward network:

zt|vabs = zt|vabs + Linear(LN(zt|vabs)). (8)
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Finally, we combine this refined embedding with the original text representation, t⟨eos⟩, from the
text encoder to produce the final enhanced text feature, te:

te = t⟨eos⟩ + λ · zt|vabs . (9)

where the λ ∈ Rd is a learnable hyperparameter. After obtaining the enhanced text representation
te, we apply a text-conditioned video aggregation method, X-Pool (Gorti et al., 2022), allowing te to
attend to the most semantically relevant frames. This approach pools the final video representation,
vxpool, as illustrated in Figure 7(d) in appendix.

4.4 OVERALL ARCHITECTURE

Building on the foundation of adapting pre-trained VLMs, we present the detailed framework of
VICTER built on CLIP and X-Pool models (Gorti et al., 2022) in Figure 7 in appendix. However,
VICTER is versatile and can be seen as a general module for video-conditioned text representa-
tion refinement. For example, if we replace X-Pool’s vision encoder with CLIP-VIP’s vision en-
coder (Xue et al., 2022b), which directly uses the first video proxy token as the video representation,
our video-conditioned text enhancement module can be easily integrated into their network without
major adjustments. During the testing phase, the extra cost is from the cross-attention mechanism
added during the text representation enhancement stage between each text-video pair, resulting in
negligible additional computational overhead.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Datasets. We evaluate our method on three widely used text-video retrieval benchmarks:

• MSR-VTT (Xu et al., 2016) contains 10,000 video clips, each annotated with 20 sentences. We
follow the 1K testing split used in (Gorti et al., 2022).

• DiDeMo (Anne Hendricks et al., 2017) comprises 10,642 video clips paired with a total of 40,543
captions. We adopt the train-test split from (Bain et al., 2021), where all sentence descriptions for
a video are concatenated into a single query.

• LSMDC (Rohrbach et al., 2015) consists of 118,081 short clips from 202 movies, with each video
typically paired with one caption. We follow the split defined by Gorti et al. (2022), using 109,673
videos for training, 7,408 for validation, and 1,000 for testing.

Evaluation Metrics. We assess model performance using standard retrieval metrics, including
R@K (Recall at Rank K=1,5,10, higher is better), Median Rank (MdR, lower is better), and Mean
Rank (MnR, lower is better), following the protocols from (Luo et al., 2022; Gorti et al., 2022).

Implementation Details. We initialize both the text and image encoders using CLIP checkpoints
(ViT-B/32 and ViT-B/16). All experiments are conducted on a single NVIDIA A100 80GB GPU
with PyTorch library. Following (Gorti et al., 2022), new FC layers are initialized with identity
matrices, and biases are set to zero. Our models are fine-tuned end-to-end on each dataset, with
12 frames uniformly sampled from each video and resized to 224×224. We use a batch size of
32 for all experiments, setting the learning rate to 1e-6 for CLIP-initialized weights and 1e-5 for
other parameters. The models are trained for 5 epochs (10 epochs for DiDeMo), optimized using
the AdamW optimizer with a weight decay of 0.2 and a cosine learning rate schedule.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We show the text-to-video retrieval performance of our VICTER with previous methods across three
benchmark datasets in Tables 3. The results reveal that VICTER significantly improves retrieval
performance over traditional CLIP-based frameworks, such as X-Pool (Gorti et al., 2022), across
all metrics. Specifically, VICTER enhances the ViT-B/32 based X-Pool at R@1 by 0.8% on the
MSR-VTT and by 1.2% with the ViT-B/16 backbone. Additionally, when integrated with a post-
pretraining framework that better utilizes temporal information in videos, VICTER further boosts
the state-of-the-art results of the CLIP-VIP (Xue et al., 2022b) with the ViT-B/16 backbone on

8
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Method MSR-VTT DiDeMo LSMDC
R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

CLIP-ViT-B/32
CLIP4Clip (Luo et al., 2022) 44.5 71.4 81.6 15.3 42.8 68.5 79.2 18.9 22.6 41.0 49.1 61.0

X-CLIP (Ma et al., 2022) 46.1 73.0 83.1 13.2 45.2 74.0 - 14.6 23.3 43.0 - 56.0
TS2-Net (Liu et al., 2022) 47.0 74.5 83.8 13.0 41.8 71.6 82.0 14.8 23.4 42.3 50.9 56.9
X-Pool (Gorti et al., 2022) 46.9 72.8 82.2 14.3 44.6 73.2 82.0 15.4 25.2 43.7 53.5 53.2
X-Pool + VICTER (Ours) 47.7 73.4 82.8 13.6 45.5 73.8 82.3 14.9 25.7 44.0 53.8 52.7
UATVR (Fang et al., 2023) 47.5 73.9 83.5 12.3 43.1 71.8 82.3 15.1 - - - -

Prompt Switch (Deng et al., 2023) 47.8 73.9 82.2 14.1 - - - - 23.1 41.7 50.5 56.8
DiffusionRet (Jin et al., 2023b) 49.0 75.2 82.7 12.1 46.7 74.7 82.7 14.3 24.4 43.1 54.3 40.7
CLIP-ViP (Xue et al., 2022b) 50.1 74.8 84.6 13.8 48.6 77.1 84.4 14.4 25.6 45.3 54.4 53.6
CLIP-ViP + VICTER (Ours) 50.5 75.1 84.8 13.4 49.0 77.1 84.6 14.0 26.0 45.5 54.2 53.0
T-MASS Wang et al. (2024) 50.2 75.3 85.1 11.9 50.9 77.2 85.3 12.1 28.9 48.2 57.6 43.3
T-MASS + VICTER (Ours) 50.8 75.7 85.3 11.6 51.4 77.5 85.4 11.8 29.9 48.8 57.9 42.8

CLIP-ViT-B/16
X-CLIP (Ma et al., 2022) 49.3 75.8 84.8 12.2 47.8 79.3 - 12.6 26.1 48.4 - 46.7
TS2-Net (Liu et al., 2022) 49.4 75.6 85.3 13.5 - - - - - - - -
X-Pool (Gorti et al., 2022) 48.2 73.7 82.6 12.7 47.3 74.8 82.8 14.2 26.1 46.8 56.7 47.3
X-Pool + VICTER (Ours) 49.4 75.7 84.5 12.1 48.4 74.9 83.1 13.9 26.8 47.2 57.0 46.6
UATVR (Fang et al., 2023) 50.8 76.3 85.5 12.4 45.8 73.7 83.3 13.5 - - - -

CLIP-ViP (Xue et al., 2022b) 54.2 77.2 84.8 11.3 50.5 78.4 87.1 12.8 29.4 50.6 59.0 43.1
CLIP-ViP + VICTER (Ours) 54.5 77.5 85.0 11.2 50.9 78.5 87.1 12.6 29.9 51.0 59.3 42.4
T-MASS (Wang et al., 2024) 52.7 77.1 85.6 10.5 53.3 80.1 87.7 9.8 30.3 52.2 61.3 40.1
T-MASS + VICTER (Ours) 53.6 77.5 85.8 10.1 53.9 80.5 87.7 9.6 30.7 52.4 61.2 40.0

Table 3: Text-to-video comparisons on MSRVTT (Xu et al., 2016), DiDeMo (Anne Hendricks et al., 2017)
and LSMDC (Rohrbach et al., 2015). Bold number denotes the best performance.

Method MSR-VTT DiDeMo
R@1 R@5 MnR R@1 R@5 MnR

Baseline 46.9 72.8 14.3 44.6 73.2 15.4
Average 47.4 73.0 13.8 45.2 73.6 15.1
Random 47.0 72.7 14.0 44.5 73.5 15.3
X-Pool 46.5 71.9 14.9 44.0 72.7 15.4
Abstract 47.7 73.4 13.6 45.5 73.8 14.9

(a) Video abstraction methods.

λ
DiDeMo

R@1 R@5 MnR
Baseline (λ=0) 44.6 73.2 15.4

λ=1 43.8 72.5 16.0
λ=0.1 45.4 73.5 14.9
λ=0.01 45.2 73.3 15.3

Learnable 45.5 73.8 14.9

(b) Enhancement coefficient.

Manner DiDeMo
R@1 R@5 MnR

Baseline 44.6 73.2 15.4
Concat 45.3 73.3 15.0

Multiply 44.1 72.8 16.1
Addition 45.5 73.8 14.9

(c) Fusion manner.

Table 4: Ablation study on (a) different video abstraction methods; (b) the hyperparameter λ in Eq. 9; and (c)
different fusion manner.

MSR-VTT by 0.3%. This demonstrates that our video-conditioned text representation enhancement
provides complementary improvements to existing CLIP-based text encoders, even when CLIP-VIP
is further trained on additional datasets such as WebVid-2.5M and HD-VILA-100M. Moreover,
when combined with T-MASS (Wang et al., 2024), which incorporates more variability in text em-
beddings, our VICTER model still achieves significant performance gains. This underscores the
effectiveness of our proposed method in enhancing text-to-video retrieval performance.

In addition, we compare the video-to-text retrieval results with other methods in Table 5 in the
appendix. Across various frameworks, our VICTER consistently enhances performance, achieving
significant improvements in video-to-text retrieval.

5.3 ABLATION STUDIES

Impact of video abstraction module. To demonstrate the effectiveness of our proposed video
abstraction module, we compare it with several variants, including mean pooling, random selection,
and X-Pool-based selection. As shown in Table 4a, the X-Pool-based selection strategy, which uses
the original text feature extracted by the encoder to perform weighted fusion of frame features,
performs the worst. This is likely because the original text feature already contains inherent biases,
and leveraging this biased feature to extract video information only amplifies these biases, leading
to poorer performance. In contrast, average pooling outperforms random selection, indicating that
most frames can accurately represent the video’s content. Our abstraction method achieves the best
results, supporting our hypothesis that emphasizing the content that occupies more of the video is a
more effective strategy.
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Figure 5: Visualization of attention scores in X-Pool’s final text encoder (top row) and VICTER’s text en-
hancement module (bottom row), alongside the corresponding video frames.

Effect of learnable parameter. Here, we ablate the hyperparameter λ used in Eq.9, as shown
in Table4b. The baseline (λ=0) represents the model without the text enhancement module. Our
results demonstrate that an appropriate choice of λ leads to improved performance, indicating the
importance of carefully balancing the contribution of the extra representation. A learnable per-
channel λ achieves the best results, as it allows for fine-grained control over the size and influence
of the added representation.

Ablation on enhancement manner. As shown in Table 4c, we explore three different fusion meth-
ods: concatenating the original and newly aggregated word embeddings followed by a linear layer to
restore the channel dimension, multiplying the newly aggregated word embeddings with the original
ones, and a simple addition. Our results indicate that the simple addition approach achieves the best
performance.

Figure 6: The comparison of
the magnitude of text embedding
changes between the original CLIP,
X-Pool, and our VICTER is illus-
trated. We measure the differences
in features using cosine similarity
to indicate the extent of change be-
tween embeddings.

Weight of the key word. We visualize the attention weights of
each word in the input sentence using our video-conditioned text
enhancement module, based on paired videos from the MSR-
VTT test set, and compare these results to X-Pool’s text en-
coder’s final attention layer in Figure 5. It is evident that incor-
porating video information enables our model to capture more
contextually rich words that better convey content and spatial re-
lations, such as “hairdresser and client” or “bird in box,” rather
than solely focusing on nouns. However, there are still potential
limitations. For instance, in the last example, “woman is cooking
food” takes up more time in the video, causing our video abstrac-
tion module to prioritize these frames and extract keywords re-
lated to this part, while neglecting the later action “man is setting
a table”. This also highlights how our approach can complement
original text encoder, balancing out each other’s weaknesses.

Magnitude of text embedding changes. Since VICTER en-
hances the original text representation by adding an extra
feature—weighted sum of the word embeddings, as shown in
Eq. 9—we examine how this approach influences the original
feature. In Figure 6, we display the cosine similarity between the VICTER-enhanced final text rep-
resentation and the pretrained CLIP text representation on MSR-VTT test set. After fine-tuning with
methods like X-Pool, the output from the text encoder still maintains a high similarity (0.91) com-
pared to the zero-shot CLIP. However, with VICTER, the similarity between the text features and the
original ones decreases, indicating that our model effectively captures new word-level information,
which helps improve the overall retrieval performance.

6 CONCLUSION

This work focuses on refining text representation by addressing the inherent limitations of adapt-
ing pretrained image-text models for text-video retrieval tasks. We observed that directly using a
pretrained text encoder often results in suboptimal bias, where the model tends to overemphasize
certain nouns, leading to misinterpretations of the description. Moreover, key elements in the video,
which typically occupy a significant portion of the frames, can serve as useful prior knowledge for
extracting video feature. Based on these insights, we propose a versatile solution with two com-
ponents: the video abstraction module and the video-conditioned text enhancement module. These
modules can be seamlessly integrated into existing retrieval frameworks to significantly improve
performance with minimal additional computational cost.
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A APPENDIX

In this appendix, we show the detailed overall architecture of the “X-Pool + VICTER” method in
Table 3, as well as the video-to-text retrieval results on MSR-VTT (Xu et al., 2016) dataset.

0 1 2 7
Text: “[CLS] a person is connecting something to system”

Text Encoder

…

…

Video: Frame #1  Frame #2  Frame #3       Frame #12

…

…

Image Encoder

(a) Features extracted by pretrained VLMs (b) Video abstraction

Affinity
compute

sum

(c) Video-conditioned 
text enhancement

𝑊𝑊𝑄𝑄 𝑊𝑊𝐾𝐾 𝑊𝑊𝑉𝑉
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(d) X-Pool module

𝑊𝑊𝑄𝑄 𝑊𝑊𝐾𝐾 𝑊𝑊𝑉𝑉

Cross Attention

Enhanced text feat. Abstracted vid feat.

Similarity Matching

Text feat. Word feat. Text-conditioned video feat.

Figure 7: The detailed architecture of the proposed X-Pool + VICTER, i.e., video-conditioned text represen-
tation refinement, comprises several components: the basic pretrained VLMs (Sec.4.1), the video abstraction
module (Sec.4.2), the video-conditioned text enhancement module (Sec. 4.3), and the text-conditioned pooling
as introduced in (Gorti et al., 2022).

Method R@1↑ R@5↑ R@10↑ MnR↓
CLIP-ViT-B/32

CLIP4Clip (Luo et al., 2022) 42.7 70.9 80.6 11.6
X-Pool (Gorti et al., 2022) 44.4 73.3 84.0 9.0
X-Pool + VICTER (Ours) 45.4 73.7 84.3 8.8
TS2-Net (Liu et al., 2022) 45.3 74.1 83.7 9.2

DiffusionRet (Jin et al., 2023b) 47.7 73.8 84.5 8.8
UATVR (Fang et al., 2023) 46.9 73.8 83.8 8.6

T-MASS (Wang et al., 2024) 47.7 78.0 86.3 8.0
T-MASS + VICTER (Ours) 48.5 78.4 86.5 7.9
CLIP-ViP (Xue et al., 2022b) 49.0 76.8 84.3 9.3
CLIP-ViP + VICTER (Ours) 49.3 77.1 84.7 9.0

CLIP-ViT-B/16
X-Pool (Gorti et al., 2022) 46.4 73.9 84.1 8.4
X-Pool + VICTER (Ours) 47.5 74.3 84.2 8.0
TS2-Net (Liu et al., 2022) 46.6 75.9 84.9 8.9
UATVR (Fang et al., 2023) 48.1 76.3 85.4 8.0

T-MASS (Wang et al., 2024) 50.9 80.2 88.0 7.4
T-MASS + VICTER (Ours) 51.5 80.4 87.9 7.2

Table 5: Video-to-text results on MSR-VTT dataset. (Xu et al., 2016).
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