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ABSTRACT

We resolve the open question regarding the sample complexity of policy learn-
ing for maximizing the long-run average reward associated with a uniformly er-
godic Markov decision process (MDP), assuming a generative model. In this
context, the existing literature provides a sample complexity upper bound of
Õ(|S||A|t2mixϵ

−2)* and a lower bound of Ω(|S||A|tmixϵ
−2). In these expressions,

|S| and |A| denote the cardinalities of the state and action spaces respectively, tmix

serves as a uniform upper limit for the total variation mixing times, and ϵ signifies
the error tolerance. Therefore, a notable gap of tmix still remains to be bridged.
Our primary contribution is the development of an estimator for the optimal pol-
icy of average reward MDPs with a sample complexity of Õ(|S||A|tmixϵ

−2). This
marks the first algorithm and analysis to reach the literature’s lower bound. Our
new algorithm draws inspiration from ideas in Li et al. (2020), Jin & Sidford
(2021), and Wang et al. (2023). Additionally, we conduct numerical experiments
to validate our theoretical findings.

1 INTRODUCTION

This paper offers a theoretical contribution to the area of reinforcement learning (RL) by providing
the first provably optimal sample complexity guarantee for a tabular RL environment in which a
controller wishes to maximize the long run average reward governed by a Markov decision process
(MDP).

The landscape of RL has been illuminated by remarkable empirical achievements across a diverse
spectrum of applications (Kober et al., 2013; Sadeghi & Levine, 2016; Deng et al., 2017). As a
consequence, a great deal of research effort has been channeled into RL theory and its applications
within operations research and the management sciences. In many real-world scenarios, influenced
by engineering and managerial considerations, the MDP model naturally unfolds within an envi-
ronment where viable policies must be stable (Bramson, 2008). In these settings, the controlled
Markov chain induced by a reasonable policy will typically converge in distribution to a unique
steady state, regardless of the initial condition. This phenomenon is known as mixing. Within such
modeling environments, the long run average reward emerges as a well-defined and pertinent per-
formance measure to maximize. Its relevance is particularly pronounced in scenarios where there
is an absence of an inherent time horizon or discount factor. In situations where a system exhibits
fast mixing, a finite-time observation of the state process can offer a good statistical representation
of its long-term behavior. As a result, it becomes reasonable to anticipate that, for such systems, a
lower-complexity algorithm for policy learning is attainable.

Recognized as a significant and challenging open problem in RL theory, the optimal sample com-
plexity for average reward MDPs (AMDPs) under a generative model, i.e., a sampler capable of
generating new states for the controlled Markov chain conditioned on any state and action, has been

*The Õ, Ω̃, Θ̃ hide log factors.
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Table 1: Sample complexities of AMDP algorithms. When tmix appear in the sample complexity,
an assumption of uniform ergodicity is being made, while the presence of H‡ is associated with an
assumption that the MDP is weakly communicating.

Algorithm Origin
Sample complexity

upper bound (Õ)
Primal-dual π learning Wang (2017) |S||A|τ2t2mixϵ

−2 †

Primal-dual SMD* Jin & Sidford (2020) |S||A|t2mixϵ
−2

Reduction to DMDP* Jin & Sidford (2021) |S||A|tmixϵ
−3

Reduction to DMDP Wang et al. (2022) |S||A|Hϵ−3

Refined Q-learning Zhang & Xie (2023) |S||A|H2ϵ−2

Reduction to DMDP This paper |S||A|tmixϵ
−2

Lower bound
Jin & Sidford (2021) Ω(|S||A|tmixϵ

−2)

Wang et al. (2022) Ω(|S||A|Hϵ−2)

extensively investigated in the literature (refer to Table 1). In this paper, our focus is on learning an
optimal policy for a uniformly ergodic AMDP (Meyn & Tweedie, 2009; Wang et al., 2023), and we
attain the first optimal sample complexity bound within this context. Specifically, assuming finite
state and action spaces, uniform ergodicity implies that the transition matrix Pπ induced by any sta-
tionary Markov deterministic policy π has the property that Pm

π converges to a matrix with identical
rows in ℓ1 distance as m→ ∞ at a geometric rate. The time constant of this geometric convergence
is known as the mixing time. The largest mixing time over all π is an important parameter denoted
by tmix (see equation (2.2)). In this setting, we establish the following main result:
Theorem 0 (Informal). Assuming that the AMDP is uniformly ergodic, the sample complexity of
learning a policy that achieves a long run average reward within ϵ ∈ (0, 1] of the optimal value with
high probability is

Θ̃

(
|S||A|tmix

ϵ2

)
,

where |S|, |A| are the cardinality of the state and action spaces, respectively.

A rigorous version of Theorem 0 is presented in Theorem 2. We highlight that this is the first
optimal result in the domain of sample complexity of AMDPs, as it achieves the lower bound in Jin
& Sidford (2021) for uniformly ergodic AMDPs.

1.1 LITERATURE REVIEW

In this section, we review pertinent literature to motivate our methodology and draw comparisons
with our contributions.

Sample Complexity of Average Reward RL: The relevant literature is summarized in Table 1.
It’s important to note that the works mentioned in this table revolve around the concept of mixing,
albeit from distinct perspectives. On one side, Wang (2017); Jin & Sidford (2020; 2021), and the
current paper assumes a uniformly ergodic AMDP. Conversely, Wang et al. (2022) and Zhang & Xie
(2023) operate under a milder assumption, considering weakly communicating AMDPs as defined
in Puterman (1994). Under this assumption, only the optimal average reward is guaranteed to remain
independent of the initial state and is attained by a stationary Markov deterministic policy. In particu-
lar, certain policies in this setting might not lead to a mixing Markov chain, potentially rendering the
policy’s average reward state dependent. Consequently, the uniform mixing time upper bound tmix

is infinite within such instances. In this context, a pertinent complexity metric parameter denoted as
H is the span semi-norm (see (A.1)) upper bound of transient value functions H = maxπ̄ |uπ̄|span,
where the max is taken over all optimal policies and uπ̄ is defined in (2.5)‡‡. As demonstrated in

‡H is the maximum span of optimal transient value functions. See the literature review for a discussion.
†Let ηπ be the stationary distribution of Pπ , then τ := maxπ∈Π maxs∈S ηπ(s)/mins η

π(s).
*SMD stands for stochastic mirror descent while DMDP stands for discounted MDP.

‡‡For periodic chains, the limit in (2.5) is understood as the Cesaro limit, see Puterman (1994).
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Table 2: Sample complexity of uniformly ergodic DMDP algorithms when tmix ≤ (1−γ)−1, where
γ is the discount factor.

Origin
Sample complexity

upper bound (Õ)
Minimum sample size (Ω̃)

Azar et al. (2013) |S||A|(1− γ)−3ϵ−2 |S||A|(1− γ)−3

Agarwal et al. (2020) |S||A|(1− γ)−3ϵ−2 |S||A|(1− γ)−2

Li et al. (2020) |S||A|(1− γ)−3ϵ−2 |S||A|(1− γ)−1

Wang et al. (2023) |S||A|tmix(1− γ)−2ϵ−2 |S||A|(1− γ)−3

This paper |S||A|tmix(1− γ)−2ϵ−2 |S||A|(1− γ)−1

Lower bound
Wang et al. (2023) tmix(1− γ)−2ϵ−2 § N/A

Wang et al. (2022), it holds that H ≤ 8tmix when the reward is bounded in [0, 1]. It’s important to
note that H depends on the specific reward function, whereas tmix does not. Therefore, the reverse
inequality cannot hold, even within the realm of uniformly ergodic MDPs. This is evident when we
consider a reward function that is identically 0. However, it’s worth mentioning that the family of
worst-case uniformly ergodic MDP instances presented in Wang et al. (2023) exhibitsH = Θ(tmix).
See Section 5 for some more discussion.

Additionally, we highlight that two existing papers in the literature, namely Jin & Sidford (2021)
and Wang et al. (2022), employ the reduction to a discounted MDP (DMDP) method to facilitate
policy learning for AMDPs. This paper follows the same approach. In Section 1.2, we will offer an
in-depth discussion of this methodology and a comparison with these two papers.

Sample Complexity of Discounted Tabular RL: In recent years, there has been substantial interest
in understanding the worst-case sample complexity theory of tabular DMDPs. This research has
given rise to two primary approaches: model-based and model-free. Model-based strategies involve
constructing an empirical MDP model from data and employing dynamic programming (see Azar
et al. (2013); Sidford et al. (2018); Agarwal et al. (2020); Li et al. (2022)), yielding optimal upper and
lower bounds of Θ̃(|S||A|(1−γ)−3ϵ−2), where γ is the discount factor. Meanwhile, the model-free
route maintains lower-dimensional statistics of the transition data, as exemplified by the iconic Q-
learning (Watkins & Dayan, 1992) and its extensions. Li et al. (2021) demonstrates that the classic
Q-learning algorithm has a worst-case sample complexity of Θ̃(|S||A|(1 − γ)−4ϵ−2). However,
Wainwright (2019) introduced a variance-reduced Q-learning variant that reaches the same lower
bound as model-based methods.

Worst-case analysis provides uniform guarantees for convergence rates across all γ-discounted MDP
instances. However, the worst-case examples that achieve the lower bound must have a transition
kernel or reward function that depends on γ (Wang et al., 2023). In contrast, Khamaru et al. (2021)
focuses on instance-dependent settings, where the transition kernel and reward function are fixed,
and proves matching sample complexity upper and lower bounds. Wang et al. (2023) concentrates on
scenarios in which the class of MDPs can encompass arbitrary reward functions, while the transition
kernels are assumed to obey various mixing time upper bounds. A particular setting is when this
mixing time upper bound is uniform across all policies. This specific setting aligns with the central
objective of this paper: Derive optimal sample complexity theory for uniformly ergodic AMDPs.

1.2 ALGORITHM METHODOLOGY

Our approach to algorithmic design draws inspiration from Jin & Sidford (2021), wherein the opti-
mal policy of a uniformly ergodic AMDP is approximated by that learned from a discounted MDP
(DMDP) with a discount factor 1 − γ = Θ(ϵ/tmix). This idea of approximating the AMDP by a
DMDP been considered and implemented since 1970s, see Hordijk & Tijms (1975). It is known as
the reduction method in the AMDP sample complexity literature. As shown in Table 1, however,

§The lower bound in Wang et al. (2023) assumes |S||A| = O(1).
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both Jin & Sidford (2021) and Wang et al. (2022) employed this strategy and yet obtained an ϵ−3

dependency, deviating from the canonical ϵ−2 rate obtained in this paper.

To understand this deviation and motivate our methodology, we provide a brief discussion of the
sample complexity theory for uniformly ergodic DMDPs. Prior to Wang et al. (2023), the DMDP
algorithm, known as perturbed model-based planning, and the analysis in Li et al. (2020) achieved
a sample complexity dependence on 1 − γ of Õ((1 − γ)−3). Though optimal for the worst-case
DMDP, this dependence on 1 − γ is sub-optimal for policy learning of uniformly ergodic DMDPs.
On the other hand, the state-of-the-art algorithm and associated analysis in Wang et al. (2023) yield
an optimal Θ̃(tmix(1−γ)−2) dependence, as displayed in Table 2. The sub-optimal ϵ−3 dependency
observed in both Jin & Sidford (2021) and Wang et al. (2022) can be attributed to their utilization of
the Õ((1− γ)−3) result from Li et al. (2020), without taking into account the complexity reduction
from the associated mixing assumptions.

Building upon the aforementioned DMDP results, our strategy is rooted in recognizing that the
optimal sample complexity of uniformly ergodic DMDPs is Θ̃(|S||A|tmix(1−γ)−2ϵ−2). As shown
in Table 2, the algorithm presented in Wang et al. (2023) is capable of achieving this complexity.
However, as indicated in the third column of Table 2, it necessitates a minimum sample size of
Ω̃(|S||A|(1−γ)−3). This quantity can be interpreted as the initial setup cost of the algorithm which
is indifferent to the specification of ϵ. Unfortunately, Ω̃(|S||A|(1 − γ)−3) proves to be excessively
large for our objective. For a more comprehensive discussion on this issue, see Section 3.1.

To overcome this challenge, in this paper, we successfully establish an optimal sample complex-
ity upper bound for the algorithm proposed in Li et al. (2020) in the setting of uniformly ergodic
DMDPs. We achieve this while simultaneously maintaining a minimum sample size requirement of
Ω̃(|S||A|(1− γ)−1). This optimal sample complexity bound for uniformly ergodic DMDPs, which
builds upon and enhances the findings in Wang et al. (2023), is of independent theoretical signifi-
cance. The formal statement is presented in Theorem 1, Section 3.1. This accomplishment is made
possible by applying analytical techniques presented in Wang et al. (2023). In conjunction with the
reduction methodology outlined in Jin & Sidford (2021), these developments collectively result in
the AMDP Algorithm 2, which attains the optimal sample complexity as outlined in Theorem 0.

2 MARKOV DECISION PROCESSES: DEFINITIONS

We consider the setting of MDPs with finite state and action space S and A. Let P(S) denote the
set of probability measures on S. An element p ∈ P(S) can be seen as a row vector in R|S|. Let
M(r, P, γ) denote a discounted MDP (DMDP), where r : S × A → [0, 1] is the reward function,
P : S×A→ P(S) is the transition kernel, and γ ∈ (0, 1) is the discount factor. Note that P can be
identified with a s, a indexed collection of measures {ps,a ∈ P(S) : (s, a) ∈ S ×A}. We denote an
average reward MDP (AMDP) with the same reward function and transition kernel by M̄(r, P ).

Let H = (|S| × |A|)Z≥0 and H the product σ-field form the underlying measureable space. Define
the stochastic process {(Xt, At), t ≥ 0} by the point evaluation Xt(h) = st, At(h) = at for all
t ≥ 0 for any h = (s0, a0, s1, a1, . . . ) ∈ H. At each time and current state Xt, if action At is
chosen, the decision maker will receive a reward r(Xt, At). Then, the law of the subsequent state
satisfies L(Xt+1|X0, A0, . . . , Xt, At) = pXt,At(·) w.p.1.

It is well known that to achieve optimal decision making in the context of infinite horizon AMDPs
or DMDPs (to be introduced), it suffices to consider the policy class Π consisting of stationary,
Markov, and deterministic policies; i.e. any π ∈ Π can be seen as a function π : S → A. For π ∈ Π
and initial distribution µ ∈ P(S), there is a unique probability measure Qπ

µ on the product space s.t.
the chain {(Xt, At), t ≥ 0} has finite dimensional distributions

Qπ
µ(X0 = s0, A0 = a0, . . . , At = at) = µ(s0)ps0,π(s0)(s1) . . . pst−1,π(st−1)(st)1 {π(si) = ai,∀i} ,

where 1 is the indicator function. Note that this also implies that {Xt, t ≥ 0} is a Markov chain
under Qπ

µ with transition matrix Pπ defined by

Pπ(s, s
′) = ps,π(s)(s

′).

Also, we define rπ by rπ(s) = r(s, π(s)).
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2.1 DISCOUNTED MDPS

For π ∈ Π, let Eπ
µ denote the expectation under under Qπ

µ. For µ with full support S, the discounted
value function vπ(s) of a DMDP is defined via

vπ(s) := Eπ
µ

[ ∞∑
t=0

γtr(Xt, At)

∣∣∣∣∣X0 = s

]
.

It can be seen as a vector vπ ∈ R|S|, and can be computed using the formula vπ = (I − γPπ)
−1rπ.

The optimal discounted value function is defined as

v∗(s) := max
π∈Π

vπ(s), s ∈ S.

For probability measure p on S, let p[v] denote the sum
∑

s∈S p(s)v(s). It is well known that v∗ is
the unique solution of the following Bellman equation:

v∗(s) = max
a∈A

(r(s, a) + γps,a[v
∗]) . (2.1)

Moreover, π∗(s) ∈ argmaxa∈A (r(s, a) + γps,a[v
∗]) is optimal and hence v∗ = (I−γPπ∗)−1rπ∗ .

2.2 AVERAGE REWARD MDP

As explained in the introduction, in this paper, we assume that the MDP of interest is uniformly
ergodic. That is, for all π ∈ Π, Pπ is uniformly ergodic. By Wang et al. (2023), this is equivalent to
the setting in (Wang, 2017; Jin & Sidford, 2021) where the authors assume

tmix := max
π∈Π

inf

{
m ≥ 1 : max

s∈S
∥Pm

π (s, ·)− ηπ(·)∥1 ≤ 1

2

}
<∞. (2.2)

Here ηπ(·) is the stationary distribution of Pπ and ∥·∥1 is ℓ1 distance between two probability vec-
tors. Further, this is also shown in Wang et al. (2023) to be equivalent to the following assumption:
Assumption 1 (Uniformly Ergodic MDP). For any π ∈ Π, there exists m ≥ 1, q ≤ 1 and probabil-
ity measure ψ ∈ P(S) such that for all s ∈ S, Pm

π (s, ·) ≥ qψ(·).

Here, the notation Pm
π denotes themth power of the matrix Pπ . Assumption 1 is commonly referred

to, in the general state-space Markov chain literature, as Pπ satisfying the Doeblin condition (Meyn
& Tweedie, 2009). In the context of Assumption 1, we define the minorization time as follows.
Definition 1 (Minorization Time). Define the minorization time for a uniformly ergodic kernel Pπ

as

tminorize(Pπ) := inf

{
m/q : inf

s∈S
Pm
π (s, ·) ≥ qψ(·) for some ψ ∈ P(S)

}
.

Define the minorization time for the uniformly ergodic MDP as

tminorize := max
π∈Π

tminorize(Pπ).

Since Π is finite, the above max is always achieved, and hence tminorize < ∞. Moreover, Theorem
1 of Wang et al. (2023) shows that tminorize and tmix are equivalent up-to constant factors:

tminorize ≤ 22tmix ≤ 22 log(16)tminorize. (2.3)

Therefore, the subsequent complexity dependence written in terms of tminorize can be equivalently
expressed using tmix.

Under Assumption 1, for any initial distribution X0 ∼ µ, the long run average reward of any policy
π ∈ Π is defined as

απ := lim
T→∞

1

T
Eπ

µ

[
T−1∑
t=0

r(Xt, At)

]
where the limit always exists and doesn’t depend on µ. The long run average reward απ can be
characterized via any solution pair (u, α), u : S → R and α ∈ R to the Poisson’s equation,

rπ − α = (I − Pπ)u. (2.4)
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Under Assumption 1, a solution pair (u, α) always exists and is unique up to a shift in u; i.e.
{(u+ ce, α) : c ∈ R}, where e(s) = 1,∀s ∈ S, are all the solution pairs to (2.4). In particular, for
any π ∈ Π, define the transient value function a.k.a. the bias as

uπ(s) := lim
T→∞

Eπ
s

[
T−1∑
t=0

(rπ(Xt)− απ)

]
(2.5)

where the limit always exists. Then, (uπ, απ) is the unique up to a shift solition to (2.4).

Similar to DMDPs, define the optimal long run average reward ᾱ as

ᾱ := max
π∈Π

απ.

Then, for any π̄ that achieve the above maximum, (uπ̄, ᾱ) solves rπ̄ − ᾱ = (I − Pπ̄)u
π̄.

3 OPTIMAL SAMPLE COMPLEXITIES UNDER A GENERATIVE MODEL

In this section, we aim to develop an algorithm for AMDPs that achieves the sample complexity as
presented in Theorem 0. The randomness used by the algorithm arises from an underlying probabil-
ity space (Ω,F , P ). We proceed under the assumption that we have access to a generative model, or
sampler, which allows us to independently draw samples of the subsequent state from the transition
probability {ps,a(s′) : s′ ∈ S} given any state action pair (s, a).

As explained in Section 1.2, our methodology closely aligns with the approach introduced in Jin &
Sidford (2021). We leverage the policy acquired from a suitably defined DMDP as an approximation
to the optimal policy for the AMDP. However, prior to this work, the state-of-the-art DMDP algo-
rithms, along with the accompanying worst-case sample complexity analysis, fall short in achieving
the optimal sample complexity articulated in Theorem 0 (Jin & Sidford, 2021; Wang et al., 2022).
This limitation emanates from the fact that the sample complexity of uniformly ergodic DMDPs has
a dependence (1 − γ)−2, as demonstrated in the preceding research Wang et al. (2023). This is a
notable improvement over the (1−γ)−3 dependence associated with the worst-case-optimal DMDP
theory (Li et al., 2020), a foundation upon which Jin & Sidford (2021) and Wang et al. (2022)
were constructed. Consequently, to attain the desired complexity result, our initial step involves
establishing enhanced sample complexity assurances for uniformly ergodic DMDPs.

3.1 A SAMPLE EFFICIENT ALGORITHM FOR UNIFORMLY ERGODIC DMDPS

We recognize that the optimal sample complexity of uniformly ergodic DMDPs should be
Θ̃(|S||A|tminorize(1 − γ)−2ϵ−2); c.f. (Wang et al., 2023). Regrettably, as mentioned earlier, the
algorithm introduced in Wang et al. (2023), while indeed capable of achieving this sample complex-
ity, falls short in terms of the minimum sample size as it requires n = Ω̃(|S||A|(1 − γ)−3) for its
execution, a complexity that is too large for our purposes.

To elaborate on this issue, we note that the algorithm introduced in Wang et al. (2023) constitutes
a variant of the variance-reduced Q-learning (Wainwright, 2019). This family of algorithms ne-
cessitates a minimum sample size of n = Ω̃(|S||A|(1 − γ)−3), as per existing knowledge. Re-
markably, model-based algorithms can achieve significantly smaller minimal sample sizes: e.g.
n = Ω̃(|S||A|(1−γ)−2) in Agarwal et al. (2020), and the full-coverage n = Ω̃(|S||A|(1−γ)−1) in
Li et al. (2020). See Table 2. This comparison motivates our adoption of the algorithm introduced
in Li et al. (2020) and to draw upon the techniques utilized for analyzing mixing MDPs from Wang
et al. (2023). The synergistic combination of these ideas, as elucidated in Theorem 1, results in an
algorithm with the optimal sample complexity of Θ̃(|S||A|tminorize(1 − γ)−2ϵ−2) and minimum
sample size n = Ω̃(|S||A|(1− γ)−1) at the same time.

In this section, our analysis suppose Assumption 1, tminorize ≤ (1− γ)−1, and γ ≥ 1
2 .

3.1.1 THE DMDP ALGORITHM AND ITS SAMPLE COMPLEXITY

We introduce the perturbed model-based planning algorithm for DMDPs in Li et al. (2020). Let
ζ > 0 be a design parameter that we will specify later. Consider a random perturbation of the
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reward function
R(s, a) := r(s, a) + Z(s, a), (s, a) ∈ S ×A

where the random element Z : S ×A→ [0, ζ]

Z(s, a) ∼ Unif(0, ζ) (3.1)

i.i.d. ∀(s, a) ∈ S × A. The reason to consider a perturbed reward with amplitude parameter ζ is to
ensure that the optimality gap of the optimal policy, compared with any other suboptimal policy, is
sufficiently large. To accomplish this, it is not necessary to assume uniform distributions of Z(s, a).
However, we opt for this choice for the sake of convenience. This reward perturbation technique is
well motivated in Li et al. (2020). So, we refer the readers to this paper for a detailed exposition.
Then, the perturbed model-based planning algorithm therein is formulated in Algorithm 1.

Algorithm 1 Perturbed Model-based Planning (Li et al., 2020): PMBP(γ, ζ, n)

Input: Discount factor γ ∈ (0, 1). Perturbation amplitude ζ > 0. Sample size n ≥ 1.
Sample Z as in (3.1) and compute R = r + Z.
Sample i.i.d. S(1)

s,a, S
(2)
s,a, . . . , S

(n)
s,a , for each (s, a) ∈ S × A. Then, compute the empirical kernel

P̂ := {p̂s,a(s′) : (s, a) ∈ S ×A, s′ ∈ S} where

p̂s,a(s
′) :=

1

n

n∑
i=1

1
{
S(i)
s,a = s′

}
, (s, a) ∈ S ×A.

Compute the solution v̂0 to the empirical version of the Bellman equation (2.1); i.e. ∀s ∈ S,
v̂0(s) = maxa∈A (R(s, a) + γp̂s,a[v̂0]). Then, extract the greedy policy

π̂0(s) ∈ arg max
a∈A

(R(s, a) + γp̂s,a[v̂0]) , s ∈ S.

return π̂0.

By (2.1), π̂0 returned by Algorithm 1 optimal for the DMDP instance M(R, P̂ , γ). Also, computing
v̂0 therein involves solving a fixed point equation in R|S|. This can be done (with machine precision)
by performing value or policy iteration using no additional samples.

In summary, Li et al. (2020) proposed to use π̂0, the optimal policy of the reward-perturbed empirical
DMDP M(R, P̂ , γ), as the estimator to the optimal policy π∗ of the DMDP M(r, P, γ). They
proved that this procedure achieves a sample complexity upper bound of Θ̃(|S||A|(1 − γ)−3ϵ−2)
over all DMDPs (not necessarily uniformly ergodic ones) with a minimum sample size requirement
n = Ω̃(|S||A|(1 − γ)−1). We are able to improve the analysis and achieve an accelerated result of
independent interest in the context of uniformly ergodic DMDPs. Before introducing our results, let
us define two parameters. Recall ζ from (3.1). For prescribed error probability δ ∈ (0, 1), define

βδ(η) = 2 log

(
24|S||A| log2((1− γ)−1)

(1− γ)2ηδ

)
and η∗δ =

ζδ(1− γ)

9|S||A|2
.

The reason for defining βδ(·) and η∗δ will become clear when we introduce the intermediate results
in Proposition A.1 and A.2 in the Appendix. Now, we are ready to state improved error and sample
complexity bounds for Algorithm 1 that achieve minmax optimality for uniformly ergodic DMDPs:
Theorem 1. Suppose Assumption 1 is in force. Then, for any γ ∈ [1/2, 1), ζ > 0, and n ≥
64βδ(η

∗
δ )(1− γ)−1, the policy π̂0 returned by Algorithm 1 PMBP(γ, ζ, n) satisfies

0 ≤ v∗ − vπ̂0 ≤ 2ζ

1− γ
+ 486

√
βδ(η∗δ )tminorize

(1− γ)2n
(3.2)

w.p. at least 1− δ. Consequently, choose ζ = (1−γ)ϵ/4, the sample complexity to achieve an error
0 < ϵ ≤

√
tminorize/(1− γ) w.p. at least 1− δ is

Õ

(
|S||A|tminorize

(1− γ)2ϵ2

)
.
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The proof of Theorem 1 is deferred to Appendix A.
Remark. Compare to the worst case result in, e.g., Azar et al. (2013) and Li et al. (2020), Theorem
1 replaces a power of (1− γ)−1 by tminorize in (3.2). The implied sample complexity upper bound
matches the lower bound in Wang et al. (2023) up to log factors. So, Õ can be replaced by Θ̃. Also,
this is achieved with a minimum sample size n = 64βδ(η

∗
δ )(1 − γ)−1. This and the mixing time

equivalence (2.3) confirms the sample complexity claim in Table 2.

3.2 AN OPTIMAL SAMPLE COMPLEXITY UPPER BOUND FOR AMDPS

Using the sample complexity upper bound in Theorem 1, we then adapt the reduction procedure
considered in Jin & Sidford (2021). This leads to an algorithm that learns an ϵ-optimal policy for
any AMDP satisfying Assumption 1 with the optimal sample complexity. Concretely, we run the
reduction and perturbed model-based planning Algorithm 2.

Algorithm 2 Reduction and Perturbed Model-based Planning

Input: Error tolerance ϵ ∈ (0, 1].
Assign

γ = 1− ϵ

19tminorize
, ζ =

1

4
(1− γ)tminorize, and n =

cβδ(η
∗
δ )

(1− γ)2tminorize

where c = 4 · 4862.
Run Algorithm 1 with parameter specification PMBP(γ, ζ, n) and obtain output π̂0.
return π̂0.

This algorithm has the following optimal sample complexity guarantee:
Theorem 2. Suppose Assumption 1 is in force. The policy π̂0 output by Algorithm 2 satisfies 0 ≤
ᾱ− απ̂0 ≤ ϵ w.p. at least 1− δ. Moreover, the total number of samples used is

Õ

(
|S||A|tminorize

ϵ2

)
.

The proof of Theorem 2 is deferred to Appendix B.
Remark. This achieves the minmax lower bound in Jin & Sidford (2021) up to log factors. So, Õ
can be replaced by Θ̃. This and the equivalence relationship (2.3) between tminorize and tmix is a
formal statement of Theorem 0.

4 NUMERICAL EXPERIMENTS

In this section, we conduct two numerical experiments to verify our algorithm’s optimal sample
complexity dependence on ϵ and tminorize. The family of reward functions and transition kernels
used for both experiments belongs to the family of hard instances constructed in Wang et al. (2023).
By the same reduction argument, this family of AMDPs has sample complexity Ω(tminorizeϵ

−2).

First, we verify the ϵ dependence of our algorithm. To achieve this, we study the error of estimating
the true average reward ᾱ = 0.5 as the sample size increases. The experiment runs 300 replications
of Algorithm 2 under different sample sizes and constructs the red data points and regression line
in Figure 1a. We also implement the algorithm proposed in Jin & Sidford (2021), conduct the same
experiment, and produce the data in blue. Our algorithm outperforms the prior work. Moreover, in
log-log scale, the red regression line has a slope that is close to −1/2, indicating a n−1/2 conver-
gence rate. This verifies the optimal Õ(ϵ−2) dependence of our Algorithm 2. On the other hand,
the blue line has a slope near −1/3, indicating a suboptimal Õ(ϵ−3) for the algorithm in Jin & Sid-
ford (2021). This significant improvement is due to our optimal implementation and analysis of the
DMDP algorithm in Li et al. (2020), reducing sample complexity dependence on (1− γ)−1.

Next, we verify our algorithm’s sample complexity dependence on tminorize. Fix a ϵ > 0 and
recall that 1 − γ = Θ(ϵ/tminorize) = Θ(tminorize

−1). So, the optimal sample size for Algorithm

8



Published as a conference paper at ICLR 2024

(a) Convergence rate comparison with Jin & Sidford
(2021). A −0.5 slope verifies the Õ(ϵ−2) dependence.

(b) Verification of tminorize dependence. A 0 slope in-
dicates the Õ(tminorize) dependence.

Figure 1: Numerical experiments using the hard MDP instance in Wang et al. (2023).

2 is n = Θ̃((1 − γ)−2tminorize
−1) = Θ̃ (tminorize) which is linear in tminorize. Thus, applying

Algorithm 2 to the hard instance with minorization time tminorize using sample size n = Ctminorize

for some large constant C, our sample complexity upper bound suggests that the estimation error of
ᾱ should be Õ(1). Consequently, plotting the average error against the number of samples used or,
equivalently, tminorize on a log-log scale while varying tminorize should yield a line with a near 0 (or
possibly a negative) slope, according to our theory. The experiments in Figure 1b use C = 4500 for
the purple line and C = 18000 for the blue line. With tminorize varying within the range [10, 1000],
both regression lines exhibit a near 0 slope, indicating a Õ(tminorize) dependence.

Therefore, through the numerical experiments presented in Figure 1, we separately verify the opti-
mality of our algorithm’s sample complexity dependence on both ϵ and tminorize.

5 CONCLUDING REMARKS

We now discuss certain limitations intrinsic to our proposed methodology as well as potential av-
enues for future research. Firstly, the use of the DMDP approximation approach necessitates a priori
knowledge of an upper bound on the uniform mixing time for the transition kernel P in order to ini-
tiate the algorithm. In practical applications, such an upper bound can be challenging to obtain, or
in certain instances, result in excessively pessimistic estimates. One could circumvent this by using
an additional logarithmic factor of samples, thus allowing for the algorithm to operate with geomet-
rically larger values of tmix, and terminate after a suitable number of iterations. Nevertheless, this
approach still hinges upon the knowledge of the mixing time to achieve optimal termination.

Secondly, we assume a strong form of MDP mixing known as uniform ergodicity. While theo-
retically optimal, this notion of mixing yields conservative upper bounds on sample complexity in
situations wherein suboptimal policies induce Markov chains with especially large mixing times. It
is our contention, supported by the findings presented in references such as Wang et al. (2022) and
Wang et al. (2023), that the sample complexity should be contingent solely upon the properties of the
optimal policies. Moreover, the complexity measure parameter H that is used in Wang et al. (2022);
Zhang & Xie (2023) has several advantages over tmix that lie beyond the ability to generalize to
weakly communicating MDPs. In particular, for periodic chains and special situations where the
optimal average reward remains state-independent despite the presence of multiple recurrent classes
of the transition kernel induced by an optimal policy, the parameter H is well-defined but tmix is
not (Puterman, 1994). Consequently, we are now dedicating research effort to the development of
an algorithm and analysis capable of achieving a sample complexity of Õ(|S||A|Hϵ−2).

Lastly, as the assumption of uniform ergodicity extends beyond finite state space MDPs, we aspire
to venture into the realm of general state-space MDPs. Our objective is to extrapolate the principles
underpinning our methodology to obtain sample complexity results for general state space MDPs.

9
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Appendices
A STATISTICAL PROPERTIES OF THE ESTIMATORS OF UNIFORMLY ERGODIC

DMDPS

In this section, our objective is to establish concentration properties pertaining to the estimators of
the value function and optimal policies. Before discussing these statistical properties, we introduce
some notations and auxiliary quantities that facilitate our analysis.

Under Assumption 1, it is useful to consider the span semi-norm (Puterman, 1994). For vector
v ∈ V = Rd, let 1 be the vector with all entries equal to one and define

|v|span := inf
c∈R

∥v − c1∥∞

= max
1≤i≤d

vi − min
1≤i≤d

vi.
(A.1)

Note that the span semi-norm satisfies the triangle inequality |v + w|span ≤ |v|span + |w|span.

The analysis in this section will make use of the following standard deviation parameters: define

σ(v)(s, a) :=
√
ps,a[v2]− ps,a[v]2, and σπ(v)(s) := σ(v)(s, π(s)). (A.2)

Let π0 be an optimal policy associated with MDPs M(γ, P,R). Recall that π̂0 is optimal for
M(γ, P̂ , R). Define for any π ∈ Π, vπ0 := (I − γPπ)

−1Rπ and v̂π0 := (I − γP̂π)
−1Rπ . Also, let

q̂0 = (I − γP̂ π̂0)−1Rπ̂0
.

Consider the following event

Ωη :=

{
inf
s∈S

(
v̂π̂0
0 (s)− max

b ̸=π̂0(s)
q̂0(s, b)

)
≥ η

}
. (A.3)

This is a set of good events on which the optimality gap of MDP M(γ, P̂ , R) is larger than η.

Recall the definition of the reward perturbation Z in (3.1) and perturbed reward R. For any π ∈ Π,
let Rπ(s) = R(s, π(s)) and Zπ(s) = Z(s, π(s)) for all s ∈ S. To achieve the desired sample
efficiency in terms of the minimum sample size, Li et al. (2020) recursively defines the auxiliary
values:

hπ0 = Rπ; vπ0 = (I − γPπ)
−1hπ0 ; v̂π0 = (I − γP̂π)

−1hπ0

hπl = σπ(v
π
l−1); vπl = (I − γPπ)

−1hπl ; v̂πl = (I − γP̂π)
−1hπl

(A.4)

for all l ≥ 1. Using these sequences and the techniques in Wang et al. (2023), we are able to show
the following concentration bound:
Proposition A.1. Assume Assumption 1 and for some η ≤ 1, P (Ωη) ≥ 1 − δ/3. For n ≥
64βδ(η)(1− γ)−1, then w.p. at least 1− δ under P∥∥∥v̂π̂0

0 − vπ̂0
0

∥∥∥
∞

≤ 243

√
βδ(η)tminorize

(1− γ)2n
, and vπ0

0 − vπ̂0
0 ≤ 486

√
βδ(η)tminorize

(1− γ)2n

where

βδ(η) = 2 log

(
24|S||A| log2((1− γ)−1)

(1− γ)2ηδ

)
.

The proof of Proposition A.1 is provided in section C.2. We see that the conclusion of A.1 will
resemble the statement of Theorem 1 if P (Ωη) ≥ 1 − δ/3 as well as vπ0

0 ≈ v∗ and vπ̂0
0 ≈ vπ̂0 are

sufficiently close. The following proposition in Li et al. (2020) proves the former requirement.
Proposition A.2 (Lemma 6, Li et al. (2020)). Let

η∗δ =
ζδ(1− γ)

9|S||A|2
,

then P (Ωη∗
δ
) ≥ 1− δ/3.

12
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A.1 PROOF OF THEOREM 1

Now, we are ready to present of proof of Theorem 1 given Propositions A.1 and A.2.

Proof. Observe that for any π ∈ Π, by the construction in (A.4),

vπ0 = (I − γPπ)
−1Rπ = vπ + (I − γPπ)

−1Zπ.

Therefore,

∥vπ0 − vπ∥∞ ≤ ζ
∥∥(I − γPπ)

−1
∥∥
∞,∞ ≤ ζ

1− γ
.

Consider

v∗ − vπ̂0 = (v∗ − vπ
∗

0 ) + (vπ
∗

0 − vπ0
0 ) + (vπ0

0 − vπ̂0
0 ) + (vπ̂0

0 − vπ̂0)

≤ 2ζ

1− γ
+ vπ0

0 − vπ̂0
0

where the optimality of π0 implies that vπ
∗

0 − vπ0
0 ≥ 0. By Proposition A.1 and A.2, w.p. at least

1− δ

vπ0
0 − vπ̂0

0 ≤ 486

√
βδ(η∗δ )tminorize

(1− γ)2n
.

provided that n ≥ 64βδ(η
∗
δ )(1− γ)−1.

To arrive at the sample complexity bound, we first note that βδ(η∗δ ) has log dependence on ζ. Choose
ζ = (1− γ)ϵ/4 and for c = 4 · 4862,

n =
ctminorizeβδ(η

∗
δ )

(1− γ)2ϵ2
= Õ

(
tminorize

(1− γ)2ϵ2

)
.

Then for ϵ ≤
√
tminorize(1− γ)−1, n ≥ 64βδ(η

∗
δ )(1− γ)−1 and w.p. at least 1− δ

v∗ − vπ̂0 ≤ ϵ

2
+

486ϵ√
c

= ϵ.

B REDUCTION BOUND AND OPTIMAL SAMPLE COMPLEXITY FOR AMDP

This this section, we prove Theorem 2 given the DMDP optimal sample complexity result in Theo-
rem 1. To achieve this, we need the following lemma that allows us to compare the long run average
value and the discounted value of the MDP. From Lemma 3 Jin & Sidford (2021) and Theorem 1 of
Wang et al. (2023) (c.f. equation (2.3)), we have that

Lemma 1. Under Assumption 1, for all π ∈ Π,

∥(1− γ)vπ − απ∥∞ ≤ 9(1− γ)tminorize.

B.1 PROOF OF THEOREM 2

Given Lemma 1 and Theorem 1, we present the proof of Theorem 2.

Proof of Theorem 2. First, note that (1− γ)−1 ≥ tminorize ≥ 1. By Theorem 1 and the choice of ζ
and n, the policy π̂0 satisfies

v∗ − vπ̂0 ≤ tminorize

w.p. at least 1− δ.

13
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Let π̄ denote an optimal policy of the average reward problem. Then, w.p. at least 1− δ,

ᾱ− απ̂0 = [ᾱ− (1− γ)vπ̄] + (1− γ)[vπ̄ − v∗] + (1− γ)[v∗ − vπ̂0 ] + [(1− γ)vπ̂0 − απ̂0 ]

(i)

≤ [ᾱ− (1− γ)vπ̄] + (1− γ)[v∗ − vπ̂0 ] + [(1− γ)vπ̂0 − απ̂0 ]

(ii)

≤ 9(1− γ)tminorize + (1− γ)tminorize + 9(1− γ)tminorize

(iii)

≤ ϵ

where (i) uses the optimality of π∗, (ii) follows from Lemma 1 and the tminorize-optimality of π̂0,
(iii) is due to the choice 1− γ = ϵ

19tminorize
. The total number of samples used is

|S||A|n = Õ

(
|S||A|

(1− γ)2tminorize

)
= Õ

(
|S||A|tminorize

ϵ2

)
.

This implies the statement of Theorem 2.

C PROOFS OF KEY PROPOSITIONS

C.1 DECOUPLING THE DEPENDENCE OF P̂ AND π̂0

In this section, we introduce the method proposed by Agarwal et al. (2020) to decouple the statistical
dependence of p̂s′,a′ and π̂0 at a particular state action pair (s′, a′) ∈ S × A. To simplify notation,
we use z = (s′, a′) ∈ S × A to denote a pair of state and action. Define the kernel K̂(z) :={
κ̂
(z)
s,a ∈ P(S) : (s, a) ∈ S ×A

}
s.t. κ̂(z)s′,a′ = δs′ and κ̂(z)s,a = p̂s,a for all (s, a) ̸= z. Therefore,

under K̂(z) and at state action pair z = (s′, a′), the MDP will transition to s′ w.p.1, while other
transitions are done according to P̂ .

Now, for fixed ρ ∈ R, define a modified reward

h(z,ρ)(s, a) = ρ1 {z = (s, a)}+R1 {z ̸= (s, a)} , (s, a) ∈ S ×A.

Let ĝ(z,ρ) be the unique solution of the Bellman equation

g(s) = max
a∈A

(
h(z,ρ)(s, a) + γκ̂(z)s,a[g]

)
.

Let χ̂(z,ρ) be any optimal policy associated with ĝ(z,ρ). Now notice that since κ̂(z)s′,a′ = δs′ is non-
random. Thus, ĝ(z,ρ) and χ̂(z,ρ) are independent of p̂z . By the definition of the auxiliary value
functions in expression (A.4) above, v(z,ρ)l := vχ̂

(z,ρ)

l is also independent of p̂z . Therefore, if we
define Gz := σ(p̂s,a : (s, a) ̸= z,R), then v(z,ρ)l is measureable w.r.t. Gz .

Therefore, we can decouple the dependence of P̂s,a and π̂0 by replacing π̂0 with χ̂(z, ρ) for some
ρ so that π̂0 = χ̂(z, ρ) with high probability. To achieve this, we first prescribe a finite set (a ξ-net
of the interval [−(1 − γ)−1, (1 − γ)−1] that will be denoted by Nξ) of possible values for ρ, and
prove that for sufficiently small ξ, such a ρ can be picked from this set. Note that the motivation for
constructing Nζ and seeking a ρ within it stems from the finite nature of this set, which enables us
to apply the union bound technique.

Concretely, define an ξ-net on [−(1− γ)−1, (1− γ)−1] by

Nξ := {−kξξ,−(kξ − 1)ξ, . . . , 0, . . . , (kξ − 1)ξ, kξξ}

where kξ =
⌊
(1− γ)−1ξ−1

⌋
. Note that, |Nξ| ≤ 2(1 − γ)−1ξ−1. Then the following lemma in

Li et al. (2020) indicates that it is sufficient to set ξ = (1 − γ)η/4 where we recall that η is the
optimality gap parameter of the event Ωη in (A.3).

Lemma 2 (Li et al. (2020), Lemma 4). For each z ∈ S × A, there exists ρz ∈ N(1−γ)η/4 s.t.
χ̂(z, ρz)(ω) = π̂0(ω) for all ω ∈ Ωη .

14



Published as a conference paper at ICLR 2024

With this decoupling technique and policies χ̂(z, ρz), we can approximate vπ̂0

l by v(z,ρ)l with ρz ∈
N(1−γ)η/4. In particular, the following concentration inequality for v(z,ρ)l can be translated to that
of vπ̂0

l , leading to our proof of Proposition A.1.

Lemma 3 (Bernstein’s Inequality). For each z ∈ S×A, consider any finite set U (z) ⊂ R, then w.p.
at least 1− δ under P , we have that for all 0 ≤ l ≤ l∗, z ∈ S ×A, ρ ∈ U (z)∣∣∣(p̂z − pz)

[
v
(z,ρ)
l

]∣∣∣ ≤√β

n
σ(v

(z,ρ)
l )(z) +

β

n

∣∣∣v(z,ρ)l

∣∣∣
span

where

β := 2 log

(
2|S||A|l∗|U |

δ

)
and |U | := supz∈S×A |U (z)|.

This lemma is proved in Appendix D.1. We note that, of course, N(1−γ)η/4 will be used in place of
U (z).

C.2 PROOF OF PROPOSITION A.1

Before we prove Proposition A.1, we introduce the following lemma that converts Bernstein-type
inequalities for {vl} as in Lemma 3 to concentration bound of v̂0.
Lemma 4. Fix any b > 0 and possibly data dependent policy π̃(ω) ∈ Π. LetB ⊂ Ω be s.t. ∀ω ∈ B,
the sequence

{
vπ̃l
}

defined in (A.4) satisfies∣∣∣(P̂π̃ − Pπ̃)v
π̃
l

∣∣∣ ≤√ b

n
σπ̃(v

π̃
l ) +

b

n

∣∣vπ̃l ∣∣span
for all l ≤ l∗ =

⌊
1
2 log2((1− γ)−1)

⌋
, where the absolute value is taken entry-wise. Then

∥∥v̂π̃0 − vπ̃0
∥∥
∞ ≤ 243

√
btminorize

(1− γ)2n

on B, provided that n ≥ 64b(1− γ)−1.

The proof of this lemma is provided in Appendix D.2. Note the appearance of tminorize in the
bound. This is a consequence of the analysis technique in Wang et al. (2023). With the above
auxiliary definitions and results, we prove Proposition A.1

Proof of Proposition A.1. We proceed with proving the first bound. By Lemma 2 and 3 with δ
replaced by δ/3 and U (z) by N(1−γ)η/4, there exists B ⊂ Ω s.t. P (B) ≥ 1− δ/3 and on B ∩ Ωη∣∣∣(p̂z − pz)

[
vπ̂0

l

]∣∣∣ = ∣∣∣(p̂z − pz)
[
v
(z,ρz)
l

]∣∣∣
≤
√
βδ(η)

n
σ(v

(z,ρz)
l )(z) +

βδ(η)

n

∣∣∣v(z,ρz)
l

∣∣∣
span

≤
√
βδ(η)

n
σ(vπ̂0

l )(z) +
βδ(η)

n

∣∣∣vπ̂0

l

∣∣∣
span

.

for all 0 ≤ l ≤ l∗ =
⌊
1
2 log2((1− γ)−1)

⌋
, z ∈ S ×A, ρ ∈ U (z). In particular, on B ∩ Ωη∣∣∣(P̂π̂0

− Pπ̂0
)vπ̂0

l

∣∣∣ ≤√βδ(η)

n
σπ̂0

(vπ̂0

l ) +
βδ(η)

n

∣∣∣vπ̂0

l

∣∣∣
span

all 0 ≤ l ≤ l∗. Therefore, we conclude that by Lemma 4∥∥∥v̂π̂0
0 − vπ̂0

0

∥∥∥
∞

≤ 243

√
βδ(η)tminorize

(1− γ)2n
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on B ∩ Ωη . Sinece P (Ωη) ≥ 1− δ/3, apply union bound, one obtains the first claimed.

To prove the second claim, we note that

0 ≤ vπ0
0 − vπ̂0

0

= (vπ0
0 − v̂π0

0 ) + (v̂π0
0 − v̂π̂0

0 ) + (v̂π̂0
0 − vπ̂0

0 )

≤ ∥vπ0
0 − v̂π0

0 ∥∞ +
∥∥∥v̂π̂0

0 − vπ̂0
0

∥∥∥
∞

where the last inequality follows from v̂π0
0 − v̂π̂0

0 ≤ 0. Hence, it remains to bound
∥∥v∗ − v̂π

∗∥∥
∞.

It is easy to see that the same proof of Lemma 3 implies that∣∣∣(P̂π0
− Pπ0

)vπ0

l

∣∣∣ ≤√βδ(η)

n
σπ0(v

π0

l ) +
βδ(η)

n
|vπ0

l |
span

for all 0 ≤ l ≤ l∗ w.p. at least 1− δ/3. Therefore, by Lemma 4,

∥vπ0
0 − v̂π0

0 ∥∞ ≤ 243

√
βδ(η)tminorize

(1− γ)2n
.

w.p. at least 1− δ/3. Again, an application of the union bound completes the proof.

D PROOFS OF AUXILIARY LEMMAS

D.1 PROOF OF LEMMA 3

Proof. Recall that Gz := σ(p̂s,a : (s, a) ̸= z,R). For each z ∈ S × A, define the probability
measure Pz(·) := P (·|Gz) and expectation Ez[·] := E[·|Gz]. Fix any 0 ≤ l ≤ l∗ and ρ ∈ U (z).
Since (p̂z − pz)[1] = 0, ∣∣∣(p̂z − pz)

[
v
(z,ρ)
l

]∣∣∣ ≤ 2
∣∣∣v(z,ρ)l

∣∣∣
span

.

As p̂z is independent of Gz , and v(z,ρ)l is measureable w.r.t. Gz ,

Ez

[
(p̂z − pz)

[
v
(z,ρ)
l

]]
= 0.

Therefore, by Bernstein’s inequality, for any t ≥ 0

Pz

(∣∣∣(p̂z − pz)
[
v
(z,ρ)
l

]∣∣∣ > t
)
≤ 2 exp

− n2t2

2nσ2(v
(z,p)
l )(z) + 4

3

∣∣∣v(z,ρ)l

∣∣∣
span

nt

 .

Choose t s.t. the r.h.s. is less than δ/(|S||A|l∗|U |), we find that it is sufficient for

t ≥

√√√√2 log
(

2|S||A|l∗|U |
δ

)
n

σ(v
(z,p)
l )(z) +

4

3
log

(
2|S||A|l∗|U |

δ

) ∣∣∣v(z,ρ)l

∣∣∣
span

n
.

Clearly

t0 :=

√
β

n
σ(v

(z,ρ)
l ) +

β

n

∣∣∣v(z,ρ)l

∣∣∣
span

satisfies the above inequality. Therefore,

P

(
max

l≤l∗,z∈S×A
max
ρ∈U(z)

∣∣∣(p̂z − pz)
[
v
(z,ρ)
l

]∣∣∣ > t0

)
≤

∑
l≤l∗,z∈S×A

∑
ρ∈U(z)

EPz

(∣∣∣(p̂z − pz)
[
v
(z,ρ)
l

]∣∣∣ > t0

)
≤

∑
l≤l∗,z∈S×A

∑
ρ∈U(z)

δ

|S||A|l∗|U |

≤ δ

This directly implies the statement of the lemma.
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D.2 PROOF OF LEMMA 4

Proof. First, observe that by the definition in (A.4),

v̂π̃l − vπ̃l = (I − γP̂π̃)
−1hπ̃l − (I − γP̂π̃)

−1(I − γP̂π̃)v
π̃
l

= (I − γP̂π̃)
−1(I − γPπ̃)v

π̃
l − (I − γP̂π̃)

−1(I − γP̂π̃)v
π̃
l

= γ(I − γP̂π̃)
−1(P̂π̃ − Pπ̃)v

π̃
l

Let us define ∆l :=
∥∥v̂π̃l − vπ̃l

∥∥
∞. By the assumption of Lemma 4, for all 0 ≤ l ≤ l∗, on the event

B in the lemma,

∆l

(i)

≤
∥∥∥γ(I − γP̂π̃)

−1
∣∣∣(P̂π̃ − Pπ̃)v

π̃
l

∣∣∣∥∥∥
∞

(ii)

≤ γ

√
b

n

∥∥∥(I − γP̂π̃)
−1σπ̃(v

π̃
l )
∥∥∥
∞

+
γb

(1− γ)n

∣∣vπ̃l ∣∣span
= γ

√
b

n

∥∥v̂π̃l+1

∥∥
∞ +

γb

(1− γ)n

∣∣vπ̃l ∣∣span
≤ γ

√
b

n
∆l+1 + γ

√
b

n

∥∥vπ̃l+1

∥∥
∞ +

γb

(1− γ)n

∣∣vπ̃l ∣∣span

(D.1)

where (i) and (ii) follow from (I − γP̂π̃)
−1 being non-negative so that (I − γP̂π)

−1h ≤ (I −
γP̂π)

−1|h| ≤ (I − γP̂π)
−1g for all function h : S → R and g ≥ |h|.

We can think of (D.1) as a recursive bound for ∆0. To analyze this recursive bound, we first consider
the following. By Lemma 11 of Li et al. (2020), we have that for l ≥ 0

∥∥vπ̃l+1

∥∥
∞ =

∥∥(I − γPπ̃)
−1σπ̃(v

π̃
l )
∥∥
∞

≤ 4

γ
√
1− γ

∥∥vπ̃l ∥∥∞
≤ . . .

≤
(

4

γ
√
1− γ

)l ∥∥vπ̃1 ∥∥∞
(D.2)

Therefore, expanding the recursion (D.1)

∆0 ≤ γ

√
b

n
∆1 + γ

√
b

n

∥∥vπ̃1 ∥∥∞ +
γb

(1− γ)n

∣∣vπ̃0 ∣∣span
≤ . . .

≤

(
γ

√
b

n

)l∗

∆l∗ +

l∗∑
k=1

(
γ

√
b

n

)k ∥∥vπ̃k∥∥∞ +
γb

(1− γ)n

l∗−1∑
k=0

(
γ

√
b

n

)k ∣∣vπ̃k ∣∣span
Since vπ̃k ≥ 0 for all k ≥ 0,

∣∣vπ̃k ∣∣span ≤
∥∥vπ̃k∥∥∞. We have that

∆0 ≤

(
γ

√
b

n

)l∗

∆l∗ +

(
1 +

γb

(1− γ)n

) l∗∑
k=1

(
γ

√
b

n

)k ∥∥vπ̃k∥∥∞ +
γb

(1− γ)n

∣∣vπ̃0 ∣∣span
=: E1 + E2 + E3

(D.3)
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We first consider E1. By the identities (D.1) and (D.2)

∆l∗ ≤ γ

√
b

n

∥∥∥(I − γP̂π̃)
−1σπ̃(v

π̃
l )
∥∥∥
∞

+
γb

(1− γ)n

∣∣vπ̃l∗ ∣∣span
≤ γ

1− γ

√
b

n

∥∥σπ̃(vπ̃l )∥∥∞ +
γb

(1− γ)n
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(
γ

(1− γ)

√
b

n
+

γb

(1− γ)n

)∥∥vπ̃l∗∥∥∞
≤

(
γ

(1− γ)

√
b

n
+

γb

(1− γ)n

)(
4

γ
√
1− γ

)l∗−1 ∥∥vπ̃1 ∥∥∞
≤ γ2

4

(√
b
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+

b
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)(
4

γ
√
1− γ

)l∗ ∥∥vπ̃1 ∥∥∞
(i)

≤ γ2

2

√
b

(1− γ)n

(
4

γ
√
1− γ

)l∗ ∥∥vπ̃1 ∥∥∞
where (i) follows from n ≥ b/(1− γ). Therefore,

E1 ≤ γ2

2
√
1− γ

(
16b

(1− γ)n

)(l∗+1)/2
√
b

n

∥∥vπ̃1 ∥∥∞
(i)

≤ 1√
1− γ

2−(l∗+2)

√
b

n

∥∥vπ̃1 ∥∥∞
(ii)

≤ 1√
1− γ

2log2(1−γ)/2

√
b

n

∥∥vπ̃1 ∥∥∞
≤
√
b

n

∥∥vπ̃1 ∥∥∞
where (i) follows from the assumption that n ≥ 64b(1−γ)−1 and (ii) is due to l∗+2 ≥ 1

2 log2((1−
γ)−1).

Next, we bound E2. By (D.2)

E2 ≤ γ
√
1− γ

2

l∗+1∑
k=1

(
γ

√
b

n

)k (
4

γ
√
1− γ

)k ∥∥vπ̃1 ∥∥∞
≤ 2γ

√
b

n

∥∥vπ̃1 ∥∥∞ ∞∑
k=0

(√
16b

(1− γ)n

)k

≤ 2

√
b

n

∥∥vπ̃1 ∥∥∞ .

Also, note that vπ̃0 = (I − γPπ̃)
−1rπ̃ = vπ̃ and vπ̃1 = (I − γPπ̃)

−1σπ̃(v
π̃). By Proposition 6.1 and

Corollary 6.2.1 of Wang et al. (2023)∣∣vπ̃0 ∣∣span ≤ 3tminorize and
∥∥vπ̃1 ∥∥∞ ≤ 80

√
tminorize

1− γ
.

Thus we conclude that

∆0 ≤ 3

√
b

n

∥∥vπ̃1 ∥∥∞ +
γb

(1− γ)n

∣∣vπ̃0 ∣∣span
≤ 1

1− γ

(
240

√
btminorize

n
+

3btminorize

n

)
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√
btminorize

(1− γ)2n
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where the last inequality follows from tminorize ≤ (1−γ)−1 and so btminorize/n ≤ 1 by assumption
on n.
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