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ABSTRACT

We study a fundamental problem in the evaluation of large language models that
we call training on the test task. Unlike wrongful practices like training on the test
data, leakage, or data contamination, training on the test task is not a malpractice.
Rather, the term describes a growing set of techniques to include task-relevant data
in the pretraining stage of a language model. We demonstrate that training on the
test task confounds both relative model evaluations and claims about emergent ca-
pabilities. We argue that the seeming superiority of one model family over another
may be explained by a different degree of training on the test task. To this end,
we propose an effective method to adjust for the effect of training on the test task
on benchmark evaluations Put simply, to fine-tune each model under comparison
on the same task-relevant data before evaluation. We then show that instances of
emergent behavior disappear gradually as models train on the test task. Our work
promotes a new perspective on the evaluation of large language models with broad
implications for benchmarking and the study of emergent capabilities.

1 INTRODUCTION

The machine learning community has long recognized certain clear violations of the benchmarking
protocol. Training on the test set is the most notorious among them (Duda & Hart, 1973; Hastie
et al., 2017). Data leakage (Kapoor & Narayanan, 2022) and data contamination (Roberts et al.,
2023; Jiang et al., 2024) are closely related problems linked to the rise of massive web-crawled
training datasets. Researchers can all agree that test data should never appear in the training set.

But it’s been much less clear what to do about legitimate attempts to bring training closer to evalu-
ation. There is an obvious a gap between next token prediction at training time and tasks, such as
reasoning and question answering, at test time. Ongoing research and engineering efforts, in fact,
aim to narrow precisely this gap (MetaAI, 2024). Why shouldn’t training be informed by knowledge
about the downstream test tasks? What’s an unfair advantage of some may be the feature of others.

In this work, we group strategies to utilize task knowledge at training time under the umbrella term
of training on the test task. Examples of training on the test task include the use of instruction-
tuning data or question answering templates during pre-training (Bai et al., 2023; StabilityAI, 2023;
Groeneveld et al., 2024; Zhang et al., 2024). Models may also implicitly train on the test task when
their pretraining data is selected through benchmark ablations (Gemma et al., 2024; MetaAI, 2024).
We work from the premise that training on the test task is acceptable–or at least, unavoidable.

In a nutshell, we show that training on the test task strongly confounds model comparisons across
different scales and model families. Moreover, it significantly obscures the study of emergent
capabilities. Rather than scrambling to detect and disallow various forms of training on the test task,
we propose to “fight fire with fire”. We show that we can effectively level the playing field by giving
each model the same, sufficient task-specific fine-tuning before evaluation. This adjustment restores
cleaner log-linear scaling and makes capabilities predictable based on much smaller model scales.

1.1 OUR CONTRIBUTIONS

We introduce the term training on the test task to group a growing repertoire of practices that utilize
knowledge about evaluation tasks at training time. We study its impact on present-day benchmark
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Base models trained after November 2023 outperform those trained before November 2023

After fine-tuning all models on the test task, differences in model performance vanish

Models trained Before November 2023 After November 2023      

Figure 1: MMLU and GSM8K scores of 53 base models, with model sizes ranging from 70M to
70B parameters. Solid lines correspond to the regression fit of A = αmax(0, logC− ce)+θN + r,
where A is accuracy, C is pretraining compute, N is whether the model was trained after November
2023, and r is random chance accuracy. The coefficient θ denotes the average improvement of
models trained after November 2023 when controlling for pretraining compute. Bold indicates
statistical significance with p-value < 0.05. (Top) We hypothesize that training on the test task
confounds benchmark evaluations, resulting in newer base models substantially outperforming older
ones. (Bottom) We propose to adjust for differences in test task training by fine-tuning all models
on the same, sufficient amount of task-specific data before evaluation. After fine-tuning on the test
task, differences in benchmark performance between older and newer models vanish.

evaluations by critically examining the performance improvements of recent language models. Our
analysis spans 53 different language models and two major active benchmarks, MMLU and GSM8K.

We start in Section 2 by dividing models into those trained before November 2023 and those trained
after. We find that for the same amount of pretraining compute, newer models strongly outperform
older ones. We then fine-tune all models on the same amount of task-specific data before evaluation.
After fine-tuning on the same task data, newer models no longer outperform older ones. Rather,
their performance equalizes. See Figure 1. This outcome suggests that newer models outperform
older ones on MMLU and GSM8K primarily because newer models trained more on the test task.

We propose a simple and effective method to adjust for the effect of training on the test task on
benchmark evaluations. Put simply, to fine-tune each model on the same, sufficient amount of
task-specific data before evaluation. To validate our method, we demonstrate its effectiveness in a
controlled setting: we take the older models and fine-tune them on the test task. Remarkably this
recreates the kind of performance differences observed between newer and older models. We then
show that we can undo the advantage of the fine-tuned models over the other models by further
fine-tuning all models on the test task (Section 3.1, Figure 3).

Next, we give evidence that training on the test task may be a more dominant factor in benchmark
performance than data contamination. To argue this point, we consider ARC and HellaSwag. Here,
at first there appears to be no sign of newer models have an unfair advantage over older models. But
after reformulating these benchmarks as MMLU-style multiple choice question answering tasks,
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we see the same confounded results as for MMLU (Section 3.2, Figure 4). This suggest that the
improvements of newer models are not primarily because of memorization of specific testing data.
Either way, our proposed adjustment recovers fair model comparisons.

Then, we show how training on the test task distorts model family comparisons. Certain model fam-
ilies appear markedly superior to others before adjusting for test task training but not after adjust-
ment (Section 4.1). In fact, after adjustment, newer model families offer only modest improvements
to the Pareto frontier of model performance relative to pre-training compute (Section 4.2).

Finally, we demonstrate that training on the test task has profound implications for the study of
emergent capabilities. The phenomenon of emergence disappears gradually as the amount of train-
ing on the test task grows (Section 5). Specifically, we can make capabilities visible and predictable
from much smaller model scales, recovering cleaner log linear-scaling.

Our work calls for a major reorientation of large language model evaluation. Model comparisons
and claims of emergence are strongly confounded by the choice of training data relative to the test
tasks. When comparing models with different pre-training data, our recommendation is to give each
model the same sufficient amount of fine-tuning on task-relevant data prior to evaluation.

2 ADJUSTING FOR TRAINING ON THE TEST TASK

We choose MMLU (Hendrycks et al., 2020) and GSM8K (Cobbe et al., 2021) as a case study for
investigating training on the test task in active benchmarks. MMLU tests for world knowledge,
whereas GSM8K tests multi-step mathematical reasoning. These two benchmarks are arguably the
two most prominent LLM benchmarks in recent times. We evaluate models using LM Evaluation
Harness library (EleutherAI, 2024), in identical fashion to the HuggingFace leaderboard (5-shot).
See Appendix C for results pertaining to the OpenLLM Leaderboard v2 (Fourrier et al., 2024a).

We evaluate 53 base models, ranging in size from 70M to 70B parameters. See Appendix A.1 for
the full list. The HF leaderboard’s FAQ makes the distinction between “base pretrained models” and
instruction-tuned or chat models, arguing that this is necessary to ensure fair model comparisons.
We select models that are categorized as “pretrained”. We check that the technical report of each
of the selected models makes no mention of the model being fine-tuned. We only consider models
for which the number of training tokens is known. This allows us to estimate the total amount of
pretraining compute in FLOPs as C ≈ 6 ·N ·D, where C is pretraining compute, N is the number
of model parameters, and D is the number of training tokens.

Recent models outperform older ones given the same pretraining compute. We evaluate mod-
els on MMLU and GSM8K, and plot benchmark accuracy against pretraining compute in Figure 1
top. We observe that performance correlates with pretraining compute for both benchmarks. How-
ever, on the surface it appears that more recent models better leverage pretraining compute. In other
words, for a given compute budget newer models are able to attain better benchmark performance.

These improvements in benchmark performance coincide with the recent adoption of certain pre-
training practices that may amount to training on the test task. For example, Qwen (Bai et al., 2023),
and Olmo 1.7 (Groeneveld et al., 2024) include instruction data during pretraining. StableLM 2 (Sta-
bilityAI, 2023) reformulates some of its pretraining datasets to better resemble downstream tasks
such as question-answering. More subtly, the pretraining data mixtures of Gemma (Gemma et al.,
2024) and Llama 3 (MetaAI, 2024) were determined through ablations on benchmark evaluations.

This raises an important question: Do newer models outperform older ones mainly because newer
models trained more on the test task? At first sight, an answer seems elusive. After all, the pretrain-
ing data of most recent models is not public. Retraining all model families with the same training
data and compute budget would be both infeasible and cost prohibitive. Nevertheless, in the next
section, we propose a way to get at the answer by adjusting for the effect of training on the test task.

2.1 ADJUSTING FOR TRAINING ON THE TEST TASK BY TRAINING ON THE TEST TASK

We propose to adjust for differences in test task training by fine-tuning all models on the same,
sufficient amount of task-specific data before evaluation. To do so, we need a source of task-specific
data for each of the tasks we consider. For multiple choice questioning answering, we use the
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Figure 2: Older models tend to benefit much more from fine-tuning on task data.

auxiliary training set accompanying the HF MMLU repository1. It contains around 100,000 training
examples and 30M tokens. For mathematical reasoning, we combine MetaMathQA (Yu et al., 2023)
and Orca-Math (Mitra et al., 2024), totalling 600,000 training examples and 200M tokens. We
fine-tune models for three epochs using standard hyperparameter choices, see Appendix A.2. The
amount of compute required for fine-tuning is minimal compared to models’ pretraining compute.

We plot model scores on MMLU and GSM8K after fine-tuning in Figure 1 (bottom). We observe
that after fine-tuning on task relevant data, both newer and older models follow remarkably similar
scaling trends. That is, newer models no longer appear to outperform newer models.

Remarkably, we observe that older models tend to benefit much more from fine-tuning on task-
relevant data, see Figure 2. The improvements in older models are striking, often leaping from
random chance accuracy to double-digit gains in accuracy. In contrast, fine-tuning provides compar-
atively little benefit to newer models. This observation suggests that newer models have already been
exposed to a substantial amount of task-relevant data, making additional fine-tuning less impactful.

2.2 QUANTIFYING PERFORMANCE DIFFERENCES BETWEEN NEWER AND OLDER MODELS

We draw inspiration from scaling laws (Kaplan et al., 2020) in how we model benchmark accuracyA
to scale log-linearly with pretraining compute C. To account for emergence (Wei et al., 2022), we
assume that models perform at the task’s random chance accuracy r up to scaling to some point of
emergence ce. We let the variable N denote whether a model was trained after November 2023, and
regress the model

A = αmax(0, logC − ce) + θN + r + ϵ, (1)
where α, θ and ce are the fit’s parameters, and ϵ is random noise. We focus on the coefficient θ,
which corresponds to the average difference in benchmark performance between newer and older
models after controlling for pretraining compute. We fit the model in Equation 1, and report the
regression coefficient θ in Figure 1. We obtain R2 > 0.9 for all model fits.

Before adjusting for test task training, the estimated difference in performance θ̂ between newer and
older models are statistically significant, positive, and large. Specifically, recent models outperform
older ones on average by over 7 accuracy points in MMLU and 17 accuracy points in GSM8K.
These are remarkably large differences in benchmark performance. However, after the adjustment,
the estimated coefficient θ̂ is both small and not statistically significant. See Figure 1 bottom. That
is, conditioned on all models training on the same amount of task-specific data, we find no evidence
for a significant difference in benchmark performance between newer and older models.

Therefore, the performance of newer and older models equalizes when all models are exposed to the
same amount of task-relevant data. This suggests that the impressive benchmark improvements of
newer models are primarily attributable to newer models training more on the test task. We present
a causal interpretation of results in Appendix B, outlying the assumptions necessary to establish a
causal link between training on the test task and the benchmark improvements of newer models.

1https://huggingface.co/datasets/cais/mmlu. This training set, far from being an i.i.d split of MMLU, com-
piles the training sets of other multiple-choice benchmarks, such as ARC (Clark et al., 2018), MCTest (Richard-
son et al., 2013), OpenBookQA (Mihaylov et al., 2018), and RACE (Lai et al., 2017)
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Figure 3: Models trained before November 2023 (●) without fine-tuning and (●) after fine-tuning on
the test task. Their difference in benchmark performance θ̂ resemble that between newer and older
models (top). After adjusting by training on the test task, their difference vanishes (bottom).

3 RECREATING DIFFERENCES IN BENCHMARK PERFORMANCE

We have so far established that newer models strongly outperform older models for the same amount
of pre-training compute. We now demonstrate how to recreate such differences in performance by
actively manipulating how much models train on the test task. We do so in two ways. First, we
fine-tune older models on task relevant data (Section 3.1). Second, we reformulate certain test tasks
to use MMLU-style multiple choice prompts instead of “cloze” evaluations (Section 3.2). Both
experiments recreate the kind of performance differences observed between newer and older models.

These results provides further evidence that the differences in performance between older and newer
models are linked to test task training. They also demonstrates how test task training distorts bench-
mark evaluations. Fortunately, in both cases, we show that fine-tuning models on task-relevant data
before evaluation is an effective mechanism for mitigating the bias introduced by training on the test
task. In doing so, we systematically validate the proposed adjustment method.

3.1 FINE-TUNING ON THE TEST TASK

For this section, we only consider models trained before November 2023. We split models into two
cohorts: a control group and a treatment group. We take the older models as the control group. We
then create a treatment group by fine-tuning the control group on the datasets of task-relevant data
introduced in Section 2. We only fine-tune models with at least 7 · 1021 FLOPs, the pre-training
compute of the smallest newer model, Qwen 1.5 0.5B. We fine-tune on each dataset independently,
for a single epoch. We plot in Figure 3 top the benchmark performance of the two cohorts.

Qualitatively, the performance differences between the control and treatment groups mirror those
observed earlier between newer and older models, contrast Figure 3 with Figure 1 Quantitatively,
the estimated performance gain θ̂ from fine-tuning is similar to the difference between newer and
older models estimated in Section 2.2. That is, fine-tuning older models on the test task produces
both qualitatively and quantitatively similar confounding to that observed between newer and older
models. This results further supports our hypothesis that newer models are largely equivalent to
older models that have trained on the test task. Furthermore, it demonstrates the large effect that
training on the test task can have on benchmark evaluations.

We then apply our proposed adjustment by further fine-tuning both the control and treatment groups
on the test task, see Figure 3 bottom. After the adjustment, the estimated difference in performance θ̂
between the control and treatment group is both small and not statistically significant. We therefore
validate a vital soundness property: after deliberately training some models on the test task, we can
undo their advantage over other models by further training all models on the test task.
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Figure 4: Reformulating ARC and HellaSwag as MMLU-style questions give rise to large differ-
ences θ̂ between models trained (●) before November 2023 and (●) after November 2023 (center).
After adjusting by fine-tuning on the test task, differences in performance vanish (right).

3.2 REFORMULATING THE TEST TASK

In this section, we show that reformulating other benchmarks as multiple-choice question answering
tasks leads to similar differences in performance between older and newer models. We consider
two additional benchmarks from the HF leaderboard v1: ARC Challenge (Clark et al., 2018) and
HellaSwag (Zellers et al., 2019). Similarly to MMLU, ARC is comprised of grade-school level
questions. HellaSwag instead tests for commonsense reasoning. Like MMLU, the questions in
ARC and HellaSwag are accompanied by four possible answers. ARC and HellaSwag use “cloze”
evaluations: a models’ answer is taken to be that with the largest completion likelihood given the
input question. In contrast, MMLU formulates questions as multiple-choice: all four answer choices
are listed, and the model is promoted to pick one of the answer choices.

We first evaluate on ARC and HellaSwag using the standard cloze evaluation, and plot their bench-
mark performance in Figure 4 left. We repeat the statistical analysis of Section 2.2. We find that the
estimated difference in performance θ̂ between newer and older models is small and not statistically
significant. That is, newer models do not outperform older models on ARC and HellaSwag.

We then reformulate ARC and HellaSwag as MMLU-style multiple-choice questions, and plot the
resulting benchmark performance in Figure 4 center. We observe large differences in performance
between newer and older models. Specifically, we find the difference in performance θ̂ between
newer and older models to be significant, positive, and large, and to be roughly similar in magnitude
to that estimated for MMLU in Section 2.2. That is, reformulating the test task as multiple choice
question answering leads to similar confounding to that observed for MMLU. Therefore, newer
models overperform on MMLU likely not because of memorization of specific testing data (i.e., due
to data contamination), but rather due to an improved ability for multiple-choice question answering.

Lastly, we adjust for test task training by fine-tuning all models on the MMLU auxiliary training set,
and plot their ARC Challenge and HellaSwag scores in Figure 4 right. We no longer find evidence
of a large nor a significant difference in performance between newer and older models. Therefore,
the proposed adjustment is effective in mitigating the bias introduced by evaluating models using
multiple-choice question answering tasks. Notably, we achieve this using the same MMLU auxiliary
training set, thus demonstrating that the adjustment data need not closely resemble the test data.

What does MMLU test for? We evaluate MMLU using the cloze methodology instead of the
usual multiple-choice prompts. We plot the results in Figure 5 center. With cloze evaluations, the
difference in performance between newer and older models is both small and not statistically signif-
icant. This suggests that the standard MMLU evaluation conflates knowledge-testing with testing a
models’ ability to answer multiple choice questions. Newer models therefore attain higher MMLU
scores than older models largely because they are better at multiple-choice question answering, and
not because they necessarily “know more”.
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Figure 5: When evaluating MMLU using “cloze” prompts, models trained (●) after November 2023
no longer outperform those trained (●) before November 2023 (middle). When using Brier score as
the metric, we still observe sharp improvements in performance around 1022 FLOPs (right).
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Figure 6: Training on the test task confounds relative comparisons between model families. After
adjustment, none of the three model families appears to be superior beyond their compute.

4 IMPLICATIONS FOR MODEL COMPARISONS

So far, we have shown how training on the test task distorts benchmark evaluations. Next, we exam-
ine its impact on the relative comparison of model families (Section 4.1), as well as its implications
for accurately measuring progress in model capabilities over time (Section 4.2).

4.1 COMPARING MODEL FAMILIES

We compare the performance of the Pythia, Llama 2, and Qwen 1.5 model families, which likely
train on the test task to very different extents. Pythia was trained on the Pile (Gao et al., 2020), a
collection of curated datasets that are unlikely to contain much test task data. Llama 2 was trained
mostly on web data, which is reasonable to assume may contain more test task data. Lastly, Qwen 1.5
explicitly pre-trains on instruction data, thus likely training on the test task to a large extent.

We plot the MMLU and GSM8K scores of the three model families in Figure 6, as well as their ad-
justed scores (i.e., after fine-tuning on task relevant data). Without adjustment, Qwen 1.5 appears to
be the superior model family: it Pareto dominates both the Llama 2 and Pythia models. In contrast,
all Pythia models perform no better than random chance, making it unclear whether scaling Pythia
offers any benefit at all. After adjustment, however, all three model families exhibit remarkably sim-
ilar scaling trends. Therefore, after correcting for the confounding introduced by test task training,
none of the model families appears superior to the others beyond their pre-training compute.

Training on the test task therefore profoundly confounds relative model comparisons. Base models
are rarely used “as is” and are generally adapted in some way before deployment. Because of the
confounding of training on the test task, performance before adaptation may not reliably predict
performance after adaptation. It therefore makes little sense to compare base models at face value.
For example, Llama 2 70B underpreforms on GSM8K compared to Qwen 1.5 7B and StableLM 2
12B, but is the top-performing model after all models are adapted for mathematical reasoning.
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Figure 7: Training on the test task overestimates the improvements in performance-per-compute of
recent models. After adjustment, the area of improvement (green) reduces by a sixfold.

4.2 PROGRESS IN MODEL CAPABILITIES

Training on the test task substantially overestimates the progress in capabilities per unit of compute
achieved by recent model families. In Figure 7 we plot the Pareto frontier of benchmark accuracy
against pretraining compute, both for models trained before November 2023 and for all models. We
measure progress by considering the area of improvement of the Pareto frontier since November
2023, shaded in green. Without adjustment, the difference between the two Pareto frontiers is large
for both MMLU and GSM8K, indicating substantial progress since November 2023. After adjust-
ment, however, the area of improvement reduces by a sixfold, showing only modest improvements.

On the other hand, recent models tend to be trained on more data than Chinchilla compute-
optimal (Hoffmann et al., 2022). Given the Chinchilla scaling laws, it is remarkable that newer,
smaller models match the performance of older, larger ones for the same amount of pretraining
compute. For example, we find that Llama 3 8B closely matches the performance of Llama 2 70B.

5 IMPLICATIONS FOR EMERGENCE

Throughout our evaluations, we observe emergent behaviour for MMLU and GSM8K: models per-
form at near random chance up to a certain scale of pretraining compute, followed by relatively
sharper improvements in performance at larger scale. After training on the test task, however, emer-
gence for MMLU and GSM8K appears to occur at substantially lower scales. We dedicate this
section to more closely investigate the relationship between training on the test task and emergence.

Emergence arises at lower scales with increased test task training. We consider only models
trained before November 2023, as we have established that these models train on the test task to a
lesser extent. We evaluate the models at intermediate checkpoints as they train on the datasets of task
relevant data introduced in Section 2.1. We fit α and ce in Equation 1 to the different intermediate
checkpoints, and report in Figure 8 top the corresponding points of emergence ce. We find that
emergence arises at increasingly lower compute regimes as models train on the test task. That is, the
performance of models after training on the test task is predictable at substantially lower scales. For
instance, for MMLU models exhibit emergence at around 1022 FLOPs, roughly the scale of Pythia
6.9B. After training on 64,000 examples, emergence arises around around 6 · 1020 FLOPs, that is,
roughly the scale of Pythia 410M. We find similar results for GSM8K, see Figure 17 in Appendix D.

Training on the test task yields increasingly better log-linear fits. The log-linear relationship
between pretraining loss and compute is well-established (Kaplan et al., 2020). We observe that, for
the compute ranges that we consider, training on the test task increasingly recovers log-linear scaling
between pretraining compute and benchmark accuracy. Similarly to the earlier section, we evaluate
intermediate checkpoints but instead fit log-linear functions in Figure 8 bottom. We observe that the
R2 of the fit improves substantially as the models train on more task-relevant data. For MMLU, the
R2 value jumps from 0.63 to 0.95 after training on 64,000 examples. Therefore, after training on
the test task almost all of the variation in benchmark accuracy can be explained by log-linear scaling
of pre-training compute. We find similar results for GSM8K, see Figure 17 in Appendix D.
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Figure 8: Scaling on MMLU as models increasingly train on the test task. The point of emergence
ce arises at lower scales (top). Training on the test task yields claner log-linear scaling fits (bottom).

Recommendations. Schaeffer et al. (2024a) argue that emergence appears due to the choice of
metric. To mitigate emergence, they suggest to consider Brier score instead of accuracy. We observe,
however, that emergence for MMLU does not disappear when using the Brier score. We discuss two
practical solutions to obtain predictive scaling while maintaining accuracy as the evaluation metric.

For MMLU and multiple-choice benchmarks more broadly, cloze evaluationsc consistently yield
smoother and more predictable scaling even when using accuracy as the evaluation metric. Since
the purpose of these benchmarks is knowledge-testing more so than testing multiple-choice an-
swering ability, cloze evaluations should be preferable insofar predictive scaling is an important
consideration. Our recommendation aligns with the concurrent work by Gu et al. (2024).

More broadly, if sufficient task relevant data is available, then training on the test task can result in
much more predictable scaling by shifting emergence to smaller compute scales. That is, by con-
sidering “adjusted” scaling laws where models across scales are fine-tuned on the same, sufficient
task-relevant data prior to evaluation. Such scaling laws potentially correspond to those of “special-
ist” models, which for some domains –such as the legal domain (Dominguez-Olmedo et al., 2024)–
or purposes –e.g., safety– might be preferable to the scaling laws of generalist models.

6 RELATED WORK

Benchmarks have played a central role in both machine learning (Hardt & Recht, 2022) and natural
language processing (Storks et al., 2019). Classically, benchmarks comprised both a test set and a
reasonably large training set (LeCun et al., 1998; Deng et al., 2009). Models were trained on the
same training set, and then evaluated on the accompanying test set. The success of unsupervised
language modelling (Peters et al., 2018; Kenton & Toutanova, 2019; Radford et al., 2019), however,
has changed this paradigm. Firstly, present-day language models differ in their training data, which
is not standardized but rather treated as a design choice (Raffel et al., 2020; Albalak et al., 2024;
Li et al., 2024). Secondly, language models are a priori not trained with the explicit objective
of maximizing any single benchmark score. Rather, language models are expected to be able to
perform a broad range of tasks (Wang et al., 2018; Brown et al., 2020).

Data contamination. Data contamination or test-set contamination refers to any overlap between
the training and the test data such that test results overestimate a model’s generalization performance.
The scale and often little curation of present-day pretraining corpora exacerbates data contamination
concerns in language model evaluations (Sainz et al., 2023; Magar & Schwartz, 2022; Jiang et al.,
2024). However, detecting and preventing data contamination is currently an open problem (Yang
et al., 2023b; Golchin & Surdeanu, 2023). Roberts et al. (2023) and Li & Flanigan (2024) find that
models often perform better on datasets that were publicly available during model training. While
all models that we consider were released at least a year and a half after MMLU and GSM8K, we
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nonetheless find that, controlling for compute, more recent models perform better. These perfor-
mance gains are unlikely to be driven solely by test set leakage and require additional explanation.
In Section 3.2, we find evidence that that training on the test task may be a more dominant factor in
benchmark performance than data contamination.

Training on the test task. The effectiveness of fine-tuning on the training set accompanying LLM
benchmarks is well-known (Wei et al., 2021; Wang et al., 2022; Chung et al., 2024). Consequently,
many influential instruction-tuning datasets contain or are partly derived from benchmark train
data (Wei et al., 2021; Honovich et al., 2022; Mukherjee et al., 2023). Li & Flanigan (2024) identify
small amounts of benchmark-specific data in the publicly available Alpaca (Taori et al., 2023) and
Vicuna (Chiang et al., 2023) instruction-tuning sets. Zhou et al. (2023b) empirically analyze the ef-
fects of fine-tuning on benchmark-specific data and warn about its impacts on benchmark validity. In
contrast, we find evidence for training on the test task without the need for explicitly identifying spe-
cific data points used at training time, or modifying tasks. In addition, our proposed method of fine-
tuning on task data prior to evaluation allows us to correct for its effect on benchmark performance.

Emergent abilities of language models. Emergent capabilities (Wei et al., 2022; Ganguli et al.,
2022) refer to levels of model performance at large scales that cannot be easily predicted by extrap-
olating from smaller scales. Wei et al. (2022) report emergent capabilities for various benchmarks
including MMLU and GSM8K (Srivastava et al., 2022). However, Srivastava et al. (2022); Schaeffer
et al. (2024b) find that the log-probability of the correct answer often improves smoothly, even when
other metrics seem to show emergence. Schaeffer et al. (2024a) argue that emergent capabilities are
mostly an artifact of non-linear and discontinuous evaluation metrics like accuracy. In contrast, we
find signs of emergence on MMLU even when using continuous metrics like the Brier score. We
additionally show that increasingly fine-tuning on the test task yields more predictive scaling by
shifting the point of emergence to smaller compute scales, recovering cleaner log-linear scaling.

7 DISCUSSION

The 1968 Olympics took place in Mexico City at the significant altitude of 2340 meters, higher than
Australia’s tallest peak. Runners who had trained at altitude in their home countries were better
prepared to compete in Mexico City’s conditions, as it turned out. But the hotly debated results
of the Games did not lead the organizers to prohibit training at natural altitude. Instead, they let
everyone do it; and athletes came to consider altitude training an excellent way to train.

The anecdote holds a lesson for the evaluation of large language models half a century later. Knowl-
edge about the evaluation conditions necessarily influences training practices under competitive
pressure. It may be a fool’s errand to prohibit the practice. Instead, we propose to adjust for it
by giving every model the same task-specific preparation before evaluation. We work from the as-
sumption that training on the test task, in general, cannot be effectively detected, disallowed, or
disincentivized. Detecting what training data a model has seen is a notoriously difficult problem.
Researchers routinely acknowledge the futility of fighting data contamination. Moreover, we antic-
ipate that the ways to effectively train on the test task will only grow in scope and adoption.

Our work demonstrates that comparisons of different models are confounded by the choice of
training data and training practices. Different model families vary in the degree that they were—
implicitly or explicitly—trained on various test tasks. It therefore makes little sense to compare
model performance at face value without accounting for how the training data relate to the test task.
A small amount of task data can have a disproportional large effect on benchmark performance.

We can apply the same principles to emergent behavior. After training on the test task, model
capabilities become predictable at smaller model size and grow continuously with scale. Training
on the test task greatly reduces the unpredictability associated with emergence, notably without any
change in the metric, thus largely disarming the ominous nature of emergence.

Despite the daunting challenges that training on the test task poses for the fair evaluation of language
models, it’s also its own best remedy. Giving each model the same sufficient task-specific fine-
tuning harmonizes model comparisons and linearizes the relationship between model capabilities
and pretraining compute. We hope that our work informs stronger evaluation standards that address
central challenges in the current evaluation ecosystem.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 MODELS CONSIDERED

Model size in billions of parameters is indicated by N and pretraining data size in trillions of to-
kens is indicated by D. Model weights were retrieved from the corresponding HuggingFace (HF)
repositories.

Name Train date N D HF repository Citation
baichuan-13b 2023-06 13 1.4 baichuan-inc/Baichuan-

13B-Base
Yang et al. (2023a)

baichuan-7b 2023-06 7 1.2 baichuan-inc/Baichuan2-
7B-Base

Yang et al. (2023a)

baichuan2-13b 2023-09 13 2.6 baichuan-inc/Baichuan2-
13B-Base

Yang et al. (2023a)

baichuan2-7b 2023-09 7 2.6 baichuan-inc/Baichuan2-
7B-Base

Yang et al. (2023a)

falcon-11b 2024-05 11 5.0 tiiuae/falcon-11B Almazrouei et al. (2023)
falcon-7b 2023-04 7 1.5 tiiuae/falcon-7b Almazrouei et al. (2023)
gemma-2b 2024-02 2 3.0 google/gemma-2b Gemma et al. (2024)
gemma-7b 2024-02 7 6.0 google/gemma-7b Gemma et al. (2024)
gpt-j-6b 2021-03 6 0.4 EleutherAI/gpt-j-6b Wang & Komatsuzaki

(2021)
internlm-20b 2023-09 20 2.3 internlm/internlm-20b InternLM (2023)
internlm-7b 2023-07 7 1.0 internlm/internlm-7b InternLM (2023)
internlm2-base-
20b

2024-01 20 2.6 internlm/internlm2-base-
20b

Cai et al. (2024)

internlm2-base-7b 2024-01 7 2.6 internlm/internlm2-base-7b Cai et al. (2024)
llama-13b 2023-02 13 1.0 None Touvron et al. (2023a)
llama-2-13b 2023-07 13 2.0 meta-llama/Llama-2-13b-

hf
Touvron et al. (2023b)

llama-2-70b 2023-07 70 2.0 meta-llama/Llama-2-70b-
hf

Touvron et al. (2023b)

llama-2-7b 2023-07 7 2.0 meta-llama/Llama-2-7b-hf Touvron et al. (2023b)
llama-3-8b 2024-04 8 15.0 meta-llama/Meta-Llama-3-

8B
MetaAI (2024)

llama-30b 2023-02 32.5 1.4 None Touvron et al. (2023a)
llama-65b 2023-02 65.2 1.4 None Touvron et al. (2023a)
llama-7b 2023-02 7 1.0 None Touvron et al. (2023a)
map-neo-7b 2024-05 7 4.5 m-a-p/neo 7b Zhang et al. (2024)
olmo-1.7-7b 2024-04 7 2.0 allenai/OLMo-1.7-7B-hf Groeneveld et al. (2024)
olmo-1b 2024-01 1 2.0 allenai/OLMo-1B-hf Groeneveld et al. (2024)
olmo-7b 2024-01 7 2.5 allenai/OLMo-7B-hf Groeneveld et al. (2024)
openllama-13b 2023-06 13 1.0 openlm-

research/open llama 13b
OpenLlama (2023)

openllama-3b 2023-06 3 1.0 openlm-
research/open llama 3b

OpenLlama (2023)

openllama-3b-v2 2023-07 3 1.0 openlm-
research/open llama 3b v2

OpenLlama (2023)

openllama-7b 2023-06 7 1.0 openlm-
research/open llama 7b

OpenLlama (2023)

openllama-7b-v2 2023-07 7 1.0 openlm-
research/open llama 7b v2

OpenLlama (2023)

pythia-1.4b 2023-02 1.4 0.3 EleutherAI/pythia-1.4b Biderman et al. (2023)
pythia-12b 2023-02 12 0.3 EleutherAI/pythia-12b Biderman et al. (2023)
pythia-160m 2023-02 0.16 0.3 EleutherAI/pythia-160m Biderman et al. (2023)
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pythia-1b 2023-02 1 0.3 EleutherAI/pythia-1b Biderman et al. (2023)
pythia-2.8b 2023-02 2.8 0.3 EleutherAI/pythia-2.8b Biderman et al. (2023)
pythia-410m 2023-02 0.41 0.3 EleutherAI/pythia-410m Biderman et al. (2023)
pythia-6.9b 2023-02 6.9 0.3 EleutherAI/pythia-6.9b Biderman et al. (2023)
pythia-70m 2023-02 0.07 0.3 EleutherAI/pythia-70m Biderman et al. (2023)
qwen-1.5-0.5b 2024-01 0.5 2.4 Qwen/Qwen1.5-0.5B Bai et al. (2023)
qwen-1.5-1.8b 2024-01 1.8 2.4 Qwen/Qwen1.5-1.8B Bai et al. (2023)
qwen-1.5-14b 2024-01 14 4.0 Qwen/Qwen1.5-14B Bai et al. (2023)
qwen-1.5-4b 2024-01 4 2.4 Qwen/Qwen1.5-4B Bai et al. (2023)
qwen-1.5-7b 2024-01 7 4.0 Qwen/Qwen1.5-7B Bai et al. (2023)
redpajama-3b 2023-05 3 0.8 togethercomputer/RedPajama-

INCITE-Base-3B-v1
TogetherWeCompute
(2023)

redpajama-7b 2023-05 7 1.0 togethercomputer/RedPajama-
INCITE-7B-Base

TogetherWeCompute
(2023)

skywork-13b 2023-10 13 3.2 Skywork/Skywork-13B-
base

Wei et al. (2023)

stablelm-2-1.6b 2024-01 1.6 2.0 stabilityai/stablelm-2-1 6b Bellagente et al. (2024)
stablelm-2-12b 2024-03 12.1 2.0 stabilityai/stablelm-2-12b Bellagente et al. (2024)
stablelm-3b-4e1t 2023-09 2.8 4.0 stabilityai/stablelm-3b-4e1t StabilityAI (2023)
stablelm-base-
alpha-3b-v2

2023-08 2.8 1.1 stabilityai/stablelm-base-
alpha-3b-v2

StabilityAI (2023)

stablelm-base-
alpha-7b-v2

2023-08 7 1.1 stabilityai/stablelm-base-
alpha-7b-v2

StabilityAI (2023)

yi-6b 2023-11 6 3.1 01-ai/Yi-1.5-6B Young et al. (2024)
ziya2-13b-base 2023-11 13 2.65 IDEA-CCNL/Ziya2-13B-

Base
Gan et al. (2023)

A.2 FINE-TUNING HYPERPARAMETERS

We fine-tune all model parameters. For models with less than 10B parameters, we fine-tune on a single GPU
with BF16 precision. For models between 10B and 30B parameters, we train on a single H100 node using
DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) and full precision. For models with more than 30B parameters,
we train on two H100 nodes using DeepSpeed ZeRO-3 and full precision. Due to the large compute cost of the
experiments, we perform minimal hyperparameter tuning and use standard hyperparameter choices throughout.
We use a learning rate of 2 · 10−5 for models with fewer than 10B parameters and a learning rate of 2 · 10−6

for models with more than 10B parameters. For four of the 7B models –Gemma 7B, Olmo 7B, Olmo 1.7 7B,
and Llama 3 8B– benchmark accuracy degraded after fine-tuning. For these models, we use a peak learning
rate of 2 · 10−6 instead. We use a cosine learning rate schedule with linear warm-up for 50 steps and decay to
10% of the peak learning rate. We use AdamW (Loshchilov & Hutter, 2018) as the optimizer, with β1 = 0.9,
β2 = 0.95, and ϵ = 10−8. We fine-tune with batch size 64. We use a weight decay rate of 0.1 and clip
gradients at 1.0. We verify that the training loss decreases for all models on both of the fine-tuning datasets. To
reduce the computation burden of fine-tuning, we train with context size 600. We verify that less than 5% of
the fine-tuning examples have context length above 600.

We use an internal cluster of A100 and H100 GPUs. Fine-tuning all models required approximately 10,000
H100 GPU hours, whereas evaluating all models in the different benchmarks required approximately 400 H100
GPU hours.

B CAUSAL INTERPRETATION OF OUR FINDINGS

In Section 2.2 we established that models trained after November 2023 significantly outperform those trained
before November 2023 for both MMLU and GSM8K. We then showed that fine-tuning all models in the test
task equalizes the performance of newer and older models. We now present a causal interpretation of our
findings, aiming to quantify the extent to which the effect of model recency N on benchmark accuracy A is
mediated by training on the test task T .

The key obstacle to our analysis is that test task training T is unobservable. Firstly, because practitioners
are typically not transparent about their designs choices, including the pretraining data. Secondly, because
the extent to which different training practices might amount to test task training is unclear. Nonetheless, by
fine-tuning on task-specific data we are able to intervene on the extent to which models train on the test task.

Figure 9 summarizes our causal assumption. The time at which a model was trained determines the design
choices made, such as its pretraining data or pretraining compute C. These design choices in turn affect how
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A

C

N

T

Figure 9: Whether a model was trained after November 2023 (N ) influences its pretraining compute
(C) and how much it trains on the test task (T ). All three influence the benchmark accuracy (A) of
the model.

much the model trains on the test task. All these factors ultimately influence the pretrained model and thus
its benchmark performance. We also admit that compute might influence test task training. For instance,
pre-training on larger datasets may lead to models training more on the test task.

We interpret the proposed adjustment method as intervening on the test task training variable T . Namely, by
fine-tuning all models on the same amount of task-specific data before evaluation. The external validity of
our subsequent analysis hinges on the assumption that our controlled experimental setting –fine-tuning models
after the pretraining stage– is reasonably similar to the natural settings in which practitioners might train on
the test task during pretraining (e.g., by including instruction data in the pretraining data mixture). We provide
evidence for this in Appendix B.3.

We model fine-tuning as a hard intervention do(T = t) (Pearl, 2009). The specific magnitude of the interven-
tion t need not be quantified. Instead, the key assumption is that by fine-tuning on the same, sufficient amount
of task data, all models will have received the same amount of test task training. Since some base models may
have already trained on the test task prior to fine-tuning, this assumption only holds if test task training saturates
and we train on enough task data to reach saturation. The fact that our task-specific datasets allow older models
to match the performance of newer models provides some evidence that we train on enough task-specific data
to reach saturation.

We draw inspiration from scaling laws (Kaplan et al., 2020) and model relationship between pretraining com-
pute and its causal descendants as pice-wise log-linear:

f(C,α) = α0 +

|α|∑
i=1

αi logC · [C > ci] (2)

For simplicity, we consider three fixed knots at c1 = 0, c2 = 1022, and c3 = 1023 FLOPs. We assume all other
variable relationships to be linear, resulting in the structural assignments:

T := f(C, β) + ϕN + δ, δ ∼ N (0, σ2
δ ) (3)

A := f(C,α) + ψN + γT + η + ϵ, ϵ ∼ N (0, σ2
ϵ ) (4)

We denote benchmark accuracy after fine-tuning as A|do(T=t). To estimate the direct effect N → A of model
recency on accuracy, we regress the linear model

A|do(T=t) = f(C,α) + ψN + γt+ η + ϵ

= f(C,α) + ψN + η′ + ϵ, η′ = η + γt (5)

where α,ψ, η′ are the fit’s parameters and ϵ is random noise. The coefficient ψ corresponds to the direct effect
N → A of model recency on benchmark accuracy. We additionally regress on the difference in accuracy pre
and post intervention

A−A|do(T=t) = (f(C,α) + ψN + γT + η + ϵ1)− (f(C,α) + ψN + γt+ η + ϵ2)

= γT − γt+ ϵ1 − ϵ2

= f(C, γβ) + γϕN + γδ − γt+ ϵ1 − ϵ2

= f(C, β′) + ϕ′N + b+ ϵ′, for β′ = γβ, ϕ′ = γϕ, b = −γt, ϵ′ = ϵ1 − ϵ2 + γδ (6)

where β′, ϕ′, b are the fit’s parameters and ϵ′ is random noise. The coefficient ϕ′ corresponds to the indirect
effect N → T → A of model recency N on benchmark accuracy A mediated by test task training T (Pearl,
2013). That is, the improvements in accuracy of recent models attributable to training on the test task.
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Table 2: The indirect effect N → T → A me-
diated by test task training T is positive, sig-
nificant, and large: newer models attain higher
benchmark scores primarily because of training
on the test task.

MMLU GSM8K

ϕ̂
0.071 0.168

(0.018) (0.032)
R2 0.530 0.503

Standard errors in parentheses. Bold indicates
p < 0.05.

Table 3: We find no evidence of a significant di-
rect effect of model recency N on accuracy A,
that is, of the improvements of newer models
being attributable to anything else other than
training on the test task.

MMLU GSM8K

ψ̂
-0.004 0.000
(0.009) (0.032)

R2 0.926 0.763

Standard errors in parentheses. Bold indicates
p < 0.05.
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Figure 10: Robustness check with September 2023 as the temporal split.

We fit the models in Equation 5 and Equation 6, and we report the coefficients pertaining to N → A and
N → T → A in Table 3 and Table 2. We find that the indirect effect N → T → A of model recency on
accuracy mediated by test task training T is significant, positive, and large. In contrast, we find no evidence
of a significant direct effect N → A of model recency on accuracy. We therefore find no evidence of the
improvements of newer models being attributable to anything else other than training on the test task.

In conclusion, our causal analysis indicates that the differences in MMLU and GSM8K performance between
newer and older models observed in Section 2.1 are largely attributable to differences in test task training. That
is, the mechanism by which newer models outperform older models is primarily by training more on the test
task.

B.1 ROBUSTNESS CHECK ON THE TEMPORAL SPLIT: OTHER TEMPORAL THRESHOLDS

We repeat the analysis of Section 2 for two additional temporal splits: September 2023 and January 2024, and
present the results in Figure 10 and Figure 11, respectively. Our results are robust to the temporal split chosen.

B.2 ROBUSTNESS CHECK ON THE TEMPORAL SPLIT: EN VS CN LANGUAGE DATA

Instead of diving models using a temporal split, we divide models based on whether they were trained primarily
on English (EN) data or on a mixture of English and Chinese (EN+CN) language data. While there is a
considerable overlap between the temporal split and the EN/EN+CN model split, there are notable differences.
In particular, the Baichuan, Baichuan 2, and InternLM, and Skywork families were trained before November
2023 and trained on EN+CN data. Conversely, Gemma, Llama 3, StableLM 2, Falcon 2, and Olmo were trained
after November 2023 and trained on EN data.
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Figure 11: Robustness check with January 2024 as the temporal split.

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU

Difference = 0.092
Regression R2 = 0.951

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.125
Regression R2 = 0.876

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU (adjusted)

Difference = 0.009
Regression R2 = 0.990

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K (adjusted)

Difference = 0.011
Regression R2 = 0.957

Model split: trained primarely on EN data

Models trained Primarily on EN On both EN and CN        

Figure 12: Models trained on both English (EN) and Chinese (CN) language data outperform those
trained primarily on English data. After adjusting for test task training, we find no evidence of a
significant difference θ in performance between models trained on EN data and EN+CN data.

We repeat the analysis of Section 2 for the EN and EN+CN model split, see Figure 12. We observe that, con-
trolling for pretraining compute, models trained on EN+CN language data outperform those trained primarily
on EN by 9 accuracy points on MMLU and 12 accuracy points on GSM8K. After the proposed adjustment,
however, the difference in performance between models trained on EN data and EN+CN data is small and not
statistically significant.

The confounding and measured effect sizes for the EN and EN+CN model split resemble those obtained for the
temporal split, which we interpret as a valuable robustness check of our results.

B.3 HOW SIMILAR ARE NEWER MODELS TO OLDER, FINE-TUNED MODELS?

In Section 3.1 we fine-tune older models on the test task and we demonstrate that the differences in bench-
mark performance between the fine-tuned and non fine-tuned models resemble those between newer and older
models. In this section we provide further evidence that newer models resemble older, fine-tuned models.
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Figure 13: New models resemble old models that were fine-tuned. Temporal cut-off: November
2023.

Table 4: Accuracy in discriminating between older and newer models in terms of their pretraining
compute and benchmark accuracy. Older, fine-tuned models are indistinguishable from newer mod-
els.

Discriminator test MMLU GSM8K
Older models vs 64.6% 73.9%newer models

Fine-tuned, older models vs 52.2% 52.5%newer models

Random chance accuracy is 50%.

We take the older models and we fine-tune them with 64,000 training examples from the auxiliary training sets
introduced in Section 2.1. We plot in Figure 13 the benchmark scores of the older, fine-tuned models as well as
that of the newer models. We qualitatively observe that both the older, fine-tuned models and the newer models
exhibit similar scaling. That is, older fine-tuned models resemble newer models in terms of performance per
compute.

We perform a quantitative analysis consisting in discriminating between the older models and the newer models
based on their pretraining compute and benchmark accuracy. That is, we construct a tabular dataset where rows
are models and columns are their corresponding pretraining compute, benchmark accuracy, and whether the
model was trained after November 2023. We then train a classifier aiming to predict model recency from
compute and accuracy. Intuitively, if the performance of older models is very different form that of newer
models, then we would obtain high prediction accuracy (i.e., the two classes are highly separable). Note that
prediction accuracy provides a lower bound on the total variation (TV) distance between the distributions of
compute and accuracy of older and newer models.

We train XGBoost classifiers and report balanced accuracy for leave-one-out cross-validation in Table 4. We
obtain close to random-chance accuracy in discriminating between older, fine-tuned models and newer models.
That is, older fine-tuned models are indistinguishable from newer models in terms of their performance per
pre-training compute.

C RESULTS FOR THE OPENLLM LEADERBOARD V2

HuggingFace released on June 2024 a revision of the OpenLLM Leaderboard (Fourrier et al., 2024a). The HF
leaderboard v2 differs from v1 in the six benchmarks it considers: MMLU Pro (Wang et al., 2024), GPQA (Rein
et al., 2023), BBH (Suzgun et al., 2023), MuSR (Sprague et al., 2023), the Level 5 subset of MATH (Hendrycks
et al., 2021), and IFEval (Zhou et al., 2023a). MMLU and GPQA test for knowledge and are framed as multiple-
choice questions. BBH and MuSR test for reasoning. MATH tests for mathematical reasoning. IFEval tests the
ability of models to follow instructions.

The creators of the OpenLLM Leaderboard cite contamination as a key motivation for releasing the v2 revision.
They note that a key criteria in choosing the benchmarks of the HF leaderboard v2 was lack of contamination
in models as of today. In particular, Fourrier et al. (2024b) claim that current models are not contaminated for
GPQA, MuSR, and MMLU Pro: GPQA due to the gating of the test set, and MuSR and MMLU Pro due to
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their “youth”. Fourrier et al. (2024b) succinctly express their concern as regards to data contamination in the
HF leaderboard v1:

”Some newer models also showed signs of contamination. By this, we mean that models
were possibly trained on benchmark data or on data very similar to benchmark data. As
such, some scores stopped reflecting the general performance of the model and started to
overfit on some evaluation datasets instead of reflecting the more general performance of
the task being tested. This was, in particular, the case for GSM8K and TruthfulQA, which
were included in some instruction fine-tuning sets.”

Note that “models were possibly trained on benchmark data or on data very similar to benchmark data”
encompasses not only test set contamination but more broadly training on the test task.

We evaluate all 53 models on MMLU Pro, GPQA, BBH, MuSR and MATH Lvl 5. We use the LM Evaluation
Harness library in identical fashion to the HF leaderboard v2. We do not evaluated on IFEval since it tests for
instruction following and we evaluate base models. We additionally evaluate the models that we fine-tuned
in Section 2.1 for multiple choice question answering and mathematical reasoning. This gives us models’
adjusted benchmark scores after training on multiple choice question answering and mathematical reasoning.
For MATH Lvl 5, we use the models fine-tuned on mathematical data, whereas for MMLU Pro, GPQA, BBH
and MuSR we use the models fine-tuned on multiple choice question answering. The fine-tuning datasets were
not adapted to the new benchmarks in the HF leaderboard v2, thus giving a valuable insight into how well these
task-relevant datasets generalize beyond MMLU and GSM8K.

We plot in Figure 14 models benchmark scores pre and post post adjustment. We find that newer models signifi-
cantly outperform older ones in all five benchmarks after controlling for pretraining compute. The differences in
performance are smaller in absolute terms than those measured for MMLU (0.068) and GSM8K (0.168). This
is in part because these benchmarks are “harder”, meaning also smaller differences in performance between the
best and worst model. For this reason, we also report the difference between newer and older models relative
to the difference between the best and worst model. This relative difference is 13.7% for MMLU Pro, 14.5%
for GPQA, 12.1% for MuSR, 9.7% for BBH, and 10.0% for MATH Lvl 5, compared to 15.3% for MMLU and
25.0% for GSM8K. Therefore, newer models overperform in MMLU Pro, GPQA and MuSR about as much as
they do for MMLU, and somewhat less for BBH and MATH Lvl 5.

Fine-tuning on task-relevant data reduces the difference in performance between newer and older models for
all five benchmarks. Therefore, we find evidence that training on the test task plays a substantial role in
newer models outperforming older ones in the benchmarks of the HF Leaderboard v2. For GPQA and MuSR,
the difference in performance after adjustment is very small (|θ̂| ≤ 0.002) and not statistically significant.
For BBH, the estimated difference in performance θ̂ reduces by 40% to 0.015 and is no longer statistically
significant. For MMLU Pro and MATH Lvl 5 the difference reduces by 19% and 33% respectively but remains
reasonably large (θ̂ ¿ 0.01).

One possible reason for the fact that the adjustment for MMLU Pro and MATH Lvl 5 is not as effective as for
MMLU and GSM8K is that the fine-tuning examples are simply not as relevant for MMLU Pro and MATH
Lvl 5. For example, the questions and answers in MATH Lvl 5 contain much more LaTeX equation formatting
than our mathematical reasoning fine-tuning dataset. Similarly, our multiple choice fine-tuning dataset contains
mostly questions with 4 answer choices, whereas all MMLU Pro questions have 10 answer choices. Thus,
models are primarily fine-tuned to answer “A”, “B”, “C”, and “D” but not “E”, “F”, “G”. We modify MMLU
Pro to contain questions with 4 answer choices by randomly discarding 6 of the incorrect answer choices. We
evaluate models pre and post adjustment and plot the results in Figure 15. We observe that the difference in
performance between newer and older models after adjustment reduces from 0.024 to 0.016, and is no longer
statistically significant. This observation suggests that fine-tuning one more relevant task-data might further
reduce the gap between newer and older models in MMLU Pro and MATH Lvl 5.

Discussion. Fourrier et al. (2024b) cite newer models overperforming in the HF leaderboard v1 due to being
“possibly trained on benchmark data or on data very similar to benchmark data” as a major reason for the HF
leaderboard v2 revision. We however find evidence that training on the test task is also a confounder for the
newly included benchmarks. Specifically, the difference in performance between newer and older models is
significant for MMLU Pro, GPQA, MuSR, BBH and MATH Lvl 5, and these differences reduce after adjusting
by fine-tuning on the test task.

Fourrier et al. (2024b) explicitly highlight GPQA and MuSR as benchmarks likely unaffected by contamination,
the former due to being gated and latter due to its “youth”. Not only do newer models significantly outperform
older ones in GPQA and MuSR, but these differences in performance fully vanish after fine-tuning on the test
task. That is, newer models likely overperform in GPQA and MuSR precisely due to training on the test task.

These findings highlight that training on the test task is a distinct phenomenon from test set leakage. Strategies
that aim to mitigate data contamination –e.g., dynamic benchmarks– might not be effective in mitigating the
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Bold indicates statistical significance with p ¡ 0.05.

Figure 14: Results for the OpenLLM Leaderboard v2. For all benchmarks, models trained after
November 2023 significantly outperform models trained before November 2023 when controlling
for pretraining compute. After fine-tuning models on multiple choice question answering and math-
ematical reasoning, differences in performance between newer and older models reduce for all five
benchmarks. These differences are no longer significant for GPQA, MuSR and BBH, but remain
significant for MMLU Pro and MATH Lvl 5.

confounding effect of training on the test task. In contrast, we extensively demonstrated the effectiveness of
our proposed adjustment procedure, that is, fine-tuning on sufficient task-relevant data before evaluation.

D ADDITIONAL FIGURES ON EMERGENCE

Reformulating ARC and HellaSwag as multiple choice In Figure 16 we show that ARC and Hel-
laSwag do not exhibit emergence when using the standard cloze evaluation. When reformulating the task as
multiple choice in the style of MMLU, however, we observe emergence around 1022 to 1023 FLOPs, simi-
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Figure 15: We modify MMLU Pro to only contain questions with 4 answer choices by for every
question randomly discarding 6 of the incorrect answer choices. After adjustment, the difference in
performance θ̂ between newer and older models is smaller and no longer statistically significant.
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Figure 16: ARC and HellaSwag scores of models trained (●) before November 2023 and (●) af-
ter. Middle: reformulating the test task as multiple-choice leads to emergence around 1022 to 1023

FLOPs. Right: when using Brier score as the metric, we similarly observe sharp changes in perfor-
mance around 1022 to 1023 FLOPs.

larly to MMLU. Emergence in this range of compute persists even when changing the evaluation metric from
accuracy to Brier score –a continuous metric–, as suggested by Schaeffer et al. (2024a).

Emergence for GSM8K as models train on the test task Similar to MMLU, we find that increasingly
fine-tuning models on mathematical reasoning makes the phenomenon of emergence gradually disappear, see
Figure 17. The point of emergence arises at increasingly lower scales, recovering cleaner log-linear fits.
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Figure 17: Scaling on GSM8K as models increasingly train on the test task. The point of emergence
ce arises at lower scales (top). Training on the test task yields cleaner log-linear scaling fits (bottom).

E REBUTTAL

E.1 INSTRUCTION MODELS

We evaluate the following 36 instruct and chat models: falcon-7b-instruct, gemma-2b-instruct, gemma-
7b-instruct, internlm-chat-20b, internlm-chat-7b, internlm2-7b, internlm2-chat-1.8b, internlm2-chat-20b,
internlm2-chat-7b, llama-2-13b-chat, llama-2-7b-chat, llama-3-8b-instruct, map-neo-7b-instruct, map-neo-
7b-sft, olmo-7b-0724-instruct-hf, olmo-7b-0724-sft-hf, olmo-7b-instruct-hf, olmo-7b-sft-hf, qwen-1.5-0.5b-
chat, qwen-1.5-1.8b-chat, qwen-1.5-14b-chat, qwen-1.5-4b-chat, qwen-1.5-7b-chat, redpajama-7b-chat,
redpajama-chat-3b-v1, redpajama-instruct-3b-v1, redpajama-instruct-7b, stablelm-2-1.6b-chat, stablelm-2-
12b-chat, stablelm-2-zephyr-1.6b, stablelm-3b-4e1t, stablelm-zephyr-3b, vicuna-13b-v1.1, vicuna-13b-v1.3,
vicuna-7b-v1.1, vicuna-7b-v1.3.
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Figure 18: Main experiments for the “chat” and “instruct” models.
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Figure 19: Using November 2022 as the temporal split.
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Figure 20: Base pre-trained models released after November 2023, using February 2024 as the
temporal split.
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Figure 21: We do a sweep with learning rate [6e-5, 2e-5, 6e-6, 2e-6, 6e-7]. On the right, we plot
MMLU post-adjustment when selecting, for the newer models, the sweep run that leads to highest
MMLU performance. The estimated effect size remains both small and not statistically significant.
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