
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING ON THE TEST TASK
CONFOUNDS EVALUATION AND EMERGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We study a fundamental problem in the evaluation of large language models that
we call training on the test task. Unlike wrongful practices like training on the test
data, leakage, or data contamination, training on the test task is not a malpractice.
Rather, the term describes a growing set of techniques to include task-relevant data
in the pretraining stage of a language model. We demonstrate that training on the
test task confounds both relative model evaluations and claims about emergent ca-
pabilities. We argue that the seeming superiority of one model family over another
may be explained by a different degree of training on the test task. To this end,
we propose an effective method to adjust for the effect of training on the test task
on benchmark evaluations Put simply, to fine-tune each model under comparison
on the same task-relevant data before evaluation. We then show that instances of
emergent behavior disappear gradually as models train on the test task. Our work
promotes a new perspective on the evaluation of large language models with broad
implications for benchmarking and the study of emergent capabilities.

1 INTRODUCTION

The machine learning community has long recognized certain clear violations of the benchmarking
protocol. Training on the test set is the most notorious among them (Duda & Hart, 1973; Hastie
et al., 2017). Data leakage (Kapoor & Narayanan, 2022) and data contamination (Roberts et al.,
2023; Jiang et al., 2024) are closely related problems linked to the rise of massive web-crawled
training datasets. Researchers can all agree that test data should never appear in the training set.

But it’s been much less clear what to do about legitimate attempts to bring training closer to evalu-
ation. There is an obvious a gap between next token prediction at training time and tasks, such as
reasoning and question answering, at test time. Ongoing research and engineering efforts, in fact,
aim to narrow precisely this gap (MetaAI, 2024). Why shouldn’t training be informed by knowledge
about the downstream test tasks? What’s an unfair advantage of some may be the feature of others.

In this work, we group strategies to utilize task knowledge at training time under the umbrella term
of training on the test task. Examples of training on the test task include the use of instruction-
tuning data or question answering templates during pre-training (Bai et al., 2023; StabilityAI, 2023;
Groeneveld et al., 2024; Zhang et al., 2024). Models may also implicitly train on the test task when
their pretraining data is selected through benchmark ablations (Gemma et al., 2024; MetaAI, 2024).
We work from the premise that training on the test task is acceptable–or at least, unavoidable.

In a nutshell, we show that training on the test task strongly confounds model comparisons across
different scales and model families. Moreover, it significantly obscures the study of emergent
capabilities. Rather than scrambling to detect and disallow various forms of training on the test task,
we propose to “fight fire with fire”. We show that we can effectively level the playing field by giving
each model the same, sufficient task-specific fine-tuning before evaluation. This adjustment restores
cleaner log-linear scaling and makes capabilities predictable based on much smaller model scales.

1.1 OUR CONTRIBUTIONS

We introduce the term training on the test task to group a growing repertoire of practices that utilize
knowledge about evaluation tasks at training time. We study its impact on present-day benchmark

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

MMLU

Difference = 0.068
Regression R2 = 0.940

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.168
Regression R2 = 0.908

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.005
Regression R2 = 0.990

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.001
Regression R2 = 0.957

Base models trained after November 2023 outperform those trained before November 2023

After fine-tuning all models on the test task, differences in model performance vanish

Models trained Before November 2023 After November 2023

Figure 1: MMLU and GSM8K scores of 53 base models, with model sizes ranging from 70M to
70B parameters. Solid lines correspond to the regression fit of A = αmax(0, logC− ce)+θN + r,
where A is accuracy, C is pretraining compute, N is whether the model was trained after November
2023, and r is random chance accuracy. The coefficient θ denotes the average improvement of
models trained after November 2023 when controlling for pretraining compute. Bold indicates
statistical significance with p-value < 0.05. (Top) We hypothesize that training on the test task
confounds benchmark evaluations, resulting in newer base models substantially outperforming older
ones. (Bottom) We propose to adjust for differences in test task training by fine-tuning all models
on the same, sufficient amount of task-specific data before evaluation. After fine-tuning on the test
task, differences in benchmark performance between older and newer models vanish.

evaluations by critically examining the performance improvements of recent language models. Our
analysis spans 53 different language models and two major active benchmarks, MMLU and GSM8K.

We start in Section 2 by dividing models into those trained before November 2023 and those trained
after. We find that for the same amount of pretraining compute, newer models strongly outperform
older ones. We then fine-tune all models on the same amount of task-specific data before evaluation.
After fine-tuning on the same task data, newer models no longer outperform older ones. Rather,
their performance equalizes. See Figure 1. This outcome suggests that newer models outperform
older ones on MMLU and GSM8K primarily because newer models trained more on the test task.

We propose a simple and effective method to adjust for the effect of training on the test task on
benchmark evaluations. Put simply, to fine-tune each model on the same, sufficient amount of
task-specific data before evaluation. To validate our method, we demonstrate its effectiveness in a
controlled setting: we take the older models and fine-tune them on the test task. Remarkably this
recreates the kind of performance differences observed between newer and older models. We then
show that we can undo the advantage of the fine-tuned models over the other models by further
fine-tuning all models on the test task (Section 3.1, Figure 3).

Next, we give evidence that training on the test task may be a more dominant factor in benchmark
performance than data contamination. To argue this point, we consider ARC and HellaSwag. Here,
at first there appears to be no sign of newer models have an unfair advantage over older models. But
after reformulating these benchmarks as MMLU-style multiple choice question answering tasks,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

we see the same confounded results as for MMLU (Section 3.2, Figure 4). This suggest that the
improvements of newer models are not primarily because of memorization of specific testing data.
Either way, our proposed adjustment recovers fair model comparisons.

Then, we show how training on the test task distorts model family comparisons. Certain model fam-
ilies appear markedly superior to others before adjusting for test task training but not after adjust-
ment (Section 4.1). In fact, after adjustment, newer model families offer only modest improvements
to the Pareto frontier of model performance relative to pre-training compute (Section 4.2).

Finally, we demonstrate that training on the test task has profound implications for the study of
emergent capabilities. The phenomenon of emergence disappears gradually as the amount of train-
ing on the test task grows (Section 5). Specifically, we can make capabilities visible and predictable
from much smaller model scales, recovering cleaner log linear-scaling.

Our work calls for a major reorientation of large language model evaluation. Model comparisons
and claims of emergence are strongly confounded by the choice of training data relative to the test
tasks. When comparing models with different pre-training data, our recommendation is to give each
model the same sufficient amount of fine-tuning on task-relevant data prior to evaluation.

2 ADJUSTING FOR TRAINING ON THE TEST TASK

We choose MMLU (Hendrycks et al., 2020) and GSM8K (Cobbe et al., 2021) as a case study for
investigating training on the test task in active benchmarks. MMLU tests for world knowledge,
whereas GSM8K tests multi-step mathematical reasoning. These two benchmarks are arguably the
two most prominent LLM benchmarks in recent times. We evaluate models using LM Evaluation
Harness library (EleutherAI, 2024), in identical fashion to the HuggingFace leaderboard (5-shot).
See Appendix C for results pertaining to the OpenLLM Leaderboard v2 (Fourrier et al., 2024a).

We evaluate 53 base models, ranging in size from 70M to 70B parameters. See Appendix A.1 for
the full list. The HF leaderboard’s FAQ makes the distinction between “base pretrained models” and
instruction-tuned or chat models, arguing that this is necessary to ensure fair model comparisons.
We select models that are categorized as “pretrained”. We check that the technical report of each
of the selected models makes no mention of the model being fine-tuned. We only consider models
for which the number of training tokens is known. This allows us to estimate the total amount of
pretraining compute in FLOPs as C ≈ 6 ·N ·D, where C is pretraining compute, N is the number
of model parameters, and D is the number of training tokens.

Recent models outperform older ones given the same pretraining compute. We evaluate mod-
els on MMLU and GSM8K, and plot benchmark accuracy against pretraining compute in Figure 1
top. We observe that performance correlates with pretraining compute for both benchmarks. How-
ever, on the surface it appears that more recent models better leverage pretraining compute. In other
words, for a given compute budget newer models are able to attain better benchmark performance.

These improvements in benchmark performance coincide with the recent adoption of certain pre-
training practices that may amount to training on the test task. For example, Qwen (Bai et al., 2023),
and Olmo 1.7 (Groeneveld et al., 2024) include instruction data during pretraining. StableLM 2 (Sta-
bilityAI, 2023) reformulates some of its pretraining datasets to better resemble downstream tasks
such as question-answering. More subtly, the pretraining data mixtures of Gemma (Gemma et al.,
2024) and Llama 3 (MetaAI, 2024) were determined through ablations on benchmark evaluations.

This raises an important question: Do newer models outperform older ones mainly because newer
models trained more on the test task? At first sight, an answer seems elusive. After all, the pretrain-
ing data of most recent models is not public. Retraining all model families with the same training
data and compute budget would be both infeasible and cost prohibitive. Nevertheless, in the next
section, we propose a way to get at the answer by adjusting for the effect of training on the test task.

2.1 ADJUSTING FOR TRAINING ON THE TEST TASK BY TRAINING ON THE TEST TASK

We propose to adjust for differences in test task training by fine-tuning all models on the same,
sufficient amount of task-specific data before evaluation. To do so, we need a source of task-specific
data for each of the tasks we consider. For multiple choice questioning answering, we use the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.1

0.2

Ga
in

 in
 a

cc
ur

ac
y

af
te

r a
dj

us
tm

en
t

MMLU

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

GSM8K

Models trained Before November 2023 After November 2023

Figure 2: Older models tend to benefit much more from fine-tuning on task data.

auxiliary training set accompanying the HF MMLU repository1. It contains around 100,000 training
examples and 30M tokens. For mathematical reasoning, we combine MetaMathQA (Yu et al., 2023)
and Orca-Math (Mitra et al., 2024), totalling 600,000 training examples and 200M tokens. We
fine-tune models for three epochs using standard hyperparameter choices, see Appendix A.2. The
amount of compute required for fine-tuning is minimal compared to models’ pretraining compute.

We plot model scores on MMLU and GSM8K after fine-tuning in Figure 1 (bottom). We observe
that after fine-tuning on task relevant data, both newer and older models follow remarkably similar
scaling trends. That is, newer models no longer appear to outperform newer models.

Remarkably, we observe that older models tend to benefit much more from fine-tuning on task-
relevant data, see Figure 2. The improvements in older models are striking, often leaping from
random chance accuracy to double-digit gains in accuracy. In contrast, fine-tuning provides compar-
atively little benefit to newer models. This observation suggests that newer models have already been
exposed to a substantial amount of task-relevant data, making additional fine-tuning less impactful.

2.2 QUANTIFYING PERFORMANCE DIFFERENCES BETWEEN NEWER AND OLDER MODELS

We draw inspiration from scaling laws (Kaplan et al., 2020) in how we model benchmark accuracyA
to scale log-linearly with pretraining compute C. To account for emergence (Wei et al., 2022), we
assume that models perform at the task’s random chance accuracy r up to scaling to some point of
emergence ce. We let the variable N denote whether a model was trained after November 2023, and
regress the model

A = αmax(0, logC − ce) + θN + r + ϵ, (1)
where α, θ and ce are the fit’s parameters, and ϵ is random noise. We focus on the coefficient θ,
which corresponds to the average difference in benchmark performance between newer and older
models after controlling for pretraining compute. We fit the model in Equation 1, and report the
regression coefficient θ in Figure 1. We obtain R2 > 0.9 for all model fits.

Before adjusting for test task training, the estimated difference in performance θ̂ between newer and
older models are statistically significant, positive, and large. Specifically, recent models outperform
older ones on average by over 7 accuracy points in MMLU and 17 accuracy points in GSM8K.
These are remarkably large differences in benchmark performance. However, after the adjustment,
the estimated coefficient θ̂ is both small and not statistically significant. See Figure 1 bottom. That
is, conditioned on all models training on the same amount of task-specific data, we find no evidence
for a significant difference in benchmark performance between newer and older models.

Therefore, the performance of newer and older models equalizes when all models are exposed to the
same amount of task-relevant data. This suggests that the impressive benchmark improvements of
newer models are primarily attributable to newer models training more on the test task. We present
a causal interpretation of results in Appendix B, outlying the assumptions necessary to establish a
causal link between training on the test task and the benchmark improvements of newer models.

1https://huggingface.co/datasets/cais/mmlu. This training set, far from being an i.i.d split of MMLU, com-
piles the training sets of other multiple-choice benchmarks, such as ARC (Clark et al., 2018), MCTest (Richard-
son et al., 2013), OpenBookQA (Mihaylov et al., 2018), and RACE (Lai et al., 2017)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.3
0.4
0.5
0.6

Ac
cu

ra
cy

MMLU

= 0.086

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

GSM8K

= 0.223

1020 1021 1022 1023

Pretraining compute (FLOPs)

0.3
0.4
0.5
0.6

Ac
cu

ra
cy

MMLU (adjusted)

= 0.006

1020 1021 1022 1023

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

GSM8K (adjusted)

= 0.006

Figure 3: Models trained before November 2023 (●) without fine-tuning and (●) after fine-tuning on
the test task. Their difference in benchmark performance θ̂ resemble that between newer and older
models (top). After adjusting by training on the test task, their difference vanishes (bottom).

3 RECREATING DIFFERENCES IN BENCHMARK PERFORMANCE

We have so far established that newer models strongly outperform older models for the same amount
of pre-training compute. We now demonstrate how to recreate such differences in performance by
actively manipulating how much models train on the test task. We do so in two ways. First, we
fine-tune older models on task relevant data (Section 3.1). Second, we reformulate certain test tasks
to use MMLU-style multiple choice prompts instead of “cloze” evaluations (Section 3.2). Both
experiments recreate the kind of performance differences observed between newer and older models.

These results provides further evidence that the differences in performance between older and newer
models are linked to test task training. They also demonstrates how test task training distorts bench-
mark evaluations. Fortunately, in both cases, we show that fine-tuning models on task-relevant data
before evaluation is an effective mechanism for mitigating the bias introduced by training on the test
task. In doing so, we systematically validate the proposed adjustment method.

3.1 FINE-TUNING ON THE TEST TASK

For this section, we only consider models trained before November 2023. We split models into two
cohorts: a control group and a treatment group. We take the older models as the control group. We
then create a treatment group by fine-tuning the control group on the datasets of task-relevant data
introduced in Section 2. We only fine-tune models with at least 7 · 1021 FLOPs, the pre-training
compute of the smallest newer model, Qwen 1.5 0.5B. We fine-tune on each dataset independently,
for a single epoch. We plot in Figure 3 top the benchmark performance of the two cohorts.

Qualitatively, the performance differences between the control and treatment groups mirror those
observed earlier between newer and older models, contrast Figure 3 with Figure 1 Quantitatively,
the estimated performance gain θ̂ from fine-tuning is similar to the difference between newer and
older models estimated in Section 2.2. That is, fine-tuning older models on the test task produces
both qualitatively and quantitatively similar confounding to that observed between newer and older
models. This results further supports our hypothesis that newer models are largely equivalent to
older models that have trained on the test task. Furthermore, it demonstrates the large effect that
training on the test task can have on benchmark evaluations.

We then apply our proposed adjustment by further fine-tuning both the control and treatment groups
on the test task, see Figure 3 bottom. After the adjustment, the estimated difference in performance θ̂
between the control and treatment group is both small and not statistically significant. We therefore
validate a vital soundness property: after deliberately training some models on the test task, we can
undo their advantage over other models by further training all models on the test task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.25

0.50

0.75
AR

C
Ac

cu
ra

cy

Cloze evaluation

= 0.001

Multiple choice

= 0.120

Multiple choice
(adjusted)

= 0.014

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.25

0.50

0.75

He
lla

Sw
ag

Ac
cu

ra
cy = 0.012

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

= 0.114

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

= 0.009

Figure 4: Reformulating ARC and HellaSwag as MMLU-style questions give rise to large differ-
ences θ̂ between models trained (●) before November 2023 and (●) after November 2023 (center).
After adjusting by fine-tuning on the test task, differences in performance vanish (right).

3.2 REFORMULATING THE TEST TASK

In this section, we show that reformulating other benchmarks as multiple-choice question answering
tasks leads to similar differences in performance between older and newer models. We consider
two additional benchmarks from the HF leaderboard v1: ARC Challenge (Clark et al., 2018) and
HellaSwag (Zellers et al., 2019). Similarly to MMLU, ARC is comprised of grade-school level
questions. HellaSwag instead tests for commonsense reasoning. Like MMLU, the questions in
ARC and HellaSwag are accompanied by four possible answers. ARC and HellaSwag use “cloze”
evaluations: a models’ answer is taken to be that with the largest completion likelihood given the
input question. In contrast, MMLU formulates questions as multiple-choice: all four answer choices
are listed, and the model is promoted to pick one of the answer choices.

We first evaluate on ARC and HellaSwag using the standard cloze evaluation, and plot their bench-
mark performance in Figure 4 left. We repeat the statistical analysis of Section 2.2. We find that the
estimated difference in performance θ̂ between newer and older models is small and not statistically
significant. That is, newer models do not outperform older models on ARC and HellaSwag.

We then reformulate ARC and HellaSwag as MMLU-style multiple-choice questions, and plot the
resulting benchmark performance in Figure 4 center. We observe large differences in performance
between newer and older models. Specifically, we find the difference in performance θ̂ between
newer and older models to be significant, positive, and large, and to be roughly similar in magnitude
to that estimated for MMLU in Section 2.2. That is, reformulating the test task as multiple choice
question answering leads to similar confounding to that observed for MMLU. Therefore, newer
models overperform on MMLU likely not because of memorization of specific testing data (i.e., due
to data contamination), but rather due to an improved ability for multiple-choice question answering.

Lastly, we adjust for test task training by fine-tuning all models on the MMLU auxiliary training set,
and plot their ARC Challenge and HellaSwag scores in Figure 4 right. We no longer find evidence
of a large nor a significant difference in performance between newer and older models. Therefore,
the proposed adjustment is effective in mitigating the bias introduced by evaluating models using
multiple-choice question answering tasks. Notably, we achieve this using the same MMLU auxiliary
training set, thus demonstrating that the adjustment data need not closely resemble the test data.

What does MMLU test for? We evaluate MMLU using the cloze methodology instead of the
usual multiple-choice prompts. We plot the results in Figure 5 center. With cloze evaluations, the
difference in performance between newer and older models is both small and not statistically signif-
icant. This suggests that the standard MMLU evaluation conflates knowledge-testing with testing a
models’ ability to answer multiple choice questions. Newer models therefore attain higher MMLU
scores than older models largely because they are better at multiple-choice question answering, and
not because they necessarily “know more”.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.4

0.6
Ac

cu
ra

cy

MMLU - Multiple choice

= 0.068

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.4

0.5

Ac
cu

ra
cy

MMLU - Cloze

= 0.008

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.8

0.6

0.4

-B
rie

r s
co

re

MMLU - Multiple choice

Figure 5: When evaluating MMLU using “cloze” prompts, models trained (●) after November 2023
no longer outperform those trained (●) before November 2023 (middle). When using Brier score as
the metric, we still observe sharp improvements in performance around 1022 FLOPs (right).

1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.5

0.7

Ac
cu

ra
cy

Unadjusted

1022 1023 1024

Adjusted

1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.4

0.8

Ac
cu

ra
cy

Unadjusted

1022 1023 1024

Adjusted
MMLU GSM8K

Llama 2 Qwen 1.5 Pythia

Figure 6: Training on the test task confounds relative comparisons between model families. After
adjustment, none of the three model families appears to be superior beyond their compute.

4 IMPLICATIONS FOR MODEL COMPARISONS

So far, we have shown how training on the test task distorts benchmark evaluations. Next, we exam-
ine its impact on the relative comparison of model families (Section 4.1), as well as its implications
for accurately measuring progress in model capabilities over time (Section 4.2).

4.1 COMPARING MODEL FAMILIES

We compare the performance of the Pythia, Llama 2, and Qwen 1.5 model families, which likely
train on the test task to very different extents. Pythia was trained on the Pile (Gao et al., 2020), a
collection of curated datasets that are unlikely to contain much test task data. Llama 2 was trained
mostly on web data, which is reasonable to assume may contain more test task data. Lastly, Qwen 1.5
explicitly pre-trains on instruction data, thus likely training on the test task to a large extent.

We plot the MMLU and GSM8K scores of the three model families in Figure 6, as well as their ad-
justed scores (i.e., after fine-tuning on task relevant data). Without adjustment, Qwen 1.5 appears to
be the superior model family: it Pareto dominates both the Llama 2 and Pythia models. In contrast,
all Pythia models perform no better than random chance, making it unclear whether scaling Pythia
offers any benefit at all. After adjustment, however, all three model families exhibit remarkably sim-
ilar scaling trends. Therefore, after correcting for the confounding introduced by test task training,
none of the model families appears superior to the others beyond their pre-training compute.

Training on the test task therefore profoundly confounds relative model comparisons. Base models
are rarely used “as is” and are generally adapted in some way before deployment. Because of the
confounding of training on the test task, performance before adaptation may not reliably predict
performance after adaptation. It therefore makes little sense to compare base models at face value.
For example, Llama 2 70B underpreforms on GSM8K compared to Qwen 1.5 7B and StableLM 2
12B, but is the top-performing model after all models are adapted for mathematical reasoning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.5

0.7
Ac

cu
ra

cy

Unadjusted
0.18

1022 1023 1024

Adjusted
0.03

1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.5

Ac
cu

ra
cy

Unadjusted
0.42

1022 1023 1024

Adjusted
0.08

MMLU GSM8K

Pareto front of Models trained before November 2023 All models

Figure 7: Training on the test task overestimates the improvements in performance-per-compute of
recent models. After adjustment, the area of improvement (green) reduces by a sixfold.

4.2 PROGRESS IN MODEL CAPABILITIES

Training on the test task substantially overestimates the progress in capabilities per unit of compute
achieved by recent model families. In Figure 7 we plot the Pareto frontier of benchmark accuracy
against pretraining compute, both for models trained before November 2023 and for all models. We
measure progress by considering the area of improvement of the Pareto frontier since November
2023, shaded in green. Without adjustment, the difference between the two Pareto frontiers is large
for both MMLU and GSM8K, indicating substantial progress since November 2023. After adjust-
ment, however, the area of improvement reduces by a sixfold, showing only modest improvements.

On the other hand, recent models tend to be trained on more data than Chinchilla compute-
optimal (Hoffmann et al., 2022). Given the Chinchilla scaling laws, it is remarkable that newer,
smaller models match the performance of older, larger ones for the same amount of pretraining
compute. For example, we find that Llama 3 8B closely matches the performance of Llama 2 70B.

5 IMPLICATIONS FOR EMERGENCE

Throughout our evaluations, we observe emergent behaviour for MMLU and GSM8K: models per-
form at near random chance up to a certain scale of pretraining compute, followed by relatively
sharper improvements in performance at larger scale. After training on the test task, however, emer-
gence for MMLU and GSM8K appears to occur at substantially lower scales. We dedicate this
section to more closely investigate the relationship between training on the test task and emergence.

Emergence arises at lower scales with increased test task training. We consider only models
trained before November 2023, as we have established that these models train on the test task to a
lesser extent. We evaluate the models at intermediate checkpoints as they train on the datasets of task
relevant data introduced in Section 2.1. We fit α and ce in Equation 1 to the different intermediate
checkpoints, and report in Figure 8 top the corresponding points of emergence ce. We find that
emergence arises at increasingly lower compute regimes as models train on the test task. That is, the
performance of models after training on the test task is predictable at substantially lower scales. For
instance, for MMLU models exhibit emergence at around 1022 FLOPs, roughly the scale of Pythia
6.9B. After training on 64,000 examples, emergence arises around around 6 · 1020 FLOPs, that is,
roughly the scale of Pythia 410M. We find similar results for GSM8K, see Figure 17 in Appendix D.

Training on the test task yields increasingly better log-linear fits. The log-linear relationship
between pretraining loss and compute is well-established (Kaplan et al., 2020). We observe that, for
the compute ranges that we consider, training on the test task increasingly recovers log-linear scaling
between pretraining compute and benchmark accuracy. Similarly to the earlier section, we evaluate
intermediate checkpoints but instead fit log-linear functions in Figure 8 bottom. We observe that the
R2 of the fit improves substantially as the models train on more task-relevant data. For MMLU, the
R2 value jumps from 0.63 to 0.95 after training on 64,000 examples. Therefore, after training on
the test task almost all of the variation in benchmark accuracy can be explained by log-linear scaling
of pre-training compute. We find similar results for GSM8K, see Figure 17 in Appendix D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.25

0.50

0.70
Ac

cu
ra

cy
Task examples: 0

ce: 1.3e+22

Task examples: 6.4k

ce: 5.6e+21

Task examples: 16k

ce: 1.1e+21

Task examples: 64k

ce: 5.6e+20

1021 1022 1023 1024
0.25

0.50

0.70

Ac
cu

ra
cy R2 = 0.632

1021 1022 1023 1024

Pretraining compute (FLOPs)

R2 = 0.804

1021 1022 1023 1024

R2 = 0.913

1021 1022 1023 1024

R2 = 0.950

MMLU

Figure 8: Scaling on MMLU as models increasingly train on the test task. The point of emergence
ce arises at lower scales (top). Training on the test task yields claner log-linear scaling fits (bottom).

Recommendations. Schaeffer et al. (2024a) argue that emergence appears due to the choice of
metric. To mitigate emergence, they suggest to consider Brier score instead of accuracy. We observe,
however, that emergence for MMLU does not disappear when using the Brier score. We discuss two
practical solutions to obtain predictive scaling while maintaining accuracy as the evaluation metric.

For MMLU and multiple-choice benchmarks more broadly, cloze evaluationsc consistently yield
smoother and more predictable scaling even when using accuracy as the evaluation metric. Since
the purpose of these benchmarks is knowledge-testing more so than testing multiple-choice an-
swering ability, cloze evaluations should be preferable insofar predictive scaling is an important
consideration. Our recommendation aligns with the concurrent work by Gu et al. (2024).

More broadly, if sufficient task relevant data is available, then training on the test task can result in
much more predictable scaling by shifting emergence to smaller compute scales. That is, by con-
sidering “adjusted” scaling laws where models across scales are fine-tuned on the same, sufficient
task-relevant data prior to evaluation. Such scaling laws potentially correspond to those of “special-
ist” models, which for some domains –such as the legal domain (Dominguez-Olmedo et al., 2024)–
or purposes –e.g., safety– might be preferable to the scaling laws of generalist models.

6 RELATED WORK

Benchmarks have played a central role in both machine learning (Hardt & Recht, 2022) and natural
language processing (Storks et al., 2019). Classically, benchmarks comprised both a test set and a
reasonably large training set (LeCun et al., 1998; Deng et al., 2009). Models were trained on the
same training set, and then evaluated on the accompanying test set. The success of unsupervised
language modelling (Peters et al., 2018; Kenton & Toutanova, 2019; Radford et al., 2019), however,
has changed this paradigm. Firstly, present-day language models differ in their training data, which
is not standardized but rather treated as a design choice (Raffel et al., 2020; Albalak et al., 2024;
Li et al., 2024). Secondly, language models are a priori not trained with the explicit objective
of maximizing any single benchmark score. Rather, language models are expected to be able to
perform a broad range of tasks (Wang et al., 2018; Brown et al., 2020).

Data contamination. Data contamination or test-set contamination refers to any overlap between
the training and the test data such that test results overestimate a model’s generalization performance.
The scale and often little curation of present-day pretraining corpora exacerbates data contamination
concerns in language model evaluations (Sainz et al., 2023; Magar & Schwartz, 2022; Jiang et al.,
2024). However, detecting and preventing data contamination is currently an open problem (Yang
et al., 2023b; Golchin & Surdeanu, 2023). Roberts et al. (2023) and Li & Flanigan (2024) find that
models often perform better on datasets that were publicly available during model training. While
all models that we consider were released at least a year and a half after MMLU and GSM8K, we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

nonetheless find that, controlling for compute, more recent models perform better. These perfor-
mance gains are unlikely to be driven solely by test set leakage and require additional explanation.
In Section 3.2, we find evidence that that training on the test task may be a more dominant factor in
benchmark performance than data contamination.

Training on the test task. The effectiveness of fine-tuning on the training set accompanying LLM
benchmarks is well-known (Wei et al., 2021; Wang et al., 2022; Chung et al., 2024). Consequently,
many influential instruction-tuning datasets contain or are partly derived from benchmark train
data (Wei et al., 2021; Honovich et al., 2022; Mukherjee et al., 2023). Li & Flanigan (2024) identify
small amounts of benchmark-specific data in the publicly available Alpaca (Taori et al., 2023) and
Vicuna (Chiang et al., 2023) instruction-tuning sets. Zhou et al. (2023b) empirically analyze the ef-
fects of fine-tuning on benchmark-specific data and warn about its impacts on benchmark validity. In
contrast, we find evidence for training on the test task without the need for explicitly identifying spe-
cific data points used at training time, or modifying tasks. In addition, our proposed method of fine-
tuning on task data prior to evaluation allows us to correct for its effect on benchmark performance.

Emergent abilities of language models. Emergent capabilities (Wei et al., 2022; Ganguli et al.,
2022) refer to levels of model performance at large scales that cannot be easily predicted by extrap-
olating from smaller scales. Wei et al. (2022) report emergent capabilities for various benchmarks
including MMLU and GSM8K (Srivastava et al., 2022). However, Srivastava et al. (2022); Schaeffer
et al. (2024b) find that the log-probability of the correct answer often improves smoothly, even when
other metrics seem to show emergence. Schaeffer et al. (2024a) argue that emergent capabilities are
mostly an artifact of non-linear and discontinuous evaluation metrics like accuracy. In contrast, we
find signs of emergence on MMLU even when using continuous metrics like the Brier score. We
additionally show that increasingly fine-tuning on the test task yields more predictive scaling by
shifting the point of emergence to smaller compute scales, recovering cleaner log-linear scaling.

7 DISCUSSION

The 1968 Olympics took place in Mexico City at the significant altitude of 2340 meters, higher than
Australia’s tallest peak. Runners who had trained at altitude in their home countries were better
prepared to compete in Mexico City’s conditions, as it turned out. But the hotly debated results
of the Games did not lead the organizers to prohibit training at natural altitude. Instead, they let
everyone do it; and athletes came to consider altitude training an excellent way to train.

The anecdote holds a lesson for the evaluation of large language models half a century later. Knowl-
edge about the evaluation conditions necessarily influences training practices under competitive
pressure. It may be a fool’s errand to prohibit the practice. Instead, we propose to adjust for it
by giving every model the same task-specific preparation before evaluation. We work from the as-
sumption that training on the test task, in general, cannot be effectively detected, disallowed, or
disincentivized. Detecting what training data a model has seen is a notoriously difficult problem.
Researchers routinely acknowledge the futility of fighting data contamination. Moreover, we antic-
ipate that the ways to effectively train on the test task will only grow in scope and adoption.

Our work demonstrates that comparisons of different models are confounded by the choice of
training data and training practices. Different model families vary in the degree that they were—
implicitly or explicitly—trained on various test tasks. It therefore makes little sense to compare
model performance at face value without accounting for how the training data relate to the test task.
A small amount of task data can have a disproportional large effect on benchmark performance.

We can apply the same principles to emergent behavior. After training on the test task, model
capabilities become predictable at smaller model size and grow continuously with scale. Training
on the test task greatly reduces the unpredictability associated with emergence, notably without any
change in the metric, thus largely disarming the ominous nature of emergence.

Despite the daunting challenges that training on the test task poses for the fair evaluation of language
models, it’s also its own best remedy. Giving each model the same sufficient task-specific fine-
tuning harmonizes model comparisons and linearizes the relationship between model capabilities
and pretraining compute. We hope that our work informs stronger evaluation standards that address
central challenges in the current evaluation ecosystem.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth
Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, et al. Stable lm 2 1.6 b
technical report. arXiv preprint arXiv:2402.17834, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297,
2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Ricardo Dominguez-Olmedo, Vedant Nanda, Rediet Abebe, Stefan Bechtold, Christoph Engel, Jens
Frankenreiter, Krishna Gummadi, Moritz Hardt, and Michael Livermore. Lawma: The power of
specialization for legal tasks. arXiv preprint arXiv:2407.16615, 2024.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley New York,
1973.

EleutherAI. Language model evaluation harness. https://github.com/EleutherAI/
lm-evaluation-harness, 2024. Accessed: 2024-05-20.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/
open_llm_leaderboard, 2024a. Accessed: 2024-07-08.

11

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Perfor-
mances are plateauing, let’s make the leaderboard steep again. https://huggingface.co/
spaces/open-llm-leaderboard/blog, 2024b. Accessed: 2024-07-08.

Ruyi Gan, Ziwei Wu, Renliang Sun, Junyu Lu, Xiaojun Wu, Dixiang Zhang, Kunhao Pan, Ping
Yang, Qi Yang, Jiaxing Zhang, et al. Ziya2: Data-centric learning is all llms need. arXiv preprint
arXiv:2311.03301, 2023.

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
Transparency, pp. 1747–1764, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Team Gemma, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Shahriar Golchin and Mihai Surdeanu. Time travel in LLMs: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493, 2023.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack
Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lam-
bert, Kyle Richardson, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh
Hajishirzi. Olmo: Accelerating the science of language models. Preprint, 2024.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi.
Olmes: A standard for language model evaluations. arXiv preprint arXiv:2406.08446, 2024.

Moritz Hardt and Benjamin Recht. Patterns, predictions, and actions: Foundations of machine
learning. Princeton University Press, 2022.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Corrected 12th printing). Springer, 2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. arXiv preprint arXiv:2212.09689, 2022.

Team InternLM. Internlm: A multilingual language model with progressively enhanced capabilities,
2023.

12

https://huggingface.co/spaces/open-llm-leaderboard/blog
https://huggingface.co/spaces/open-llm-leaderboard/blog

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minhao Jiang, Ken Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi Koyejo.
Does data contamination make a difference? insights from intentionally contaminating pre-
training data for language models. In ICLR 2024 Workshop on Navigating and Addressing Data
Problems for Foundation Models, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in ml-based science,
2022.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785–794, 2017.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 1998.

Changmao Li and Jeffrey Flanigan. Task contamination: Language models may not be few-shot any-
more. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18471–
18480, 2024.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of training
sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv
preprint arXiv:2203.08242, 2022.

MetaAI. Llama 3: Advancing open foundation models, 2024. URL https://ai.meta.com/
blog/meta-llama-3/.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

OpenLlama. Openllama, 2023. URL https://github.com/openlm-research/open_
llama.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl. Linear models: A useful “microscope” for causal analysis. Journal of Causal Inference,
1(1):155–170, 2013.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. NAACL, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

13

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge dataset for the
open-domain machine comprehension of text. In Proceedings of the 2013 conference on empirical
methods in natural language processing, pp. 193–203, 2013.

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. Data
contamination through the lens of time. arXiv preprint arXiv:2310.10628, 2023.

Oscar Sainz, Jon Ander Campos, Iker Garcı́a-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and
Eneko Agirre. NLP evaluation in trouble: On the need to measure LLM data contamination for
each benchmark. arXiv preprint arXiv:2310.18018, 2023.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024a.

Rylan Schaeffer, Hailey Schoelkopf, Brando Miranda, Gabriel Mukobi, Varun Madan, Adam
Ibrahim, Herbie Bradley, Stella Biderman, and Sanmi Koyejo. Why has predicting downstream
capabilities of frontier ai models with scale remained elusive? arXiv preprint arXiv:2406.04391,
2024b.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the
limits of chain-of-thought with multistep soft reasoning. In The Twelfth International Conference
on Learning Representations, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

StabilityAI. Stablelm, 2023. URL https://github.com/Stability-AI/StableLM.

Shane Storks, Qiaozi Gao, and Joyce Y Chai. Recent advances in natural language inference: A
survey of benchmarks, resources, and approaches. arXiv preprint arXiv:1904.01172, 2019.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational Lin-
guistics: ACL 2023, pp. 13003–13051, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

TogetherWeCompute. Redpajama incite, 2023. URL https://www.together.ai/blog/
redpajama-models-v1.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

14

https://github.com/Stability-AI/StableLM
https://www.together.ai/blog/redpajama-models-v1
https://www.together.ai/blog/redpajama-models-v1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
5085–5109, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng
Cheng, Weiwei Lü, Rui Hu, et al. Skywork: A more open bilingual foundation model. arXiv
preprint arXiv:2310.19341, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023a.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples, 2023b.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, 2019.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan,
Esther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney Zheng, Wei Pang, Xinrun Du, Yiming
Liang, Yinghao Ma, Yizhi Li, Ziyang Ma, Bill Lin, Emmanouil Benetos, Huan Yang, Junting
Zhou, Kaijing Ma, Minghao Liu, Morry Niu, Noah Wang, Quehry Que, Ruibo Liu, Sine Liu,
Shawn Guo, Soren Gao, Wangchunshu Zhou, Xinyue Zhang, Yizhi Zhou, Yubo Wang, Yuelin
Bai, Yuhan Zhang, Yuxiang Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao, Jiajun Zhang,
Wanli Ouyang, Wenhao Huang, and Wenhu Chen. Map-neo: Highly capable and transparent
bilingual large language model series. arXiv preprint arXiv: 2405.19327, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023a.

15

https://github.com/kingoflolz/mesh-transformer-jax

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your LLM an evaluation benchmark cheater. arXiv
preprint arXiv:2311.01964, 2023b.

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 MODELS CONSIDERED

Model size in billions of parameters is indicated by N and pretraining data size in trillions of to-
kens is indicated by D. Model weights were retrieved from the corresponding HuggingFace (HF)
repositories.

Name Train date N D HF repository Citation
baichuan-13b 2023-06 13 1.4 baichuan-inc/Baichuan-

13B-Base
Yang et al. (2023a)

baichuan-7b 2023-06 7 1.2 baichuan-inc/Baichuan2-
7B-Base

Yang et al. (2023a)

baichuan2-13b 2023-09 13 2.6 baichuan-inc/Baichuan2-
13B-Base

Yang et al. (2023a)

baichuan2-7b 2023-09 7 2.6 baichuan-inc/Baichuan2-
7B-Base

Yang et al. (2023a)

falcon-11b 2024-05 11 5.0 tiiuae/falcon-11B Almazrouei et al. (2023)
falcon-7b 2023-04 7 1.5 tiiuae/falcon-7b Almazrouei et al. (2023)
gemma-2b 2024-02 2 3.0 google/gemma-2b Gemma et al. (2024)
gemma-7b 2024-02 7 6.0 google/gemma-7b Gemma et al. (2024)
gpt-j-6b 2021-03 6 0.4 EleutherAI/gpt-j-6b Wang & Komatsuzaki

(2021)
internlm-20b 2023-09 20 2.3 internlm/internlm-20b InternLM (2023)
internlm-7b 2023-07 7 1.0 internlm/internlm-7b InternLM (2023)
internlm2-base-
20b

2024-01 20 2.6 internlm/internlm2-base-
20b

Cai et al. (2024)

internlm2-base-7b 2024-01 7 2.6 internlm/internlm2-base-7b Cai et al. (2024)
llama-13b 2023-02 13 1.0 None Touvron et al. (2023a)
llama-2-13b 2023-07 13 2.0 meta-llama/Llama-2-13b-

hf
Touvron et al. (2023b)

llama-2-70b 2023-07 70 2.0 meta-llama/Llama-2-70b-
hf

Touvron et al. (2023b)

llama-2-7b 2023-07 7 2.0 meta-llama/Llama-2-7b-hf Touvron et al. (2023b)
llama-3-8b 2024-04 8 15.0 meta-llama/Meta-Llama-3-

8B
MetaAI (2024)

llama-30b 2023-02 32.5 1.4 None Touvron et al. (2023a)
llama-65b 2023-02 65.2 1.4 None Touvron et al. (2023a)
llama-7b 2023-02 7 1.0 None Touvron et al. (2023a)
map-neo-7b 2024-05 7 4.5 m-a-p/neo 7b Zhang et al. (2024)
olmo-1.7-7b 2024-04 7 2.0 allenai/OLMo-1.7-7B-hf Groeneveld et al. (2024)
olmo-1b 2024-01 1 2.0 allenai/OLMo-1B-hf Groeneveld et al. (2024)
olmo-7b 2024-01 7 2.5 allenai/OLMo-7B-hf Groeneveld et al. (2024)
openllama-13b 2023-06 13 1.0 openlm-

research/open llama 13b
OpenLlama (2023)

openllama-3b 2023-06 3 1.0 openlm-
research/open llama 3b

OpenLlama (2023)

openllama-3b-v2 2023-07 3 1.0 openlm-
research/open llama 3b v2

OpenLlama (2023)

openllama-7b 2023-06 7 1.0 openlm-
research/open llama 7b

OpenLlama (2023)

openllama-7b-v2 2023-07 7 1.0 openlm-
research/open llama 7b v2

OpenLlama (2023)

pythia-1.4b 2023-02 1.4 0.3 EleutherAI/pythia-1.4b Biderman et al. (2023)
pythia-12b 2023-02 12 0.3 EleutherAI/pythia-12b Biderman et al. (2023)
pythia-160m 2023-02 0.16 0.3 EleutherAI/pythia-160m Biderman et al. (2023)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

pythia-1b 2023-02 1 0.3 EleutherAI/pythia-1b Biderman et al. (2023)
pythia-2.8b 2023-02 2.8 0.3 EleutherAI/pythia-2.8b Biderman et al. (2023)
pythia-410m 2023-02 0.41 0.3 EleutherAI/pythia-410m Biderman et al. (2023)
pythia-6.9b 2023-02 6.9 0.3 EleutherAI/pythia-6.9b Biderman et al. (2023)
pythia-70m 2023-02 0.07 0.3 EleutherAI/pythia-70m Biderman et al. (2023)
qwen-1.5-0.5b 2024-01 0.5 2.4 Qwen/Qwen1.5-0.5B Bai et al. (2023)
qwen-1.5-1.8b 2024-01 1.8 2.4 Qwen/Qwen1.5-1.8B Bai et al. (2023)
qwen-1.5-14b 2024-01 14 4.0 Qwen/Qwen1.5-14B Bai et al. (2023)
qwen-1.5-4b 2024-01 4 2.4 Qwen/Qwen1.5-4B Bai et al. (2023)
qwen-1.5-7b 2024-01 7 4.0 Qwen/Qwen1.5-7B Bai et al. (2023)
redpajama-3b 2023-05 3 0.8 togethercomputer/RedPajama-

INCITE-Base-3B-v1
TogetherWeCompute
(2023)

redpajama-7b 2023-05 7 1.0 togethercomputer/RedPajama-
INCITE-7B-Base

TogetherWeCompute
(2023)

skywork-13b 2023-10 13 3.2 Skywork/Skywork-13B-
base

Wei et al. (2023)

stablelm-2-1.6b 2024-01 1.6 2.0 stabilityai/stablelm-2-1 6b Bellagente et al. (2024)
stablelm-2-12b 2024-03 12.1 2.0 stabilityai/stablelm-2-12b Bellagente et al. (2024)
stablelm-3b-4e1t 2023-09 2.8 4.0 stabilityai/stablelm-3b-4e1t StabilityAI (2023)
stablelm-base-
alpha-3b-v2

2023-08 2.8 1.1 stabilityai/stablelm-base-
alpha-3b-v2

StabilityAI (2023)

stablelm-base-
alpha-7b-v2

2023-08 7 1.1 stabilityai/stablelm-base-
alpha-7b-v2

StabilityAI (2023)

yi-6b 2023-11 6 3.1 01-ai/Yi-1.5-6B Young et al. (2024)
ziya2-13b-base 2023-11 13 2.65 IDEA-CCNL/Ziya2-13B-

Base
Gan et al. (2023)

A.2 FINE-TUNING HYPERPARAMETERS

We fine-tune all model parameters. For models with less than 10B parameters, we fine-tune on a single GPU
with BF16 precision. For models between 10B and 30B parameters, we train on a single H100 node using
DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) and full precision. For models with more than 30B parameters,
we train on two H100 nodes using DeepSpeed ZeRO-3 and full precision. Due to the large compute cost of the
experiments, we perform minimal hyperparameter tuning and use standard hyperparameter choices throughout.
We use a learning rate of 2 · 10−5 for models with fewer than 10B parameters and a learning rate of 2 · 10−6

for models with more than 10B parameters. For four of the 7B models –Gemma 7B, Olmo 7B, Olmo 1.7 7B,
and Llama 3 8B– benchmark accuracy degraded after fine-tuning. For these models, we use a peak learning
rate of 2 · 10−6 instead. We use a cosine learning rate schedule with linear warm-up for 50 steps and decay to
10% of the peak learning rate. We use AdamW (Loshchilov & Hutter, 2018) as the optimizer, with β1 = 0.9,
β2 = 0.95, and ϵ = 10−8. We fine-tune with batch size 64. We use a weight decay rate of 0.1 and clip
gradients at 1.0. We verify that the training loss decreases for all models on both of the fine-tuning datasets. To
reduce the computation burden of fine-tuning, we train with context size 600. We verify that less than 5% of
the fine-tuning examples have context length above 600.

We use an internal cluster of A100 and H100 GPUs. Fine-tuning all models required approximately 10,000
H100 GPU hours, whereas evaluating all models in the different benchmarks required approximately 400 H100
GPU hours.

B CAUSAL INTERPRETATION OF OUR FINDINGS

In Section 2.2 we established that models trained after November 2023 significantly outperform those trained
before November 2023 for both MMLU and GSM8K. We then showed that fine-tuning all models in the test
task equalizes the performance of newer and older models. We now present a causal interpretation of our
findings, aiming to quantify the extent to which the effect of model recency N on benchmark accuracy A is
mediated by training on the test task T .

The key obstacle to our analysis is that test task training T is unobservable. Firstly, because practitioners
are typically not transparent about their designs choices, including the pretraining data. Secondly, because
the extent to which different training practices might amount to test task training is unclear. Nonetheless, by
fine-tuning on task-specific data we are able to intervene on the extent to which models train on the test task.

Figure 9 summarizes our causal assumption. The time at which a model was trained determines the design
choices made, such as its pretraining data or pretraining compute C. These design choices in turn affect how

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A

C

N

T

Figure 9: Whether a model was trained after November 2023 (N) influences its pretraining compute
(C) and how much it trains on the test task (T). All three influence the benchmark accuracy (A) of
the model.

much the model trains on the test task. All these factors ultimately influence the pretrained model and thus
its benchmark performance. We also admit that compute might influence test task training. For instance,
pre-training on larger datasets may lead to models training more on the test task.

We interpret the proposed adjustment method as intervening on the test task training variable T . Namely, by
fine-tuning all models on the same amount of task-specific data before evaluation. The external validity of
our subsequent analysis hinges on the assumption that our controlled experimental setting –fine-tuning models
after the pretraining stage– is reasonably similar to the natural settings in which practitioners might train on
the test task during pretraining (e.g., by including instruction data in the pretraining data mixture). We provide
evidence for this in Appendix B.3.

We model fine-tuning as a hard intervention do(T = t) (Pearl, 2009). The specific magnitude of the interven-
tion t need not be quantified. Instead, the key assumption is that by fine-tuning on the same, sufficient amount
of task data, all models will have received the same amount of test task training. Since some base models may
have already trained on the test task prior to fine-tuning, this assumption only holds if test task training saturates
and we train on enough task data to reach saturation. The fact that our task-specific datasets allow older models
to match the performance of newer models provides some evidence that we train on enough task-specific data
to reach saturation.

We draw inspiration from scaling laws (Kaplan et al., 2020) and model relationship between pretraining com-
pute and its causal descendants as pice-wise log-linear:

f(C,α) = α0 +

|α|∑
i=1

αi logC · [C > ci] (2)

For simplicity, we consider three fixed knots at c1 = 0, c2 = 1022, and c3 = 1023 FLOPs. We assume all other
variable relationships to be linear, resulting in the structural assignments:

T := f(C, β) + ϕN + δ, δ ∼ N (0, σ2
δ) (3)

A := f(C,α) + ψN + γT + η + ϵ, ϵ ∼ N (0, σ2
ϵ) (4)

We denote benchmark accuracy after fine-tuning as A|do(T=t). To estimate the direct effect N → A of model
recency on accuracy, we regress the linear model

A|do(T=t) = f(C,α) + ψN + γt+ η + ϵ

= f(C,α) + ψN + η′ + ϵ, η′ = η + γt (5)

where α,ψ, η′ are the fit’s parameters and ϵ is random noise. The coefficient ψ corresponds to the direct effect
N → A of model recency on benchmark accuracy. We additionally regress on the difference in accuracy pre
and post intervention

A−A|do(T=t) = (f(C,α) + ψN + γT + η + ϵ1)− (f(C,α) + ψN + γt+ η + ϵ2)

= γT − γt+ ϵ1 − ϵ2

= f(C, γβ) + γϕN + γδ − γt+ ϵ1 − ϵ2

= f(C, β′) + ϕ′N + b+ ϵ′, for β′ = γβ, ϕ′ = γϕ, b = −γt, ϵ′ = ϵ1 − ϵ2 + γδ (6)

where β′, ϕ′, b are the fit’s parameters and ϵ′ is random noise. The coefficient ϕ′ corresponds to the indirect
effect N → T → A of model recency N on benchmark accuracy A mediated by test task training T (Pearl,
2013). That is, the improvements in accuracy of recent models attributable to training on the test task.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: The indirect effect N → T → A me-
diated by test task training T is positive, sig-
nificant, and large: newer models attain higher
benchmark scores primarily because of training
on the test task.

MMLU GSM8K

ϕ̂
0.071 0.168

(0.018) (0.032)
R2 0.530 0.503

Standard errors in parentheses. Bold indicates
p < 0.05.

Table 3: We find no evidence of a significant di-
rect effect of model recency N on accuracy A,
that is, of the improvements of newer models
being attributable to anything else other than
training on the test task.

MMLU GSM8K

ψ̂
-0.004 0.000
(0.009) (0.032)

R2 0.926 0.763

Standard errors in parentheses. Bold indicates
p < 0.05.

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU

Difference = 0.074
Regression R2 = 0.942

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.158
Regression R2 = 0.898

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU (adjusted)

Difference = 0.014
Regression R2 = 0.991

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K (adjusted)

Difference = 0.005
Regression R2 = 0.957

Model split: trained before September 2023

Models trained Before September 2023 After September 2023

Figure 10: Robustness check with September 2023 as the temporal split.

We fit the models in Equation 5 and Equation 6, and we report the coefficients pertaining to N → A and
N → T → A in Table 3 and Table 2. We find that the indirect effect N → T → A of model recency on
accuracy mediated by test task training T is significant, positive, and large. In contrast, we find no evidence
of a significant direct effect N → A of model recency on accuracy. We therefore find no evidence of the
improvements of newer models being attributable to anything else other than training on the test task.

In conclusion, our causal analysis indicates that the differences in MMLU and GSM8K performance between
newer and older models observed in Section 2.1 are largely attributable to differences in test task training. That
is, the mechanism by which newer models outperform older models is primarily by training more on the test
task.

B.1 ROBUSTNESS CHECK ON THE TEMPORAL SPLIT: OTHER TEMPORAL THRESHOLDS

We repeat the analysis of Section 2 for two additional temporal splits: September 2023 and January 2024, and
present the results in Figure 10 and Figure 11, respectively. Our results are robust to the temporal split chosen.

B.2 ROBUSTNESS CHECK ON THE TEMPORAL SPLIT: EN VS CN LANGUAGE DATA

Instead of diving models using a temporal split, we divide models based on whether they were trained primarily
on English (EN) data or on a mixture of English and Chinese (EN+CN) language data. While there is a
considerable overlap between the temporal split and the EN/EN+CN model split, there are notable differences.
In particular, the Baichuan, Baichuan 2, and InternLM, and Skywork families were trained before November
2023 and trained on EN+CN data. Conversely, Gemma, Llama 3, StableLM 2, Falcon 2, and Olmo were trained
after November 2023 and trained on EN data.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU

Difference = 0.056
Regression R2 = 0.934

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.146
Regression R2 = 0.891

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU (adjusted)

Difference = 0.011
Regression R2 = 0.990

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K (adjusted)

Difference = 0.009
Regression R2 = 0.957

Model split: trained before January 2024

Models trained Before January 2024 After January 2024

Figure 11: Robustness check with January 2024 as the temporal split.

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU

Difference = 0.092
Regression R2 = 0.951

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.125
Regression R2 = 0.876

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

MMLU (adjusted)

Difference = 0.009
Regression R2 = 0.990

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K (adjusted)

Difference = 0.011
Regression R2 = 0.957

Model split: trained primarely on EN data

Models trained Primarily on EN On both EN and CN

Figure 12: Models trained on both English (EN) and Chinese (CN) language data outperform those
trained primarily on English data. After adjusting for test task training, we find no evidence of a
significant difference θ in performance between models trained on EN data and EN+CN data.

We repeat the analysis of Section 2 for the EN and EN+CN model split, see Figure 12. We observe that, con-
trolling for pretraining compute, models trained on EN+CN language data outperform those trained primarily
on EN by 9 accuracy points on MMLU and 12 accuracy points on GSM8K. After the proposed adjustment,
however, the difference in performance between models trained on EN data and EN+CN data is small and not
statistically significant.

The confounding and measured effect sizes for the EN and EN+CN model split resemble those obtained for the
temporal split, which we interpret as a valuable robustness check of our results.

B.3 HOW SIMILAR ARE NEWER MODELS TO OLDER, FINE-TUNED MODELS?

In Section 3.1 we fine-tune older models on the test task and we demonstrate that the differences in bench-
mark performance between the fine-tuned and non fine-tuned models resemble those between newer and older
models. In this section we provide further evidence that newer models resemble older, fine-tuned models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.4

0.6

Ac
cu

ra
cy

MMLU

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.00

0.25

0.50

0.75
GSM8K

Fine-tuned old models New models

Figure 13: New models resemble old models that were fine-tuned. Temporal cut-off: November
2023.

Table 4: Accuracy in discriminating between older and newer models in terms of their pretraining
compute and benchmark accuracy. Older, fine-tuned models are indistinguishable from newer mod-
els.

Discriminator test MMLU GSM8K
Older models vs 64.6% 73.9%newer models

Fine-tuned, older models vs 52.2% 52.5%newer models

Random chance accuracy is 50%.

We take the older models and we fine-tune them with 64,000 training examples from the auxiliary training sets
introduced in Section 2.1. We plot in Figure 13 the benchmark scores of the older, fine-tuned models as well as
that of the newer models. We qualitatively observe that both the older, fine-tuned models and the newer models
exhibit similar scaling. That is, older fine-tuned models resemble newer models in terms of performance per
compute.

We perform a quantitative analysis consisting in discriminating between the older models and the newer models
based on their pretraining compute and benchmark accuracy. That is, we construct a tabular dataset where rows
are models and columns are their corresponding pretraining compute, benchmark accuracy, and whether the
model was trained after November 2023. We then train a classifier aiming to predict model recency from
compute and accuracy. Intuitively, if the performance of older models is very different form that of newer
models, then we would obtain high prediction accuracy (i.e., the two classes are highly separable). Note that
prediction accuracy provides a lower bound on the total variation (TV) distance between the distributions of
compute and accuracy of older and newer models.

We train XGBoost classifiers and report balanced accuracy for leave-one-out cross-validation in Table 4. We
obtain close to random-chance accuracy in discriminating between older, fine-tuned models and newer models.
That is, older fine-tuned models are indistinguishable from newer models in terms of their performance per
pre-training compute.

C RESULTS FOR THE OPENLLM LEADERBOARD V2

HuggingFace released on June 2024 a revision of the OpenLLM Leaderboard (Fourrier et al., 2024a). The HF
leaderboard v2 differs from v1 in the six benchmarks it considers: MMLU Pro (Wang et al., 2024), GPQA (Rein
et al., 2023), BBH (Suzgun et al., 2023), MuSR (Sprague et al., 2023), the Level 5 subset of MATH (Hendrycks
et al., 2021), and IFEval (Zhou et al., 2023a). MMLU and GPQA test for knowledge and are framed as multiple-
choice questions. BBH and MuSR test for reasoning. MATH tests for mathematical reasoning. IFEval tests the
ability of models to follow instructions.

The creators of the OpenLLM Leaderboard cite contamination as a key motivation for releasing the v2 revision.
They note that a key criteria in choosing the benchmarks of the HF leaderboard v2 was lack of contamination
in models as of today. In particular, Fourrier et al. (2024b) claim that current models are not contaminated for
GPQA, MuSR, and MMLU Pro: GPQA due to the gating of the test set, and MuSR and MMLU Pro due to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

their “youth”. Fourrier et al. (2024b) succinctly express their concern as regards to data contamination in the
HF leaderboard v1:

”Some newer models also showed signs of contamination. By this, we mean that models
were possibly trained on benchmark data or on data very similar to benchmark data. As
such, some scores stopped reflecting the general performance of the model and started to
overfit on some evaluation datasets instead of reflecting the more general performance of
the task being tested. This was, in particular, the case for GSM8K and TruthfulQA, which
were included in some instruction fine-tuning sets.”

Note that “models were possibly trained on benchmark data or on data very similar to benchmark data”
encompasses not only test set contamination but more broadly training on the test task.

We evaluate all 53 models on MMLU Pro, GPQA, BBH, MuSR and MATH Lvl 5. We use the LM Evaluation
Harness library in identical fashion to the HF leaderboard v2. We do not evaluated on IFEval since it tests for
instruction following and we evaluate base models. We additionally evaluate the models that we fine-tuned
in Section 2.1 for multiple choice question answering and mathematical reasoning. This gives us models’
adjusted benchmark scores after training on multiple choice question answering and mathematical reasoning.
For MATH Lvl 5, we use the models fine-tuned on mathematical data, whereas for MMLU Pro, GPQA, BBH
and MuSR we use the models fine-tuned on multiple choice question answering. The fine-tuning datasets were
not adapted to the new benchmarks in the HF leaderboard v2, thus giving a valuable insight into how well these
task-relevant datasets generalize beyond MMLU and GSM8K.

We plot in Figure 14 models benchmark scores pre and post post adjustment. We find that newer models signifi-
cantly outperform older ones in all five benchmarks after controlling for pretraining compute. The differences in
performance are smaller in absolute terms than those measured for MMLU (0.068) and GSM8K (0.168). This
is in part because these benchmarks are “harder”, meaning also smaller differences in performance between the
best and worst model. For this reason, we also report the difference between newer and older models relative
to the difference between the best and worst model. This relative difference is 13.7% for MMLU Pro, 14.5%
for GPQA, 12.1% for MuSR, 9.7% for BBH, and 10.0% for MATH Lvl 5, compared to 15.3% for MMLU and
25.0% for GSM8K. Therefore, newer models overperform in MMLU Pro, GPQA and MuSR about as much as
they do for MMLU, and somewhat less for BBH and MATH Lvl 5.

Fine-tuning on task-relevant data reduces the difference in performance between newer and older models for
all five benchmarks. Therefore, we find evidence that training on the test task plays a substantial role in
newer models outperforming older ones in the benchmarks of the HF Leaderboard v2. For GPQA and MuSR,
the difference in performance after adjustment is very small (|θ̂| ≤ 0.002) and not statistically significant.
For BBH, the estimated difference in performance θ̂ reduces by 40% to 0.015 and is no longer statistically
significant. For MMLU Pro and MATH Lvl 5 the difference reduces by 19% and 33% respectively but remains
reasonably large (θ̂ ¿ 0.01).

One possible reason for the fact that the adjustment for MMLU Pro and MATH Lvl 5 is not as effective as for
MMLU and GSM8K is that the fine-tuning examples are simply not as relevant for MMLU Pro and MATH
Lvl 5. For example, the questions and answers in MATH Lvl 5 contain much more LaTeX equation formatting
than our mathematical reasoning fine-tuning dataset. Similarly, our multiple choice fine-tuning dataset contains
mostly questions with 4 answer choices, whereas all MMLU Pro questions have 10 answer choices. Thus,
models are primarily fine-tuned to answer “A”, “B”, “C”, and “D” but not “E”, “F”, “G”. We modify MMLU
Pro to contain questions with 4 answer choices by randomly discarding 6 of the incorrect answer choices. We
evaluate models pre and post adjustment and plot the results in Figure 15. We observe that the difference in
performance between newer and older models after adjustment reduces from 0.024 to 0.016, and is no longer
statistically significant. This observation suggests that fine-tuning one more relevant task-data might further
reduce the gap between newer and older models in MMLU Pro and MATH Lvl 5.

Discussion. Fourrier et al. (2024b) cite newer models overperforming in the HF leaderboard v1 due to being
“possibly trained on benchmark data or on data very similar to benchmark data” as a major reason for the HF
leaderboard v2 revision. We however find evidence that training on the test task is also a confounder for the
newly included benchmarks. Specifically, the difference in performance between newer and older models is
significant for MMLU Pro, GPQA, MuSR, BBH and MATH Lvl 5, and these differences reduce after adjusting
by fine-tuning on the test task.

Fourrier et al. (2024b) explicitly highlight GPQA and MuSR as benchmarks likely unaffected by contamination,
the former due to being gated and latter due to its “youth”. Not only do newer models significantly outperform
older ones in GPQA and MuSR, but these differences in performance fully vanish after fine-tuning on the test
task. That is, newer models likely overperform in GPQA and MuSR precisely due to training on the test task.

These findings highlight that training on the test task is a distinct phenomenon from test set leakage. Strategies
that aim to mitigate data contamination –e.g., dynamic benchmarks– might not be effective in mitigating the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.1

0.2

0.3
M

M
LU

 P
ro

Unadjusted
= 0.036

Adjusted
= 0.024

0.25

0.30

0.35

GP
QA

= 0.014 = 0.002

0.35

0.40

0.45

M
uS

R

= 0.015 = 0.000

0.3

0.4

0.5

BB
H

= 0.025 = 0.015

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.00

0.05

0.10

0.15

M
AT

H
Lv

l 5 = 0.016

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

= 0.013

Models trained Before November 2023 After November 2023

Bold indicates statistical significance with p ¡ 0.05.

Figure 14: Results for the OpenLLM Leaderboard v2. For all benchmarks, models trained after
November 2023 significantly outperform models trained before November 2023 when controlling
for pretraining compute. After fine-tuning models on multiple choice question answering and math-
ematical reasoning, differences in performance between newer and older models reduce for all five
benchmarks. These differences are no longer significant for GPQA, MuSR and BBH, but remain
significant for MMLU Pro and MATH Lvl 5.

confounding effect of training on the test task. In contrast, we extensively demonstrated the effectiveness of
our proposed adjustment procedure, that is, fine-tuning on sufficient task-relevant data before evaluation.

D ADDITIONAL FIGURES ON EMERGENCE

Reformulating ARC and HellaSwag as multiple choice In Figure 16 we show that ARC and Hel-
laSwag do not exhibit emergence when using the standard cloze evaluation. When reformulating the task as
multiple choice in the style of MMLU, however, we observe emergence around 1022 to 1023 FLOPs, simi-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6
M

M
LU

 P
ro

(4
 c

ho
ice

s)

Unadjusted
= 0.049

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

Adjusted
= 0.016

Models trained Before November 2023 After November 2023

Bold indicates statistical significance with p < 0.05.

Figure 15: We modify MMLU Pro to only contain questions with 4 answer choices by for every
question randomly discarding 6 of the incorrect answer choices. After adjustment, the difference in
performance θ̂ between newer and older models is smaller and no longer statistically significant.

0.2

0.4

0.6

AR
C

Ac
cu

ra
cy

Cloze

0.25

0.50

0.75

Ac
cu

ra
cy

Multiple choice

0.75
0.50
0.25

-B
rie

r s
co

re

Multiple choice

1021 1023

Pretraining compute

0.4

0.6

He
lla

Sw
ag

Ac
cu

ra
cy

1021 1023

Pretraining compute

0.25

0.50

0.75

Ac
cu

ra
cy

1021 1023

Pretraining compute

0.75

0.50

0.25

-B
rie

r s
co

re

Figure 16: ARC and HellaSwag scores of models trained (●) before November 2023 and (●) af-
ter. Middle: reformulating the test task as multiple-choice leads to emergence around 1022 to 1023

FLOPs. Right: when using Brier score as the metric, we similarly observe sharp changes in perfor-
mance around 1022 to 1023 FLOPs.

larly to MMLU. Emergence in this range of compute persists even when changing the evaluation metric from
accuracy to Brier score –a continuous metric–, as suggested by Schaeffer et al. (2024a).

Emergence for GSM8K as models train on the test task Similar to MMLU, we find that increasingly
fine-tuning models on mathematical reasoning makes the phenomenon of emergence gradually disappear, see
Figure 17. The point of emergence arises at increasingly lower scales, recovering cleaner log-linear fits.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0
0.2
0.4
0.6
0.8

Ac
cu

ra
cy

Task examples: 0

ce: 2.2e+22

Task examples: 16k

ce: 9.1e+21

Task examples: 64k

ce: 4.2e+21

Task examples: 320k

ce: 1.3e+21

1021 1022 1023 1024
0.0
0.2
0.4
0.6
0.8

Ac
cu

ra
cy R2 = 0.515

1021 1022 1023 1024

Pretraining compute (FLOPs)

R2 = 0.673

1021 1022 1023 1024

R2 = 0.783

1021 1022 1023 1024

R2 = 0.857

GSM8K

Figure 17: Scaling on GSM8K as models increasingly train on the test task. The point of emergence
ce arises at lower scales (top). Training on the test task yields cleaner log-linear scaling fits (bottom).

E REBUTTAL

E.1 INSTRUCTION MODELS

We evaluate the following 36 instruct and chat models: falcon-7b-instruct, gemma-2b-instruct, gemma-
7b-instruct, internlm-chat-20b, internlm-chat-7b, internlm2-7b, internlm2-chat-1.8b, internlm2-chat-20b,
internlm2-chat-7b, llama-2-13b-chat, llama-2-7b-chat, llama-3-8b-instruct, map-neo-7b-instruct, map-neo-
7b-sft, olmo-7b-0724-instruct-hf, olmo-7b-0724-sft-hf, olmo-7b-instruct-hf, olmo-7b-sft-hf, qwen-1.5-0.5b-
chat, qwen-1.5-1.8b-chat, qwen-1.5-14b-chat, qwen-1.5-4b-chat, qwen-1.5-7b-chat, redpajama-7b-chat,
redpajama-chat-3b-v1, redpajama-instruct-3b-v1, redpajama-instruct-7b, stablelm-2-1.6b-chat, stablelm-2-
12b-chat, stablelm-2-zephyr-1.6b, stablelm-3b-4e1t, stablelm-zephyr-3b, vicuna-13b-v1.1, vicuna-13b-v1.3,
vicuna-7b-v1.1, vicuna-7b-v1.3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1022 1023

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.063
Regression R2 = 0.950

1022 1023

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.129
Regression R2 = 0.798

1022 1023

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.001
Regression R2 = 0.983

1022 1023

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.007
Regression R2 = 0.917

Instruct and chat models

Models trained Before November 2023 After November 2023

Figure 18: Main experiments for the “chat” and “instruct” models.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.062
Regression R2 = 0.928

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.110
Regression R2 = 0.856

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.020
Regression R2 = 0.990

1020 1021 1022 1023 1024

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.066
Regression R2 = 0.958

Base pre-trained models

After fine-tuning all models on the test task

Models trained Before November 2022 After November 2022

Figure 19: Using November 2022 as the temporal split.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1022 1023

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.010
Regression R2 = 0.940

1022 1023

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.026
Regression R2 = 0.907

1022 1023

Pretraining compute (FLOPs)

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MMLU

Difference = 0.011
Regression R2 = 0.986

1022 1023

Pretraining compute (FLOPs)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GSM8K

Difference = 0.061
Regression R2 = 0.943

Base pre-trained models released after November 2023

After fine-tuning all models on the test task

Between November 2023 and January 2024 Between February 2024 and May 2024

Figure 20: Base pre-trained models released after November 2023, using February 2024 as the
temporal split.

1020 1021 1022 1023 1024

Pre-training compute

0.3

0.4

0.5

0.6

0.7

M
M

LU
 (P

os
t-a

dj
us

tm
en

t)

Original hyperparameters

Difference = 0.005
Regression R2 = 0.990

1020 1021 1022 1023 1024

Pre-training compute

M
M

LU
 (P

os
t-a

dj
us

tm
en

t)

Best hyperparameters for newer models

Difference = 0.005
Regression R2 = 0.992

Figure 21: We do a sweep with learning rate [6e-5, 2e-5, 6e-6, 2e-6, 6e-7]. On the right, we plot
MMLU post-adjustment when selecting, for the newer models, the sweep run that leads to highest
MMLU performance. The estimated effect size remains both small and not statistically significant.

28

	Introduction
	Our contributions

	Adjusting for training on the test task
	Adjusting for training on the test task by training on the test task
	Quantifying performance differences between newer and older models

	Recreating differences in benchmark performance
	Fine-tuning on the test task
	Reformulating the test task

	Implications for model comparisons
	Comparing model families
	Progress in model capabilities

	Implications for emergence
	Related work
	Discussion
	Additional experimental details
	Models considered
	Fine-tuning hyperparameters

	Causal interpretation of our findings
	Robustness check on the temporal split: other temporal thresholds
	Robustness check on the temporal split: EN vs CN language data
	How similar are newer models to older, fine-tuned models?

	Results for the OpenLLM Leaderboard v2
	Additional figures on emergence
	Rebuttal
	Instruction models

