
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#3658
ECCV

#3658

Automatic classification of seed species by
neural networks and optic RGB images

Anonymous ECCV submission

Paper ID 3658

Abstract. In this paper we propose a neural network approach aiming
at automatically detecting native seeds species from the paramo ecosys-
tem based on optic RGB images. The network architectures which are
explored for this purpose consist in shallow feed-forward networks with
one hidden layer holding up to 15 neurons, and deep convolutional neural
networks (CNNs). Focus is placed on four species which are commonly
found under natural conditions in the paramo ecosystem, namely Es-
peletia congestiflora, Bucquetia glutinosa, Calamagrostis effusa and Puya
santosii. Images of the individual seeds were taken on both a white and a
black-soil background, the latter simulating the natural conditions where
the seeds can be found. We show that relevant knowledge for classifica-
tion of the seeds’ species can be extracted only from their optical in-
formation. Under a double cross-validation scheme, a 14-neuron shallow
network achieves an 88% test accuracy, while a CNN achieves 94%. On
the other hand, after augmenting the available image-data, a CNN is
built with a 100% accuracy on validation and a small control-test set.
Overall, this neural network approach suggests a promising methodology
for seed species prediction based on optical RGB images.

Keywords: Neural networks, Robust learning, Image augmentation,
Deep learning application, Seed phenotyping

1 Introduction

An application of neural networks is explored in this study for predicting the
species of native seeds from the paramo of La Rusia, at The Andes mountains in
Boyaca, Colombia. Paramos are neotropical mountain environments well known
for their high biodiversity, holding approximately 5000 plant species [?]. As study
cases, we selected four characteristic species: the tussock grass Calamagrostis
effusa, a common species forming most paramo grasslands in Colombia, Espeletia
congestiflora, a giant stemrosette typical of the paramo La Rusia, Puya santosii,
a giant basal rosette that is found mostly in paramo grasslands and Bucquetia
glutinosa, representantive of tall shrublands in the area.

Here the problem of seed species prediction is conceived as a multi-class
classification problem, with the purpose of developing models for fast and non-
destructive real-time detection and species’ prediction of native seeds.

Revising the existing literature, different studies have explored the use of
multi-spectral and hyper-spectral images (containing information on ultraviolet
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and near infrared wavelengths) for seed variety prediction [7,8,9], or optical RGB
images for seedling species prediction [1]. Regarding the studies on variety, it has
been shown that a combined spectral, morphological, and texture approach, ex-
tracting features from visible and near-infrared hyperspectral (VIS-NIR) images
can achieve an accuracy of up to 98.2% by a Support Vector Machine (SVM)
model [7], or based only on VIS-NIR hyperspectral images and texture features
(contrast, homogeneity, energy and correlation) [8], six varieties of maize seeds
were predicted by means of principal components and an SVM model (PCA-
SVM) with a 98.89% accuracy. One last study based only on hyperspectral im-
ages of three varieties of grape seeds achieves a prediction accuracy of 88.7%
also following a PCA-SVM technique.

Here it is conjectured here that the availability of hyper-spectral images
allows using traditional techniques such as PCA-SVM, but studies based only
on optic (RGB) images could require more general statistical techniques for
arriving at possible satisfactory results. In this sense, somehow closer to this
study, a study on the prediction of seedling species was developed on 5,000 RGB
images with 960 unique plants belonging to 12 species with Convolutional Neural
Networks (CNNs) algorithms, achieving a test accuracy of 99.48% [1].

In particular, this study on the prediction of seed species is a pioneer study
as there is no other study in literature up to the authors knowledge dealing with
such a problem, even more if we focus on paramo samples of seeds recollected
from The Andes mountains in Boyaca, Colombia. Hence, a direct comparison
with previous results cannot be developed, but the statistical experiments per-
formed here will compare the performance of simple (linear) to more complex
(non-linear) classifiers. Namely, we explore one hidden-layer feed forward neural
networks, holding from 1 to 15 neurons, and CNNs [2].

The methodology followed in this study is built on images of seeds that have
been manually selected from soil samples recollected from the paramo of La
Rusia, with both clean-white and black-soil backgrounds, the latter resembling
the natural conditions where seeds were found. In this way, seeds should be
visible on the surface of the earth for the recognition procedure to be useful in
practice. Therefore, it should be noted that other technologies perhaps based
on hyper-spectral imaging could be explored in a future line of research for
extending this methodology for image species prediction on a thicker layer of
the surface of the earth.

This study is organized as follows. Section 2 presents the procedures for the
recollection of the seed samples, and how images were captured. Then in Section
3 we explain the data pre-processing and neural network approach to image anal-
ysis, building single hidden-layer, feed-forward neural nets and CNNs. Finally,
in Section 4, we present our results, and in Section 5, some final comments are
given for future research.
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2 Biological experiments

The seeds used in this study were obtained from fructiferous plant samples col-
lected at the paramo of La Rusia (5.9415◦N, 73.0517◦W). These samples were
taken to the Environmental Engineering laboratory at Los Andes University, and
when a sample contained at least 50 seeds in good state, then the species was
considered adequate for further analysis. Seeds were manually selected and set
aside, being classified according to their species, and photographed on a white
background as well as on a black-soil background by an optic camera, model
NIKON D-3000, mounted on a stereoscope Zeiss Stemi 508, capturing images of
the seeds with a 35x magnification.

Taking the four categories for the different seeds species considered in this
study, neural network models were trained and validated under different config-
urations for their hidden architecture. In the following section we explore these
configurations and explain the methodology for identifying the best network
model for native paramo seed species prediction.

3 Methodology

In this section we review the main concepts and procedures for building the
logistic regression implementation of a neural net (one hidden unit), and the more
general models consisting in a single layer with multiple hidden units/neurons,
and a deep CNN architecture. The code was all developed on the open-source
programming language Python 3.0.

For the statistical experiments we have 30 images for each of the 4 species
of seeds, where each seed is photographed from different angles both on a clean-
white and a soil-black background (as illustrated in Figure 1). Hence, in total we
have 124, 146, 150 and 153 images for the four species Espeletia congestiflora,
Bucquetia glutinosa, Calamagrostis effusa and Puya santosii, respectively, being
the four classes well balanced and represented.

The statistical experiments for the development of the single hidden-layer and
the CNNs follows a double cross validation scheme, i.e., repeating multiple times
the training, validation and test of the same network architectures with different
partitions of the data. This procedure allows addressing the difficulty of having
a small amount of data for training complex models while controlling the risk of
over-fitting. Besides, reducing the bias of our estimation of the loss in prediction,
with respect to running only one time the validation and test procedure. Different
partitions of training, validation and test sets are also explored.

In this way, the development of the network models follow three scenarios for
the double cross validation scheme. The first scenario randomly takes 70% of the
images for training and 15-15% for validation-test. The second one takes 80% for
training and 10-10% for validation-test, and a third one tries a more demanding
training design consisting in taking 50% for training, 15% for validation and
35% for test. All random partitions are repeated 10 times, and are developed in
a stratified fashion maintaining the balance of the classes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: An example of species (a,e) Espeletia congestiflora, (b,f) Bucquetia gluti-
nosa, (c,g) Calamagrostis effusa and (d,h) Puya santosii on clean-white and
soil-black backgrounds.

Lastly, the performance of CNNs is further explored, under one single run
for train, validation and test, after augmenting the image data by rotation of
the seed images.

3.1 Single hidden-layer neural networks

For the feed-forward and error retro-propagation architecture of the single-
hidden layer network, the activation function of each neuron in the hidden layer
is defined as a sigmoid function σ, such that the feed forward linear combination
is computed by

A = σ(W ·X + b) =
1

1 + exp−(W ·X+b)
(1)

where W is a nn×nx matrix of weights associated to the nn neurons and the nx
features or rows of the matrix X. Hence, X has dimensions nx ×m, containing
the m images, each one represented as a (flattended) column-vector with all the
pixel values for its RGB decomposition, and b is the bias term.

The loss function to be minimized corresponds here with the categorical
cross-entropy, defined for binary encoded labels yi and elements ai of matrix A,
as in

J(w, b) = − 1

m

m∑
i=1

yi log(ai) + (1 − yi) log(1 − ai). (2)

In our experiments, we try from 1 to 15 neurons, thus being the network
with only one neuron the equivalent to the neural network implementation of
logistic regression. Parameters are randomly initialized once, under a Normal
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distribution with zero-mean and standard deviation of 0.05, and early-stopping
is used under a double cross validation scheme in order to identify the best epoch
according to the error in validation, arriving at the minimum error by means
of a gradient descent search under a fixed error rate of 0.01. Finally, the best
model is selected according to the number of neurons and epochs that minimize
the loss and exhibits the maximum accuracy on validation, according to

Accuracy =
TP + TN

TP + FN + TN + FP
, (3)

where TP is the number of true positives, TN the true negatives, FN the false
negatives and FP the false positives.

3.2 Convolutional Neural Nets
CNNs allow examining the information contained in the images according to
the possible correlations among neighboring pixels, through convolutional filters
which extract attributes on low-level characteristics such as borders or contours
[2]. Such a deep-convolutional architecture allows automatically tuning the fil-
ters’ parameters, leading to a possibly greater performance for classification.

Here the images are not transformed to column-vectors, as they are passed to
the network under their three dimensional RGB representation. The architecture
for the CNN has a first hidden layer containing 32 units, each one equipped
with a 3 × 3 filter for each of the RGB components. Then, the filters’ output
activate neurons with the hyperbolic tangent function and the dimensionality of
the neuron’s output is reduced by means of a max-pooling layer, here taking the
maximum of each 2 × 2 subset of feature values with a stride of 2.

The configuration for the first layer is replicated for the second layer, and a
third layer is added but this time containing 64 units and activating neurons by
the scaled exponential linear unit (SELU) function, which helps in controlling
the vanishing gradient problem, setting its activation parameters to α ≈ 1.6733
and λ ≈ 1.0507 [4].

Finally the output of the third layer is flattened, obtaining a vector that is
then fed into a fully connected layer with 64 neurons, which are activated by a
ReLU function. Here we use also try a dropping out of 20% of the 64 neurons in
each epoch during training, aiming at improving the generalization of the net.
The resulting output is finally passed to the final softmax layer consisting in
four neurons with a sigmoid activation function. We continue to use the categor-
ical cross entropy loss function, and the Adam [3] algorithm is implemented for
searching the optimal set of parameter estimators, with a learning rate of 0.001
and the β1 and β2 coefficients being set at 0.9 and 0.999 respectively (see again
[3]).

As mentioned above, CNNs are implemented under a double cross validation
scheme. Besides this, we compare the performance of such a convolutional ar-
chitecture on augmented data, as it has been shown to achieve good results for
image classification problems [6,5].

Firstly a pair of seeds are taken out for each class for testing the models,
and on the rest of images data augmentation is performed by rotating them on
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Table 1: Results for the single hidden layer and the convolutional network archi-
tecture under the three scenarios, with the accuracy (Acc) scores for Validation
(V) and Test (P)

Scenario 1 Scenario 2 Scenario 3
Neurons Acc(V) Acc(P) Acc(V) Acc(P) Acc(V) Acc(P)

1 0.44 0.28 0.52 0.45 0.39 0.41
2 0.55 0.66 0.54 0.68 0.60 0.53
3 0.64 0.77 0.68 0.68 0.63 0.58
4 0.77 0.79 0.70 0.72 0.65 0.63
5 0.63 0.64 0.82 0.86 0.56 0.62
6 0.61 0.68 0.84 0.78 0.68 0.71
7 0.59 0.70 0.82 0.86 0.78 0.75
8 0.67 0.79 0.82 0.94 0.68 0.77
9 0.73 0.81 0.82 0.84 0.75 0.80
10 0.81 0.88 0.78 0.90 0.82 0.78
11 0.81 0.88 0.82 0.90 0.78 0.82
12 0.80 0.90 0.84 0.88 0.69 0.75
13 0.67 0.81 0.84 0.88 0.80 0.80
14 0.82 0.81 0.88 0.88 0.84 0.79
15 0.82 0.88 0.82 0.92 0.82 0.77

CNN 0.93 0.98 0.90 0.92 0.90 0.94

different degrees, in a range of 30 to 160 degrees, also shifting the width and
height, and zooming in and out by a rate of 0.1. After the augmentation, we
obtain 912, 920, 976 and 1016 images for the four species Espeletia congestiflora,
Bucquetia glutinosa, Calamagrostis effusa and Puya santosii, respectively.

4 Results

After implementing the simulations for the different neural network architectures
on the three scenarios described above, the best models can be identified for seed
species prediction.

Regarding the single layer networks, the search for the optimal number of
neurons in the hidden layer tries from 1 to 15, measuring the loss and the accu-
racy for the training, validation and test sets. The best configuration is chosen
according to the minimum loss and maximum accuracy in validation, running
the optimization algorithm up to 200 epochs. On the other hand, the CNNs are
also trained under each scenario, without any drop-out, obtaining the results
presented in Table 1.

The best result for the single hidden-layer network is obtained under the
second scenario with 14 neurons and 197 epochs, achieving 88% accuracy for both
validation and test sets (see Figure 2a for its learning behavior), while the best
result for the CNN achieves 93% accuracy in validation and 98% in test under
the first scenario. This same scenario for the CNN is repeated with 20% drop-
out, obtaining a 94% on both validation and test sets with 6 epochs. Its learning
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performance can be seen in Figure 2b. The resulting confusion matrices can also
be seen in Table 2, where species are codified as E1: Espeletia congestiflora, E2:
Bucquetia glutinosa, E3: Calamagrostis effusa, and E4: Puya santosii.

(a) (b) (c)

Fig. 2: Loss behavior on training (“o”) and validation (“*”) for the best (a) single-
layer, (b) CNN with 20% drop-out and (c) the CNN with data augmentation.

Table 2: Confusion matrix for the best models: single hidden-layer with 14 neu-
rons (14−NN), the CNN with 20% drop-out (CNN0) and the CNN with data
augmentation (CNNa) in Validation and Test

14 −NN CNN0 CNNa

Pred/ Validation Test Validation Test Validation Test
Real E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 13 1 0 1 14 0 0 1 23 1 0 1 16 0 0 0 13 0 0 0 8 0 1 0
E2 1 7 1 1 0 9 0 2 1 21 0 0 2 17 0 1 0 9 0 0 0 4 0 0
E3 0 1 14 0 0 1 9 1 0 1 10 0 0 0 23 0 0 0 14 0 0 0 6 2
E4 0 0 0 11 0 1 0 13 0 0 0 18 1 0 0 17 0 0 0 28 0 0 0 10

The results for the different scenarios show a stable performance among the
different partitions for train, validation and test sets. This is evidenced by the
fact that on the three double cross-validation settings, the single hidden-layer
network always achieves a maximal accuracy with 14 neurons.

Together with these experiments on double cross validation, a CNN was built
after augmenting the image data base. In this way, controlling the risk of over-
fitting by training and validating on a bigger sample and leaving out a pair of
seeds for each species for test. The results for the first 10 learning epochs can be
seen in Table 3.

The respective learning-loss behavior of this CNN can be seen in Figure 2c,
minimizing the validation-loss with 16 epochs, and its confusion matrix appears
under (CNNa) in Table 2, where the performance in validation is computed for
a batch of size 64, and for test there are 31 available images.
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Table 3: Results for the CNN architecture after data augmentation, with the
accuracy scores for Training (T), Validation (V) and Test (P) for up to 10 epochs

Epoch Acc(T) Acc(V) Acc(P)

1 0.78 0.89 0.75
2 0.88 0.86 0.82
3 0.96 0.96 0.95
4 0.89 0.91 0.89
5 0.95 1.00 0.92
6 1.00 0.96 0.92
7 0.94 1.00 0.97
8 0.97 0.97 0.95
9 0.98 1.00 1.00
10 0.97 0.95 0.94

5 Conclusion

The neural network approach presented in this study for seed species prediction
achieved a high performance. On the one hand, under a double cross-validation
scheme, a 14-neuron single hidden-layer feed-forward neural network obtained an
88% test accuracy, while a CNN achieved 94%. On the other hand, after explor-
ing data-augmentation techniques by rotation, a CNN obtained 100% accuracy
on validation and a small control-test set. Therefore, suggesting a promising
methodology for seed species prediction based on optical RGB images.

The statistical experiments following a double cross validation scheme al-
lowed controlling the risk of over-fitting with a small data set, also reducing the
bias estimation for the loss in prediction. In this way, the reported performance
also demonstrated a stable behavior through the different validation scenarios,
where the single hidden-layer network achieving a maximal accuracy always con-
sisted in holding 14 neurons. Besides, the greater performance of the CNNs could
be confirmed after the data-augmented techniques, achieving a perfect ability to
discriminate between the four species considered in this study.

For future research, more samples of seeds can be gathered for testing the
models presented in this initial study, and they could also be tested under nat-
ural conditions for seed species recognition. Having in mind that the practical
purpose for these models consists in detecting native seeds directly at the paramo
environment, the proposed methodology should allow recognizing visible seeds
lying on any surface.
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