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Abstract

Offline reinforcement learning, where the agent aims to learn the optimal policy1

based on the data collected by a behavior policy, has attracted increasing attention2

in recent years. While offline RL with linear function approximation has been3

extensively studied with optimal results achieved under certain assumptions, the the-4

oretical understanding of offline RL with non-linear function approximation is still5

limited. Specifically, most existing works on offline RL with non-linear function6

approximation either have a poor dependency on the function class complexity or7

require an inefficient planning phase. In this paper, we propose an oracle-efficient8

algorithm PNLSVI for offline RL with non-linear function approximation. Our9

algorithmic design comprises three innovative components: (1) a variance-based10

weighted regression scheme that can be applied to a wide range of function classes,11

(2) a subroutine for variance estimation, and (3) a planning phase that utilizes a12

pessimistic value iteration approach. Our algorithm enjoys a regret bound that has13

a tight dependency on the function class complexity and achieves minimax optimal14

problem-dependent regret when specialized to linear function approximation. Our15

theoretical analysis introduces a new coverage assumption for nonlinear Q func-16

tion, bridging the minimum-eigenvalue assumption and the uncertainty measure17

widely used in online nonlinear RL. To the best of our knowledge, this is the first18

statistically optimal algorithm for nonlinear offline RL.19

1 Introduction20

Offline reinforcement learning (RL), also known as batch RL, is a learning paradigm where an21

agent learns to make decisions based on a set of pre-collected data, instead of interacting with the22

environment in real-time like online RL. The goal of offline RL is to learn a policy that performs well23

in a given task, based on historical data that was collected from an unknown environment. Recent24

years have witnessed significant progress in developing offline RL algorithms that can leverage large25

amounts of data to learn effective policies. These algorithms often incorporate powerful function26

approximation techniques, such as deep neural networks, to generalize across large state-action27

spaces. They have achieved excellent performances in a wide range of domains, including the games28

of Go and chess (Silver et al., 2017; Schrittwieser et al., 2020), robotics (Gu et al., 2017; Levine et al.,29

2018), and control systems (Degrave et al., 2022).30

Several studies have studied the theoretical guarantees of tabular offline RL and proved near-optimal31

sample complexities in this setting (Xie et al., 2021b; Shi et al., 2022; Li et al., 2022). However, these32

algorithms cannot handle numerous real-world applications with large state spaces. Consequently,33

a significant body of research has shifted its focus to offline RL with function approximation. For34

example, several works have analyzed the sample efficiency of offline RL with linear function35

approximation under different MDP models, including linear MDPs and their variants (Jin et al.,36

2021b; Zanette et al., 2021; Min et al., 2021; Yin et al., 2022a). To handle nonlinear function class, a37

recent line of research considered offline RL with general function approximation (Chen and Jiang,38
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2019; Xie et al., 2021a; Zhan et al., 2022). While these algorithms have sample efficiency guarantees,39

they often require an inefficient planning phase or have a poor dependency on the function class40

complexity. For example, Xie et al. (2021a) proposed an information-theoretic algorithm that requires41

solving an optimization problem over all potential policy and corresponding version space, which42

includes all functions with lower Bellman error. To overcome this limitation, Xie et al. (2021a)43

proposed a practical implementation, as a cost, the algorithm have a poor dependency on the function44

class complexity. Recently, (Yin et al., 2022b) studied the general differentiable function class45

and propose a computation efficient algorithm (PFQL). However, their result also have an addition46

dependence on the dimension d of the parameter.47

Therefore, a natural question arises:48

Can we design a computationally efficient algorithm that achieves the minimax optimality with respect49

to the complexity of nonlinear function class?50

We give an affirmative answer to the above question in this work. Our contributions are listed as51

follows:52

• We propose a pessimism-based algorithm PNLSVI designed for nonlinear function approximation,53

which strictly generalizes the existing pessimism-based algorithms for both linear and differentiable54

function approximation (Xiong et al., 2022; Yin et al., 2022b). Our algorithm is oracle-efficient,55

i.e., it is computationally efficient when there exists an efficient regression oracle and bonus oracle56

for the function class (e.g., generalized linear function class).57

• We prove a data-dependent regret bound with the widely used D2-divergence in online nonlinear58

RL regime, which is optimal with respect to the function class complexity. Our analysis closes the59

gap to optimality for differentiable function approximation, which was previously an open problem60

(Yin et al., 2022b).61

• We introduce a novel uniform coverage assumption for general function approximation that is62

generalized over the assumption in Yin et al. (2022b). Our assumption bridges between the63

minimum-eigenvalue assumption used in linear models and the generalized dimension for nonlinear64

function class, offering new insights into the function approximation problem in RL.65

Notation: In this work, we use lowercase letters to denote scalars and use lower and uppercase66

boldface letters to denote vectors and matrices respectively. For a vector x ∈ Rd and matrix67

Σ ∈ Rd×d, we denote by ∥x∥2 the Euclidean norm and ∥x∥Σ =
√
x⊤Σx. For two sequences {an}68

and {bn}, we write an = O(bn) if there exists an absolute constant C such that an ≤ Cbn, and we69

write an = Ω(bn) if there exists an absolute constant C such that an ≥ Cbn. We use Õ(·) and Ω̃(·)70

to further hide the logarithmic factors. For any a ≤ b ∈ R, x ∈ R, let [x][a,b] denote the truncate71

function a · 1(x ≤ a) + x · 1(a ≤ x ≤ b) + b · 1(b ≤ x), where 1(·) is the indicator function. For a72

positive integer n, we use [n] = {1, 2, .., n} to denote the set of integers from 1 to n.73

2 Related Work74

RL with function approximation. As one of the simplest function approximation classes, linear75

representation in RL has been extensively studied in recent years (Jiang et al., 2017; Dann et al.,76

2018; Yang and Wang, 2019; Jin et al., 2020; Wang et al., 2020c; Du et al., 2019; Sun et al., 2019;77

Zanette et al., 2020a,b; Weisz et al., 2021; Yang and Wang, 2020; Modi et al., 2020; Ayoub et al.,78

2020; Zhou et al., 2021; He et al., 2021). Several assumptions on the linear structure of the underlying79

MDPs have been made in these works, ranging from the linear MDP assumption (Yang and Wang,80

2019; Jin et al., 2020; Hu et al., 2022; He et al., 2022; Agarwal et al., 2022) to the low Bellman-rank81

assumption (Jiang et al., 2017) and the low inherent Bellman error assumption (Zanette et al., 2020b).82

Extending the previous theoretical guarantees to more general problem classes, RL with nonlinear83

function classes has garnered increased attention in recent years (Wang et al., 2020b; Jin et al.,84

2021a; Foster et al., 2021; Du et al., 2021; Agarwal and Zhang, 2022; Agarwal et al., 2022). Various85

complexity measures of function classes have been studied including Bellman rank (Jiang et al.,86

2017), Bellman-Eluder dimension (Jin et al., 2021a), Decision-Estimation Coefficient (Foster et al.,87

2021) and generalized Eluder dimension (Agarwal et al., 2022). Among these works, the setting in88

our paper is most related to Agarwal et al. (2022) where D2-divergence (Gentile et al., 2022) was89

introduced in RL to indicate the uncertainty of a sample with respect to a particular sample batch.90
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Offline tabular RL. There is a line of works integrating the principle of pessimism to develop91

statistically efficient algorithms for offline tabular RL setting (Rashidinejad et al., 2021; Yin and92

Wang, 2021; Xie et al., 2021b; Shi et al., 2022; Li et al., 2022). More specifically, Xie et al. (2021b)93

utilized the variance of transition noise and proposed a nearly optimal algorithm based on pessimism94

and Bernstein-type bonus. Subsequently, Li et al. (2022) proposed a model-based approach that95

achieves minimax-optimal sample complexity without burn-in cost for tabular MDPs. Shi et al. (2022)96

also contributed by proposing the first nearly minimax-optimal model-free offline RL algorithm.97

Offline RL with linear function approximation. Jin et al. (2021b) presented the initial theoretical98

results on offline linear MDPs. They introduced a pessimism-principled algorithmic framework for99

offline RL and proposed an algorithm based on LSVI (Jin et al., 2020). Min et al. (2021) subsequently100

considered offline policy evaluation (OPE) in linear MDPs, assuming independence between data101

samples across time steps to obtain tighter confidence sets and proposed an algorithm with optimal102

d dependence. Yin et al. (2022a) took one step further and considered the policy optimization in103

linear MDPs, which implicitly requires the same independence assumption. Zanette et al. (2021)104

proposed an actor-critic-based algorithm that establishes pessimism principle by directly perturbing105

the parameter vectors in a linear function approximation framework. Recently, Xiong et al. (2022)106

proposed a novel uncertainty decomposition technique via a reference function, which leads to a107

minimax-optimal sample complexity bound for offline linear MDPs without additional assumptions.108

Offline RL with general function approximation. Chen and Jiang (2019) critically examined109

the assumptions underlying value-function approximation methods and established an information-110

theoretic lower bound. Xie et al. (2021a) introduced the concept of Bellman-consistent pessimism,111

which enables sample-efficient guarantees by relying solely on the Bellman-completeness assumption.112

Uehara and Sun (2021) focused on model-based offline RL with function approximation under partial113

coverage, demonstrating that realizability in the function class and partial coverage are sufficient for114

policy learning. Zhan et al. (2022) proposed an algorithm that achieves polynomial sample complexity115

under the realizability and single-policy concentrability assumptions. Nguyen-Tang and Arora (2023)116

proposed a method of random perturbations and pessimism for neural function approximation. For117

differentiable function classes, Yin et al. (2022b) made advancements by improving the sample118

complexity with respect to the stage H . However, their result had an additional dependence on the119

dimension d of the parameter space, whereas in linear function approximation, the dependence is120

typically on
√
d.121

3 Preliminaries122

In our work, we consider the inhomogeneous episodic Markov Decision Processes (MDP), which can123

be denoted by a tuple ofM
(
S,A, H, {rh}Hh=1, {Ph}Hh=1

)
. In specific, S is the state space, A is the124

finite action space, H is the length of each episode. For each stage h ∈ [H], rh : S×A → [0, 1] is the125

reward function1 and Ph(s
′|s, a) is the transition probability function, which denotes the probability126

for state s to transfer to next state s′ with current action a. A policy π := {πh}Hh=1 is a collection127

of mappings πh from a state s ∈ S to the simplex of action space A. For simplicity, we denote the128

state-action pair as z := (s, a). For any policy π and stage h ∈ [H], we define the value function129

V π
h (s) and the action-value function Qπ

h(s, a) as the expected cumulative rewards starting at stage h,130

which can be denoted as follows:131

Qπ
h(s, a) = rh(s, a) + E

[ H∑
h′=h+1

rh′
(
sh′ , πh′(sh′)

)∣∣sh = s, ah = a

]
, V π

h (s) = Qπ
h

(
s, πh(s)

)
,

where sh′+1 ∼ Ph(·|sh′ , ah′) denotes the observed state at stage h′ + 1. By this definition, the value132

function V π
h (s) and action-value function Qπ

h(s, a) are bounded in [0, H]. In addition, we define the133

optimal value function V ∗
h and the optimal action-value function Q∗

h as V ∗
h (s) = maxπ V

π
h (s) and134

Q∗
h(s, a) = maxπ Q

π
h(s, a). We denote the corresponding optimal policy by π∗. For any function135

V : S → R, we denote [PhV ](s, a) = Es′∼Ph(·|s,a)V (s′) and [VarhV ](s, a) = [PhV
2](s, a) −136 (

[PhV ](s, a)
)2

for simplicity. For any function f : S → R, we define the Bellman operator Th137

as Thf(sh, ah) = Esh+1∼Ph(·|sh,ah) [rh(sh, ah) + f(sh+1)], where we use the shorthand f(s) =138

maxa∈A f(s, a) for simplicity. Based on this definition, for every stage h ∈ [H] and policy π, we139

1While we study the deterministic reward functions for simplicity, it is not difficult to generalize our results
to stochastic reward functions.
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have the following Bellman equation for value functions Qπ
h(s, a) and V π

h (s), as well as the Bellman140

optimality equation for optimal value functions:141

Qπ
h(sh, ah) = ThV π

h+1(sh, ah), Q
∗
h(sh, ah) = ThV ∗

h+1(sh, ah),

where V π
H+1(s) = V ∗

H+1(s) = 0. We also define the Bellman operator for second moment as142

T2,hf(sh, ah) = Esh+1∼Ph(·|sh,ah)

[(
rh(sh, ah) + f(sh+1)

)2]
. For simplicity, we omit the sub-143

scripts h in the Bellman operator without causing confusion.144

Offline Reinforcement Learning: In offline RL, the agent only have access to a batch-dataset145

D = {skh, akh, rkh : h ∈ [H], k ∈ [K]}, which is collected by a behavior policy µ, and the agent146

cannot interact with the environment. Given the batch dataset, the goal of offline RL is finding a147

near-optimal policy π that minimize the sub-optimality V ∗
1 (s)− V π

1 (s). In addition, for each stage h148

and behavior policy µ, we denote the induced distribution of the state-action pair as dµh.149

General Function Approximation: In this work, we focus on a special class of episodic MDPs,150

where the value function satisfies the following completeness assumption.151

Assumption 3.1 (ϵ-completeness under general function approximation, Agarwal et al. 2022). Given152

a general function class {Fh}h∈[H], where each function class Fh is composed of functions fh :153

S ×A → [0, L]. We assume for each stage h ∈ [H], and any function V : S → [0, H], there exists154

functions fh, f2,h ∈ Fh such that155

max
(s,a)∈S×A

|fh(s, a)− ThV (s, a)| ≤ ϵ, and max
(s,a)∈S×A

|f2,h(s, a)− T2,hV (s, a)| ≤ ϵ.

In addition, for each stage h ∈ [H], we assume there exist a function f∗
h ∈ Fh closed to the optimal156

value function such that ∥f∗
h − Q∗

h∥∞ ≤ ϵ. For simplicity, we assume L = O(H) throughout the157

paper and denote N = maxh∈[H] |Fh|.158

To deal with general function class F , Agarwal et al. (2022) introduce the following measure to159

capture the function class complexity for online learning.160

Definition 3.2 (Generalized Eluder dimension, Agarwal et al. 2022). Given λ > 0, a sequence of161

state-action pairs Z = {zi}i∈[K] and a sequence of non-negative weights σ = {σi}i∈[K]. Let F be a162

function class consisting of functions f : S ×A → [0, L]. The generalized Eluder dimension of F is163

given by dimα,K(F) := supZ,σ:|Z|=K,σ≥α dim(F , Z,σ), where164

dim(F , Z,σ) :=
K∑
i=1

min

(
1,

1

σ2
i

D2
F (zi; z[i−1], σ[i−1])

)
,

D2
F (z; z[k−1], σ[k−1]) := sup

f1,f2∈F

(f1(z)− f2(z))
2∑

s∈[k−1]
1
σ2
s
(f1(zs)− f2(zs))2 + λ

.

Here, the inequality σ ≥ α represents that σi ≥ α holds for all i ∈ [K] and we use the notation165

z[i−1], σ[i−1] to represent the sequences {zs}i−1
s=1, {σs}i−1

s=1.166

However, in offline RL, the proposed Generalized Eluder dimension fails to capture the relationship167

between function class F and the pre-collected dataset D. To generalize this definition to offline168

environment, for a batch dataset D = {(skh, akh, rkh)}
H,K
h,k=1 and a function class Fh consisting of169

functions f : S ×A → R. We denote Dh = {(skh, akh, rkh)}k∈[K] as the subset of the dataset D that170

corresponds to the observations collected up to stage h in the MDP. Then for any weight function171

σh(·, ·) : S ×A → R, we introduce the following D2-divergence:172

D2
Fh

(z;Dh;σh) = sup
f1,f2∈Fh

(f1(z)− f2(z))
2∑

k∈[K]
1

(σh(zk
h))

2 (f1(z
k
h)− f2(zkh))

2 + λ
.

Data Coverage Assumption: In offline RL, there exist a discrepancy between the state-action173

distribution generated by the behavior policy and the distribution from the learned policy. Under this174

situation, the distribution shift problem can cause the learned policy to perform poorly or even fail in175

offline RL. Therefore, we propose the following data coverage assumption to control the distribution176

shift.177
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Algorithm 1 Pessimistic Nonlinear Least-Squares Value Iteration (PNLSVI)
Require: Input confidence parameters β′

1,h, β′
2,h, βh and ϵ > 0.

1: Initialize: Split the input dataset into D = {skh, akh, rkh}
K,H
k,h=1,D′ = {s̄kh, ākh, r̄kh}

K,H
k,h=1 ; Set the

value function f̂H+1(·) = f̂ ′
H+1(·) = 0.

2: for stage h = H, . . . , 1 do

3: f̃ ′
h = argminfh∈Fh

∑
k∈[K]

(
fh(s̄

k
h, ā

k
h)− r̄kh − f̂ ′

h+1(s̄
k
h+1)

)2
.

4: g̃′h = argmingh∈Fh

∑
k∈[K]

(
gh(s̄

k
h, ā

k
h)−

(
r̄kh + f̂ ′

h+1(s̄
k
h+1)

)2)2

.

5: Use the bonus oracle (Definition 4.1) to calculate the bonus function
b′h = B(1,D′

h,Fh, f̃
′
h, β

′
1,h + β′

2,h, λ, ϵ),
6: f̂ ′

h ← {f̃ ′
h − b′h − ϵ}[0,H−h+1];

7: Construct the variance estimator
σ̂2
h(s, a) = max

{
1, g̃′h(s, a)− (f̃ ′

h(s, a))
2 −O

(√
logNNbH

3

√
Kκ

)}
.

8: end for
9: for stage h = H, . . . , 1 do

10: f̃h = argminfh∈Fh

∑
k∈[K]

1
σ̂2
h(s

k
h,a

k
h)

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
11: Use the bonus oracle (Definition 4.1) to calculate the bonus function

bh = B(σ̂h,Dh,Fh, f̃h, βh, λ, ϵ);
12: f̂h ← {f̃h − bh − ϵ}[0,H−h+1];
13: π̂h(·|s) = argmaxa f̂h(s, a).
14: end for
15: Output: π̂ = {π̂h}Hh=1.

Assumption 3.3 (Uniform Data Coverage). There exists a constant κ > 0, such that for any stage h178

and functions f1, f2 ∈ Fh, the following inequality holds,179

Eµ,h

[(
f1(sh, ah)− f2(sh, ah)

)2 ] ≥ κ∥f1 − f2∥2∞,

where the state-action pair (at stage h) (sh, ah) is stochastic generated from behavior policy µ.180

Remark 3.4. Data coverage assumption is widely used in offline RL to guarantee that the collected181

dataset contains enough information of the state-action space to learn an effective policy. In Yin et al.182

(2022b), they studied the general differentiable function, where the function class is defined as183

F :=
{
f
(
θ,ϕ(·, ·)

)
: S ×A → R,θ ∈ Θ

}
.

Under this definition, Yin et al. (2022b) introduce the following coverage assumption (Assumption184

2.3) such that for all stage h ∈ [H], there exists a constant κ,185

Eµ,h

[(
f(θ1,ϕ(s, a))− f(θ2,ϕ(s, a))

)2] ≥ κ∥θ1 − θ2∥22,∀θ1,θ2 ∈ Θ; (∗)

Eµ,h

[
∇f(θ,ϕ(s, a))∇f(θ,ϕ(s, a))⊤

]
≻ κI, ∀θ ∈ Θ. (∗∗)

We can prove that our assumption is weaker than the first assumption (*). For the second assumption186

(**), there is no direct counterpart in the general setting.187

In addition, for the linear function class, the coverage assumption in Yin et al. (2022b) will reduce to188

the following linear function coverage assumption (Wang et al., 2020a; Min et al., 2021; Yin et al.,189

2022a; Xiong et al., 2022).190

λmin(Eµ,h[ϕ(s, a)ϕ(s, a)
⊤]) = κ > 0, ∀h ∈ [H].

Therefore, our assumption is also weaker than the linear function coverage assumption when dealing191

with the linear function class. Due to space limitations, we provide the detailed proof in the appendix.192

4 Algorithm193

In this section, we provide a comprehensive and detailed description of our algorithm (PNLSVI), as194

displayed in Algorithm 1. In the sequel, we introduce the key ideas of the proposed algorithm.195
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4.1 Pessimistic Value Iteration Based Planning196

Our algorithm operates in two distinct phases, Variance Estimate Phase and Pessimistic Planning197

Phase. At the beginning of the algorithm, the data-set is divided into two disjoint subsets D,D′, and198

each assigned to a specific phase.199

The basic framework of our algorithm follows the pessimistic value iteration, which was initially200

introduced by Jin et al. (2021b). In details, for each stage h ∈ [H], we construct the estimator value201

function f̃h by solving the following variance-weighted ridge regression (Line 11):202

f̃h = argmin
fh∈Fh

∑
k∈[K]

1

σ̂2
h(s

k
h, a

k
h)

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
,

where σ̂2
h is the estimated variance and will be discussed in section 4.2. In Line 12, we subtract the203

confidence bonus function bh from the estimator value function f̃h to construct the pessimistic value204

function f̂h. With the help of the confidence bonus function bh, the pessimistic value function f̂h is205

almost a lower bound for the optimal value function f∗
h . The details of the bonus function and bonus206

oracle will be discussed in section 4.3.207

Based on the pessimistic value function f̂h for stage h, we recursively perform the value iteration208

for the stage h− 1. Finally, we use the pessimistic value function f̂h to do planning and output the209

greedy policy with respect to the pessimistic value function f̂h (Line 13 - Line 15).210

4.2 Variance Estimate Phase211

In this phase, we provide a estimator for the variance σ̂h in the weighted ridge regression. According212

to the definition of Bellman operators T and T2, the variance of the function f̂ ′
h+1 for each state-action213

pair (s, a) can be denoted by214

[Varhf̂h+1](s, a) = T2,hf̂ ′
h+1(s, a)−

(
Thf̂ ′

h+1(s, a)
)2

.

Therefore, we need the evaluate the first-order and second-order moments for f̂ ′
h. We perform215

nonlinear least-squares regression separately for each of these moments. Specifically, in Line 3, we216

conduct regression to estimate the first-order moment.217

f̃ ′
h = argmin

fh∈Fh

∑
k∈[K]

(
fh(s̄

k
h, ā

k
h)− r̄kh − f̂ ′

h+1(s̄
k
h+1)

)2
.

In Line 4, we perform regression for the second-order moment.218

g̃′h = argmin
gh∈Fh

∑
k∈[K]

(
gh(s̄

k
h, ā

k
h)−

(
r̄kh + f̂ ′

h+1(s̄
k
h+1)

)2)2

.

In this phase, we set the variance function to 1 for each state-action pair (s, a) and derive an estimator219

with confidence radius β′
1,h, β

′
2,h. Combing these two regression results and subtracting a confidence220

bonus function b′h, we create a pessimistic estimator for the variance function (Lines 6 to 7).221

4.3 Nonlinear Bonus Oracle222

As we discussed in sections 4.1 and 4.2, we introduce a uncertainty bonus function to construct a223

pessimistic estimate of the value function. Unfortunately, for a general class, the uncertainty bonus224

may varies greatly across different state-action pair. Under this situation, the addition uncertainty225

bonus function will highly increase the complexity of the pessimistic function class, which make226

it difficult to construct a accurate estimation and may significant deteriorate the final performance.227

To address this issue, we assume there exist a function classW with cardinally |W| = Nb and can228

approximate the bonus function well. In addition, we assume there exist a nonlinear bonus oracle229

(Agarwal and Zhang, 2022), which can output the approximate bonus function in the classW for230

each dataset Dh.231
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Definition 4.1 (Oracle for bonus function). For an offline dataset D = {skh, akh, rkh}
H,K
h,k=1, given232

index h ∈ [H], let Dh = {(skh, akh, rkh)}k∈[K] denote the subset of the dataset D that corresponds to233

the observations collected up to stage h in the MDP. σ̂h(·, ·) : S ×A → R is a variance function. Fh234

is a function class such that f̂h ∈ Fh. The parameters βh, λ ≥ 0, error parameter ϵ ≥ 0. The bonus235

oracle B(σ̂,Dh,Fh, f̂h, βh, λ, ϵ) outputs a bonus function bh(·) such that236

• bh : S ×A → R≥0 belongs to function classW .237

• bh(zh) ≥ max
{
|fh(zh)− f̂h(zh)|, fh ∈ Fh :

∑
k∈[K]

(fh(zkh)−f̂h(zkh))2

(σ̂h(sk
h
,ak

h
))2

≤ (βh)
2
}

for any zh ∈ S×A.238

• bh(zh) ≤ C ·
(
DFh(zh;Dh; σ̂h) ·

√
(βh)2 + λ+ ϵβh

)
for all zh ∈ S×A with constant 0 < C ≤ ∞.239

Remark 4.2. To address the concern of function class complexity, some previous studies (Xie et al.,240

2021a) have approached the problem differently. Instead of introducing a pointwise bonus in the241

estimated value function, they solve a complicated optimization problem to guarantee the optimism242

solely in the intial state. This method can prevent the complexity from bonus function, as a cost, they243

requires solving an optimization problem over all potential policy and corresponding version space,244

which includes all functions with lower Bellman error.245

5 Main Results246

In this section we prove an problem-dependent regret bound of Algorithm 1.247

Theorem 5.1. Under Assumption 3.3, for K ≥ Ω̃
(

log(NNb)H
6

κ2

)
, if we set the parameters248

β′
1,h, β

′
2,h = Õ(

√
logNNbH

2) and βh = Õ(
√
logN ) in Algorithm 1, then with the probability of249

at least 1− δ, for any state s ∈ S, we have250

V ∗
1 (s)− V π̂

1 (s) ≤ Õ(
√

logN )

H∑
h=1

Eπ∗
[
DFh

(zh;Dh; [VhV
∗
h+1](·, ·))|s1 = s

]
,

where [VhV
∗
h+1](s, a) = max{1, [VarhV ∗

h+1](s, a)} is the truncated conditional variance.251

Remark 5.2. When reduce to the linear MDP environment, the following function classes252

F lin
h = {⟨ϕh(·, ·),θh⟩ : θh ∈ Rd, ∥θh∥2 ≤ Bh} for any h ∈ [H],

satisfy the completeness assumption (Assumption 3.1) (Jin et al., 2020). Let F lin
h (ϵ) be a ϵ-net of the253

linear function class F lin
h . In this case, the covering number satisfies log |F lin

h (ϵ)| = Õ(d) and the254

dependency of function class will reduce to Õ(
√
logN ) = Õ(

√
d). For linear function class, Xiong255

et al. (2022) proposed the following regret guarantee,256

V ∗
1 (s)− V π̂

1 (s) ≤ Õ(
√
d) ·

H∑
h=1

Eπ∗

[
∥ϕ(sh, ah)∥Σ∗−1

h
|s1 = s

]
,

where Σ∗
h =

∑
k∈[K] ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤/[VhV
∗
h+1](s

k
h, a

k
h) + λI. In comparison, we can prove257

the following inequality:258

DF lin
h (ϵ)(z;Dh; [VhV

∗
h+1](·, ·)) ≤ ∥ϕh(z)∥Σ∗−1

h
.

This shows that Theorem 5.1 matches the optimal result in Xiong et al. (2022) for linear function259

class.260

6 Key Techniques261

In this section, we provide an overview of the key techniques in our algorithm design and analysis.262

6.1 Variance Estimator with Nonlinear Function Class263

The technique of variance-weighted ridge regression, first introduced in Zhou et al. (2021), has264

demonstrated its effectiveness in the online RL setting with linear function approximation. For offline265
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setting, Xiong et al. (2022) modified the variance-weighted ridge regression technique, and showed266

that using an accurate and independent variance estimator can improves the performance of the267

pessimistic value iteration (PEVI) algorithm (Jin et al., 2021b).268

In our work, we extend this technique to general nonlinear function class F , and use the following269

nonlinear least-squares regression to estimate the underlying value function:270

f̃h = argmin
fh∈Fh

∑
k∈[K]

1

σ̂2
h(s

k
h, a

k
h)

(
fh(s

k
h, a

k
h)− rkh − f̂h+1(s

k
h+1)

)2
.

For this regression, it is crucial to obtain a reliable evaluation for the variance of the estimated271

cumulative reward rkh + f̂h+1(s
k
h+1). According to the definition of Bellman operators T and T2, the272

variance of the function f̂ ′
h+1 for each state-action pair (s, a) can be denoted by273

[Varhf̂ ′
h+1](s, a) = T2,hf̂ ′

h+1(s, a)−
(
Thf̂ ′

h+1(s, a)
)2

.

To evaluate the first and second moment for the Bellman operator, we perform nonlinear least-squares274

regression on a separate dataset D′ with uniform weight (σ̂h(s, a) = 1 for all state-action pair (s, a)).275

For simplicity, we denote the empirical variance as Bh(s, a) = g̃′h(s, a) −
(
f̃ ′
h(s, a)

)2
, and the276

difference between empirical variance Bh(s, a) with actually variance [Varhf̂ ′
h+1](s, a) is upper277

bound by278 ∣∣∣Bh(s, a)− [Varhf̂ ′
h+1](s, a)

∣∣∣ ≤ ∣∣∣g̃h(s, a)− T2,hf̂ ′
h+1(s, a)

∣∣∣+ ∣∣∣∣(f̃h(s, a))2 − (Thf̂ ′
h+1(s, a)

)2∣∣∣∣ .
For these nonlinear function estimator, the following Lemmas provide coarse concentration properties279

for the first and second order Bellman operators.280

Lemma 6.1. Given a stage h ∈ [H], let f̂ ′
h+1(·, ·) ≤ H be the estimated value function constructed in281

Algorithm 1 Line 6. By utilizing Assumption 3.1, there exists a function f̄ ′
h ∈ Fh, such that |f̄ ′

h(zh)−282

Thf̂ ′
h+1(zh)| ≤ ϵ holds for all state-action pair zh = (sh, ah). Then with the probability of at least283

1− δ/4H , it holds that
∑

k∈[K]

(
f̄ ′
h(z̄

k
h)− f̃ ′

h(z̄
k
h)
)2
≤ (β′

1,h)
2, where β′

1,h = Õ
(√

logNNbH
2
)
,284

and f̃ ′
h is the estimated function for first-moment Bellman operator (Line 3 in Algorithm 1).285

Lemma 6.2. Given a stage h ∈ [H], let f̂ ′
h+1(·, ·) ≤ H be the estimated value function constructed in286

Algorithm 1 Line 6. By utilizing Assumption 3.1, there exists a function ḡ′h ∈ Fh, such that |ḡ′h(zh)−287

T2,hf̂ ′
h+1(zh)| ≤ ϵ holds for all state-action pair zh = (sh, ah). Then with the probability of at least288

1− δ/4H , it holds that
∑

k∈[K]

(
ḡ′h(z̄

k
h)− g̃′h(z̄

k
h)
)2 ≤ (β′

2,h)
2, where β′

2,h = Õ
(√

logNNbH
2
)
,289

and g̃′h is the estimated function for second-moment Bellman operator (Line 4 in Algorithm 1).290

Notice that all of the previous analysis focuses on the estimated function f̂ ′
h+1. By leveraging291

an induction procedure similar to existing works in the linear case (Jin et al., 2021b; Xiong292

et al., 2022), we can control the distance between the estimated function f̂ ′
h+1 and the optimal293

value function f∗
h . In details, with high probability, for all stage h ∈ [H], the distance is upper294

bounded by O
(√

logNNbH
3/
√
Kκ
)

. This result allows us to further bound [Varhf̂ ′
h+1](s, a) and295

[Varhf∗
h+1](s, a).296

Therefore, the concentration properties in Lemmas 6.1 and 6.2 enable us to construct the pessimistic297

variance estimator, which satisfies the following property:298

[VhV
∗
h+1](s, a)− Õ

(√
logNNbH

3

√
Kκ

)
≤ σ̂2

h(s, a) ≤ [VhV
∗
h+1](s, a). (6.1)

where [VhV
∗
h+1](s, a) = max{1, [VarhV ∗

h+1](s, a)} is the truncated conditional variance. Compared299

with the results in the linear function class, we utilize the logarithm of the covering number of the300

function class as a substitute for the linear dimension d, which is a common technique in nonlinear301

function approximation.302
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6.2 Reference-Advantage Decomposition303

The reference-advantage decomposition is a powerful technique to tackle the challenge of additional304

error from uniform concentration over whole function class Fh. Such an analysis approach has been305

first studied in the online RL setting Azar et al. (2017); Zhang et al. (2021); Hu et al. (2022); He et al.306

(2022); Agarwal et al. (2022) and later in the offline environment by Xiong et al. (2022).307

For offline RL, in the context of nonlinear function classes, without a explicit linear expression,308

the increased complexity of the function class structure poses a significant obstacle to effectively309

utilizing this technique. Previous works, such as Yin et al. (2022b), have struggled to adapt the310

reference-advantage decomposition to their nonlinear function class, resulting in a parameter space311

dependence that scales with d, instead of the optimal
√
d. We provide detailed insights into this312

approach as follows:313

rh(s, a) + f̂h+1(s, a)− Thf̂h+1(s, a) = rh(s, a) + f∗
h+1(s, a)− Thf

∗
h+1(s, a)︸ ︷︷ ︸

Reference uncertainty

+ f̂h+1(s, a)− f∗
h+1(s, a)− ([Phf̂h+1](s, a)− [Phf

∗
h+1](s, a))︸ ︷︷ ︸

Advantage uncertainty

.

We decompose the Bellman error into two parts: the Reference uncertainty and the Advantage314

uncertainty. For the first term, the optimal value function f∗
h+1 is fixed and not related to the pre-315

collected dataset, which circumvents additional uniform concentration over the whole function class316

and avoid any dependence on the function class size. For the second term, it is worth to notice that317

the distance between the estimated function f̂ ′
h+1 and the optimal value function f∗

h is decreased as318

O(1/
√
Kκ). Though, we still need to maintain the uniform convergence guarantee, the Advantage319

uncertainty is dominated by the Reference uncertainty when the number of episode K is large enough.320

By integrating these results, we can prove a variance-weighted concentration inequality for Bellman321

operators.322

Lemma 6.3. For each stage h ∈ [H], assuming the variance estimator σ̂h satisfies (6.1), let323

f̂h+1(·, ·) ≤ H be the estimated value function constructed in Algorithm 1 Line 12. By utiliz-324

ing Assumption 3.1, there exist a function f̄h ∈ Fh, such that |f̄h(zh) − Thf̂h+1(zh)| ≤ ϵ holds325

for all state-action pair zh = (sh, ah). Then with the probability of at least 1− δ/4H , it holds that326 ∑
k∈[K]

1
(σ̂h(zk

h))
2

(
f̄h(z

k
h)− f̃h(z

k
h)
)2
≤ (βh)

2, where βh = Õ(
√
logN ) and f̃h is the estimated327

function from the weighted ridge regression (Line 10 in Algorithm 1).328

After controlling the Bellman error, with a similar argument to Jin et al. (2021b); Xiong et al. (2022),329

we obtain the following lemma, which provide an upper bound for the regret.330

Lemma 6.4 (Regret Decomposition Property). If |Thf̂h+1(z)− f̃h(z)| ≤ bh(z) holds for all stage331

h ∈ [H] and state-action pair z = (s, a) ∈ S ×A, then the regret of Algorithm 1 can be bounded as332

V ∗
1 (s)− V π̂

1 (s) ≤ 2

H∑
h=1

Eπ∗ [bh (sh, ah) | s1 = s] .

Here, the expectation Eπ∗ is with respect to the trajectory induced by π∗ in the underlying MDP.333

Combing the results in Lemmas 6.3 and 6.4, we have proved Theorem 5.1.334

7 Conclusion and Future Work335

In this paper, we present PNLSVI, an oracle-efficient algorithm for offline RL with non-linear function336

approximation. It achieves minimax optimal problem-dependent regret when specialized to linear337

function approximation.338

Regarding future work, we observe that instead of using the uniform coverage assumption, a series of339

works, such as (Liu et al., 2020; Xie et al., 2021a; Uehara and Sun, 2021; Zhan et al., 2022), only340

relies on partial coverage assumption. In these works, the offline data distribution only encompasses341

the state-action distribution of a select high-quality comparator policy π∗. It would be of significant342

interest to investigate whether it’s possible to design practical algorithms for nonlinear function343

classes under this weaker partial coverage assumption, while still preserving the inherent efficiency344

found in linear function approximation.345
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