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ABSTRACT

The predominant approach for language modeling is to encode a sequence of to-
kens from left to right, but this eliminates a source of information: the order by
which the sequence was naturally generated. One strategy to recover this infor-
mation is to decode both the content and ordering of tokens. Some prior work
supervises content and ordering with hand-designed loss functions to encourage
specific orders or bootstraps from a predefined ordering. These approaches require
domain-specific insight. Other prior work searches over valid insertion operations
that lead to ground truth sequences during training, which has high time complex-
ity and cannot be efficiently parallelized. We address these limitations with an un-
supervised learner that can be trained in a fully-parallelizable manner to discover
high-quality autoregressive orders in a data driven way without a domain-specific
prior. The learner is a neural network that performs variational inference with the
autoregressive ordering as a latent variable. Since the corresponding variational
lower bound is not differentiable, we develop a practical algorithm for end-to-end
optimization using policy gradients. Strong empirical results with our solution
on sequence modeling tasks suggest that our algorithm is capable of discovering
various autoregressive orders for different sequences that are competitive with or
even better than fixed orders.

1 INTRODUCTION

Autoregressive models have a rich history. Early papers that studied autoregressive models, such
as (Uria et al., 2016) and (Germain et al., 2015), showed an interest in designing algorithms that
did not require a gold-standard autoregressive order to be known upfront by researchers. However,
these papers were overshadowed by developments in natural language processing that demonstrated
the power of the left-to-right autoregressive order (Cho et al., 2014; Sutskever et al., 2014a). Since
then, the left-to-right autoregressive order has been essential for application domains such as image
captioning (Vinyals et al., 2015b; Xu et al., 2015), machine translation (Luong et al., 2015; Bahdanau
et al., 2015) and distant fields like image synthesis (van den Oord et al., 2016). However, interest in
non left-to-right autoregressive orders is resurfacing (Welleck et al., 2019b; Stern et al., 2019), and
evidence (Vinyals et al., 2016; Gū et al., 2018; Alvarez-Melis & Jaakkola, 2017) suggests adaptive
orders may produce more accurate autoregressive models. These positive results make designing
algorithms that can leverage adaptive orders an important research domain.

Inferring autoregressive orderings in a data-driven manner is challenging. Modern benchmarks
for machine translation (Stahlberg, 2019) and other tasks (Oda et al., 2015) are not labelled with
gold-standard orders, and left-to-right seems to be the default. This could be explained if domain-
independent methodology for identifying high-quality orders is an open question. Certain ap-
proaches (Stern et al., 2019; Welleck et al., 2019b; Ruis et al., 2020) use hand-designed loss func-
tions to promote a genre of orders—such as balanced binary trees. These loss functions incorporate
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certain domain-assumptions: for example, they assume the balanced binary tree order will not dis-
rupt learning. Learning disruption is an important consideration, because prior work shows that
poor orders may prohibitively slow learning (Chen et al., 2018). Future approaches to inferring
autoregressive orders should withhold domain knowledge, to promote their generalization.

To our best knowledge, we propose the first domain-independent unsupervised learner that discovers
high-quality autoregressive orders through fully-parallelizable end-to-end training without domain-
specific tuning. We provide three main contributions that stabilize this learner. First, we propose
an encoder architecture that conditions on training examples to output autoregressive orders using
techniques in combinatorical optimization. Second, we propose Variational Order Inference that
learns an approximate posterior over autoregressive orders. Finally, we develop a practical algorithm
for solving the resulting non-differentiable ELBO end-to-end with policy gradients.

Empirical results with our solution on image captioning, code generation, text summarization, and
machine translation tasks suggest that with similar hyperparameters, our algorithm is capable of
recovering autoregressive orders that are even better than fixed orders. Case studies suggest that
our learned orders depend adaptively on content, and resemble a type of best-first generation order,
which first decodes focal objects and names. Our experimental framework is available at this link.

2 RELATED WORKS

Autoregressive Models Autoregressive models decompose the generation of a high dimensional
probability distribution by generating one dimension at a time, with a predefined order. Combined
with high capacity neural networks, this approach to modeling complex distributions has been very
successful (Sutskever et al., 2011; Mikolov et al., 2012). Recent works have achieved great im-
provements with autoregressive models in many applications, including language modeling (Rad-
ford et al., 2018; 2019; Brown et al., 2020), machine translation (Sutskever et al., 2014b) and image
captioning (Karpathy & Fei-Fei, 2015). Most previous works on autoregressive models use a fixed
ordering pre-defined by the designer with left-to-right emerging as the primary choice. In contrast,
our method is capable of learning arbitrary orderings conditioned on data and is more flexible.

Non-Monotonic Autoregressive Orderings Ford et al. (2018b) shows that a sub-optimal ordering
can severely limit the viability of a language model and propose to first generate a partially filled
sentence template and then fill in missing tokens. Previous works have also studied bidirectional
decoding (Sun et al., 2017; Zhou et al., 2019; Mehri & Sigal, 2018) and syntax trees based decoding
(Yamada & Knight, 2001; Charniak et al., 2003; Dyer et al., 2016; Aharoni & Goldberg, 2017; Wang
et al., 2018) in the natural language setting. However, all of the works mentioned above do not learn
the orderings and instead opt to use heuristics to define them. Chan et al. (2019) performs language
modeling according to a known prior, such as balanced binary tree, and does not allow arbitrary
sequence generation orders. Welleck et al. (2019a) proposes to use a tree-based recursive generation
method to learn arbitrary generation orders. However, their performance lags behind that of left-to-
right. Gu et al. (2019a) proposes Transformer-InDIGO to allow non-monotonic sequence generation
by first pretraining with pre-defined orderings, such as left-to-right, then fine-tuning use Searched
Adaptive Order (SAO) to find alternative orderings. They report that without pretraining, the learned
orders degenerate. In addition, they perform beam search when decoding each token during training,
which cannot be efficiently parallelized at the sequence length dimension. Emelianenko et al. (2019)
proposes an alternative to SAO, but suffers from similar poor time complexity. In contrast, our
method learns high-quality autoregressive orderings directly from data under fully-parallelizable
end-to-end training.

Variational Methods Our method optimizes the evidence lower bound, or ELBO in short. ELBO
is a quantity that is widely used as an optimization proxy in the machine learning literature, where
the exact quantity is hard to compute or optimize. Variational methods have achieved great success
in machine learning, such as VAE (Kingma & Welling, 2013) and β-VAE (Higgins et al., 2017).

Combinatorial Optimization Recent works have studied gradient-based optimization in the com-
binatorial space of permutations (Mena et al., 2018; Grover et al., 2019; Linderman et al., 2018).
These works have been applied in tasks such as number sorting, jigsaw puzzle solving, and neural
signal identification in worms. To our best knowledge, we are the first to build on these techniques
to automatically discover autoregressive orderings in vision and language datasets.
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3 PRELIMINARIES

The goal of autoregressive sequence modelling is to model an ordered sequence of target values
y = (y1, y2 . . . , yn) : yi ∈ R, possibly conditioned on an ordered sequence of source values
x = (x1, x2 . . . , xm) : xi ∈ R, where (x,y) is sampled from the dataset D.

Inspired by Vinyals et al. (2015a) and Gu et al. (2019a), we formulate the generation process of y
as a 2n step process, where at time step 2t − 1 we generate a value, and at timestep 2t we select a
not-yet-chosen position in {1, 2, · · · , n} to insert the value. Thus, we introduce the latent sequence
variable z = (z1, z2 . . . , zn) : z ∈ Sn, where Sn is the set of one-dimensional permutations of
{1, 2, · · · , n}, and zt is defined as the absolute position of the value generated at time step 2t− 1 in
the naturally ordered y. Then p(y, z|x) denotes the probability of generating y in the ordering of z
given the source sequence x. We can thus factorize p(y, z|x) using the chain rule:

p(y, z|x) = p(yz1 |x)p(z1|yz1 ,x)
n∏
i=2

p(yzi |z<i, yz<i ,x)p(zi|z<i, yz<=i ,x) (1)

For example, p(y1, y2, z1 = 2, z2 = 1|x) = p(y2|x)p(z1|y2,x)p(y1|z1, y2,x)p(z2|y1, z1, y2,x) is
defined as the probability of generating y2 in the first step, then inserting y2 into absolute position
2, then generating y1, and finally inserting y1 into absolute position 1.

Note that in practice, the length of y is usually varied. Therefore, we do not first create a fixed-length
sequence of blanks and then replace the blanks with actual values. Instead, we dynamically insert a
new value at a position relative to the previous values. One common approach to predict such relative
position is Pointer Network (Vinyals et al., 2015a). In other words, at timestep t, we insert the value
at position rt relative to the previous generated values. Here, for any z ∈ Sn, r = (r1, r2, . . . , rn)
is constructed such that there is a bijection between Sn and the set of all constructed r. Due to such
bijection, we can use z and r interchangeably. We will use z throughout the paper.

4 VARIATIONAL ORDER INFERENCE (VOI)
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Figure 1: Computational Graph for Variational Order Inference

Starting from just the original data y in natural order, we can use variational inference to create an
objective (2) that allows us to recover latent order z, parametrized by two neural networks θ and φ.
The encoder network φ samples autoregressive orders given the ground truth data, which the decoder
network θ uses to recover y. More specifically, φ is a non-autoregressive network (permutation
generator in Fig. 1) that takes in the source sequence x and the entire ground truth target sequence
y and outputs latent order z in a single forward pass. θ is an autoregressive network (autoregressive
decoder in Fig. 1) that takes in x and predicts both the target sequence y and the ordering z through
the factorization in Equation (1). We name this process Variational Order Inference (VOI).

E(x,y)∼D [log pθ(y|x)] = E(x,y)∼D

[
logEz∼qφ(z|y,x)

[
pθ(y, z|x)
qφ(z|y,x)

]]
≥ E(x,y)∼D

[
Ez∼qφ(z|y,x) [log pθ(y, z|x)] +Hqφ(·|y,x)

] (2)

Here, Hqφ is the entropy term. During training, we train φ and θ jointly to maximize the ELBO in
(2). During testing, we only keep the decoder θ.
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To optimize the decoder network θ in (2), for each y, we first sample K latents
z1, z2, . . . , zK from qφ(·|y,x). We then update θ using the Monte-Carlo gradient estimate

Ey∼D

[
1
K

∑K
i=1∇θ log pθ(y, zi|x)

]
.

Algorithm 1 Variational Order Inference
1: Given: encoder network φ with learning rate αφ, decoder network θ with learning rate αθ,

entropy coefficient β, batch of training data (X,Y) = {(xb,yb)}Nb=1 sampled from dataset D
2: Set gradient accumulators gφ = 0, gθ = 0
3: for (x,y) ∈ (X,Y) do . In practice, this is done through parallel tensor operations
4: X = φ(y,x)
5: Sample K doubly stochastic matrices B1, B2, . . . , BK ∈ Bn×n from G.S.(X, τ)
6: Obtain P1, P2, . . . , PK ∈ Pn×n from B1, B2, . . . , BK using Hungarian Algorithm
7: Obtain latents z1, z2, . . . , zK = f−1len(y)(P1), f

−1
len(y)(P2), . . . , f

−1
len(y)(PK)

8: gθ = gθ +
1

N ·K
∑K
i=1∇θ log pθ(y, zi|x)

9: Calculate log qφ(zi|y,x) = 〈X,Pi〉F − log(perm(exp (X)))
≈ 〈X,Pi〉F − log(permB(exp(X)))

10: Calculate b(y,x) = 1
K

∑K
i=1 log pθ(y, zi|x)

11: gφ = gφ +
1

N ·K
∑K
i=1∇φ log qφ(zi|y,x)(log pθ(y, zi|x)− b(y,x)) + β · ∇φHqφ(·|y,x)

12: end for
13: φ = φ+ αφ · gφ
14: θ = θ + αθ · gθ

Optimizing the encoder network φ is tricky. Since z is a discrete latent variable, the gradient from
log pθ(y, z) does not flow through z. Thus, we formulate (2) in a reinforcement learning setting with
a one-step Markov Decision Process (S,A,R). Under our setting, the state space S = D; for each
state (x,y) ∈ D, the action space A(x,y) = Slength(y) with entropy term Hqφ(·|y,x); the reward
function R((x,y), z ∈ Slength(y)) = log pθ(y, z|x). We can then set the optimization objective
L(φ) to be (2). In practice, we find that adding an entropy coefficient β and gradually annealing it
can speed up the convergence of decoder while still obtaining good autoregressive orders.

To compute ∇φL(φ), we derive the policy gradient with baseline formulation (Sutton et al., 2000):

∇φL(φ) = E(x,y)∼D
[
Ez∼qφ [∇φ log qφ(z|y,x)(log pθ(y, z|x)− b(y,x))] + β∇φHqφ

]
(3)

where b(y,x) is the baseline function independent of action z. The reason we use a state-dependent
baseline b(y,x) instead of a global baseline b is that the the length of y can have a wide range, caus-
ing significant reward scale difference. In particular, we set b(y,x) = Ez∼qφ [log pθ(y, zi|x)]. If we
sampleK ≥ 2 latents for each y, then we can use its Monte-Carlo estimate 1

K

∑K
i=1 log pθ(y, zi|x).

Since we use policy gradient to optimize φ, we still need a closed form for the distribution
qφ(z|y,x). Before we proceed, we define Pn×n as the set of n × n permutation matrices, where
exactly one entry in each row and column is 1 and all other entries are 0; Bn×n as the set of n × n
doubly stochastic matrices, i.e. non-negative matrices whose sum of entries in each row and in each
column equals 1; R+

n×n as the set of non-negative n×nmatrices. Note that we have the relationship
Pn×n ⊂ Bn×n ⊂ R+

n×n.

To obtain qφ(z|y,x), we first write z in two-dimensional form. For each z ∈ Sn, let fn(z) ∈ Pn×n
be constructed such that fn(z)i = one hot(zi), where fn(z)i is the i-th row of fn(z). Thus fn is
a natural bijection from Sn to Pn×n, and we can rewrite qφ as a distribution over Pn×n such that
qφ(fn(z)|y,x) = qφ(z|y,x).
Next, we need to model the distribution of qφ(·|y,x). Inspired by (Mena et al., 2018), we model
qφ(·|y,x) as a Gumbel-Matching distribution G.M.(X) over Pn×n, where X = φ(y,x) ∈ Rn×n
is the output of φ. Then for P ∈ Pn×n,

qφ(z|y,x) = qφ(f
−1
n (P )|y,x) = qφ(P |y,x) ∝ exp 〈X,P 〉F (4)

where 〈X,P 〉F = trace(XTP ) is the Frobenius inner product of X and P . To obtain sam-
ples in Pn×n from the Gumbel-Matching distribution, (Mena et al., 2018) relaxes Pn×n to Bn×n
by defining the Gumbel-Sinkhorn distribution G.S.(X, τ) : τ > 0 over Bn×n, and proves that
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G.S.(X, τ) converges almost surely to G.M.(X) as τ → 0+. Therefore, to approximately sample
from G.M.(X), we first sample from G.S.(X, τ), then apply Hungarian algorithm (Munkres, 1957)
to obtain P ∈ G.M.(X). Further details are presented in Appendix A.

The Gumbel-Matching distribution allows us to obtain the numerator for the closed form of
qφ(z|y,x) = qφ(f

−1
n (P )|y,x), which equals exp 〈X,P 〉F . However, the denominator is in-

tractable to compute and equals
∑
P∈Pn×n

exp 〈X,P 〉F . Upon further examination, we can express
it as perm(exp(X)), the matrix permanent of exp(X), and approximate it using permB(exp(X)),
its Bethe permanent. We present details about matrix permanent and Bethe permanent along with
the proof that the denominator of qφ(·|y,x) equals perm(exp(X)) in Appendix B.

After we approximate qφ, we can now optimize φ using the policy gradient in (3). We present
a diagram of our architecture in Figure 1, and a pseudocode of our algorithm in Algorithm 1.
Note that even though latent space Sn is very large and contains n! permutations, in practice, if
pθ(y, z

∗|x) ≥ pθ(y, z|x) ∀z ∈ Sn, then pθ(y, z|x) tends to increase as the edit distance between
z and z∗ decreases. Therefore, φ does not need to search over the entire latent to obtain good
permutations, making variational inference over Sn feasible.

5 EXPERIMENTS

Encoder and Decoder Architecture. We present encoder and decoder architectures for Variational
Order Inference on conditional sequence generation tasks, which we focus on in this work. Note
that Algorithm 1 is also applicable to unconditional sequence generation domains, such as image
generation, through different encoder and decoder architectures. We leave this for future work.

For decoder θ, we use the Transformer-InDIGO (Gu et al., 2019a) architecture, which builds on
Transformer with relative position representations (Shaw et al., 2018) to allow sequence generation
through insertion operations. Note that “encoder” and “decoder” in this section refer to the two
networks φ and θ in Algorithm 1, respectively, instead of Transformer’s encoder and decoder. Also,
we obtain orderings through the output of encoder instead of through Searched Adaptive Order
(SAO). To our best effort, we were unable to obtain the official implementation of Transformer-
InDIGO, so we reimplemented the algorithm based on the paper’s descriptions.

As a side note, rather than generating y autoregressively in 2n steps as done in Transformer-InDIGO,
it is possible to use a non-autoregressive decoder instead and improve the decoding speed. There
have recently been many works on non-autoregressive conditional sequence generation (Gu et al.,
2018; 2019b; Ma et al., 2019; Bao et al., 2019). To train a non-autoregressive decoder Transformer,
we can incorporate the ordering information generated by our encoder network into the decoder
Transformer’s encoder latent output. We leave this for future work.

For encoder φ, we adopt the Transformer (Vaswani et al., 2017) architecture. Note that our encoder
generates latents based on the entire ground truth target sequence y. Therefore, it does not need to
mask out subsequent positions during attention. We also experiment with different position embed-
ding schemes (see Section 7) and find that Transformer-XL’s (Dai et al., 2019) relative positional
encoding performs the best, so we replace the sinusoid encoding in the original Transformer.

Tasks. We evaluate our approach on challenging sequence generation tasks: natural language to
code generation (NL2Code) (Ling et al., 2016), image captioning, text summarization, and machine
translation. For NL2Code, we use Django (Oda et al., 2015). For image captioning, we use COCO
2017 (Lin et al., 2015). For text summarization, we use English Gigaword (Graff et al., 2003; Rush
et al., 2015). For machine translation, we use WMT16 Romanian-English (Ro-En).

Baselines. We compare our approach with several pre-defined fixed orders: Left-to-Right (L2R)
(Wu et al., 2018), Common-First (Common) (Ford et al., 2018a), Rare-First (Rare) (Ford et al.,
2018a), and Random-Ordering (Random). Here, Common-First order is defined as generating words
with ordering determined by their relative frequency from high to low; Rare-First order is defined
as the reverse of Common-First order; and Random-Ordering is defined as training with a randomly
sampled order for each sample at each time step.

Preprocessing. For Django, we adopt the same preprocessing steps as described in (Gu et al.,
2019a), and we use all unique words as the vocabulary. For MS-COCO, we find that the baseline in
Gu et al. (2019a) is much lower than commonly used in the vision and language community. There-
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fore, instead of using Resnet-18, we use the pretrained Faster-RCNN checkpoint using a ResNet-50
FPN backbone provided by TorchVision to extract 512-dimensional feature vectors for each object
detection. To make our model spatially-aware, we also concatenate the bounding box coordinates
for every detection before feeding into our Transformers’ encoder. For Gigaword and WMT, we
learn 32k byte-pair encoding (BPE, Sennrich et al. (2016)) on tokenized data.
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Figure 2: Runtime performance improvement. We compare the runtime performance of VOI
(K = 4) with SAO on a single Tesla P100 GPU, in terms of time per training iteration and ordering
search time. VOI outputs latent orderings in a single forward pass, and we observe a significant
runtime improvement over SAO that searches orderings sequentially. The speedup factor linearly
increases with respect to the sequence length.

Order MS-COCO Django Gigaword WMT16 Ro-En
BLEU Meteor R-L CIDEr BLEU Accuracy R-1 R-2 R-L BLEU Meteor TER

InDIGO - SAO 1 29.3 24.9 54.5 92.9 42.6 32.9 –– –– –– 32.5 53.0 49.0

Ours - Random 28.9 24.2 55.2 92.8 21.6 26.9 30.1 11.6 27.6
Ours - L2R 30.5 25.3 54.5 95.6 40.5 33.7 35.6 17.2 33.2 32.7 54.4 50.2

Ours - Common 28.0 24.8 55.5 90.3 37.1 29.8 33.9 15.0 31.1 27.4 50.1 53.9
Ours - Rare 28.1 24.5 52.9 91.4 31.1 27.9 34.1 15.2 31.3 26.0 48.5 55.1
Ours - VOI 31.0 25.7 56.0 100.6 44.6 34.3 36.6 17.6 34.0 32.9 54.6 49.3

Table 1: Results of MS-COCO, Django, Gigaword, and WMT with fixed orders (L2R, Random,
Common, Rare) as baseline. Here, R-1, R-2, and R-L indicate ROUGE-1, ROUGE-2, and ROUGE-
L, respectively. For TER, lower is better; for all other metrics, higher is better. “––” = not reported.

Training. For our decoder, we set dmodel = 512, dhidden = 2048, 6 layers for both Transformer’s
encoder and decoder, and 8 attention heads. This is the same model configuration as Transformer-
Base (Vaswani et al., 2017) and as described in Gu et al. (2019a). Our encoder also uses the same
configuration. For our model trained with Variational Order Inference , we sample K = 4 latents
for each training sample. An ablation on the choices of K is presented in Section 7. For WMT,
many previous works on nonsequential orderings (Stern et al., 2019) and nonautoregressive sequence
generation (Gu et al., 2019b) have found sequence-level knowledge distillation (Kim & Rush, 2016)
helpful. Therefore, we first train the L2R model on the original WMT corpus, then create a new
training corpus using beam search. We find that this improves the BLEU of VOI model by about
2. Even though the training set changed, the orderings learned by VOI are very similar to the ones
trained on the original corpus. More detailed training processes are described in Appendix C.

During training, our encoder outputs the latent ordering through one single forward pass, and our
decoder can predict all tokens with their positions given by the latent ordering in one single forward
pass. If we let N denote the batch size, l denote the length of each target sequence, and d denote
the size of hidden vector, then one single forward pass of our model has computation complexity
O(NKdl2), while Transformer-InDIGO trained with SAO has complexity O(Ndl3). Since K � l
in general, our algorithm has better theoretical computational complexity during training. During
evaluation, we only keep the decoder to iteratively generate the next position and token, which is as
efficient as any standard fixed-order autoregressive models.

1For InDIGO-SAO, we report the results on COCO and Django trained using our own implementation. We
did not attempt SAO on Gigaword or WMT due to the large dataset sizes, which can take 100 days to train.
For WMT, we report the SAO result as in the original paper, and we follow their evaluation scheme (results are
case-sensitive). The BLEU scores are obtained through SacreBLEU. Evaluation scripts are open-sourced.
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We also empirically compare VOI’s runtime with that of SAO and fixed-order baselines (e.g. L2R).
We implement SAO as described in Gu et al. (2019a). We test the runtime on a single GPU in order
to accurately measure the number of ops required. For training speed per iteration, we use a batch
size of 8. For ordering search time, we use a batch size of 1 to avoid padding tokens in the input for
accurate measure. We observe that VOI is significantly faster than SAO, which searches orderings
sequentially. In practice, as we distribute VOI across more GPUs, the K factor in the runtime is
effectively divided by the number of GPUs used (if we ignore the parallelization overhead), so we
can achieve further speedups.

Results. We compare VOI against predefined orderings along with Transformer-InDIGO trained
with SAO in Table 1. The metrics we used include BLEU-4 (Papineni et al., 2002), Meteor
(Denkowski & Lavie, 2014), Rouge (Lin, 2004), CIDEr (Vedantam et al., 2015), and TER (Snover
et al., 2006). The ”accuracy” reported for Django is defined as the percentage of perfect matches in
code generation. Our results illustrate consistently better performance across fixed orderings. Most
notably, CIDEr for MS-COCO, BLEU for Django, and Rouge-1 for Gigaword reveal the largest
improvements in performance.

6 ORDER ANALYSIS

In this section, we analyze the generation orders learned by Variational Order Inference on a macro
level by comparing the similarity of our learned orders with predefined orders defined in Section 5,
and on a micro level, by inspecting when the model generates certain types of tokens.

Figure 3: Global statistics for learned orders. We compare metrics as a function of the sequence
length of generated captions on the COCO 2017 validation set. On the left, we compare orders
learned with Variational Order Inference to a set of predefined orders (solid lines) using Order Rank
Correlation. As a reference, we provide the Order Rank Correlation between L2R and the same set
of predefined orders (dashed lines). In the right plot, with identical setup, we measure Normalized
Levenshtein Distance. We observe that Variational Order Inference favors left-to-right decoding
above the other predefined orders—this corresponds to the blue lines. However, with a max Order
Rank Correlation of 0.6, it appears left-to-right is not a perfect explanation. The comparably high
Order Rank Correlation of 0.3 with rare-tokens-first order suggests a complex strategy.
6.1 UNDERSTANDING THE MODEL GLOBALLY

We find that prior work (Gu et al., 2019a; Welleck et al., 2019a; Gu et al., 2018) tends to study
autoregressive orders by evaluating performance on validation sets, and by visualizing the model’s
generation steps. We provide similar visualizations in Appendix F.3. However, this does not merit a
quantitative understanding of the strategy that was learned. We address this limitation by introducing
methodology to quantitatively study decoding strategies learned by non-monotonic autoregressive
models. We introduce Normalized Levenshtein Distance and Order Rank Correlation, to measure
similarity between decoding strategies. Given two generation orders w, z ∈ Sn of the same se-
quence y, where n is the length of y, we define the Normalized Levenshtein Distance.

DNLD (w, z) = lev (w, z) /n (5)
lev (w, z) = 1 +min {lev (w1:, z) , lev (w, z1:) , lev (w1:, z1:)} (6)

The function lev (w, z) is the Levenshtein distance, and z1: removes the first element of z. This
metric has the property that a distance of 0 implies that two orders w and z are the same, while a
distance of 1 implies that the same tokens appear in distant locations in w and z. Our second metric
Order Rank Correlation, is the Spearman’s rank correlation coefficient between w and z.

DORC (w, z) = 1− 6 ·
∑n
i=0 (wi − zi) /

(
n3 − n

)
(7)
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A correlation of 1 implies that w and z are the same; a correlation of −1 implies that w and z are
reversed; and a correlation of 0 implies that w and z are not correlated. In Figure 3, we apply these
metrics to analyze our models learnt through Variational Order Inference .

Figure 4: Local statistics for learned orders. In this figure, we evaluate the normalized generation
indices for different parts of speech in model-predicted captions on the COCO 2017 validation set.
The normalized generation index is defined as the absolute generation index of a particular token,
divided by the final length of predicted sequence. The parts of speech (details in Appendix E) are
sorted in ascending order of their average normalized location. We observe that modifier tokens,
such as “the”, tend to be decoded last, while descriptive tokens, such as nouns and verbs, tend to be
decoded first.

Discussion. The experiment in Figure 3 confirms our model’s behavior is not well explained by
predefined orders. Interestingly, as the generated sequences increase in length, the Normalized Lev-
enshtein Distance decreases, reaching a final value of 0.57, indicating that approximately half of
the tokens are already arranged according to a left-to-right generation order. However, the Order
Rank Correlation barely increases, so we can infer that while individual tokens are close to their
left-to-right generation index, their relative ordering is not preserved. Our hypothesis is that certain
phrases are generated from left-to-right, but their arrangement follows a best-first strategy.

6.2 UNDERSTANDING THE MODEL LOCALLY

To complement the study of our model at a global level, we perform a similar study on the micro
token level. Our hope is that a per-token metric can help us understand if and when our Variational
Order Inference is adaptively choosing between left-to-right and rare-first order. We also hope to
evaluate our hypothesis that Variational Order Inference is following a best-first strategy.

Discussion. The experiment in Figure 4 demonstrates that Variational Order Inference prefers
decoding descriptive tokens first—such as nouns, numerals, adverbs, verbs, and adjectives. In addi-
tion, the unknown part of speech is typically decoded first, and we find this typically corresponds to
special tokens such as proper names. Our model appears to capture the salient content first, which is
illustrated by nouns ranking second in the generation order statistics. For image captioning, nouns
typically correspond to focal objects, which suggests our model has an object-detection phase. Evi-
dence of this phase supports our previous hypothesis that a best-first strategy is learned.

6.3 UNDERSTANDING THE MODEL VIA PERTURBATIONS

Image ID: 000000001584

0 1 2 3 4
Feature To Remove

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d 
Le

ve
ns

ht
ei

n 
Di

st
an

ce

Generation Order SensitivityIn this section, we study the question: to what
extent is the generation order learned by Vari-
ational Order Inference dependent on the con-
tent of the conditioning variable x? This ques-
tion is important because simply knowing that
our model has learned a best-first does not il-
luminate whether that strategy depends only on
the target tokens y being generated, or if it also
depends on the content of x. An adaptive gen-
eration order should depend on both.
Discussion. In this experiment, we first obtain a sequence y generated by our VOI given the source
image x. We then freeze y, which allows the model to infer a new generation order for y when
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different features of x are removed. Figure 6.3 shows that for a particular case, removing a single
region-feature (feature number 0, which corresponds to the bus) from x changes the model-predicted
generation order by as much as 0.7 Normalized Levenshtein Distance. These results confirm that our
model appears to learn an adaptive strategy, which depends on both the tokens y being generated
and the content of the conditioning variable x, which is an image in this experiment.

7 ABLATION STUDIES

Table 2: Normalized Levenshtein Distance between
the ordering learnt by the encoder and the ground
truth ordering, under different positional encodings
(enc) and modeling distributions of qφ (distrib).

Enc \ Distrib Gumbel-Matching Plackett-Luce
Sinusoid 0.40 0.62

Sinusoid + Pos Attn 0.42 0.58
Relative 0.38 0.53

XL-Relative 0.25 0.57

In Section 5, we introduced the specific
encoder and decoder architectures we use
for conditional sequence generation tasks.
In this section, we present ablation stud-
ies to support the architecture design of
our encoder and modeling qφ with Gumbel-
Matching distribution.

We consider 4 different positional encod-
ing schemes for the encoder Transformer φ:
the sinusoid encoding in the original Trans-
former (Vaswani et al., 2017), the sinusoid encoding with positional attention module (Gu et al.,
2018), the relative positional encoding in Shaw et al. (2018), and the relative positional encoding
proposed in Transformer-XL (Dai et al., 2019). Besides modeling qφ(·|x,y) as Gumbel-Matching
distribution and using Bethe permanent to approximate its denominator, we also consider modeling
using Plackett-Luce distribution (Plackett, 1975; Luce, 1959) and sample using techniques recently
proposed in Grover et al. (2019). Plackett-Luce distribution has tractable density, so we can compute
the exact qφ efficiently without using approximation techniques.

To analyze the encoder’s ability to learn autoregressive orderings, we first train a decoder with
Common-First order on one batch of MS-COCO until it perfectly generates each sentence. We then
fix the decoder and initialize an encoder. We train the encoder for 15k gradient steps using the
procedure in Algorithm 1 to recover the ground truth Common-First order, and we report the final
Normalized Levenshtein Distance against the ground truth in Table 2. We observe that modeling qφ
with Gumbel-Matching distribution significantly outperforms modeling with Plackett-Luce, despite
the former requiring denominator approximation. We also observe that under Gumbel-Matching
modeling distribution, the relative position encoding in Transformer-XL significantly outperforms
other encoding schemes. Thus we combine these two techniques in our architecture design.

Table 3: Normalized Levenshtein Dis-
tance between the encoder ordering and the
ground truth with respect to the choice ofK.

K 2 3 4 10 20
DNLD 0.31 0.28 0.25 0.21 0.21

In addition, we analyze how the choice of K, the
number of latents per training sample, affects model
performance. We use the same setting as above
and apply Transformer-XL relative position encod-
ing, and we report the results in Table 3. We observe
that the encoder more accurately fits to the ground
truth order as K increases, until a value of around 10. Since a very large K can slow the model
down while only bringing marginal improvement, a choice of K from 4 to 10 is sufficient.

8 CONCLUSION

We propose, to our best knowledge, the first unsupervised learner that learns high-quality autore-
gressive orders through fully-parallelizable end-to-end training without domain-specific tuning. We
propose a procedure named Variational Order Inference that uses the Variational Lower Bound with
the space of autoregressive orderings as latent. Building on techniques in combinatorical optimiza-
tion, we develop a practical policy gradient algorithm to optimize the encoder of the variational
objective, and we propose an encoder architecture that conditions on training examples to output
autoregressive orders. Empirical results demonstrate that our model is capable of discovering au-
toregressive orders that are competitive with or even better than fixed and predefined orders. In
addition, the global and local analysis of the orderings learned through Variational Order Inference
suggest that they resemble a type of best-first generation order, characterized by prioritizing the
generation of descriptive tokens and deprioritizing the generation of modifier tokens.
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APPENDIX

A GUMBEL-MATCHING DISTRIBUTION AND ITS SAMPLING

In Section 4, We model the distribution of qφ(·|y,x) as a Gumbel-Matching distribution G.M.(X)
over Pn×n, where X = φ(y,x) ∈ Rn×n is the latent output.

To obtain samples in Pn×n from the Gumbel-Matching distribution, Mena et al. (2018) relaxes
Pn×n to Bn×n by defining the Gumbel-Sinkhorn distribution G.S.(X, τ) : τ > 0 over Bn×n. Here
we reproduce the following definitions and theorems with similar notations from Sinkhorn (1964)
and Mena et al. (2018):

Definition A.1. Let X ∈ Rn×n and A ∈ R+
n×n. The Sinkhorn Operator S is defined as

Tr(A) = A� (A1n1
T
n ) (8)

Tc(A) = A� (1n1
T
nA) (9)

T (A) = Tr(Tc(A)) (10)
S(X) = lim

n→∞
T n(exp(X)) (11)

Here, � is the element-wise division between two matrices, and Tr and Tc are row and column
normalizations of a non-negative matrix, respectively. Therefore, iteratively applying T is equivalent
to iteratively normalizing a non-negative matrix by column and row.

Theorem A.2. (Sinkhorn, 1964) The range of S is Bn×n.

Theorem A.3. (Mena et al., 2018) Let X ∈ Rn×n, τ > 0. The Gumbel-Sinkhorn distribution
G.S.(X, τ) is defined as follows:

G.S.(X, τ) = S(
X + ε

τ
) (12)

where ε is a matrix of i.i.d. standard Gumbel noise. Moreover, G.S.(X, τ) converges almost surely
to G.M.(X) as τ → 0+.

To approximately sample from G.M.(X), we first sample from G.S.(X, τ). Even though theoreti-
cally, T needs to be applied infinite number of times to obtain a matrix in Bn×n, Mena et al. (2018)
reports that 20 iterations of T are enough in practice. We find that in our experiments, 20 iterations
are not enough to obtain a matrix in Bn×n, but 100− 200 iterations are enough. After we obtain the
matrix in Bn×n, we apply Hungarian algorithm (Munkres, 1957) to obtain P ∈ G.M.(X).

Finally, we need to calculate the entropy term Hqφ in Lφ in Equation 3. This can be approximated
using the technique in Appendix B.3 of Mena et al. (2018).

B MATRIX PERMANENT AND ITS APPROXIMATION WITH BETHE
PERMANENT

In this section, we present details about matrix permanent and bethe permanent, which we use as an
approximation to the denominator of qφ(·|y,x).

Definition B.1. Let A ∈ Rn×n. The permanent of A is defined as follows:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σi (13)

Theorem B.2. The denominator of qφ(·|y,x) equals perm(exp(X)).
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Proof. ∑
P∈Pn×n

exp 〈X,P 〉F =
∑
σ∈Sn

exp(

n∑
i=1

Xi,σ(i))

=
∑
σ∈Sn

n∏
i=1

(exp(X))i,σ(i)

= perm(exp(X))

Definition B.3. (Vontobel, 2010; Anari & Rezaei, 2019) Let A ∈ R+
n×n. The bethe permanent of

A is defined as follows:

permB(A) = exp ( max
γ∈Bn×n

∑
i,j

(γi,j logAi,j − γi,j log γi,j + (1− γi,j) log (1− γi,j))) (14)

Theorem B.4. (Anari & Rezaei, 2019) Let A ∈ R+
n×n. Then,

√
2
−n

perm(A) ≤ permB(A) ≤
perm(A).

The γ in Definition B.3 can be calculated using the message passing algorithm in Lemma 29 of
Vontobel (2010). An efficient implementation has recently been introduced in Appendix C of Mena
et al. (2020). Therefore, we can use permB(exp (X)) to approximate the denominator of qφ(·|y,x),
and we can then use policy gradient to compute∇φL(φ) in Equation (3).

C DETAILED TRAINING PROCESS AND HYPERPARAMETER SETTINGS

For all experiments, we apply dropout = 0.1 (Srivastava et al., 2014) and label smoothing = 0.1.
We apply Adam Optimizer (Kingma & Ba, 2015) with β1 = 0.99, β2 = 0.999 for MS-COCO, and
β1 = 0.99, β2 = 0.98 for all other tasks. For baseline experiments, we use a batch size of 64 for
Django and MS-COCO, and 128 for Gigaword and WMT. We decrease the learning rate linearly
from 1e-4 to zero. We train the baseline until the performance plateaus.

For our VOI model, we train on Django for a total of 350 epochs (120k gradient steps), MS-COCO
for 20 epochs (350k gradient steps), Gigaword for 16 epochs (1M gradient steps), and WMT16 Ro-
En for 120 epochs (1.3M gradient steps). We use a batch size of 36 for MS-COCO and Django, 50
for Gigaword, and 54 for WMT. We sample K = 4 latents per training sample for the first three
datasets, and K = 3 for WMT. Due to constraints in computational resource, we were unable to
scale WMT to larger batch size and larger K. We also did not experiment with larger batch size for
COCO, Django, and Gigaword. We leave the investigations of larger batch sizes and larger K for
future work.

We set the initial decoder learning rate to be 5e-5 and the encoder learning rate to be 5e-6. We
train the VOI encoder and decoder with shared embedding for about the first 15-20% of steps (i.e.
4 epochs for COCO, 50 epochs for Django, 3 epochs for Gigaword, and 20 epochs for WMT). We
then separate the embeddings for the rest of the training steps. When the embedding is shared, we
set the entropy coefficient β = 0.3 for all tasks.

After we separate the embeddings, for MS-COCO, we anneal β with a log-linear schedule from 0.3
to 0.03. We decrease the learning rate to (3e-5, 3e-6) for the decoder and the encoder respectively
after epoch 13, when the encoder starts to sample very similar permutations for a single training data.
We observe that training either VOI or the fixed ordering models for too long leads to overfitting.
Finetuning VOI with the encoder fixed does not help and causes the performance to slightly drop.

For Django, we set the learning rates to be (3e-5, 3e-6). We log-anneal β to 0.03 for the first 90% of
steps and then anneal β to 0.003 for the rest of the steps. We find that the latter allows the encoder
to commit to a single ordering on sequences of longer length and slightly improves performance.
We finally fix the encoder and finetune the decoder for 50 epochs with a larger batch size of 64 and
learning rate linearly annealing to zero. This finetuning step improves the BLEU score by about 0.6.

For Gigaword and WMT, we add a cosine alignment loss between the decoder and the encoder’s
embedding matrices to the loss of the encoder. We set the cosine alignment loss coefficient to be
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Figure 5: This figure demonstrates our algorithm for an image captioning task. The model on the
left is the Permutation Transformer, which maps training examples to permutation matrices. The
model on the right is an autoregressive model that learns to predict tokens and positions.

100.0 for Gigaword and 10.0 for WMT. Intuitively, since the Gigaword and WMT vocabularies are
much larger than those of MS-COCO and Django, and they contain many rare words, this loss allows
the encoder to leverage the semantic information recently-learnt from the decoder to better discover
autoregressive orderings.

For Gigaword, we anneal β log-linearly from 0.3 to 0.03 in 8 epochs (500k gradient steps). We then
fix the encoder and fine-tune the decoder with a batch size of 128 for 5 epochs with learning rate
linearly decreasing from 7e-5 to 0. We observe that, compared to COCO and Django, this finetuning
step significantly improves VOI’s performance and raises the ROUGE score by around 1.5 to 2.0.

For WMT, we anneal β log-linearly from 0.3 to 7e-4 in 80 epochs (900k gradient steps). We decrease
the learning rates from (5e-5, 5e-6) to (3e-5, 3e-6) at epoch 40 when the encoder starts sampling very
similar permutations. We then fix the encoder and finetune the decoder with a batch size of 128 for
20 epochs with learning rate linearly decreasing from 3e-5 to 0. We observe that this finetuning step
also significantly benefits VOI’s performance and improves the BLEU score by around 1.5 points.

Due to resource constraints, we did not tune our hyperparameters and training schedules very care-
fully, and we leave the discovery of better training schemes for future work.

D EXAMPLE ARCHITECTURE FOR CONDITIONAL SEQUENCE GENERATION

In Section 5, we introduced the specific encoder and decoder architectures used for the conditional
sequence generation tasks in our paper. To further illustrate the architecture of Variational Order
Inference , we present a diagram of the architecture instantiated for COCO 2017.

E PARTS OF SPEECH MAPPINGS

The parts of speech used in our Order Analysis section correspond to the NLTK Universal Tagset.
In the below table, we provide mappings for the tag identifiers used in our main paper. More in-
formation about the specific NLTK tags can be found at the following url: http://www.nltk.
org/book/ch05.html.

F VISUALIZATIONS OF SEQUENCE GENERATION

F.1 COCO

We visualize the generation order inferred by Variational Order Inference for COCO. Sequences
are generated using beam search over both tokens and their insertion positions, using a beam size
of 3. Bounding boxes that correspond to region-features calculated using bottom-up attention are
superimposed on the image, with an opacity value proportional to the magnitude of their softmax
attention value in the final cross-attention layer in the language model.
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Tag Meaning English Examples
ADJ adjective new, good, high, special, big, local
ADP adposition on, of, at, with, by, into, under
ADV adverb really, already, still, early, now
CONJ conjunction and, or, but, if, while, although
DET determiner, article the, a, some, most, every, no, which
NOUN noun year, home, costs, time, Africa
NUM numeral twenty-four, fourth, 1991, 14:24
PRT particle at, on, out, over per, that, up, with
PRON pronoun he, their, her, its, my, I, us
VERB verb is, say, told, given, playing, would
. punctuation marks . , ; !
X other ersatz, esprit, dunno, gr8, univeristy

Table 4: NLTK Universal Tagset.

Image ID: 000000036539
two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

two people standing in the snow on snowboards . 

Decoded Text

Figure 6: Generation order inferred by Variational Order Inference. Without supervision over its
generation order, nor a domain-specific initialization, nor a prior to aid learning, the model learns an
adaptive strategy that prioritizes object names—in this case, people and snow.

Image ID: 000000000785

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

a woman riding skis down a snow covered slope . 

Decoded Text

Figure 7: Generation order inferred by Ours-VOI for an image from the COCO 2017 validation set
with the image identifier 000000000785.
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Image ID: 000000000802
a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

a kitchen with white cabinets and white appliances . 

Decoded Text

Figure 8: Generation order inferred by Ours-VOI for an image from the COCO 2017 validation set
with the image identifier 000000000802.

Image ID: 000000001268

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

a person standing on a ledge near the water . 

Decoded Text

Figure 9: Generation order inferred by Ours-VOI for an image from the COCO 2017 validation set
with the image identifier 000000001268.
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Image ID: 000000001296 a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

a woman holding a cell phone in her hand . 

Decoded Text

Figure 10: Generation order inferred by Ours-VOI for an image from the COCO 2017 validation
set with the image identifier 000000001296.

Image ID: 000000001503

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

a desktop computer with a laptop on a desk . 

Decoded Text

Figure 11: Generation order inferred by Ours-VOI for an image from the COCO 2017 validation
set with the image identifier 000000001503.
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Image ID: 000000001993

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

a bedroom with a bed and a table . 

Decoded Text

Figure 12: Generation order inferred by Ours-VOI for an image from the COCO 2017 validation
set with the image identifier 000000001993.

Image ID: 000000000785

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

a young person riding skis on a snowy slope 

Decoded Text

Figure 13: Generation order inferred by Ours-L2R for an image from the COCO 2017 validation
set with the image identifier 000000000785.
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Image ID: 000000000802
a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

a kitchen with white appliances and wood cabinets . 

Decoded Text

Figure 14: Generation order inferred by Ours-L2R for an image from the COCO 2017 validation
set with the image identifier 000000000802.

Image ID: 000000001268

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

a couple of people that are sitting on a bench 

Decoded Text

Figure 15: Generation order inferred by Ours-L2R for an image from the COCO 2017 validation
set with the image identifier 000000001268.
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Image ID: 000000001296 a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

a woman in a crowd is using her cell phone . 

Decoded Text

Figure 16: Generation order inferred by Ours-L2R for an image from the COCO 2017 validation
set with the image identifier 000000001296.

Image ID: 000000001503

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

a desktop computer sitting on top of a desk . 

Decoded Text

Figure 17: Generation order inferred by Ours-L2R for an image from the COCO 2017 validation
set with the image identifier 000000001503.
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Image ID: 000000001993

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

a bed and a table in a room . 

Decoded Text

Figure 18: Generation order inferred by Ours-L2R for an image from the COCO 2017 validation
set with the image identifier 000000001993.

Image ID: 000000000785

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

a person on some skis in the snow . 

Decoded Text

Figure 19: Generation order inferred by Ours-Common for an image from the COCO 2017 valida-
tion set with the image identifier 000000000785.
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Image ID: 000000000802 a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

a kitchen area with a stove , refrigerator and dishwasher . 

Decoded Text

Figure 20: Generation order inferred by Ours-Common for an image from the COCO 2017 valida-
tion set with the image identifier 000000000802.

Image ID: 000000001268

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

a group of people sitting on top of a pier . 

Decoded Text

Figure 21: Generation order inferred by Ours-Common for an image from the COCO 2017 valida-
tion set with the image identifier 000000001268.
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Image ID: 000000001296 a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

a woman holding a cell phone while talking on a crowd . 

Decoded Text

Figure 22: Generation order inferred by Ours-Common for an image from the COCO 2017 valida-
tion set with the image identifier 000000001296.

Image ID: 000000001503

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

a computer monitor sitting on top of a wooden desk . 

Decoded Text

Figure 23: Generation order inferred by Ours-Common for an image from the COCO 2017 valida-
tion set with the image identifier 000000001503.
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Image ID: 000000001993

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

a bed sitting in a room next to a window . 

Decoded Text

Figure 24: Generation order inferred by Ours-Common for an image from the COCO 2017 valida-
tion set with the image identifier 000000001993.

Image ID: 000000000785

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

a man riding skis down a snow covered slope . 

Decoded Text

Figure 25: Generation order inferred by Ours-Rare for an image from the COCO 2017 validation
set with the image identifier 000000000785.
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Image ID: 000000000802
a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

a kitchen with a stove and a refrigerator . 

Decoded Text

Figure 26: Generation order inferred by Ours-Rare for an image from the COCO 2017 validation
set with the image identifier 000000000802.

Image ID: 000000001268

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

a woman sitting on a dock looking at the water . 

Decoded Text

Figure 27: Generation order inferred by Ours-Rare for an image from the COCO 2017 validation
set with the image identifier 000000001268.
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Image ID: 000000001296
the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

the woman is talking on her cell phone . 

Decoded Text

Figure 28: Generation order inferred by Ours-Rare for an image from the COCO 2017 validation
set with the image identifier 000000001296.

Image ID: 000000001503

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

a laptop on a desk with a keyboard and a mouse 

Decoded Text

Figure 29: Generation order inferred by Ours-Rare for an image from the COCO 2017 validation
set with the image identifier 000000001503.
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Image ID: 000000001993

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

a room with a bed , chairs , and tables . 

Decoded Text

Figure 30: Generation order inferred by Ours-Rare for an image from the COCO 2017 validation
set with the image identifier 000000001993.

F.2 DJANGO

We visualize the latent generation order inferred by Variational Order Inference for Django. Se-
quences are generated using a beam search over both the tokens and their insertion positions, using
a beam size of 3. Text on which the model is conditioned is provided on the left for each example.

raise an AttributeError with an argument
string _STR:0_ , formated with self.name [

self . name ] .

Conditioned Text
raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

Decoded Text

Figure 31: Generation order inferred by Ours-VOI for a pseudocode sample from the Django natu-
ral language to code test set with the sample id 154.

F.3 GIGAWORD

We visualize the latent generation order inferred by Variational Order Inference for Gigaword. Se-
quences are generated using a beam search over both the tokens and their insertion positions, using
a beam size of 3. Text on which the model is conditioned is provided on the left for each example.
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for every i and arg in enumerated
iterable args ,

Conditioned Text
for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

Decoded Text

Figure 32: Generation order inferred by Ours-VOI for a pseudocode sample from the Django natu-
ral language to code test set with the sample id 431.

raise an AttributeError with an argument
string _STR:0_ , formated with self.name [

self . name ] .

Conditioned Text
raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

raise AttributeError ( '_STR:0_' % self . name ) 

Decoded Text

Figure 33: Generation order inferred by Ours-L2R for a pseudocode sample from the Django natu-
ral language to code test set with the sample id 154.
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for every i and arg in enumerated
iterable args ,

Conditioned Text
for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

for i , arg in enumerate ( args ) :pass 

Decoded Text

Figure 34: Generation order inferred by Ours-L2R for a pseudocode sample from the Django natu-
ral language to code test set with the sample id 431.

raise an AttributeError with an argument
string _STR:0_ , formated with self.name [

self . name ] .

Conditioned Text
raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

raise AttributeError ( '_STR:0_' % name self . __class__ . __name__ ) 

Decoded Text

Figure 35: Generation order inferred by Ours-Common for a pseudocode sample from the Django
natural language to code test set with the sample id 154.
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for every i and arg in enumerated
iterable args ,

Conditioned Text
for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

for , arg i in args enumerate ( ) :pass 

Decoded Text

Figure 36: Generation order inferred by Ours-Common for a pseudocode sample from the Django
natural language to code test set with the sample id 431.

raise an AttributeError with an argument
string _STR:0_ , formated with self.name [

self . name ] .

Conditioned Text
raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

raise self AttributeError ( '_STR:0_' % . name ) 

Decoded Text

Figure 37: Generation order inferred by Ours-Rare for a pseudocode sample from the Django
natural language to code test set with the sample id 154.
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for every i and arg in enumerated
iterable args ,

Conditioned Text
for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

for i , in arg enumerate ( args ) :pass 

Decoded Text

Figure 38: Generation order inferred by Ours-Rare for a pseudocode sample from the Django
natural language to code test set with the sample id 431.

prime minister of antigua and bar@@
bud@@ a baldwin spencer left here

monday for hong kong , winding up his
four @-@ day visit to shanghai .

Conditioned Text

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

Decoded Text

Figure 39: Generation order inferred by Ours-VOI for a text sample from the Gigaword text sum-
marization test set with the sample id 15.
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the sri lankan navy has taken into
custody two indian fishing trawlers which

were poaching sri lanka &apos; s
northwestern coast and arrested # #

indian fishermen on board , a local
newspaper reported on wednesday .

Conditioned Text

sri lankan navy arrests two indian trawlers 

sri lankan navy arrests two indian trawlers 

sri lankan navy arrests two indian trawlers 

sri lankan navy arrests two indian trawlers 

sri lankan navy arrests two indian trawlers 

sri lankan navy arrests two indian trawlers 

sri lankan navy arrests two indian trawlers 

Decoded Text

Figure 40: Generation order inferred by Ours-VOI for a text sample from the Gigaword text sum-
marization test set with the sample id 33.

prime minister of antigua and bar@@
bud@@ a baldwin spencer left here

monday for hong kong , winding up his
four @-@ day visit to shanghai .

Conditioned Text

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

antigua pm leaves shanghai for hong kong 

Decoded Text

Figure 41: Generation order inferred by Ours-L2R for a text sample from the Gigaword text sum-
marization test set with the sample id 15.
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the sri lankan navy has taken into
custody two indian fishing trawlers which

were poaching sri lanka &apos; s
northwestern coast and arrested # #

indian fishermen on board , a local
newspaper reported on wednesday .

Conditioned Text

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

Decoded Text

Figure 42: Generation order inferred by Ours-L2R for a text sample from the Gigaword text sum-
marization test set with the sample id 33.

prime minister of antigua and bar@@
bud@@ a baldwin spencer left here

monday for hong kong , winding up his
four @-@ day visit to shanghai .

Conditioned Text

antigua pm ends visit to shanghai 

antigua pm ends visit to shanghai 

antigua pm ends visit to shanghai 

antigua pm ends visit to shanghai 

antigua pm ends visit to shanghai 

antigua pm ends visit to shanghai 

Decoded Text

Figure 43: Generation order inferred by Ours-Common for a text sample from the Gigaword text
summarization test set with the sample id 15.
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the sri lankan navy has taken into
custody two indian fishing trawlers which

were poaching sri lanka &apos; s
northwestern coast and arrested # #

indian fishermen on board , a local
newspaper reported on wednesday .

Conditioned Text

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

Decoded Text

Figure 44: Generation order inferred by Ours-Common for a text sample from the Gigaword text
summarization test set with the sample id 33.

prime minister of antigua and bar@@
bud@@ a baldwin spencer left here

monday for hong kong , winding up his
four @-@ day visit to shanghai .

Conditioned Text

antigua ends prime minister visit to china 

antigua ends prime minister visit to china 

antigua ends prime minister visit to china 

antigua ends prime minister visit to china 

antigua ends prime minister visit to china 

antigua ends prime minister visit to china 

antigua ends prime minister visit to china 

Decoded Text

Figure 45: Generation order inferred by Ours-Rare for a text sample from the Gigaword text sum-
marization test set with the sample id 15.
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the sri lankan navy has taken into
custody two indian fishing trawlers which

were poaching sri lanka &apos; s
northwestern coast and arrested # #

indian fishermen on board , a local
newspaper reported on wednesday .

Conditioned Text

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

sri lankan navy arrests # # indian fishermen 

Decoded Text

Figure 46: Generation order inferred by Ours-Rare for a text sample from the Gigaword text sum-
marization test set with the sample id 33.
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