
Learning the Target Network in Function Space

Kavosh Asadi * 1 Yao Liu * 1 Shoham Sabach * 1 2 Ming Yin * 3 Rasool Fakoor 1

Abstract
We focus on the task of learning the value function
in the reinforcement learning (RL) setting. This
task is often solved by updating a pair of online
and target networks while ensuring that the param-
eters of these two networks are equivalent. We
propose Lookahead-Replicate (LR), a new value-
function approximation algorithm that is agnostic
to this parameter-space equivalence. Instead, the
LR algorithm is designed to maintain an equiva-
lence between the two networks in the function
space. This value-based equivalence is obtained
by employing a new target-network update. We
show that LR leads to a convergent behavior in
learning the value function. We also present em-
pirical results demonstrating that LR-based target-
network updates significantly improve deep RL
on the Atari benchmark.

1. Introduction
Learning an accurate value function is a core competency
of reinforcement learning (RL) agents. The value function
is the main ingredient in numerous RL approaches such as
TD (Sutton, 1988), Q-learning (Watkins & Dayan, 1992),
and DQN (Mnih et al., 2015). It is also a key ingredient in
some of the policy-based approaches to RL, such as actor-
critic (Barto et al., 1983), and even in some model-based
RL approaches, for example the Dyna Architecture (Sut-
ton, 1991). Therefore, obtaining a deeper understanding
of the value-function approximation setting allows us to
design better learning algorithms, and ultimately improve
the effectiveness of RL agents in practice.

A key property of the value function v is that it corresponds
to the fixed point of the Bellman operator T (defined in
Section 2), meaning that v = T v. In RL problems with large

*Equal contribution. The order of the first authors was fully
decided by dice roll. 1Amazon 2Technion 3Princeton University.
Correspondence to: Kavosh Asadi <kavosh@alumni.brown.edu>,
Ming Yin <my0049@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

state spaces we leverage function approximation to learn
the value function. More specifically, in this approximate
setting we select a certain hypothesis class (such as neural
networks) to represent an approximate value function vθ
parameterized by θ (Sutton & Barto, 2018). The value-
function approximation problem is then formulated as the
problem of finding a parameter θ whose corresponding value
function vθ solves the Bellman equation vθ = T vθ.

When solving this equation it is typical to maintain two
different parameters, denoted by (θ, w), akin to the use of
target and online networks in DQN and its successors (Mnih
et al., 2015). A deeper examination reveals that these algo-
rithms are designed to find a pair (θ, w) that jointly satisfy
two constraints. First, there is a function-space constraint,
namely that the value function solves the Bellman equation
vw = T vθ. Additionally there is a second constraint, this
time in the parameter space, that the value functions on
two sides of the Bellman equation are parameterized using
exactly the same parameters θ = w. By satisfying this
constraint, we guarantee that we ultimately learn a single
value function. But, is there a more direct formulation to
ensure that we solve the Bellman equation and we also learn
a single value function?

We answer this question affirmatively by reformulating the
value function approximation problem. Specifically, we
substitute the parameter-space constraint in the original for-
mulation with a function-space constraint. In addition to
solving the Bellman equation, vw = T vθ, we impose a sec-
ond function-space constraint vθ = vw. As a consequence
of this reformulation, the value function could be param-
eterized using a pair of parameters (θ, w) where θ is not
necessarily equal to w. Suppose that we have found two
parameters θ ̸= w whose corresponding value functions
are equivalent vθ = vw. Finding such a pair of parame-
ters is doable especially in the overparameterized setting.
Moreover, suppose that this unique value function is the
fixed-point of the Bellman Operator vw = T vθ. We argue
that (θ, w) together constitute a perfectly valid solution to
the original problem, but this pair is excluded by existing
algorithms only because θ ̸= w.

Moving into our algorithmic contribution, we develop a
novel and practical RL algorithm that solves the reformu-
lated problem. The new algorithm, referred to as Lookahead-

1

Learning the Target Network in Function Space

Replicate (LR), is comprised of two alternating operations.
The Lookahead step is designed to handle the first con-
straint, vw = T vθ. It employs the bootstrapping technique
which is best embodied by Temporal-Difference (TD) learn-
ing (Sutton, 1988). Meanwhile, the Replicate step handles
the second constraint vθ = vw by minimizing the mean-
squared error between the two value functions vθ and vw.
Our Replicate step stands in contrast to the prevalent target-
synchronization step in deep RL, which proceeds by copying
(duplicating rather than replicating) the latest online network
by using either hard frequency-based (Mnih et al., 2015)
or soft Polyak-based (Lillicrap et al., 2016) updates. We
present theoretical results demonstrating that the algorithm
converges to a pair of parameters (θ, w) that satisfies the
two constraint jointly.

Inspired by the LR algorithm, we finally augment the target-
update in Rainbow (Hessel et al., 2018). Equipped with
this LR-based update, the resultant deep RL agent signifi-
cantly outperforms the original Rainbow agent on the stan-
dard Atari benchmark (Bellemare et al., 2013). This result
provides empirical evidence that solving the reformulated
problem is doable, and that doing so can ultimately lead into
better performance compared to the existing formulation.

2. Background
Reinforcement learning (RL) is the study of agents that
use their environmental interaction to find a desirable be-
havior (Sutton & Barto, 2018). The Markov Decision Pro-
cess (Puterman, 1994), or MDP, is used to mathematically
define the RL problem. An MDP is specified by a tuple
⟨S,A,R,P, γ⟩, where S is the set of states and A is the
set of actions. At a particular timestep t, the agent is in a
state St and takes an action At. It then receives a reward
signal Rt according toR : S ×A →R and then transitions
into a next state St+1 based on the transition probabilities
P : S ×A× S → [0, 1]. Finally the scalar γ discounts re-
wards that are received in the future.

The agent interacts with the environment by sampling an
action from a policy π : S → P(A), a mapping from
states to a probability distribution over actions. The agent
aims to learn a policy that achieves high rewards in the
long term. More formally, the aim is to maximize the
expected discounted sum of future rewards, which is re-
ferred to as the value function, and is defined as follows:
vπ(s) = E

[∑∞
t=0 γ

tRt | S0 = s, π
]
. The value function

can be written recursively by leveraging the Bellman opera-
tor T π , which is defined as follows:[
T πv

]
(s) =

∑
a∈A

π(a | s)
(
R(s, a)+γ

∑
s′∈S
P(s, a, s′)v(s′)

)
.

In problems where |S| is small a table could be leveraged
to represent the value function v. In large-scale problems,

however, it is undesirable to learn a separate number per
state, so we resort to function approximation. In this case,
we approximate the value function vθ ≈ vπ with the pa-
rameter θ ∈ Θ. In learning vθ, we leverage the Bellman
operator which we discuss next.

3. Revisiting Value-Function Approximation
In this section we provide an alternative formulation for
the value-function approximation task in RL. This task is
often formulated as finding a parameter θ ∈ Θ whose corre-
sponding value function vθ is the fixed-point of the Bellman
operator. We specify the set of such desirable parameters as
follows:

Fsingle = {θ ∈ Θ | vθ = T πvθ} .

We use the subscript single in the set above to accentuate
that this task is solved by algorithms that operate in the space
Θ. This means that only a single parameter is learned across
learning. The two most notable algorithms operating in this
space are the original TD algorithm without a delayed target
network (Sutton, 1988), as well as the residual-gradient
algorithm (Baird, 1995).

In contrast, there exists a second class of algorithms in
which learning is operated in a lifted space, namely Θ ×
Θ. Chief among these algorithms is TD with a delayed
target network which lies at the core of DQN (Mnih et al.,
2015), Rainbow (Hessel et al., 2018), and related deep-RL
algorithms. The value-function approximation component
of these algorithms could be viewed as finding a pair of
parameters in the following set:

Fpair = {θ ∈ Θ, w ∈ Θ | vw = T πvθ and θ = w} .

The bootstrapping step in these algorithms, which is per-
formed by using Bellman lookahead (Sutton & Barto, 2018),
is designed to handle the first constraint vw = T πvθ. Mean-
while, these algorithms also perform a parameter duplica-
tion step, θ ← w, which ensures the second constraint. We
connect the two sets Fsingle and Fpair using our first claim:

Claim 1: θ ∈ Fsingle if and only if (θ, θ) ∈ Fpair .

Prior work established the benefits of operating in Fpair by
maintaining a pair of parameters when learning the value
function (Mnih et al., 2015). However, does the set Fpair

capture all valid solutions to the original value-function
approximation problem?

To answer this question, we need to understand the solu-
tions that are excluded based on each individual constraint
forming Fpair. Clearly, (θ, w) must satisfy vw = T πvθ.
However, it is not clear why (θ, w) must also satisfy the
second constraint θ = w.

Notice that eliminating the constraint θ = w can violate the
notion of learning a single value function. However, forcing

2

Learning the Target Network in Function Space

the two parameters to be equivalent is an overkill provided
that our true goal is to just obtain a single value function.
Instead, we propose to achieve this goal by substituting
the parameter-based constraint with a direct function-space
constraint, namely vθ = vw. This leads us to a new charac-
terization of the solution set:

Fvalue = {θ ∈ Θ, w ∈ Θ | vw = T πvθ and vθ = vw} .

Comparing the two sets Fpair and Fvalue, notice that
Fvalue does not necessarily require the two parameters to be
equivalent (θ = w), merely that the two parameters should
provide a single value function (vθ = vw). To further high-
light the difference between the two sets, suppose that we
have found a pair of parameters θ ̸= w that jointly satisfies
vw = T πvθ and vθ = vw. Then, we arguably have found a
perfectly valid solution to the original task of value-function
approximation, but such a pair is excluded from Fpair just
because θ ̸= w. Conversely, any point in Fpair is actually
included in Fvalue as we highlight below. The set Fvalue is
therefore constituting a more inclusive solution characteri-
zation for the original value-function approximation task.

Claim 2: Fpair ⊂ Fvalue.

Combining Claims 1 and 2, we can conclude that if θ ∈
Fsingle, then (θ, θ) ∈ Fvalue. Moreover, the set Fpair can
exclude a large number of perfectly valid solutions to the
original value-function approximation task. We quantify
this gap below.

Claim 3: |Fpair| ≤ |Fvalue| ≤ |Fpair|2.

The lower bound follows immediately from Claim 2. To
prove the upper bound, suppose that only a single value
function can satisfy the Bellman Equation. Then, choose
(with repetition) any two parameters θ and w from Fsingle.
We know that vθ = vw because there is only one fixed-point.
We also know that vw = T πvθ since otherwise θ and w
cannot be in Fsingle. Therefore, (θ, w) ∈ Fvalue. Now,
since we chose with repetition, we have |Fsingle|2 such
pairs of parameters. We conclude the upper bound in light
of the fact that |Fpair| = |Fsingle| due to Claim 1.

4. Lookahead-Replicate
Having explained the advantage of Fvalue, we now desire to
develop a practical algorithm that finds a solution in Fvalue.
Our first step is to convert each individual constraint in
Fvalue into a loss function. A natural choice is to employ
the least-square difference between the two sides of the
equations, leading us to the pair of loss functions

H(θ, w) = ∥vw − T πvθ∥2D and G(θ, w) = ∥vθ − vw∥2D .

Here, ∥x∥D =
√
x⊤Dx and D is a diagonal matrix with

entries dπ(s1), ..., dπ(sn), and n = |S|. An ideal pair (θ, w)

is one that fully optimizes the two losses H and G. We now
present our algorithm, which we refer to as Lookahead-
Replicate, that is designed to exactly achieve this goal.

Algorithm 1 Lookahead-Replicate (LR)

1: Input: θ0, w0, T,KL,KR, α, β
2: for t = 0, 1, . . . , T − 1 do
3: wt+1 ← Lookahead(θt, wt, α,KL)
4: θt+1 ← Replicate(wt+1, θt, β,KR)
5: end for
6: Return (θT , wT)

As the name indicates, Lookahead-Replicate is comprised of
two individual operations per each iteration. Starting from
the Lookeahead operation, we use the Bellman operator
and the target network θ to lookahead. We then employ
multiple (KL) steps of gradient descent to minimize the
discrepancy between the resultant target T πvθ and vw. The
Lookahead operation is at the core of numerous existing
RL algorithms, such as TD (Sutton, 1988) and Fitted Value
Iteration (Gordon, 1995; Ernst et al., 2005).

Lookahead(θ, w, α,K)

1: w0 ← w
2: for k = 0, 1, . . . ,K − 1 do
3: compute ∇wH(θ, wk)=∇w ∥vwk − T πvθ∥2D
4: wk+1 ← wk − α · ∇wH
5: end for
6: return wK

Replicate(w, θ, β,K)

1: θ0 ← θ
2: for k = 0, 1, . . . ,K − 1 do
3: compute ∇θG(θk, w)=∇θ ∥vθk − vw∥2D
4: θk+1 ← θk − β · ∇θF
5: end for
6: return θK

However, the Replicate operation is where we deviate from
common RL algorithms. Specifically, the traditional way
to update the target network is to simply copy the param-
eters of the online network into the target network, using
either a frequency-based (θ ← w every couple of steps) or
Polyak-based (θ ← (1 − τ)θ + τw) updates. Recall that
these parameter-based updates are performed to achieve the
second constraint in the set Fpair, namely θ = w. However,
our new solution characterization Fvalue is agnostic to this
parameter equivalence. Our Replicate step is free to find
any pair of parameters (θ, w) so long as vθ = vw. To this
end, we use gradient descent to minimize the discrepancy
between the value functions provided by the target and the

3

Learning the Target Network in Function Space

online networks directly in the function space. This could
be viewed as replicating, rather than duplicating or copying,
the online network.

Note that it is straightforward to extend the LR algorithm to
the setting where the agent learns the value function from
environmental interactions. In this case, we just estimate
the gradients of the two loss functions, ∇wH and ∇θG,
from environmental interactions (line 3 in both Lookahead
and Replicate). Similarly, LR can easily be extended to the
full control setting by using the Bellman optimality oper-
ator. Moreover, we may not necessarily use least-squares
loss when performing either the Lookeahed or the Replicate
steps. Rather we can employ, for instance, a distributional
loss. Indeed in our experiments we present an extension of
LR to the online RL setting where we use a distributional
loss akin to the C51 algorithm (Bellemare et al., 2017). In
this sense, similar to TD, LR could be viewed as a funda-
mental algorithm that can naturally facilitate the integration
of many of the existing extensions and techniques that are
popular in the RL literature (Hessel et al., 2018).

4.1. An Illustrative Example

In this section, we provide an illustrative example to visual-
ize the sequence of parameters and value functions found
by the LR algorithm during learning. The example serves as
a demonstration that the LR algorithm is indeed capable of
achieving the value equivalence vθ = vw, as desired, but it is
agnostic to parameter-equivalence θ = w. More concretely,
in this example LR converges to a pair (θ, w) ∈ Fvalue that
does not belong to Fpair since θ ̸= w.

In this simple prediction example (no actions), we just have
two states S = {s1, s2} and the transition matrix P =[
0.6 0.4
0.2 0.8

]
, γ = 1/2, and reward is always 1. The true

value is 2 in both states. We construct state feature vectors
ϕ(s1) = [1, 2, 1]⊤, ϕ(s2) = [1, 1, 2]⊤ and use linear value
function approximation, i.e. vθ(s) = ϕ(s)⊤θ and vw(s) =
ϕ(s)⊤w.

In Figure 1, we show the actual iterations of θ, w in the
parameter space and their corresponding value functions
vθ and vw under the LR algorithm. While the two param-
eters θ and w converge to different points, their resultant
value functions nevertheless converge to the true values:
v(s1) = v(s2) = 2. See Appendix B.1 for more detail.
Also notice that the value functions can even be parame-
terized differently, that is using two completely separate
hypothesis spaces. This stands in contrast to TD-like algo-
rithms where we must use the same hypothesis space for the
two networks in light of the parameter duplication step. See
Appendix B.2 for such an example.

4.2. Convergence Analysis

In this subsection, we formally prove that the Lookahead-
Replicate algorithm converges to a pair of parameters
(θ, w) ∈ Fvalue. We first state our assumptions, which
we later make use of when proving the result.
Assumption 4.1. For all θ ∈ Θ, vθ is differentiable and
Lipschitz-continuous. Formally, given θ1, θ2 ∈ Θ, we have
∥vθ1 − vθ2∥ ≤ κ1 ∥θ1 − θ2∥ for some κ1 > 0.

Following recent work (Asadi et al., 2023b), we also assume
that the loss function in the Lookahead step, H(θ, w) =

∥vw − T πvθ∥2D, satisfies the following three assumptions:
Assumption 4.2.

1. For all θ1, θ2, there exists Fθ > 0 such that:

∥∇wH(θ1, w)−∇wH(θ2, w)∥ ≤ Fθ∥θ1 − θ2∥ .

2. There exists an L > 0 such that:

∥∇wH(θ, w1)−∇wH(θ, w2)∥ ≤ L∥w1 − w2∥ .

3. The function H(θ, w) is Fw-strongly convex in w, i.e.,
for all w1, w2 we have(
∇wH(θ, w1)−∇wH(θ, w2)

)⊤
(w1 − w2)

≥ Fw∥w1 − w2∥2 .

Note that these assumptions are satisfied in the linear
case (Lee & He, 2019) and even in some cases beyond
the linear setting (Asadi et al., 2023b).

We are now ready to state the main theoretical result of our
paper:
Theorem 4.3. Let {(θt, wt)}t∈N be a sequence of parame-
ters generated by the Lookahead-Replicate algorithm. As-
sume Fw > max{Fθ, 7κ

2
1,

4κ2
1

1−ζ }. Given appropriate set-
tings of step-sizes (α, β), where α, β, ζ explained in the
Appendix:∥∥(θt+1, wt+1)− (θ⋆, w⋆)

∥∥ ≤ σ
∥∥(θt, wt)− (θ⋆, w⋆)

∥∥ ,
for some σ < 1. In particular, the pair (θ⋆, w⋆) ∈ Fvalue.

Appendix A includes a more detailed statement of the the-
orem as well as the individual lemmas and steps used to
prove the theorem.
Corollary 4.4. Under the condition of Theorem 4.3, as
t→∞,

∥vθt − vwt∥ ≤
√
2κ1σ

t−1
∥∥(θ0, w0)− (θ⋆, w⋆)

∥∥→ 0.

In addition, we also have

∥vwt − T vθt∥ ≤
√
2κ1σ

t−1
∥∥(θ0, w0)− (θ⋆, w⋆)

∥∥→ 0.

Corollary 4.4, at the value level, shows that (θt, wt) con-
verges to a point in Fvalue.

4

Learning the Target Network in Function Space

2 3 4 5
v(s1)

2

3

4
v(

s 2
)

v
vw

0
1

1

2
0.0

0.5

1.0w

Figure 1. A sample trial of the LR algorithm on the Markov chain. The iterations of vθ and vw in the value space (left), and the iterations
of the two parameters θ and w in the parameter space (right). Notice that LR converges to a pair of points where the value functions are
equivalent vθ = vw despite the fact that θ ̸= w.

5. Experiments
To evaluate LR in a large-scale setting, we now test it on the
Atari benchmark (Bellemare et al., 2013). Our baseline is
Rainbow (Hessel et al., 2018), which is viewed as a com-
bination of important techniques in value-function approxi-
mation. We used the implementation of Rainbow from the
Dopamine (Castro et al., 2018), and followed Dopamine’s
experimental protocol to carry out our experiments.

We ran Rainbow with two common target-network updates,
namely the hard frequency-based update, which is the de-
fault choice in Rainbow, as well as the soft Polyak update.
We used the default hyperparameters from Dopamine. We
reasonably tuned the hyper-parameters associated with each
update. We noticed that tuning the frequency parameter has
minimal effect on Rainbow’s performance. This is consis-
tent with the recent findings of Asadi et al. (2023a) who
noticed that the performance of Rainbow is flat with re-
spect to the frequency parameter. In the case of Rainbow
with Polyak update (θ ← τw + (1− τ)θ), we tuned the τ
parameter and found that τ = 0.005 performs best.

Moving to LR, we used KL = 2000 in the Lookahead opera-
tion as the choice of frequency hyper-parameter in Rainbow.
Notice that the Replicate step introduces two new hyper-
parameters, specifically the number of optimizer updates to
the target network KR and the learning rate of the optimizer
itself. In this case, we used the same learning rate as we
did for optimizing the online network in Rainbow namely
6.25 × 10−5 (again, the default choice in the Dopamine).
We did not tune this parameter. We also chose the Adam
optimizer to update the target network, which is again the
default optimizer used to train the online network in the
Rainbow implementation from Dopamine. This allowed
us to only focus on tuning the KR parameter. We did not
modify other hyper-parameters.

Following the distributional perspective presented by Belle-
mare et al. (2017), Rainbow approximates the distribution of
returns rather than the expected return (Hessel et al., 2018).
This means that the neural network outputs a distribution of
the return instead of a single value. As described by Belle-
mare et al. (2017), define a set of atoms zi for 1 ≤ i ≤ N ,
then the state-action value function is represented as fol-
lows qθ(s, a) =

∑N
i=1 zi · pi(s, a; θ). Thus, to adapt our

approach to this setting, the Replicate operation employs
gradient-descent steps to learn a parameter θ that minimizes
the cross-entropy loss between the distributions p(s, a; θ)
and p(s, a;w), i.e., minθ CE(p(s, a; θ), p(s, a;w)). In prac-
tice, this minimization is performed on a batch of states and
actions sampled from the replay buffer.

Moreover, two natural choices exist when selecting which
state-action pairs to use in our updates. In the first case, we
can update θ by minimizing the loss CE on state-actions
⟨s, a⟩ sampled from the replay buffer. In the second case,
we only sample states from the replay buffer ⟨s⟩ and then
perform the minimization on all actions across the sampled
states. These two variations are referred to as one action
and all action variants of LR in our experiments. These
results are shown in Figure 2. We present these results on 6
games to keep the number of experiments manageable and
later present comprehensive results on all 55 games. We
also used 5 random seeds and present confidence intervals.

We can clearly see in Figure 2 that the two LR variants
are outperforming their Rainbow counterparts on all but
one game. Interestingly, we also see that the Polyak up-
date is roughly as effective as the frequency-based update.
Moreover, the all-action variant of LR is able to outperform
the one-action counterpart. Thus, we will be using this
all-action version for the rest of our experiments.

We are also interested in understanding the effect of chang-

5

Learning the Target Network in Function Space

0 60 120
Training Frames (Million)

0

25000

50000

75000

100000

125000
Asterix

LR (one action)
LR (all action)
Rainbow
Rainbow (Polyak)

0 60 120
Training Frames (Million)

5000

10000

15000

20000

BeamRider

0 60 120
Training Frames (Million)

0

100

200

300

400

500
Breakout

0 60 120
Training Frames (Million)

0

10000

20000

30000

Gopher

0 60 120
Training Frames (Million)

0

50000

100000

150000

200000

250000
Phoenix

0 60 120
Training Frames (Million)

0

5000

10000

15000

Seaquest

Figure 2. A comparison between two variations of LR (blue and red) with Rainbow under the default frequency-based (black) and
Polyak-based (green) updates. The first variation of LR (blue) performs the Replicate step by sampling states and actions from the replay
buffer and minimizing the value difference between the target and online network. The second variation of LR (red) only samples states
from the replay buffer and minimizes the value difference for all actions in each sampled state. Results are averaged over 5 random seeds.

0 60 120
Training Frames (Million)

0.0

2.5

5.0

7.5

10.0

12.5
KR = 20

LR (one action)
LR (all action)
Rainbow
Rainbow (Polyak)

0 60 120
Training Frames (Million)

0.0

2.5

5.0

7.5

10.0

12.5
KR = 100

0 60 120
Training Frames (Million)

0.0

2.5

5.0

7.5

10.0

12.5
KR = 200

0 60 120
Training Frames (Million)

0.0

2.5

5.0

7.5

10.0

12.5
KR = 500

0 60 120
Training Frames (Million)

0.0

2.5

5.0

7.5

10.0

12.5
KR = 1000

Figure 3. A Comparison between Rainbow and LR with different values of KR which is the number of gradient updates to the target
network before updating the online network. The y-axis is the median of human-normalized performance across the 6 games. We are
using 5 random seeds to aggregate the results. Higher is better.

ing KR on the overall performance of the LR algorithm. To
this end, we repeated the previous experiment, exploring a
range of different values for this parameter. These results are
shown in Figure 3. To aggregate all games, we first compute
the human-normalized score, defined as ScoreAgent−ScoreRandom

ScoreHuman−ScoreRandom
,

and then compute the median across 6 games akin to previ-
ous work (Wang et al., 2016).

To further distill these results, we present the area under
the curve for the two variants of Rainbow, and for LR as a
function of KR. Notice from Figure 4 that an inverted-U
shape manifests itself, meaning that LR with an intermediate
value of KR performs best. To explain this phenomenon,
notice that performing a tiny number of updates (small KR)
would mean not changing the target network too much, and

6

Learning the Target Network in Function Space

therefore not appropriately handling the constraint vθ = vw.
On the other extreme, we can fully handle the constraint
vθ = vw by using very large KR, but then doing so can
have the external effect of significantly violating the other
constraint namely vw = T vθ. Therefore, a trade-off exists,
so an intermediate value of KR performs best.

20 200 500 1000
KR

2

3

4

5

6

Rainbow (Polyak)
Rainbow

LR (all action)
LR (one action)

Figure 4. Performance of the LR agent as a function of KR the
number of updates to the target network in the Replicate step.
Higher is better. Notice that an intermediate value of KR performs
best.

The above ablations clearly display the benefit of LR over
standard target network updates. We hypothesize that by
updating the target network via a cross-entropy loss and
gradient-based optimizer, it also benefits from the implicit
regularization effect of stochastic gradient descent. To verify
this hypothesis, we examine the norm of target and online
Q networks’s parameters in LR and Rainbow. As Figure
5 shows, LR reduced both the online and target network’s
norm, which may serve as an implicit regularization on the
Q networks. Notice the difference in the magnitude of the
norm of the online and the target network in LR, which
indicates that LR typically finds a solution where w ̸= θ.

0 60 120
Training Frames (Million)

50

100

150

Mean of weights norm

Norm of LR Online Network
Norm of LR Target Network
Norm of Rainbow Online/Target Network

Figure 5. Parameter norm of target and online Q network in differ-
ent algorithms, averaged over 6 games in Figure 2.

We finally would like to evaluate LR beyond these 6 games.
To this end, we fix KR = 800 = 0.1 ·KL and also chose the

all action implementation of LR. We then ran LR and Rain-
bow on all 55 Atari games. The aggregate learning curve
and the final asymptotic comparison between the two agents
are presented in Figures 6 and 7, respectively. Overall, LR
can outperform Rainbow by both measures.

0 60 120
Training Frames (Million)

0.5

1.0

1.5

2.0

median

Lookahead-Replicate
Rainbow

Figure 6. A comparison in terms of human-normalized median
across 55 games and 5 seeds between LR and Rainbow based on
the number of frames on the x-axis (Top). Here the two agents use
the same amount of data per each point on the x-axis but note that
Rainbow is taking slightly lower number of gradient steps (9% less)
per a fixed number of training frames due to the additional steps in
updating the target network by LR. To ensure a fair comparison
in terms of computation, we also report the same result but with
the total number of optimizer steps on the x-axis (Bottom). Here
Rainbow is using slightly more data than LR for any given point
on the x-axis. LR is outperforming Rainbow in both cases.

Note that in updating the target network, LR takes additional
gradient steps, unlike Rainbow and given the same amount
of data, the total number of gradient steps taken by LR
is slightly higher than the number of gradient steps taken
by Rainbow. To account for this discrepancy, we provide
an alternative presentation of Figure 6 (Bottom) where on
the x-axis we report the number of gradient steps taken by
each agent, and on the y-axis we present the performance
of the corresponding agent having performed the number of
gradient steps on x-axis. This would ensure that we are not
giving any computational advantage to LR.

Observe that under this comparison, LR is still outperform-
ing Rainbow. We also would like to highlight that in this
comparison, given a point on the x-axis, LR has experienced

7

Learning the Target Network in Function Space

a 9% lower amount of data relative to Rainbow. To under-
stand where this number comes from, recall that we always
perform one step of online network update per 4 frames. We
repeat this for some time, and then perform 200 updates to
the target network. Therefore, after T number of overall
updates, we have performed roughly (0.91) ∗ T updates to
the online network (due to the ratio 2000/(2000 + 200)),
and therefore we have seen only 91% of the amount of in-
teraction experienced by Rainbow. It therefore means that
under this comparison we are fair in terms of compute, but
we have now given more data to Rainbow over LR. That
said we still observe that LR is the more superior agent
overall.

- 100% - 10% 0% 10% 50% 300%

YarsRevenge
Asteroids

Zaxxon
Gravitar

Hero
BattleZone

MontezumaRevenge
PrivateEye

Berzerk
Seaquest
Robotank

AirRaid
Frostbite
Riverraid
Bowling
Solaris
Enduro
Atlantis

RoadRunner
FishingDerby

Freeway
Pong

VideoPinball
Kangaroo

Boxing
JourneyEscape

BankHeist
Venture

Jamesbond
Pitfall

TimePilot
Carnival

StarGunner
Breakout

MsPacman
Krull

Qbert
NameThisGame

CrazyClimber
Amidar

Tutankham
Alien

Assault
BeamRider
IceHockey

Pooyan
KungFuMaster

Gopher
ChopperCommand

DemonAttack
WizardOfWor

UpNDown
SpaceInvaders

Asterix
Phoenix

Figure 7. A comparison between the asymptotic performance of
LR and Rainbow on 55 Atari games.

6. Related Work
In this work we emphasized that it is necessary for online
and target networks to be equivalent only in the function
space, not in the parameter space. To the best of our knowl-
edge this is a significant deviation from all of the existing
work. Nonetheless, there are a few examples in the literature
where learning the value function is operated based on some
information related to the function space. For instance Dab-
ney & Thomas (2014) and Knight & Lerner (2018) use
natural gradient to perform value-function optimization by
considering the geometry of the parameter space. Still, using
a different parameterization for online and target networks is
absent in these efforts. A similar trend exists when learning
the policy in RL. In this case, the natural gradient can be
employed to perform distribution-aware updates (Kakade,
2001; Peters & Schaal, 2008). Using variations of natural-
gradient policy optimization along with trust regions has
recently become quite popular leading to a number of com-
petitive baselines in the deep RL setting (Schulman et al.,
2015; 2017; Abdolmaleki et al., 2018; Fakoor et al., 2020).

Our primary algorithmic contribution was to present the
Lookahead-Replicate (LR) algorithm, which updates the
target network in a manner that is fundamentally differ-
ent than standard updates. In deep RL, it is common to
update the target network using one of two strategies: ei-
ther hard frequency-based (copying or duplicating θ into
w every couple of steps) or Polyak (θ = τw + (1 − τ)θ
at every step, also known as soft updates). The frequency-
based update is commonly applied in value-function-only
approaches to RL such as DQN (Mnih et al., 2015), Double
Q-learning (Van Hasselt et al., 2016), C51 (Bellemare et al.,
2017), Rainbow (Hessel et al., 2018), DQN Pro (Asadi et al.,
2022), and is particularly effective in MDPs with discrete
actions. On the other hand, Polyak is predominantly used
in actor-critic algorithms such as DDPG (Lillicrap et al.,
2016), SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al.,
2018), D4PG (Barth-Maron et al., 2018), etc., and is mainly
effective with continuous-action MDPs. Both updates could
be viewed as achieving the goal of learning a single value
function by forcing θ = w. Enforcing this parameter-based
equivalence is an overkill so long as we have the alternative
value-space equivalence proposed in this paper.

Numerous works have studied ways to better utilize the
target network during learning. This line of work includes
using a proximal term between target and online network
parameters to improve the performance (Asadi et al., 2022),
normalizing the target network to improve efficiency and
stability (Hasselt et al., 2016), and applying regulariza-
tion (Shao et al., 2022). Conversely, some works aimed
to remove the target network from while not affecting (Kim
et al., 2019) or even improving performance (Bhatt et al.,
2020; Shao et al., 2022).

8

Learning the Target Network in Function Space

On the more theoretical side, classical temporal difference
(TD) learning analysis (Tsitsiklis & Van Roy, 1996; Melo
et al., 2008; Bhandari et al., 2018) usually focuses on TD in
absence of a target parameter. Recently Lee & He (2019)
studied TD with delayed target updates under the linear
setting. Asadi et al. (2023b) provided novel convergence
guarantees that went beyond the linear setting and worked
with any setting of the frequency of updates for the tar-
get parameter. Convergence of TD was also studied in
presence of regularization (Liu et al., 2012; Zhang et al.,
2021). There are also recent studies on TD in the over-
parameterized setting (Cai et al., 2019; Xiao et al., 2021;
Lyle et al., 2021) where the focus of the studies is on the
original TD algorithm, which unlike Lookahead-Replicate
(LR), enforces the online-target parameter equivalence. Our
Lookahead-Replicate algorithm is specifically designed to
leverage overparameterization by finding two parameters
whose corresponding value functions are equivalent.

7. Conclusion
We presented an alternative formulation for value-function
approximation, a problem which lies at the core of numerous
approaches to RL. Value-function approximation algorithms
commonly maintain two parameters during training. In this
context, we showed that it is not necessary, and arguably un-
desirable, to enforce an equivalence between the parameters.
This equivalence is usually enforced to ensure that a single
value function is learned. But, we demonstrated a more
direct approach to achieving this goal, namely to update
the two parameters while ensuring that their provided value-
functions are equivalent. Algorithmically, we proposed the
new Lookahead-Replicate (LR) algorithm that updates the
target parameter in a fashion that is fundamentally different
than existing work. In particular, rather than copying the
the online parameter, we update the target parameter using
gradient-descent steps to minimize the value-difference be-
tween the target and the online networks. This new style of
update, while simple to understand and implement, led to
improved performance in the context of deep RL and on the
Atari benchmark. These results demonstrated the benefits
of our reformulation as well as our proposed LR algorithm
that is designed to solve the reformulated problem.

8. Future Work
An important area for future work is to understand the be-
havior of LR and TD when we scale up the capacity of the
neural network. An interesting observation is that the gap
between the sizes of the two sets Fpair and Fvalue grows
as we increase the expressiveness of the function approxi-
mator. Therefore, it would be interesting to see if the LR
algorithm is more conducive to scaling than existing algo-
rithms such as TD. Notice that we designed LR to search for

a solution in the larger set Fvalue, whereas TD and similar
algorithms were designed to search for a solution in the set
Fpair. Therefore, our current conjecture is that LR may bet-
ter harness the power of scaling. It would be very interesting
to test the validity of this conjecture in future work.

Notice that the constraint vθ = vw is agnostic to the specific
function class chosen for the value-function approximation
task. It would be interesting to define two separate func-
tion classes to represent the online and the target networks.
In this paper, we mainly focused on the setting where we
operate using the same parameter space for both networks
(Θ×Θ), but in general these two spaces could be different.
Indeed, we show an example of running LR in this setting in
Appendix B. Notice that TD-like algorithms are inapplicable
in this setting because the parameter-space equivalence is
meaningless to enforce when we have different hypothesis
spaces. A question for future work is to identify scenarios
in which using different parameter spaces is fruitful. One
such case, inspired by supervised learning, is the area of
network distillation (Hinton et al., 2015; Rusu et al., 2015)
where the goal is to imitate a first teacher network by using
an often smaller student network. This direction is beyond
the scope of this paper, but is really interesting to explore in
future.

It is well-known that TD can exhibit misbehavior when
used in conjunction with bootstrapping, arbitrary function
approximators, and off-policy updates, the so-called deadly
triad (Sutton & Barto, 2018). An important question for
future work is to compare the LR algorithm with TD as
it pertains to convergence guarantees on simple counter
examples as well as the more general cases. The LR al-
gorithm updates the target network in a different fashion
than TD, therefore, it would be interesting to understand
the impact of this new style of target update on existing
convergence guarantees of TD and related algorithms. More
generally, numerous questions about the TD algorithm have
been studied in the RL literature. Some of these questions
are well-understood while others still remain open. In light
of our new LR algorithm, these questions can be revisited
and addressed in a broader scope. In this paper, we just laid
the foundation and set the stage for such questions to be
studied in future.

Impact Statement
This paper presents a technical work whose goal is to ad-
vance the field of reinforcement learning. While we un-
derstand this work to hold significant potential in terms of
technical advancements, the scope of its societal impact
remains limited at this point.

9

Learning the Target Network in Function Space

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos,

R., Heess, N., and Riedmiller, M. Maximum a posteri-
ori policy optimisation. In International Conference on
Learning Representations, 2018.

Asadi, K., Fakoor, R., Gottesman, O., Kim, T., Littman, M.,
and Smola, A. J. Faster deep reinforcement learning with
slower online network. In Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 19944–19955,
2022.

Asadi, K., Fakoor, R., and Sabach, S. Resetting the opti-
mizer in deep rl: An empirical study. Advances in Neural
Information Processing Systems, 2023a.

Asadi, K., Sabach, S., Liu, Y., Gottesman, O., and Fakoor, R.
Td convergence: An optimization perspective. Advances
in Neural Information Processing Systems, 2023b.

Baird, L. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning. Elsevier,
1995.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney,
W., Horgan, D., TB, D., Muldal, A., Heess, N., and Lilli-
crap, T. Distributional policy gradients. In International
Conference on Learning Representations, 2018.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
adaptive elements that can solve difficult learning con-
trol problems. IEEE transactions on systems, man, and
cybernetics, pp. 834–846, 1983.

Beck, A. First-order methods in optimization. SIAM, 2017.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 449–458. PMLR, 2017.

Bhandari, J., Russo, D., and Singal, R. A finite time anal-
ysis of temporal difference learning with linear function
approximation. In Conference on learning theory, pp.
1691–1692. PMLR, 2018.

Bhatt, A., Argus, M., Amiranashvili, A., and Brox, T. Cross-
norm: On normalization for off-policy reinforcement
learning, 2020.

Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. Neural temporal-
difference learning converges to global optima. Advances
in Neural Information Processing Systems, 2019.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A Research Framework for Deep
Reinforcement Learning. arXiv, 2018.

Dabney, W. and Thomas, P. Natural temporal difference
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 28, 2014.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 2005.

Fakoor, R., Chaudhari, P., and Smola, A. J. P3o: Policy-
on policy-off policy optimization. In Proceedings of
The 35th Uncertainty in Artificial Intelligence Confer-
ence, volume 115 of Proceedings of Machine Learning
Research, pp. 1017–1027. PMLR, 22–25 Jul 2020.

Fujimoto, S., van Hoof, H., and Meger, D. Address-
ing function approximation error in actor-critic methods.
arXiv:1802.09477, 2018.

Gordon, G. J. Stable function approximation in dynamic
programming. In Machine learning. Elsevier, 1995.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. arXiv:1801.01290, 2018.

Hasselt, H. V., Guez, A., Hessel, M., Mnih, V., and Silver,
D. Learning values across many orders of magnitude. In
Neural Information Processing Systems, 2016.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI Conference on Artificial
Intelligence, 2018.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

Kim, S., Asadi, K., Littman, M., and Konidaris, G. Deep-
mellow: removing the need for a target network in deep
q-learning. In Proceedings of the twenty eighth interna-
tional joint conference on artificial intelligence, 2019.

Knight, E. and Lerner, O. Natural gradient deep q-learning,
2018.

Lee, D. and He, N. Target-based temporal-difference learn-
ing. In International Conference on Machine Learning,
pp. 3713–3722. PMLR, 2019.

10

Learning the Target Network in Function Space

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. In Bengio, Y.
and LeCun, Y. (eds.), 4th International Conference on
Learning Representations, ICLR 2016,, 2016.

Liu, B., Mahadevan, S., and Liu, J. Regularized off-policy
TD-learning. Advances in Neural Information Processing
Systems, 2012.

Lyle, C., Rowland, M., Ostrovski, G., and Dabney, W. On
the effect of auxiliary tasks on representation dynamics.
In International Conference on Artificial Intelligence and
Statistics, 2021.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. An analysis
of reinforcement learning with function approximation.
In Proceedings of the 25th international conference on
Machine learning, 2008.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Peters, J. and Schaal, S. Natural actor-critic. Neurocom-
puting, 71(7):1180–1190, 2008. ISSN 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2007.11.026. Progress
in Modeling, Theory, and Application of Computational
Intelligenc.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley Series, 1994.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins,
G., Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu,
K., and Hadsell, R. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings of
the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897. PMLR, 07–09 Jul 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

Shao, L., You, Y., Yan, M., Yuan, S., Sun, Q., and Bohg,
J. Grac: Self-guided and self-regularized actor-critic.
In Proceedings of the 5th Conference on Robot Learn-
ing, volume 164 of Proceedings of Machine Learning
Research, pp. 267–276. PMLR, 2022.

Sutton, R. S. Learning to predict by the methods of tempo-
ral differences. Journal of Machine Learning Research,
1988.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–
163, 1991.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tsitsiklis, J. and Van Roy, B. Analysis of temporal-
diffference learning with function approximation. Ad-
vances in neural information processing systems, 9, 1996.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International conference on
machine learning, 2016.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279–292, 1992.

Wu, Y. F., Zhang, W., Xu, P., and Gu, Q. A finite-time
analysis of two time-scale actor-critic methods. Advances
in Neural Information Processing Systems, 33:17617–
17628, 2020.

Xiao, C., Dai, B., Mei, J., Ramirez, O. A., Gummadi, R.,
Harris, C., and Schuurmans, D. Understanding and lever-
aging overparameterization in recursive value estimation.
In International Conference on Learning Representations,
2021.

Yang, Z., Zhang, K., Hong, M., and Başar, T. A finite sample
analysis of the actor-critic algorithm. In 2018 IEEE con-
ference on decision and control (CDC), pp. 2759–2764.
IEEE, 2018.

Yin, M. and Wang, Y.-X. Towards instance-optimal offline
reinforcement learning with pessimism. Advances in
neural information processing systems, 34:4065–4078,
2021.

Yin, M., Duan, Y., Wang, M., and Wang, Y.-X. Near-optimal
offline reinforcement learning with linear representation:
Leveraging variance information with pessimism. arXiv
preprint arXiv:2203.05804, 2022.

Zhang, S., Yao, H., and Whiteson, S. Breaking the deadly
triad with a target network. In Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
12621–12631. PMLR, 2021.

11

Learning the Target Network in Function Space

A. Proof of Theorem 4.3
Here, we will prove the main theorem. The analysis to be developed now is inspired by the proof technique of the recent
paper (Asadi et al., 2023b). However they focus on standard TD learning settings while we study a new value function
learning algorithm.

We first recall the pair of loss functions H(θ, w) = ∥vw − T vθ∥2D and R(θ, w) = ∥vθ − vw∥2D that are optimized in the
Lookahead-Replicate algorithm. We will provide analysis for a general value functions vθ and vw as long as the pair of
loss function satisfy Assumption 4.2. Therefore, when we differentiate the value function vθ, we get the Jacobian of vθ.
Therefore, for the simplicity of the developments to come, we compute the relevant gradients of the loss functions:

∇wH(θ, w) = 2∇vwD (vw − T vθ) and ∇θG(θ, w) = 2∇vθD (vθ − vw) . (1)

It should also be noted that whenever (θ⋆, w⋆) ∈ Fvalue, we have that (using (1))

∇wH (θ⋆, w⋆) = 2∇vw⋆D (vw⋆ − T vθ⋆) = 0, (2)

where the last equality follows from the constraint that vw⋆ = T vθ⋆ .

Now we begin our proof with the following useful lemmas.
Lemma A.1. Let {(θt, wt)}t∈N be a sequence generated by the Lookahead Replicate algorithm. Then, for all t ∈ N and
0 ≤ k ≤ KL − 1, we have

H
(
θt, w⋆

)
−H

(
θt, wt,k

)
≤ F 2

θ

2Fw

∥∥θt − θ⋆
∥∥2 − (1

α
− L

2

)∥∥wt,k+1 − wt,k
∥∥2 .

Proof. Let t ∈ N. From the Fw-strong convexity of w 7→ H(θt, w), we obtain that

H(θt, wt,k+1) ≥ H(θt, w⋆) + ⟨∇wH(θt, w⋆), wt,k+1 − w⋆⟩+ Fw

2
∥wt,k+1 − w⋆∥2,

which implies

H(θt, w⋆)−H(θt, wt,k+1) ≤ ⟨∇wH(θt, w⋆), w⋆ − wt,k+1⟩ − Fw

2
∥wt,k+1 − w⋆∥2. (3)

Moreover, following (2) we can use the condition that ∇wH(θ⋆, w⋆) = 0, to obtain

⟨∇wH(θt, w⋆), w⋆ − wt,k+1⟩ = ⟨∇wH(θt, w⋆)−∇wH(θ⋆, w⋆), w⋆ − wt,k+1⟩

≤ 1

2Fw
∥∇wH(θt, w⋆)−∇wH(θ⋆, w⋆)∥2 + Fw

2
∥wt,k+1 − w⋆∥2

≤ F 2
θ

2Fw
∥θt − θ⋆∥2 + Fw

2
∥wt,k+1 − w⋆∥2. (4)

Here, the first inequality follows from the fact that for any two vectors a and b we have ⟨a, b⟩ ≤ (1/2d)∥a∥2 + (d/2)∥b∥2
for any d > 0. In this case, we chose d = Fw. Also the last inequality follows from the Fθ-Lipschitz property of ∇wH ,
which is our Assumption 4.2. Now, by combining (3) with (4), we obtain that

H(θt, w⋆)−H(θt, wt,k+1) ≤ F 2
θ

2Fw
∥θt − θ⋆∥2 (5)

From the Lipschitz assumption we can write, due to the Descent Lemma (Beck, 2017) applied to the function w → H(θt, w),
that

H(θt, wt,k+1)−H(θt, wt,k) ≤ ⟨∇wH(θt, wt,k), wt,k+1 − wt,k⟩+ L

2
∥wt,k+1 − wt,k∥2.

Now, notice that using the main step of the Lookahead operation (see step 3) we have wt,k+1 = wt,k − α∇wH(θt, wt,k),
and so we can write:

H(θt, wt,k+1)−H(θt, wt,k) ≤ 1

α
⟨wt,k − wt,k+1, wt,k+1 − wt,k⟩+ L

2
∥wt,k+1 − wt,k∥2

= −
(
1

α
− L

2

)
∥wt,k+1 − wt,k∥2. (6)

12

Learning the Target Network in Function Space

Adding both sides of (5) with (6) yields

H(θt, w⋆)−H(θt, wt,k) ≤ F 2
θ

2Fw
∥θt − θ⋆∥2 −

(
1

α
− L

2

)
∥wt,k+1 − wt,k∥2,

which proves the desired result.

Based on this result, we can now state and prove the following result.

Lemma A.2. Let {(θt, wt)}t∈N be a sequence generated by the Lookahead Replicate algorithm. Choose α = 1/L. Then,
for all t ∈ N and 0 ≤ k ≤ KL − 1, we have

∥∥wt,k+1 − w⋆
∥∥2 ≤ (1− Fw

L

)∥∥wt,k − w⋆
∥∥2 + F 2

θ

LFw

∥∥θt − θ⋆
∥∥2 .

Proof. Let t ∈ N. From the main step of the Lookahead operation (see step 3), that is, wt,k+1 = wt,k − α∇wH(θt, wt,k),
we obtain for any 0 ≤ k ≤ KL − 1 that∥∥wt,k+1 − w⋆

∥∥2 =
∥∥(wt,k − w⋆

)
− α∇wH

(
θt, wt,k

)∥∥2
=
∥∥wt,k − w⋆

∥∥2 + 2α
〈
∇wH

(
θt, wt,k

)
, w⋆ − wt,k

〉
+
∥∥α∇wH

(
θt, wt,k

)∥∥2
=
∥∥wt,k − w⋆

∥∥2 + 2α
〈
∇wH

(
θt, wt,k

)
, w⋆ − wt,k

〉
+
∥∥wt,k+1 − wt,k

∥∥2 . (7)

Using the Fw-strong convexity of w → H(θt, w), we have

H(θt, w⋆) ≥ H(θt, wt,k) + ⟨∇wH(θt, wt,k), w⋆ − wt,k⟩+ Fw

2
∥wt,k − w⋆∥2. (8)

Combining (7) and (8), we get

∥∥wt,k+1 − w⋆
∥∥2 ≤ ∥∥wt,k − w⋆

∥∥2 + 2α

(
H
(
θt, w⋆

)
−H

(
θt, wt,k

)
− Fw

2

∥∥wt,k − w⋆
∥∥2)+

∥∥wt,k+1 − wt,k
∥∥2

= (1− αFw)
∥∥wt,k − w⋆

∥∥2 + 2α
(
H
(
θt, w⋆

)
−H

(
θt, wt,k

))
+
∥∥wt,k+1 − wt,k

∥∥2 .
Hence, from Lemma A.1, we obtain

∥∥wt,k+1 − w⋆
∥∥2 ≤ (1− αFw)

∥∥wt,k − w⋆
∥∥2 + 2α

(
F 2
θ

2Fw

∥∥θt − θ⋆
∥∥2 − (1

α
− L

2

)∥∥wt,k+1 − wt,k
∥∥2)

+
∥∥wt,k+1 − wt,k

∥∥2
= (1− αFw)

∥∥wt,k − w⋆
∥∥2 + αF 2

θ

Fw

∥∥θt − θ⋆
∥∥2 − (1− αL)

∥∥wt,k+1 − wt,k
∥∥2 .

Moreover, by choosing the step-size as α = 1/L we obtain that

∥wt,k+1 − w⋆∥2 ≤
(
1− Fw

L

)
∥wt,k − w⋆∥2 + F 2

θ

LFw
∥θt − θ⋆∥2.

This concludes the proof of this result.

Lemma A.3. Let {(θt, wt)}t∈N be a sequence generated by the Lookahead-Replicate algorithm. Choose α = 1/L. Then,
for all t ∈ N, we have ∥∥wt+1 − w⋆

∥∥2 ≤ a
∥∥wt − w⋆

∥∥2 + η2 (1− a)
∥∥θt − θ⋆

∥∥2 , (9)

where a := (max(1− κ, 0))KL with κ := L−1Fw and η := F−1
w Fθ.

13

Learning the Target Network in Function Space

Proof. Recall that from Lemma A.2 we have that (recall that α = 1/L),

∥∥wt,k+1 − w⋆
∥∥2 ≤ (1− Fw

L

)∥∥wt,k − w⋆
∥∥2 + F 2

θ

LFw

∥∥θt − θ⋆
∥∥2

= (1− κ)
∥∥wt,k − w⋆

∥∥2 + κη2
∥∥θt − θ⋆

∥∥2
≤ (1− κ)+

∥∥wt,k − w⋆
∥∥2 + κη2

∥∥θt − θ⋆
∥∥2 ,

(10)

where (·)+ means max(0, ·), i.e. lower clipping the value by zero.

Then for any t ∈ N, considering the fact that wt+1 = wt,KL , we have∥∥wt+1 − w⋆
∥∥2 =

∥∥wt,KL − w⋆
∥∥2

≤ (1− κ)+
∥∥wt,KL−1 − w⋆

∥∥2 + η2κ
∥∥θt − θ⋆

∥∥2
≤ (1− κ)+

[
(1− κ)

∥∥wt,KL−2 − w⋆
∥∥2 + η2κ

∥∥θt − θ⋆
∥∥2]+ η2κ

∥∥θt − θ⋆
∥∥2

= (1− κ)2+
∥∥wt,KL−2 − w⋆

∥∥2 + η2κ(1 + (1− κ)+)
∥∥θt − θ⋆

∥∥2
≤ · · ·

≤ (1− κ)KL
+

∥∥wt,0 − w⋆
∥∥2 + η2κ

KL−1∑
k=0

(1− κ)k+
∥∥θt − θ⋆

∥∥2
= (1− κ)KL

+

∥∥wt − w⋆
∥∥2 + η2κ

KL−1∑
k=0

(1− κ)k+
∥∥θt − θ⋆

∥∥2
= (1− κ)KL

+

∥∥wt − w⋆
∥∥2 + η2

(
1− (1− κ)KL

+

)∥∥θt − θ⋆
∥∥2 .

The last step above comes from the classical geometric series formula, as we can write:

η2κ

KL−1∑
k=0

(1− κ)
k
+ = η2κ

1− (1− κ)
KL

+

1− (1− κ)+
= η2

(
1− (1− κ)

KL

+

)
,

which completes the desired result.

Lemma A.4. Let {(θt, wt)}t∈N be a sequence of parameters generated by the Lookahead-Replicate algorithm with KR = 1.
Set learning rates α = 1

L and β0:KR−1 = 1
κ2
1
· A−1
B+

√
B2−8A2

, where A = η2(1− a), B = (κ2
1)

−1Fw −A, η = F−1
w Fθ and

a = (max(1− L−1Fw, 0))
KL . Assume Fw > max{Fθ, 7κ

2
1}. Then,∥∥(θt+1, wt+1)− (θ⋆, w⋆)
∥∥ ≤ σ

∥∥(θt, wt)− (θ⋆, w⋆)
∥∥ ,

for some constant σ < 1. In particular, the pair (θ⋆, w⋆) ∈ Fvalue.

Proof. According to Algorithm Replicate(w, θ, β0:KR−1,KR) and the assumption that KR = 1, we have that θt+1 =
θt − 2β · ∇vθtD(vθt − vwt+1). Using this relation yields the following∥∥θt+1 − θ⋆

∥∥2 =
∥∥θt − θ⋆ − 2β · ∇vθtD(vθt − vwt+1)

∥∥2
=
∥∥θt − θ⋆

∥∥2 − 4β(θt − θ⋆)⊤∇vθtD(vθt − vwt+1) + 4β2 ∥∇vθtD(vθt − vwt+1)∥2

=
∥∥θt − θ⋆

∥∥2 − 4β(θt − θ⋆)⊤∇vθtD(vθt − vθ⋆)− 4β(θt − θ⋆)⊤∇vθtD(vw⋆ − vwt+1)

+ 4β2 ∥∇vθtD(vθt − vwt+1)∥2 , (11)

where the last equality follows from the fact that vθ⋆ = vw⋆ since (θ⋆, w⋆) ∈ Fvalue. Next, we first bound the three terms
on the right hand side separately, and plug them back later.

14

Learning the Target Network in Function Space

Now, using the Fw-strong convexity of the function w → H(θ⋆, w), yields

Fw

∥∥θt − θ⋆
∥∥2 ≤ (∇wH

(
θ⋆, θt

)
−∇wH (θ⋆, θ⋆)

)⊤ (
θt − θ⋆

)
= ∇wH

(
θ⋆, θt

)⊤ (
θt − θ⋆

)
= 2(θt − θ⋆)⊤∇vθtD(vθt − vθ⋆), (12)

where the first equality follows from the fact that∇wH (θ⋆, θ⋆) = 2∇vθ⋆D(vθ⋆ − T vθ⋆) = 2∇vθ⋆D(vw⋆ − T vθ⋆) = 0,
since (θ⋆, w⋆) ∈ Fvalue and vw⋆ = T vθ⋆ . The second equal sign comes from ∇wH (θ⋆, θt) = 2∇vθt ·D(vθt − T vθ⋆).
Next, recall that from Assumption 4.1 we have ∥vθ1 − vθ2∥ ≤ κ1 ∥θ1 − θ2∥ for all θ1, θ2 ∈ Θ, and the diagonal of D is a
probability distribution, hence now

4β(θt − θ⋆)⊤∇vθt ·D(vw⋆ − vwt+1) ≤ 4β
∥∥θt − θ⋆

∥∥ · κ2
1

∥∥wt+1 − w⋆
∥∥ ≤ 2βκ2

1(
∥∥θt − θ⋆

∥∥2 + ∥∥wt+1 − w⋆
∥∥2), (13)

where the second inequality uses the simple fact that 2ab ≤ a2 + b2 for any a, b ∈ R. Furthermore,

4β2 ∥∇vθtD(vθt − vwt+1)∥2 ≤ 8β2(∥∇vθtD(vθt − vθ⋆)∥2 + ∥∇vθtD(vw⋆ − vwt+1)∥2)

≤ 8β2κ4
1(
∥∥θt − θ⋆

∥∥2 + ∥∥wt+1 − w⋆
∥∥2), (14)

where the first inequality uses (a + b)2 ≤ 2a2 + 2b2. Therefore, by integrating the bounds found in (12), (13), and (14)
back into (11), we obtain∥∥θt+1 − θ⋆

∥∥2 =
∥∥θt − θ⋆

∥∥2 − 4β(θt − θ⋆)⊤∇vθtD(vθt − vθ⋆)− 4β(θt − θ⋆)⊤∇vθtD(vw⋆ − vwt+1)

+ 4β2 ∥∇vθtD(vθt − vwt+1)∥2

≤
∥∥θt − θ⋆

∥∥2 − 2βFw

∥∥θt − θ⋆
∥∥2 + (2βκ2

1 + 8β2κ4
1)
(∥∥θt − θ⋆

∥∥2 + ∥∥w⋆ − wt+1
∥∥2)

=
(
1− 2βFw + 2βκ2

1 + 8β2κ4
1

) ∥∥θt − θ⋆
∥∥2 + (8κ4

1β
2 + 2κ2

1β
) ∥∥wt+1 − w⋆

∥∥2
≤
(
1− 2βFw + 2βκ2

1 + 8β2κ4
1

) ∥∥θt − θ⋆
∥∥2 + (8κ4

1β
2 + 2κ2

1β
) (

a
∥∥wt − w⋆

∥∥2 + η2 (1− a)
∥∥θt − θ⋆

∥∥2)
=
(
1− 2βFw + 2βκ2

1(1 + 4βκ2
1)[1 + η2(1− a)]

) ∥∥θt − θ⋆
∥∥2 + 2aκ2

1β
(
1 + 4βκ2

1

) ∥∥wt − w⋆
∥∥2 , (15)

where the second inequality follows from Lemma A.3. Combining (9) with (15), we obtain that∥∥θt+1 − θ⋆
∥∥2 + ∥∥wt+1 − w⋆

∥∥2 ≤ E
∥∥θt − θ⋆

∥∥2 +G
∥∥wt − w⋆

∥∥2 (16)

where
E := 1− 2βFw + 2βκ2

1[1 + η2(1− a)] + 8β2κ4
1[1 + η2(1− a)] + η2(1− a) (17)

and
G := 8aκ4

1β
2 + 2aκ2

1β + a (18)

We will show that, if Fw ≥ max{6κ2
1, Fθ, L} and β = η2(1−a)

Fw−κ2
1−κ2

1η
2(1−a)+

√
(Fw−κ2

1−κ2
1η

2(1−a))
2−8κ4

1(1+η2(1−a))2
, we

have that 0 < E,G < 1 holds. Then we can complete the proof of contraction by letting σ = max(E,G).

Now we first prove 0 < E < 1. For simplicity, we first define some constant:

x := βκ2
1 (19)

A := 1 + η2(1− a) (20)

B :=
Fw

κ2
1

−A =
Fw

κ2
1

− 1− η2(1− a) (21)

With the definition of A (20) and B (21), we can simplify our chosen value of β as:

β =
η2(1− a)

Fw − κ2
1 − κ2

1η
2(1− a) +

√
(Fw − κ2

1 − κ2
1η

2(1− a))
2 − 8κ4

1(1 + η2(1− a))2

=
1

κ2
1

· A− 1

B +
√
B2 − 8A2

15

Learning the Target Network in Function Space

It is straightforward to check the following properties about η, a,A,B, which will be useful in the later parts of the proof.

0 <
Fθ

Fw
= η =

Fθ

Fw
< 1 (22)

0 ≤ max(1− κ, 0)KL = a = max(1− κ, 0)KL < 1 (23)
1 < A < 2 (24)
B ≥ 7−A > 6 > 3A (25)

x = βκ2
1 =

A− 1

B +
√
B2 − 8A2

<
2− 1

7 +A
<

1

8
(26)

As we can see B2 − 8A2 > A2 > 0, our set value to β is real and positive.

By the definition of A (20), B (21), and x (26), we can rewrite E (17) as:

E = 8Ax2 − 2Bx+A = 8A

(
x− B

8A

)2

+A− B2

8A

=
1

8A

[
(B − 8Ax)

2 −
(
B2 − 8A2

)]
Notice that B − 8Ax > 0. In order to upper and lower bound the whole term E, we only need to lower and upper bound
8Ax. Now we first upper bound 8Ax. Notice that A < 2,

8Ax =
8A(A− 1)

B +
√
B2 − 8A2

<
8A2

B +
√
B2 − 8A2

=
(B +

√
B2 − 8A2)(B −

√
B2 − 8A2)

B +
√
B2 − 8A2

= B −
√

B2 − 8A2

The second to last equation comes from (B −
√
B2 − 8A2)(B +

√
B2 − 8A2) = 8A2 at the same time.

Now we plug this back to the expression of E. Notice that B − 8Ax > B − (B −
√
B2 − 8A2) > 0, thus

(B − 8Ax)
2 −

(
B2 − 8A2

)
>
(
B −

(
B −

√
B2 − 8A2

))2
−
(
B2 − 8A2

)
=
(√

B2 − 8A2
)2
−
(
B2 − 8A2

)
= 0

Thus E > 0.

Now we try to lower bound 8Ax,

8Ax =
8A(A− 1)

B +
√
B2 − 8A2

>
8A(A− 1)

B +
√
B2 − 8A2 + 8A

=
(B +

√
B2 − 8A2 + 8A)(B −

√
B2 − 8A2 + 8A)

B +
√
B2 − 8A2 + 8A

= B −
√

B2 − 8A2 + 8A

The second to last equation comes from (B +
√
B2 − 8A2 + 8A)(B −

√
B2 − 8A2 + 8A) = 8A2 − 8A = 8A(A − 1).

16

Learning the Target Network in Function Space

Now we plug this back to the expression of E. Because B − (B −
√
B2 − 8A2 + 8A) > B − 8Ax > 0, we have that

E − 1 =
1

8A

[
(B − 8Ax)

2 −
(
B2 − 8A2 + 8A

)]
<

1

8A

[(
B − (B −

√
B2 − 8A2 + 8A)

)2
−
(
B2 − 8A2 + 8A

)]
=

1

8A

[(√
B2 − 8A2 + 8A

)2
−
(
B2 − 8A2 + 8A

)]
= 0

This finishes the proof of 0 < E < 1.

Now we are going to prove that 0 < G < 1. By definition, it is straightforward to see G > 0. In order to show G < 1, we
need to prove

8ax2 + 2ax < 1− a

8ax2 + 2ax =
8a(A− 1)2(

B +
√
B2 − 8A2

)2 +
2a(A− 1)(

B +
√
B2 − 8A2

)
<

8a(A− 1)2(
6 +
√
9A2 − 8A2

)2 +
2a(A− 1)(

6 +
√
9A2 − 8A2

)
=

8a(A− 1)2

49
+

2a(A− 1)

7

=
8aη4(1− a)2

49
+

2aη2(1− a)

7

<
8(1− a)

49
+

2(1− a)

7

=
22(1− a)

49
< 1− a

Thus we finish the proof of 0 < G < 1. Taking that σ = max(E,G) < 1 finishes the proof of theorem statement.

Theorem A.5 (Restatement of Theorem 4.3 in the main paper). Let {(θt, wt)}t∈N be a sequence of parameters generated
by the Lookahead-Replicate algorithm. Set learning rates α = 1

L and β0 = 1
κ2
1
· A−1
B+

√
B2−8A2

, where A = η2(1 − a),

B = (κ2
1)

−1Fw − A, η = F−1
w Fθ and a = (max(1 − L−1Fw, 0))

KL . For 1 ≤ k ≤ KR − 1, set βk = 1
κ2
1

3J+
√
J2−32
32 ,

where J = 2Fw(1− ζ)/κ2
1 − 2 and ζ = max{a, η2(1− a)} < 1. Assume Fw > max{Fθ, 7κ

2
1,

4κ2
1

1−ζ }. Then,∥∥(θt+1, wt+1)− (θ⋆, w⋆)
∥∥ ≤ σ

∥∥(θt, wt)− (θ⋆, w⋆)
∥∥ ,

for some constant σ < 1. In particular, the pair (θ⋆, w⋆) ∈ Fvalue.

Proof. According to Algorithm Replicate(w, θ, β0:K−1,K), we have that θt,k+1 = θt,k − 2βk · ∇vθt,kD(vθt,k − vwt+1).
Using this relation yields the following∥∥θt,k+1 − θ⋆

∥∥2 =
∥∥θt,k − θ⋆ − 2βk · ∇vθt,kD(vθt,k − vwt+1)

∥∥2
=
∥∥θt,k − θ⋆

∥∥2 − 4βk(θ
t,k − θ⋆)⊤∇vθt,kD(vθt,k − vwt+1) + 4β2

k ∥∇vθt,kD(vθt,k − vwt+1)∥2

=
∥∥θt,k − θ⋆

∥∥2 − 4βk(θ
t,k − θ⋆)⊤∇vθt,kD(vθt,k − vθ⋆)− 4βk(θ

t,k − θ⋆)⊤∇vθt,kD(vw⋆ − vwt+1)

+ 4β2
k ∥∇vθt,kD(vθt,k − vwt+1)∥2 , (27)

17

Learning the Target Network in Function Space

where the last equality follows from the fact that vθ⋆ = vw⋆ since (θ⋆, w⋆) ∈ Fvalue. Next, we first bound the three terms
on the right hand side separately, and plug them back later.

Now, using the Fw-strong convexity of the function w → H(θ⋆, w), yields

Fw

∥∥θt,k − θ⋆
∥∥2 ≤ (∇wH

(
θ⋆, θt,k

)
−∇wH (θ⋆, θ⋆)

)⊤ (
θt,k − θ⋆

)
= ∇wH

(
θ⋆, θt,k

)⊤ (
θt,k − θ⋆

)
= 2(θt,k − θ⋆)⊤∇vθt,kD(vθt,k − vθ⋆), (28)

where the first equality follows from the fact that∇wH (θ⋆, θ⋆) = 2∇vθ⋆D(vθ⋆ − T vθ⋆) = 2∇vθ⋆D(vw⋆ − T vθ⋆) = 0,
since (θ⋆, w⋆) ∈ Fvalue and vw⋆ = T vθ⋆ . The second equal sign comes from∇wH

(
θ⋆, θt,k

)
= 2∇vθt,k ·D(vθt,k−T vθ⋆).

Next, recall that from Assumption 4.1 we have ∥vθ1 − vθ2∥ ≤ κ1 ∥θ1 − θ2∥ for all θ1, θ2 ∈ Θ, and the diagonal of D is a
probability distribution, hence now

4βk(θ
t,k − θ⋆)⊤∇vθt,k ·D(vw⋆ − vwt+1) ≤ 4βk

∥∥θt,k − θ⋆
∥∥ · κ2

1

∥∥wt+1 − w⋆
∥∥

≤2βkκ
2
1(
∥∥θt,k − θ⋆

∥∥2 + ∥∥wt+1 − w⋆
∥∥2) (29)

where the second inequality uses the simple fact that 2ab ≤ a2 + b2 for any a, b ∈ R. Furthermore,

4β2
k ∥∇vθt,kD(vθt,k − vwt+1)∥2 ≤ 8β2

k(∥∇vθt,kD(vθt,k − vθ⋆)∥2 + ∥∇vθt,kD(vw⋆ − vwt+1)∥2)

≤ 8β2
kκ

4
1(
∥∥θt,k − θ⋆

∥∥2 + ∥∥wt+1 − w⋆
∥∥2), (30)

where the first inequality uses (a+ b)2 ≤ 2a2 + 2b2. Next, we prove for any k ∈ [KR − 1], it holds that∥∥θt,k − θ⋆
∥∥2 + ∥∥wt+1 − w⋆

∥∥2 ≤ σk(
∥∥θt,0 − θ⋆

∥∥2 + ∥∥wt − w⋆
∥∥2) (31)

for some σk < 1.

We prove this by induction. For k = 1, by Lemma A.4 and the choice of β0 we have the conclusion holds true. Now assume
that the above holds true for a iteration number k, then for k + 1, by integrating the bounds found in (12), (13), and (14)
back into (11), we obtain∥∥θt,k+1 − θ⋆

∥∥2 =
∥∥θt,k − θ⋆

∥∥2 − 4βk(θ
t,k − θ⋆)⊤∇vθt,kD(vθt,k − vθ⋆)− 4βk(θ

t − θ⋆)⊤∇vθtD(vw⋆ − vwt+1)

+ 4β2
k ∥∇vθt,kD(vθt,k − vwt+1)∥2

≤
∥∥θt,k − θ⋆

∥∥2 − 2βkFw

∥∥θt,k − θ⋆
∥∥2 + (2βkκ

2
1 + 8β2

kκ
4
1)
(∥∥θt,k − θ⋆

∥∥2 + ∥∥w⋆ − wt+1
∥∥2)

≤
∥∥θt,k − θ⋆

∥∥2 − 2βkFw

∥∥θt,k − θ⋆
∥∥2 + (2βkκ

2
1 + 8β2

kκ
4
1)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

where the second inequality uses induction hypothesis. The above is equivalent to∥∥θt,k+1 − θ⋆
∥∥2 ≤ ∥∥θt,k − θ⋆

∥∥2 − 2βkFw

∥∥θt,k − θ⋆
∥∥2 + (2βkκ

2
1 + 8β2

kκ
4
1)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

⇔
∥∥θt,k+1 − θ⋆

∥∥2 + (1− 2βkFw)
∥∥w⋆ − wt+1

∥∥2 ≤ (1− 2βkFw)[
∥∥θt,k − θ⋆

∥∥2 + ∥∥w⋆ − wt+1
∥∥2]

+(2βkκ
2
1 + 8β2

kκ
4
1)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

⇔
∥∥θt,k+1 − θ⋆

∥∥2 + (1− 2βkFw)
∥∥w⋆ − wt+1

∥∥2 ≤ (1− 2βkFw + 2βkκ
2
1 + 8β2

kκ
4
1)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

⇔
∥∥θt,k+1 − θ⋆

∥∥2 + ∥∥w⋆ − wt+1
∥∥2 ≤ (1− 2βkFw + 2βkκ

2
1 + 8β2

kκ
4
1)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

+2βkFw

(
a
∥∥wt − w⋆

∥∥2 + η2 (1− a)
∥∥θt − θ⋆

∥∥2) ,
(32)

where the last inequality uses Lemma A.3. Now, let ζ = max{a, η2(1− a)} < 1, then above implies∥∥θt,k+1 − θ⋆
∥∥2 + ∥∥w⋆ − wt+1

∥∥2 ≤ (1− 2βkFw(1− ζ) + 2βkκ
2
1 + 8β2

kκ
4
1)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

18

Learning the Target Network in Function Space

Denote x := βkκ
2
1 and J = 2Fw(1− ζ)/κ2

1 − 2, then above is equivalent to∥∥θt,k+1 − θ⋆
∥∥2 + ∥∥w⋆ − wt+1

∥∥2 ≤ (1− Jx+ 8x2)
(∥∥θt,0 − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2) (33)

It remains to show
0 < 1− Jx+ 8x2 < 1. (34)

Since Fw ≥ 4κ2
1

1−ζ , this implies J ≥ 6 which further implies J2 − 32 ≥ 0. Next, since x > 0, the above is equivalent to

J +
√
J2 − 32

16
< x <

J

8
. (35)

By our choice

βk =
1

κ2
1

3J +
√
J2 − 32

32
⇔ x =

1

2

(
J +
√
J2 − 32

16
+

J

8

)
,

then (35) is satisfied. Finally, combine (33) and (34), by induction we receive the conclusion that∥∥θt,k − θ⋆
∥∥2 + ∥∥w⋆ − wt+1

∥∥2 ≤ σk

(∥∥θt,0 − θ⋆
∥∥2 + ∥∥w⋆ − wt

∥∥2)
where σ1 is defined in Lemma A.4 and σk := 1− Jx+ 8x2 < 1 for all 2 ≤ k ≤ KR with x = 3J+

√
J2−32
32 . In particular,

choose k = KR − 1 and σ2 = σKR
, we have∥∥θt+1 − θ⋆
∥∥2 + ∥∥w⋆ − wt+1

∥∥2 ≤ σ2
(∥∥θt − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

where we used θt,KR−1 = θt+1 and θt,0 = θt. This is exactly our claim.

Remark A.6. We do emphasize the theoretical convergence analysis is for the population update (where we assume the
access to H that contains the population operator T), where the in practice the algorithm work in the data-driven fashion. To
incorporate this perspective, we could conduct the finite sample analysis that is similar to (Yang et al., 2018; Wu et al., 2020)
for actor-critic algorithms and (Yin & Wang, 2021; Yin et al., 2022) for offline RL. We leave these data-driven analysis for
future work.
Corollary A.7. As t→∞,

∥Vθt − Vwt∥ ≤
√
2κ1σ

t−1

√
∥θ0 − θ⋆∥2 + ∥w⋆ − w0∥2 → 0.

In addition, we also have

∥Vwt − T Vθt∥ ≤
√
2κ1σ

t−1

√
∥θ0 − θ⋆∥2 + ∥w⋆ − w0∥2 → 0.

Proof. For the first part of the proof, notice Vθ⋆ = Vw⋆ , we have

∥Vθt − Vwt∥2 = ∥Vθt − Vθ⋆ + Vw⋆ − Vwt∥2 ≤ 2(∥Vθt − Vθ⋆∥2 + ∥Vw⋆ − Vwt∥2)

≤2κ2
1(
∥∥θt − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2) ≤ 2κ2

1σ
2(
∥∥θt−1 − θ⋆

∥∥2 + ∥∥w⋆ − wt−1
∥∥2)

≤2κ2
1(σ

2)t−1(
∥∥θ0 − θ⋆

∥∥2 + ∥∥w⋆ − w0
∥∥2)→ 0.

where the last two inequalities use Theoerem 4.3. For the second part of the proof,

∥Vwt − T Vθt∥ = ∥Vwt − Vw⋆ + T Vθ⋆ − T Vθt∥ ≤ 2(∥T Vθt − T Vθ⋆∥2 + ∥Vw⋆ − Vwt∥2)

≤2κ2
1(γ

2
∥∥θt − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2) ≤ 2κ2

1(
∥∥θt − θ⋆

∥∥2 + ∥∥w⋆ − wt
∥∥2)

≤2κ2
1σ

2(
∥∥θt−1 − θ⋆

∥∥2 + ∥∥w⋆ − wt−1
∥∥2)

≤2κ2
1(σ

2)t−1(
∥∥θ0 − θ⋆

∥∥2 + ∥∥w⋆ − w0
∥∥2)→ 0.

19

Learning the Target Network in Function Space

B. Numerical simulation details in illustrative examples
B.1. Numerical simulation with a single parameter space

In this section, we provide the details of the numerical simulation study, as an illustrative example of the algorithm
convergence in Section 4. We consider a Markov ChainM = (S, P, γ, r) with two states S = {s1, s2} and the transition

matrix P =

[
0.6 0.4
0.2 0.8

]
, e.g. P (s1|s1) = 0.6. γ = 1

2 . Let r =

[
1
1

]
. The true value v∗ = (I − γP)−1r =

[
2
2

]
.

Next, we parametrize the function class vθ and vw differently. We set the linear function class vθ(s) = ϕθ(s)
⊤θ where

ϕθ(·), θ ∈ R3 with ϕθ(s1) =
[
1 2 1

]⊤
and ϕθ(s2) =

[
1 1 2

]⊤
. The stationary distribution for P is ρ = (1/3, 2/3).

In Figure 1, we set the initial point θ0 = [1.2, 2, 0.5], w = [0.1, 2, 0.5], T = 800,KL = 400,KR = 1. The parameter θ
converges to θT = [0.663, 0.445, 0.445], the parameter w converges to wT = [−0.236, 0.745, 0.745] and both the value
functions converge to vwT = vθT = v∗ = [2, 2].

B.2. Numerical simulation with different parameter spaces

1.200
1.225

1.250 0.0
0.1

0.2

0.25

0.30

0.35

(a) Path of θ in θ-parameter space

0.3 0.4 0.5 0.6 0.7

0.60

0.62

0.64

0.66 w

(b) Path of w in w-parameter space

1.6 1.8 2.0
V(s1)

1.25

1.50

1.75

2.00

V(
s 2

)

v
vw

(c) Path of vθ and vw in value function space

Figure 8. A simulation of the convergence for Algorithm 1 with different parameterization. Parameter θ ∈ R3, and parameter w ∈ R2.

Although in main paper we only discuss the case of both θ and w are in the same parameter space Θ, our algorithm and
analysis can naturally apply to the case when there are two different ways of parameterization for vθ and vw. Here we
provide an numerical simulation of such setting.

The MRP as well as vθ is the same as described in the single parameter space example, except that we use a different
parameterization for vw. We set the linear function class vw(s) = ϕw(s)

⊤w where ϕw(·), w ∈ R2 with ϕw(s1) =
[
1 2

]⊤
and ϕw(s2) =

[
2 1

]⊤
. In Figure 8, we set the initial point θ0 = [1.2, 0, 0.3], w = [0.3, 0.6], T = 800,KL = 400,KR = 1.

The parameter θ converges to θT = [1.264, 0.245, 0.245], the parameter w converges to wT = [2/3, 2/3] and both the value
functions converge to vwT = vθT = v∗ = [2, 2].

20

Learning the Target Network in Function Space

C. Full Results on Atari

0 60 120
Training Frames (Million)

2500

5000

7500

10000

12500

AirRaid

Lookahead-Replicate (LR)
Rainbow

0 60 120
Training Frames (Million)

2000

4000

6000

Alien

0 60 120
Training Frames (Million)

0

1000

2000

3000

4000

Amidar

0 60 120
Training Frames (Million)

5000

10000

15000
Assault

0 60 120
Training Frames (Million)

0

50000

100000

150000

200000

Asterix

0 60 120
Training Frames (Million)

1000

1500

2000
Asteroids

0 60 120
Training Frames (Million)

0.0

0.2

0.4

0.6

0.8

1.0
1e6 Atlantis

0 60 120
Training Frames (Million)

0

500

1000

1500

BankHeist

0 60 120
Training Frames (Million)

0

10000

20000

30000

40000

BattleZone

0 60 120
Training Frames (Million)

5000

10000

15000

BeamRider

0 60 120
Training Frames (Million)

500

750

1000

1250

1500

Berzerk

0 60 120
Training Frames (Million)

10

20

30

40

50

Bowling

0 60 120
Training Frames (Million)

0

25

50

75

100

Boxing

0 60 120
Training Frames (Million)

0

100

200

300

400

Breakout

0 60 120
Training Frames (Million)

1000

2000

3000

4000

5000

Carnival

0 60 120
Training Frames (Million)

0

50000

100000

150000

200000

ChopperCommand

0 60 120
Training Frames (Million)

50000

75000

100000

125000

150000

175000
CrazyClimber

0 60 120
Training Frames (Million)

20000

40000

60000

80000

100000

DemonAttack

0 60 120
Training Frames (Million)

500

1000

1500

2000

2500
Enduro

0 60 120
Training Frames (Million)

50

0

50
FishingDerby

0 60 120
Training Frames (Million)

20

25

30

35
Freeway

0 60 120
Training Frames (Million)

0

2000

4000

6000

8000

Frostbite

0 60 120
Training Frames (Million)

0

10000

20000

30000

Gopher

0 60 120
Training Frames (Million)

0

1000

2000

3000
Gravitar

0 60 120
Training Frames (Million)

10000

20000

30000

40000

50000
Hero

0 60 120
Training Frames (Million)

15

10

5

0

IceHockey

0 60 120
Training Frames (Million)

0

5000

10000

15000

Jamesbond

0 60 120
Training Frames (Million)

8000

6000

4000

2000

0
JourneyEscape

Figure 9. Learning curves for 55 games (Part I).

21

Learning the Target Network in Function Space

0 60 120
Training Frames (Million)

0

5000

10000

15000

Kangaroo

0 60 120
Training Frames (Million)

6000

7000

8000

9000

10000

Krull

0 60 120
Training Frames (Million)

10000

20000

30000

40000

KungFuMaster

0 60 120
Training Frames (Million)

0

500

1000

1500

MontezumaRevenge

0 60 120
Training Frames (Million)

1000

2000

3000

4000

5000

MsPacman

0 60 120
Training Frames (Million)

4000

6000

8000

10000
NameThisGame

0 60 120
Training Frames (Million)

0

100000

200000

300000
Phoenix

0 60 120
Training Frames (Million)

300

200

100

0

100

200

Pitfall

0 60 120
Training Frames (Million)

10

0

10

20

Pong

0 60 120
Training Frames (Million)

2000

4000

6000

8000

Pooyan

0 60 120
Training Frames (Million)

0

5000

10000

15000

PrivateEye

0 60 120
Training Frames (Million)

0

10000

20000

30000

Qbert

0 60 120
Training Frames (Million)

5000

10000

15000

20000

25000
Riverraid

0 60 120
Training Frames (Million)

20000

40000

60000

RoadRunner

0 60 120
Training Frames (Million)

20

40

60

Robotank

0 60 120
Training Frames (Million)

0

5000

10000

15000

Seaquest

0 60 120
Training Frames (Million)

0

500

1000

1500

2000

Solaris

0 60 120
Training Frames (Million)

0

2500

5000

7500

10000

12500

SpaceInvaders

0 60 120
Training Frames (Million)

0

20000

40000

60000

80000

StarGunner

0 60 120
Training Frames (Million)

2500

5000

7500

10000

12500
TimePilot

0 60 120
Training Frames (Million)

100

150

200

250

Tutankham

0 60 120
Training Frames (Million)

20000

40000

60000

80000

UpNDown

0 60 120
Training Frames (Million)

0

250

500

750

1000

Venture

0 60 120
Training Frames (Million)

0

200000

400000

600000
VideoPinball

0 60 120
Training Frames (Million)

0

5000

10000

15000

20000

25000
WizardOfWor

0 60 120
Training Frames (Million)

20000

40000

60000

80000

YarsRevenge

0 60 120
Training Frames (Million)

0

5000

10000

15000

Zaxxon

Figure 10. Learning curves for 55 games (Part II).

22

