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Abstract001

Predicting stock movements from financial dis-002
closures remains challenging due to noisy mar-003
ket signals and sparse supervision. We con-004
struct a large-scale dataset of over 25,000 SEC005
filings (10-K and DEF 14A), aligned with daily006
stock prices and economic indicators for S&P007
500 companies from 2000–2024. We formulate008
a three-class classification task (Up, Down, Sta-009
ble) based on a 7-day input window, and com-010
pare model performance under two regimes: an011
unbalanced setting with a ±2% stability thresh-012
old, and a more balanced one at ±0.5%. Deep013
models like GRUs and Transformers tend to014
collapse to the majority class, while XGBoost015
and SGD with RBF kernel outperform in the016
unbalanced and balanced settings, respectively.017
We also incorporate a Retrieval-Augmented018
Generation (RAG) chatbot for querying filings019
and generating grounded explanations. Our020
results highlight the robustness of combining021
traditional models with static textual features022
for financial trend prediction and document un-023
derstanding.024

1 Introduction025

The S&P 500 index, which tracks 500 large-cap026

U.S. companies, serves as a key barometer of027

the U.S. economy (Reiff, 2025). Predicting stock028

movement often requires analyzing both historical029

price trends and SEC-mandated disclosures such030

as Form 10-K (annual financial summaries) and031

DEF 14A (proxy statements). These filings are032

long and complex, making timely analysis diffi-033

cult—especially for non-experts.034

This paper presents a multi-modal system that035

combines stock and macroeconomic time-series036

data with textual SEC filings to predict short-term037

stock movement following disclosure events. Our038

system also supports natural language explanations039

via a Retrieval-Augmented Generation (RAG) mod-040

ule to improve interpretability.041

Our contributions are threefold:042

• Multi-Modal Dataset: We compiled over 043

25,000 SEC filings from 2000–2024, aligned 044

with daily stock prices and monthly economic 045

indicators (CPI, inflation) for S&P 500 firms. 046

• Model Benchmarking: We evaluated stock 047

trend prediction as a three-class classification 048

task (Up, Down, Stable), training models on 049

structured stock and economic features, both 050

with and without Doc2Vec embeddings from 051

SEC filings. We assess performance under 052

two threshold regimes: unbalanced (±2%) 053

and balanced (±0.5%). 054

• RAG-Based Interpretability: We developed 055

a Retrieval-Augmented Generation chatbot 056

that provides document-grounded answers to 057

user queries over 10-K and DEF 14A filings. 058

Our system provides an interpretable, multi- 059

source framework for understanding stock move- 060

ment around financial disclosure events. 061

2 Related Works 062

Our work draws on advances in document em- 063

beddings, sequential modeling, and retrieval- 064

based NLP. Doc2Vec (implemented via Gen- 065

sim: version 4.3.3, LGPL 2.1 License, https:// 066

radimrehurek.com/gensim/) (Le and Mikolov, 067

2014) extends Word2Vec (Mikolov et al., 2013) by 068

introducing a learned document-level embedding 069

that captures global semantics, making it suitable 070

for encoding long-form SEC filings. For modeling 071

time-series data, we adopted Gated Recurrent Unit 072

(GRU) (Chung et al., 2014), a simplified variant 073

of Long Short-Term Memory (LSTM) (Hochreiter 074

and Schmidhuber, 1997) that offers faster training 075

and competitive performance, particularly effec- 076

tive on short sequences such as 7-day stock win- 077

dows. To enhance interpretability, we integrated 078

Retrieval-Augmented Generation (RAG) (Lewis 079
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et al., 2021), which grounds LLM outputs in re-080

trieved document segments. Our implementation081

uses the LlamaIndex framework (version 0.12.19,082

MIT License, https://github.com/run-llama/083

llama_index) (Liu, 2022) to support indexing and084

querying of financial filings.085

3 Methodology086

Our framework consists of three components: (1)087

a document encoder that embeds 10-K and DEF088

14A filings using Doc2Vec pretrained on 1,000 his-089

torical filings from 2000–2024; (2) a stock move-090

ment classifier that predicts up, down, or stable091

using 7-day (or 30-day) windows of stock prices,092

volume, CPI, and inflation data, optionally aug-093

mented with Doc2Vec embeddings; and (3) a094

RAG-based interpretability module that retrieves095

relevant filing segments and generates grounded096

natural language answers to user queries using097

a pre-trained LLM. We evaluated Gated Recur-098

rent Units (GRU), Transformers (Vaswani et al.,099

2023), eXtreme Gradient Boosting (XGBoost) (ver-100

sion 3.0.0, Apache-2.0 License, https://github.101

com/dmlc/xgboost) (Chen and Guestrin, 2016),102

Perceptron, Multi-Layer Perceptron, Stochastic103

Gradient Descent with Radial Basis Function104

(SGD+RBF) (Rahimi and Recht, 2007), Stochastic105

Gradient Descent with Polynomial Kernel Approx-106

imation (SGD+Poly), Passive Aggressive Classi-107

fier (PA) (Shalev-shwartz et al., 2003), and Gaus-108

sian Naive Bayes (GNB) (Rish, 2001). We use109

scikit-learn library (version 1.6.1, BSD 3-Clause110

License, https://scikit-learn.org/stable/)111

(Pedregosa et al., 2018) access these algorithms.112

4 Evaluation113

4.1 Dataset114

We constructed a multi-source dataset115

(2000–2024) comprising ∼25,000 SEC fil-116

ings (10-K and DEF 14A) (via yfinance:117

version 0.2.59, Apache License, https:118

//github.com/ranaroussi/yfinance), daily119

stock data for ∼500 S&P 500 companies120

(via sec-api: version 1.0.32, MIT License,121

https://github.com/janlukasschroeder/122

sec-api-python), and monthly CPI and inflation123

data. Filings were aligned to stock timelines by124

tagging each day with available document paths.125

We used ∼1,000 filings to pretrain a Doc2Vec126

model (size=384, epochs=20) due to compute127

constraints. 347 stock CSV files are used for 128

training, 150 stock CSV files are used for testing. 129

4.2 Experimental Setup 130

We evaluated models under two regimes based on 131

1-day change of closing price: an unbalanced set- 132

ting using a ±2% threshold to define up, down, 133

or stable classes, and a balanced setting using 134

a tighter ±0.5% threshold to reduce class imbal- 135

ance. In the unbalanced setting, we test XGBoost, 136

GRU, and Transformer models, both with and with- 137

out Doc2Vec embeddings (note: Transformer is 138

only tested with Doc2Vec). In the balanced set- 139

ting, we evaluated Perceptron, Multi-Layer Per- 140

ceptron, Stochastic Gradient Descent with Radial 141

Basis Function (SGD+RBF), Stochastic Gradient 142

Descent with Polynomial Kernel Approximation 143

(SGD+Poly), Passive Aggressive Classifier (PA), 144

and Gaussian Naive Bayes (GNB). 145

4.3 Model Hyperparameters & Training 146

Details 147

Table 1 summarizes the key hyperparameters used 148

in our experiments. Due to resource constraints, 149

we did not perform extensive hyperparameter tun- 150

ing. Values (e.g., GRU hidden size, XGBoost depth, 151

RBF/Poly kernel parameters) were selected based 152

on common practice and prior experience with 153

time-series and classification tasks. For example, 154

we use a larger GRU hidden size when Doc2Vec 155

embeddings are present. For SGD-based kernel 156

approximations, we follow conventional settings 157

such as γ = 0.1. 158

Model Key Parameters
GRU num_layers=2, batch=32,

hidden_size=64 / 128
Transformer nhead=4, num_layers=2,

hidden_size=64, batch=32
XGBoost max_depth=6, eta=0.1,

n_estimators=100
SGD + RBF gamma=0.1, loss="log_loss"
SGD + Poly degree=3, coef0=1, loss="log_loss"
Perceptron max_iter=1000, warm_start=True
PassiveAggressive loss="hinge", max_iter=1000,

warm_start=True
GNB default scikit-learn settings

Table 1: Model configurations used in our experiments.

We used torch (version 2.6.0) (Paszke et al., 159

2019) for model implementation and training, 160

pandas (version 2.2.3) (Mckinney, 2011) for data 161

preprocessing, and scikit-learn (version 1.6.1), 162

(Pedregosa et al., 2018), for model evaluation and 163

dataset spliting. 164
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All experiments were conducted on a MacBook165

with an M1 GPU. Most training runs (e.g., XG-166

Boost, SGD, MLP etc.) completed in under one167

hour. Training GRU and Transformer models with-168

out Doc2Vec embeddings took approximately 6–8169

hours each. When Doc2Vec embeddings were in-170

cluded, GRU training extended to nearly one week171

due to increased input dimensionality and data spar-172

sity.173

Model Class Precision Recall F1-Score

GRU
Stable 0.76 1.00 0.86

Up 0.00 0.00 0.00
Down 0.19 0.00 0.00

GRU + Doc2Vec
Stable 0.76 1.00 0.86

Up 0.00 0.00 0.00
Down 0.00 0.00 0.00

XGBoost
Stable 0.77 1.00 0.87

Up 0.54 0.02 0.05
Down 0.58 0.04 0.08

XGBoost + Doc2Vec
Stable 0.80 0.88 0.84

Up 0.26 0.16 0.20
Down 0.25 0.18 0.21

Transformer
Stable 0.76 1.00 0.86

Up 0.00 0.00 0.00
Down 0.00 0.00 0.00

Table 2: Per-class precision, recall, and F1 scores on the
unbalanced (±2%) setting.

Model Class Precision Recall F1-Score

MLP + Doc2Vec
Stable 0.00 0.00 0.00

Up 0.38 1.00 0.55
Down 0.00 0.00 0.00

Perceptron + Doc2Vec
Stable 0.28 0.91 0.43

Up 0.39 0.03 0.06
Down 0.35 0.07 0.11

SGD + RBF + Doc2Vec
Stable 0.28 0.08 0.12

Up 0.37 0.66 0.48
Down 0.34 0.26 0.30

SGD + Poly + Doc2Vec
Stable 0.28 0.13 0.17

Up 0.38 0.25 0.30
Down 0.34 0.62 0.44

GNB + Doc2Vec
Stable 0.28 0.99 0.44

Up 0.39 0.00 0.01
Down 0.38 0.01 0.01

PA + Doc2Vec
Stable 0.29 0.80 0.42

Up 0.38 0.18 0.24
Down 0.36 0.04 0.08

Table 3: Per-class precision, recall, and F1 scores on the
balanced (±0.5%) setting, using Doc2Vec features.

4.4 Analysis 174

Our evaluation results (based on a single run with 175

seed 42), as summarized in Tables 2 and 3, reveal 176

several key findings across both unbalanced and 177

balanced settings: 178

• Class Imbalance Remains a Major Chal- 179

lenge: Under the unbalanced regime (±2% 180

threshold), sequence-based models like GRU 181

and Transformer completely collapse to pre- 182

dicting the dominant Stable class. We tested 183

multiple thresholds (0.5%, 1%, 2%) and 184

weighted losses for GRU, but none improved 185

minority-class recall. Transformer was only 186

evaluated in its default configuration and al- 187

ready exhibited mode collapse. 188

• Doc2Vec Can Hurt Sequential Models: 189

Adding Doc2Vec embeddings to GRU exac- 190

erbates its failure by fully collapsing to the 191

Stable class. This suggests that injecting high- 192

dimensional, unfiltered document representa- 193

tions may overwhelm the GRU’s capacity to 194

learn temporal patterns. Due to Transformer’s 195

weak base performance, we did not test it with 196

Doc2Vec. 197

• XGBoost Performs Best Under Imbalance: 198

Among all models tested in the unbalanced 199

regime, XGBoost stands out for its robust 200

handling of class imbalance. Although recall 201

for minority classes is still low, its precision 202

on Up (0.54) and Down (0.58) indicates that 203

when the model does make such predictions, 204

they tend to be correct. 205

• XGBoost + Doc2Vec Enhances Recall: In- 206

corporating Doc2Vec improves XGBoost’s re- 207

call on minority classes substantially (Up: 2% 208

→ 16%, Down: 4% → 18%), though preci- 209

sion decreases. This trade-off leads to higher 210

overall F1-scores, validating the benefit of 211

document embeddings for capturing rare but 212

meaningful events. 213

• SGD + RBF Remains Strongest in Balanced 214

Regime: In the balanced regime (±0.5% 215

threshold), we switch to a 30-day lookback 216

window to provide more historical context. 217

Here, Stochastic Gradient Descent with RBF 218

kernel approximation achieves the highest per- 219

class F1-scores and maintains a solid balance 220

between precision and recall across all classes. 221
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It demonstrates strong generalization despite222

using static embeddings and partial-fit train-223

ing.224

• SGD + Poly Offers Competitive Alterna-225

tive: While slightly trailing SGD + RBF, the226

polynomial kernel variant of SGD performs227

well, especially on the Down class (F1 =228

0.44), highlighting the potential of non-linear229

feature transformations when combined with230

document-based features.231

• PA and Perceptron Are Moderately Com-232

petitive: Passive-Aggressive (PA) and Per-233

ceptron classifiers both outperform GNB and234

MLP. While their F1-scores are lower than235

those of SGD variants, they still demonstrate236

non-trivial recall on minority classes. Notably,237

Perceptron shows moderate precision across238

all classes, though its recall remains limited.239

• GNB Fails to Generalize Despite High Pre-240

cision: Gaussian Naive Bayes achieves high241

recall on the Stable class (99%) and moder-242

ate precision on Up (0.39) and Down (0.38),243

yet its overall F1-score on minority classes re-244

mains near zero. This suggests over-reliance245

on strong priors and inadequate capacity to246

generalize under label imbalance.247

• MLP Still Underperforms Despite Exten-248

sive Tuning: Despite testing various hidden249

sizes (256–1024), layer depths (2–4), dropout,250

batch normalization, and weighted loss, MLP251

consistently collapses to predicting Up only,252

and entirely fails on other classes. This sug-253

gests either overfitting or a lack of sufficient254

inductive bias to extract patterns from the in-255

put space.256

• Limited Temporal Signal in Stock Prices:257

Sequential models such as GRU and Trans-258

former show no significant advantage, rein-259

forcing the hypothesis that short-term stock260

price movements are dominated by exogenous261

market events. This supports the use of static,262

feature-based models over temporal architec-263

tures for this particular prediction task.264

These insights highlight the difficulty of model-265

ing financial time series using sparse and imbal-266

anced labels, and emphasize the importance of267

partial-fit support, feature engineering, and embed-268

ding quality when working with real-world finan-269

cial disclosures.270

4.5 RAG Demonstration 271

To support interpretability, we developed a 272

Retrieval-Augmented Generation (RAG) prototype 273

using LlamaIndex and LLaMA 3. The system 274

enables users to query SEC filings and receive 275

grounded natural language responses. While it sup- 276

ports both 10-K and DEF 14A filings, we present 277

one example based on a 10-K: 278

Analyze this 10-K filing for financial 279

signals that may affect stock movement. 280

Consider revenue, profitability, debt, 281

risks, strategies, and industry trends. 282

Provide a sentiment score between -1 and 283

1 with justification. 284

The RAG system returned (abridged): 285

Positives: Holding gains suggest rev- 286

enue stability; EPS reflects profitability. 287

Negatives: $250M sales drop; EPS 288

down 10 cents; risk disclosures raise con- 289

cerns. 290

Sentiment Score: 0.2 — slightly posi- 291

tive due to stronger financial indicators. 292

Though not used during training due to time con- 293

straints, this RAG module complements our classi- 294

fiers by offering interpretable, document-grounded 295

feedback for end-users. 296

5 Conclusion and Future Work 297

We proposed a hybrid framework for financial trend 298

prediction that integrates time-series stock data, 299

economic indicators, and document embeddings 300

from SEC filings. Experimental results showed that 301

deep sequence models (GRU, Transformer) strug- 302

gled to generalize across class imbalance, while 303

non-deep models like XGBoost and Stochastic Gra- 304

dient Descent (SGD) with kernel approximations 305

yielded stronger performance—especially when 306

combined with Doc2Vec features. We also im- 307

plemented a RAG-based chatbot to enhance inter- 308

pretability via grounded responses to filing queries. 309

Looking ahead, future work could explore hybrid 310

agentic architectures that delegate time-series pre- 311

diction, document retrieval, and decision-making 312

to specialized modules. Additionally, incorporating 313

more frequent textual sources (e.g., financial news, 314

earnings calls) may mitigate the sparsity introduced 315

by infrequent SEC filings. Finally, class imbalance 316

remains a major challenge—calling for techniques 317

like focal loss, class reweighting, or resampling to 318

improve generalization on minority classes. 319
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Ethical Considerations and Societal Impact320

This work is designed to enhance interpretability321

in financial decision-making by providing both sta-322

tistical predictions and document-grounded expla-323

nations. However, several ethical concerns arise.324

First, predictive systems may inadvertently rein-325

force existing inequalities. Second, retail investors326

might over-rely on model outputs without fully327

understanding the underlying uncertainties. Third,328

large-scale deployment could increase asymmetries329

between institutional and individual actors. We330

urge that such models be used as support tools—not331

decision-makers—and that users remain informed332

about their limitations.333

Limitations334

Despite the breadth of our dataset and methods,335

several important limitations remain:336

1. Sparse Filing Coverage: Most trading days337

do not coincide with an SEC filing release, re-338

sulting in frequent missing (zero) embeddings.339

This limits the utility of document information340

in the classification task.341

2. Lossy Document Encoding: We use342

Doc2Vec to encode entire filings into a single343

vector. Given the complexity of SEC docu-344

ments, this inevitably compresses and poten-345

tially omits important semantic information.346

3. Unreliable Temporal Modeling: Our exper-347

iments show that models such as GRU and348

Transformer fail to learn meaningful temporal349

patterns, likely due to the inherent random-350

ness and volatility in stock price movements.351

This questions the effectiveness of sequential352

modeling for such financial tasks.353

4. Disjoint RAG and Prediction Models: The354

RAG component, while useful for inter-355

pretability, operates independently from the356

predictive models. There is no mechanism to357

reconcile contradictions between them, nor to358

use retrieved insights during classification.359

5. Limited Model Exploration: For some mod-360

els (e.g., GNB, Transformer), we did not ex-361

plore advanced tuning due to early poor per-362

formance or resource constraints. The possi-363

bility remains that better configurations could364

improve their results.365

These limitations point to the need for deeper 366

integration across modalities, more robust embed- 367

ding techniques, and greater alignment between 368

interpretability modules and prediction pipelines. 369
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