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Abstract

Realizing the vision of using AI agents to au-
tomate critical IT tasks depends on the ability to
measure and understand effectiveness of proposed
solutions. We introduce ITBench, a framework
that offers a systematic methodology for bench-
marking AI agents to address real-world IT au-
tomation tasks. Our initial release targets three
key areas: Site Reliability Engineering (SRE),
Compliance and Security Operations (CISO), and
Financial Operations (FinOps). The design en-
ables AI researchers to understand the challenges
and opportunities of AI agents for IT automation
with push-button workflows and interpretable met-
rics. ITBench includes an initial set of 102 real-
world scenarios, which can be easily extended by
community contributions. Our results show that
agents powered by state-of-the-art models resolve
only 11.4% of SRE scenarios, 25.2% of CISO sce-
narios, and 25.8% of FinOps scenarios (excluding
anomaly detection). For FinOps-specific anomaly
detection (AD) scenarios, AI agents achieve an
F1 score of 0.35. We expect ITBench to be a key
enabler of AI-driven IT automation that is correct,
safe, and fast. ITBench, along with a leaderboard
and sample agent implementations, is available at
https://github.com/ibm/itbench.
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1. Introduction
Modern IT systems are driving many facets of our economy.
They have grown significantly in complexity with the adop-
tion of cloud computing and agile development practices
(Harvard Business Review Research Report, 2022; Trask,
2025). Effective management of these systems is becom-
ing extremely challenging as corporations struggle to keep
up with this growing complexity. Various IT personas—
ranging from Chief Information Officers to Site Reliability
Engineers and Security and Compliance officers—and IT
engineers in general are struggling to ensure resiliency, reli-
ability, security, and cost effective operations of IT Systems.

The recent CrowdStrike outage highlighted these challenges
as it brought down our society’s most critical systems—
from hospital services to air travel—and was estimated to
cost US Fortune 500 companies a staggering $5.4 billion
(Kerner, 2024). This incident underlined the critical need
for intelligent IT incident resolution, with compliance and
risk management capabilities, a topic also addressed in the
Digital Operational Resiliency Act (DORA) in Europe (Par-
liament and the Council of the European Union, 2024).

The rising popularity of AI agents and their projected ability
to handle intricate tasks have increased the demand for AI
agents managing IT systems (John, 2024; Miguel Carreon,
2024; Pujar et al., 2023). Given the complexity of IT tasks,
a major hurdle for this research is establishing systematic
methods to assess the effectiveness of AI agents prior to
their production deployment (Bogin et al., 2024; Kapoor
et al., 2024). Consequently, there is an urgency to develop
methods for evaluation of AI agents based on real IT tasks
and their corresponding environments.

This paper addresses this critical need and presents ITBench,
a first-of-its-kind framework that is both comprehensive and
visionary for benchmarking real-life IT automation tasks.
The goal of ITBench is to measure the performance of AI
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SRE
Ensures app resilience

and performance

FinOps
Manage IT spend

Resolve “IT spend exceeded the 
budget.”
Report return on investment per 
application.

CISO
Manage threats and

assess policies

Assess compliance posture for “new 
control rule detected for RHEL 9.”
Assess and report critical risks across 
the failing controls.

Resolve “High error rate on service
order-management.”
Backup directory ‘foo’ to data lake.

Figure 1: Sample personas and IT tasks. Bell icon represents event-triggered tasks. Information icon represents other tasks
such as data analysis, preventive maintenance tasks, or continuous optimization.

agents across a wide variety of complex and real-life IT
tasks across personas, including Site Reliability Engineering
(SRE), focusing on availability and resiliency; Compliance
and Security Operations (CISO), ensuring compliance and
security of IT implementations; and Financial Operations
(FinOps), enforcing cost efficiencies and optimizing return
on investment, among others (as shown in Figure 1).

ITBench aims to advance innovation and establish new stan-
dards in the field. Our contributions can be summarized
along the following three axes:

• Reflecting the real world: ITBench addresses the IT
automation requirements that are relevant and prevalent
in production settings. SRE scenarios are based on real-
world incidents observed in our own SaaS products. CISO
scenarios are based on CIS benchmark (for Internet Secu-
rity, CIS). FinOps scenarios are identified by the FinOps
Foundation (Foundation, 2025a) through key business
outcomes.

• Being open and extensible with comprehensive IT cov-
erage: We view ITBench as a central hub for benchmark-
ing AI-driven solutions across diverse IT automation use
cases. To support this, we provide IT benchmark suites
and a framework for vertical expansion (i.e., adding more
scenarios) and horizontal expansion (i.e., adding more per-
sonas), ensuring extensive coverage of IT tasks. ITBench
is an open-source framework built with open-source tech-
nologies, while allowing organizations with proprietary
technologies to use it for developing and benchmarking
their solutions.

• Enabling automated evaluation with partial scoring:
ITBench is designed to provide constructive feedback to
drive improvements in the design of agentic solutions
for IT problems. It includes a comprehensive evaluation
framework and leaderboard that provide feedback to users
at various stages of their agents’ reasoning process.

ITBench provides push-button deployment and tooling for
setting up environment, runtime agent, guardrail engine, as
well as authorization and authentication. It allows develop-
ers and researchers to build novel solutions for managing
complex IT systems. Currently, ITBench addresses reac-

tive problems, including incidents diagnosis and resolution,
compliance assessments in regulated environments for new
controls, and cost management events. In the future, we
plan to expand on benchmark evaluation capabilities and
include new benchmarks for additional IT processes. Cur-
rently, ITBench comprises an initial set of 102 scenarios
spanning across SRE (42), CISO (50), and FinOps (10),
with respective successful scenario handling rates of 13.8%,
25.2%, and 25.8% (refer to Section 4).

We believe that, similar to the highly influential SWEBench
(Jimenez et al., 2024), our new ITBench framework—which
encapsulates and measures the ability of AI agents to auto-
mate complex, real-world IT tasks—will spur a comparable
acceleration in the performance of real-world IT AI agents.

2. Related Work
ITBench targets a comprehensive set of tasks for a wide
range of personas within IT automation. The initial release
of ITBench focuses on evaluating scenarios within IT Op-
erations (ITOps). Figure 1 illustrates currently targeted
personas and exemplar tasks that they are routinely facing.
There is clearly rising interest in developing benchmarks to
evaluate AI and ML techniques in ITOps with specific focus
on SRE, CISO, and FinOps.

TrainTicket (Zhou et al., 2018) provides 22 scenarios col-
lected through an industrial survey of real-world incidents,
using hardcoded faults in the TrainTicket application to fo-
cus on fault localization. AIOpsLab (Chen et al., 2024a)
provides 10 SRE-focused scenarios (referred to as "prob-
lems") utilizing a real environment (system) integration that
allows interactive access to text, time series, and tabular data.
InsightBench (Sahu et al., 2024) provides 100 scenarios to
analyze ticket data using static tabular data and synthetic
scenarios. TSB-AD (Liu and Paparrizos, 2024a) focuses on
anomaly detection with 40 synthetic scenarios.

CIS-Benchmark (CIS, 2024) provides best practices for se-
curing IT infrastructure. Despite the name of “benchmark,”
it offers only recommendation policies; it provides no exper-
imental platform. Recently, Cloud Native Compute Foun-
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Table 1: Comparison of ITBench with related benchmarks

Benchmark # of Scenarios Personas and Tasks Resolvable Automated
Evaluation Environment Leaderboard

ITBench (ours) 102

SRE: Incident Resolution,
CISO: Compliance Assessment,
FinOps: Cost Management

✓ ✓ Real Env. ✓ (verified)

TrainTicket 22 SRE: Incident Diagnosis ✗ ✗ Real Env. ✗
AIOpsLab 10 SRE: Incident Resolution ✓ ✗ Real Env. ✓ (unverified)
InsightBench 100 Ticket Data Analysis ✗ ✗ Synthetic ✗
TSB-AD 40 Anomaly Detection ✗ ✓ Synthetic ✗
CIS 1000+ Compliance/Security Focal ✓ ✗ n/a (info. only) ✗

1 Note: We are not aware of related benchmarks in the FinOps domain that go beyond scorecards.

dation (CNCF) Sandbox project (OSCAL-compass, 2024)
released an SDK to support the translation of the CIS human
readable formats into OSCAL (OSCAL, 2024). OSCAL
was developed by the National Institute of Standards and
Technology for programmatic usage in compliance automa-
tion. ITBench CISO automation leverages this technology
to assess policy requirements.

FinOps Foundation (Foundation, 2025a) provides bench-
marks that compare cloud financial performance across or-
ganizations and departments, focusing on KPIs such as re-
source utilization efficiency, contract coverage, and cost
apportionment. These benchmarks help assess cloud effi-
ciency by evaluating internal and external metrics, fostering
structured, collaborative approaches to cloud optimization.

While existing benchmarks are valuable resources for spe-
cific tasks and use cases, and highlight the critical need
for systematic benchmarking, they are limited in reflecting
real-world IT problems, covering broad IT landscape, and
automating evaluation. These limitations are addressed in
ITBench, as shown in Table 1.

3. ITBench
ITBench is a systematic benchmarking framework and run-
time environment designed to evaluate AI agents tasked
with automating IT operations, incorporating a robust archi-
tecture (see Figure 2) comprising the AI Agent, Scenario
Specification and Environment, Evaluator, and Leaderboard
to facilitate comprehensive performance assessment.

Here, we present a brief overview of the key components:
1) Scenario Specification and Environment, 2) AI Agents,
and 3) Leaderboard. More details are in Appendix B.

3.1. Scenario Specification and Environment

The bench incorporates a collection of problems that we call
scenarios. For example, one of the problems in ITBench is
to resolve a “High error rate on service order-management”
in a Kubernetes environment. Another example that is rele-

vant for the CISO persona involves assessing the compliance
posture for a “new control rule detected for RHEL 9.” A
fundamental challenge is to emulate such problems in a man-
ageable testbed environment. A scenario environment is an
operational testbed in which a specific problem(s) occurs.

A scenario p generally corresponds to a problem to be solved
in ITBench. We formalize p as a tuple < M,E, T,D >,
where the variables are as follows:

Scenario Specification. M represents metadata and deploy-
ment descriptors, for each scenario, which is stored in the
Scenario Specs database in ITBench (see Figure 2). Exem-
plar metadata elements per scenario include scenario_name,
scenario_description, scenario_domain, scenario_class,
scenario_complexity, and scenario_groundtruth (see Ta-
ble 2), which are defined below:

• scenario_name is name given to a scenario. For example,
a scenario in ITBench has the name "Recommendation
Service Cache."

• scenario_description describes the scenario. An exam-
ple of a description of the scenario is "Recommendation
Service in Astronomy Shop has a cache failure."

• scenario_domain represents different personas within IT
automation—namely "SRE," "CISO," and "FinOps."

• scenario_class is used to group similar scenarios, such
as “Kyverno-opa,” “Kyverno-update’,’ “CacheFailure,”
“HighCPU,” and “CorruptImage.”

• scenario_complexity captures the difficulty of a problem
and is defined using domain knowledge. Figure 4a shows
the breakdown of SRE, CISO, and FinOps scenarios in the
bench. Figure 4b, 4c, and 4d shows scenario_complexity
distribution for SRE, CISO, and FinOps, respectively.
SRE scenarios are developed based on real-world inci-
dents observed in our own SaaS products. CISO scenarios
are based on CIS benchmark (for Internet Security , CIS).
FinOps scenarios were developed based on “Domains”
and “Capabilities” identified by the FinOps Foundation
(Foundation, 2025a) to describe key business outcomes.

• scenario_groundtruth records task-specific outcomes that
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Figure 2: ITBench automation framework.

the Evaluator uses to compare against the agent’s expected
output. For instance, in incident resolution for SREs,
the ground truth for the Diagnosis task includes a list of
entities involved in the fault propagation chain, the actual
fault propagation chain(s), and fault conditions, while
for the Mitigation task, it captures plausible mitigation
actions.

Environment. E represents an an operational testbed where
the problem occurs. Components within the environment
expose APIs to observe and control the environment. When
the Agent Builder registers the agent for benchmarking,
the Benchmark Runner (see Figure 2) randomly selects a
set of scenarios, which may be optionally filtered based
on the agent_type and agent_level. Next, the Benchmark
Runner iterates through the set of scenarios, and for each
scenario it instantiates a testbed. An example of an environ-
ment is a Kubernetes cluster installed with OpenTelemetry
Astronomy Shop Demo application (Community, 2024), ob-
servability stack including Grafana (gra), Loki (lok), Jaeger
(jae), and Prometheus (pro), along with mechanisms that
induce problem(s) in the environment.

Triggering Events. T is a set of triggering events that occur
due to manifestation of a specific problem in the environ-
ment. Tools are configured to observe the environment and
raise triggering events on problematic conditions. An exam-
ple of a triggering event is "High Error Rate on adservice,"
which may be triggered in the environment due to cache
failure problem.

Desired Outcome. D defines the automation objective and
represents the ultimate goal. For instance, in case of SRE
incident resolution, the ultimate goal is to clear T in the E.

3.2. AI Agents

In IT automation, the different personas are focused on a
specific desired outcome, which defines their automation
goals. For SREs, incident resolution is the primary objective.
Achieving this can involve multiple steps, such as diagnos-
ing an incident, or a single step, like generating a diagnosis
report. CISO persona focuses on the regulatory controls
posture assessment process, including Collect evidence and

SRE/FinOps
NL2Kubectl

NL2Traces

NL2Metrics

NL2Logs

NL2Alerts

NL2Script

CISO
GenerateKyverno

GenerateOPARego

GeneratePlaybook

RunKubectl

RunOPARego

RunPlaybook

Toolbox
call

APIs

output

cmd

info

𝑎𝑡 = 𝑓(𝑜𝑡 | ҧ𝑜𝑡−1, ത𝑎𝑡−1)

Agent

𝑜𝑡 = ℎ(𝑠𝑡)

𝑠𝑡 = 𝑔(𝑠𝑡−1, 𝑎𝑡−1)

Environment

Figure 3: Agent and environment as a POMDP. Agents
interact with the environment via the APIs exposed by IT-
Bench’s toolbox.

Scan assessment posture tasks. FinOps persona focuses on
the cost management, where sample tasks include Identify
inefficiency and Mitigate inefficiency. During evaluation,
each step (task) is assessed independently and is measured
using well defined metrics; see Table 3.

The goal of ITBench is to evaluate AI agents on a broad
range of real-world IT automation tasks that are otherwise
performed by SREs, FinOps, and CISO personas.

In this paper, an AI agent is defined as an autonomous or
semi-autonomous software program that uses an LLM to
plan, make decisions, interact with the target environment,
and execute actions to achieve goals. An AI agent is ex-
pected to successfully handle any of the scenarios in the
ITBench, by interacting with the environment.

As shown in Figure 3, agent and environment form a Par-
tially Observed Markov Decision Process (POMDP), where
the state is the snapshot of the environment. The state tran-
sitions are determined by the environment, which are then
(partially) observed by the agent.

Given a scenario p instantiated in an environment E, an
agent probes the environment via one of the tools and re-
ceives an observation ot ∈ O, based on which, it decides
the next action:

at = f(ot|ōt−1; āt−1) (1)

Here f is the agent’s decision function. ōt−1 is the sequence
of observations up to time t− 1 and āt−1 is the sequence of
actions taken up to t− 1.
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Table 2: Exemplar scenario classes and complexities in ITBench across 102 scenarios.

Scenario
Domain Scenario Class Scenario

Complexity Technologies

SRE CacheFailure: Create a memory leak due to an exponentially
growing cache Medium K8s, Redis, MongoDB

HighCPU: Trigger high CPU load in target service Medium K8, Host, Pods
CorruptImage: Deployment uses wrong Docker image Easy K8s, Image registry
HTTPRequestBodyTamperFault: Modify HTTP Post request
between services Medium K8s, ingress/egress

HTTPRequestAbortFault: Interrupt HTTP connection between
services Medium K8ss, ingress/egress

MemoryResourceLimit: Reduce memory limit on target service Easy K8s, Host, Pod

CISO New K8s CIS-benchmarks on Kyverno Easy K8, Kyverno
New K8s CIS-benchmarks on OPA Medium K8s, OPA, Kubectl
New RHEL9 CIS-benchmarks on Ansible-OPA Medium RHEL9, OPA, Ansible
Update K8s CIS-benchmarks on Kyverno Hard K8s, Kyverno

FinOps CostAlertMisconfiguration: Alert threshold is too low, causing
false alerts Easy K8s, HPA

AutoscalerMisconfiguration: Horizontal pod autoscaler thresh-
olds are misconfigured, creating excess pods Hard K8s, HPA

Data Insights Generation: Analyze cloud bills and retrieve data
based on natural language query Easy, Medium, Hard Natural Language to SQL

Anomaly Detection & Ranking: Identify overspending events in
a cloud bill with regard to forecasted spend amounts, and rank
anomalies based on user-specified criteria

Hard
Anomaly detection, fore-
casting, data query from
database

1 Scenario complexity depends on the characteristics of the scenario and is independent from agent capability. See appendixes for details.
2 K8s refers to Kubernetes (kub). 3 Here, "technologies" denotes the tools/systems a domain expert must understand to perform the task.

SRE

CISO

FinOps

41.2%

49%

9.8%

(a) Scenarios by persona.

Easy 24.0%

Medium
52.0%

Hard

24.0%

(b) SRE scenario complexity.

Easy 20.0%

Medium
60.0%

Hard

20.0%

(c) CISO scenario complexity.

Easy 20.0%

Medium

30.0%

Hard

50.0%

(d) FinOps scenario complexity.

Figure 4: Characterization of ITBench scenarios.

Initially, o0 may be a triggering event showing a problematic
state s0 of the environment. Given state st−1 and action
at−1, the environment transitions to the next state:

st = g(st−1, at−1) (2)

The observation ot is determined as a function of the state
and is in general a proxy for the environment state st, hence
the formulation can be thought of as a POMDP:

ot = h(st) (3)

The set A of actions is defined as Q
⋃
{⊥}, where Q is the

set of tools and ⊥ represents the "stop action" by the agent.
We define t∗ as the time when the agent stops:

t∗ = min{t|at = ⊥} (4)

An agent reflects on the result to guide its next action, contin-
uing until the final goal is achieved. Given a set of scenarios
that the agent works on, it targets to maximize the success
defined as follows:

Ep∼πp
(I(g(spt∗ , f(ot∗ |ōt∗−1, āt∗−1)) = spG)) (5)

where I is an indicator function comparing the terminating
state with goal state and π is the distribution of scenarios.

3.2.1. BASELINE AI AGENTS

We developed baseline agents SRE-Agent for SRE, Com-
pliance Assessment Agent for CISO, and FinOps-agent for
FinOps. Each of these agents uses state-of-the-art agentic
techniques such as ReAct-based planning (Yao et al., 2023),
reflection (Shinn et al., 2023), and disaggregation (Xu et al.,
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Table 3: Personas, tasks, and metrics in ITBench.

Personas Tasks Metrics

SRE Diagnosis pass@1, Fault Local-
ization, Fault Propa-
gation Chain, Mean
Time to Diagnosis

Mitigation pass@1, Mean Time
to Repair

CISO Collect evidence pass@1
Scan assessment posture pass@1, Time to Pro-

cess

FinOps Identify inefficiency pass@1
Mitigate inefficiency pass@1, Hourly infra

cost, Efficiency
Data Insights pass@1, Token uti-

lization
Anomaly Detection F1 Score, rank score

2023). Reflection techniques include syntax checking/lint-
ing, semantic validation (Xie et al., 2024a), and llm-as-a-
judge (Zheng et al., 2023).

We use the open-source CrewAI framework (cre) to create
and manage agents. The agents can be configured to use
various LLMs either through watsonx, Azure, or vLLM.
Each agent is initialized with a prompt that describes its
goal, the context, the tasks, and the expected output format.
In-context learning examples are included to guide the agent
and demonstrate tool usage. Agents use tools to interact
with the environment for information gathering.

Logs, traces, and metrics collected during the diagnosis
process would overwhelm the context window of any LLM
currently available due to large volume of data. Therefore,
agents targeting the SRE or FinOps persona are equipped
with specialized tools to interact with the environment (refer
to Figure 3): 1) NL2Traces to extract trace data in a struc-
tured format, 2) NL2Metrics to analyze key system metrics,
3) NL2Logs to parse log data effectively, 4) NL2Kubectl to
perform Kubernetes-specific operations, and a summariza-
tion tool to condense extensive data into actionable insights.
For example, the agent may use the NL2Kubectl tool to
“list all of the pods in the default namespace.” In turn, the
NL2Kubectl tool uses an LLM to transform the utterance
into an executable command: “kubectl get pods -n default.”

Similarly, the compliance assessment required for new reg-
ulations and technologies, with the evidence and diverse
policy languages, would be overwhelming if submitted di-
rectly to LLMs. The compliance agents designed for CISO
compliance assessment automation are equipped with spe-
cialized tools. These tools include capabilities to 1) generate
policies such as Kyverno or OPA Rego Policy as Code start-
ing from natural language specifications, 2) generate scripts
for the collection of evidence, 3) access code repositories

such as git to facilitate GitOps workflows for code manage-
ment, and 4) deploy and execute the generated policies to
accomplish the assessment task.

3.3. Leaderboard

ITBench includes a leaderboard to promote reproducibility
and comparative analysis, following the AI common task
framework (Donoho, 2019; Varshney et al., 2019). The
leaderboard offers a predefined, extensible set of perfor-
mance metrics designed to provide clear insights into agent
performance relative to the evaluation criteria.

ITBench devises scoring methods for partially correct so-
lutions to provide meaningful feedback for summative as-
sessments. This comprehensive approach establishes a new
standard for evaluating and advancing AI-driven solutions
in IT automation. For each scenario that an agent works on,
upon task completion, the ITBench records the final system
state, which is then used at the end of all scenario runs along
with the pre-defined ground truth data to validate how well
the agent performed across all the scenarios.

We are open-sourcing a small subset (11 out of 102) of
scenarios along with the baseline agents to help the com-
munity become familiar with ITBench through practical
examples. We reserve the remaining scenarios in ITBench
to benchmark and evaluate the submitted agentic solutions.

4. Results
4.1. Evaluation Setup

To understand the impact of reasoning and planning ca-
pabilities of LLMs on ITBench scenarios, we instantiate
our agents using different LLM models, both for natural
language reasoning and code generation. Specifically, we
employ GPT-4o (checkpoint version 2024-11-20), Llama-
3.3-70B-instruct, Llama-3.1-8B-instruct, and Granite-3.1-
8B-instruct for tasks that rely on natural language under-
standing and reasoning. For code-focused use cases, we
utilize GPT-4o-mini, Llama-3.1-405b-instruct, and Mixtral-
8x7b-instruct. All models use a context window of 128K
tokens, enabling them to process more extensive input se-
quences.

We conduct our experiments primarily on AWS EC2 in-
stances (m4.xlarge), although ITBench can also be readily
deployed on a consumer-grade laptop using a pseudo-cluster,
thus making it easier to develop AI agents (Appendix C.4.1)

Below, we provide an overview of our baseline agents’ per-
formance across ITBench scenarios for SRE, CISO, and
FinOps. Our findings indicate that both open-source and
proprietary models often struggle with real-world tasks, un-
derscoring the importance of benchmarks that push the lim-
its of reasoning and planning in foundation models. For
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Table 4: Evaluation of SRE-Agent on SRE scenarios

Models Diagnosis Mitigation

pass@1 (%)↑ FL (NTAM)↑ FPC (NTAM)↑ MTTD (s)↓ pass@1 (%)↑ MTTR (s)↓
granite-3.1-8B-instruct 3.57± 0.94 0.16± 0.02 0.19± 0.02 259.92± 65.01 0.24± 0.25 845.50± —
llama-3.1-8B-instruct 0.99± 0.51 0.07± 0.01 0.08± 0.01 57.50 ± 2.05 1.98± 0.68 245.13 ± 40.66
llama-3.3-70B-instruct 3.10± 0.84 0.16± 0.02 0.16± 0.02 191.85± 31.34 3.33± 0.90 776.27± 252.87
gpt-4o 13.81 ± 1.67 0.39 ± 0.05 0.34 ± 0.03 72.44± 4.71 11.43 ± 1.52 282.47± 30.04
1 42 scenarios (21 scenarios with traces and 21 without traces). 2 10 runs per scenario per model. 3 pass@1 values are shown as percentages. ‘—’ indicates missing
data. 4 std error for each metric is listed. 5 FL (NTAM) = Normalized topology-aware metric for root cause, FPC (NTAM) = Normalized topology-aware metric for
fault propagation chain (value between 0 and 1.0), MTTD = Mean time to diagnosis (seconds), MTTR = Mean time to repair (seconds). Bold: the best performance.
6 Details of NTAM are available in Appendix C.6.3

more comprehensive results and detailed scenario-level dis-
cussions, please refer to Appendix C (SRE), Appendix D
(CISO), and Appendix E (FinOps).

4.2. Overall Results

Table 4, Table 5, and Table 6 show the performance of
SRE-agent, CISO-agent, and FinOps-agent respectively.

SRE. We measure the efficiency of SRE-Agent on its ability
to diagnose and mitigate production incidents (e.g., “a high
error rate on frontend service”).

Diagnosis efficiency is measured using pass@1(Chen et al.,
2021) (i.e., identifying the cause as mentioned in ground
truth), NTAM (Normalized Topology-Aware Metric) for
root cause and fault propagation chain, and time to diagno-
sis.1 Mitigation efficiency is measured in terms of pass@1
(i.e., whether the alert was cleared) and mean time to repair.

As shown in Table 4, across all SRE scenarios, GPT-4o
consistently outperforms the other models, achieving the
highest pass@1 scores for diagnosis (13.81%) and mitiga-
tion (11.43%), as well as the highest score on NTAM (FL
and FPC) metrics. Llama-3.3-70B ranks second overall,
trailing GPT-4o on most metrics. The 8B models have lower
mitigation success rate. Surprisingly, Granite-3.1-8B (with-
out any specialized finetuning) achieves higher accuracy
than Llama-3.3-70B on the diagnosis task.

Removing trace data can drastically reduce success rates
(see Table 20 and Table 21 in Appendix). For instance, GPT-
4o’s pass@1 in diagnosis falls from 13.81% with traces to
9.52% without them, and mitigation plummets to 2.86%.
This highlights the critical role of system observability in
SRE, which ITBench can evaluate under varying conditions.
Because there is no perfect observability in practice, how
to guide SRE-agents to collect new observability data and
to help SRE-agents reason about failures with incomplete
observability is an important but open problem.

1NTAM is Normalized topology-aware metric that measures
the quality of the predicted root cause and fault propagation chains
using a system and application topology. Refer to Appendix C.6.3.

CISO. We measure the efficacy of our agents across the four
scenario classes introduced in Table 2. Each scenario_class
imposes a distinct set of CIS-benchmarks requirements (e.g.,
“minimize the admission of containers wishing to share the
host network namespace”), has a specific level of complex-
ity (e.g., Easy, Medium, or Hard), and generates scenario-
specific code artifacts.

The efficacy of CISO-agents is measured based on the abil-
ity to detect artifact misconfigurations (aka non-compliance,
e.g., no minimum count of containers sharing namespace, or
the count is above the threshold), or confirm proper config-
urations (aka compliance), within the varied environments
of the scenario classes randomly injected with misconfig-
urations. Notably, GPT-based models dominate on both
pass@1 and Time to Process metrics. The pass@1 is nearly
two times better than second-best performing model, while
the TTP shows a handling of the scenarios in the minimal
time across our scenario classes.

FinOps. In addition to the standard event-driven scenarios,
ITBench was extended to support non-alert-driven scenarios
for the FinOps persona, demonstrating its extensibility. In
particular, we added data insights and anomaly detection
scenarios to ITBench. Table 6 presents our results in all
FinOps usecases. We report pass@1 score for data insights,
diagnosis, and mitigation tasks, and F1 score and rank score
for anomaly detection. F1 score measures the precision
and recall abilities of the agent to identify anomalous costs
with regard to the ground truth. The rank score measures
the relative ranking of the anomalies as determined by the
agent with regard to the ground truth ranking. GPT-4o
consistently outperforms all other models, achieving a 33%
pass rate for diagnosing the origin of the cost increase alert,
29% accuracy in data insights scenarios, and 0.6 F1 score
in anomaly detection. Refer to Appendix E.5 for futher
details.

4.3. Impact of Scenario Complexity

SRE. We categorize scenarios as Easy, Medium, or Hard
based on factors such as fault propagation chain length,
number of resolution steps, and the diversity of technolo-
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Table 5: Evaluation of CISO Compliance Assessment Agent on CISO scenarios

Models Scenario pass@1 (%) ↑ O/A pass@1 (%) ↑ TTP (s) ↓
kyverno k8s-opa rhel-opa kyverno-update

granite-3.1-8B-instruct 7.84± 3.84 0.00± 0.00 0.00± 0.00 1.59± 1.58 1.71± 0.76 197.03± 2.52
mixtral-8x7B-instruct 7.35± 3.19 1.43± 1.42 0.00± 0.00 1.29± 4.34 3.94± 1.03 120.63± 3.77
llama-3.1-8B-instruct 8.57± 3.37 0.00± 0.00 0.00± 0.00 7.46± 3.23 3.59± 1.07 121.49± 3.00
llama-3.3-70B-instruct 18.46± 4.94 0.00± 0.00 1.43± 2.88 8.06± 3.50 9.32± 1.67 189.61± 2.71
mistral-large-2 6.56± 3.20 22.73± 5.32 7.23± 2.88 10.45± 3.77 11.55± 1.95 167.98± 3.42
llama-3.1-405B-instruct 16.22± 4.32 20.83± 4.86 8.75± 3.26 3.17± 2.22 12.46± 1.98 178.89± 3.37
gpt-4o-mini 16.18± 4.54 43.10 ± 6.99 30.38 ± 5.43 9.43± 4.08 25.19 ± 2.80 102.40± 3.70
gpt-4o 40.28 ± 5.99 39.34± 6.55 7.61± 2.81 17.74 ± 4.92 24.74± 2.64 101.29 ± 3.81
1 50 scenarios. 2 8 runs per scenario per model. 3 pass@1 values are shown as percentages. 4 TTP Time to process (seconds).
5 kyverno = New K8s CIS-benchmarks on Kyverno, easy scenario class; k8s-opa = New K8s CIS-benchmarks on OPA, medium scenario class; rhel-opa = New RHEL9
CIS-benchmarks on Ansible-OPA, medium scenario class; kyverno-update = Update K8s CIS-benchmarks on Kyverno, hard scenario class.

Table 6: Evaluation of FinOpsAgent on FinOps scenarios.

Models
Non-Alert-Driven Scenarios Alert-Driven Scenarios

Data Insights Anomaly Detection Diagnosis Mitigation

pass@1 ↑ F1 Score ↑ Ranking ↑ pass@1 (%) ↑ pass@1 (%) ↑
granite-3.1-8B-instruct 14 0.4± 0.07 0.3± 0.00 0 0
llama-3.1-8B-instruct 0 0.4± 0.03 0.4± 0.00 0 0
llama-3.3-70B-instruct 29 0.0 0.0± 0.00 16.6 0
gpt-4o 29 0.6 ± 0.00 0.5 ± 0.00 33 0

pass@1 values are shown as percentages. The Data-Insight evaluations exhibit zero variance because we use a fixed dataset and configure the
agent’s model with temperature zero. Diagnosis and Mitigation evaluations include only two scenarios, making variance negligible.

gies involved, as described in Equation (6). Our results
show that success rates (pass@1) clearly decline as the
scenario_complexity increases. Even the best perform-
ing model, GPT-4o, diagnosed only 36%, 7.73%, 5% of
Easy/Medium/Hard cases (Table 18) and mitigated just 21%,
12.27%, 0% (Table 19). None of the models could mitigate
the Hard scenarios, even though over 50% of Easy scenarios
were mitigated. Notably, GPT-4o is the only model that
successfully diagnosed multiple Hard scenarios.

CISO. The complexity of the CISO scenarios is di-
rectly mapped to scenario classes. For example, sce-
nario_complexity of Kyverno scenarios is Easy, sce-
nario_complexity of k8s-opa and rhel-opa is Medium, while
scenario_complexity of Kyverno-update scenarios is Hard.
All models struggle, as expected, as the difficulty of the
scenarios increases from the Easy kyverno class to the Hard
kyverno-upadate class.

FinOps. Currently, ITBench includes 2 Easy, 3 Medium,
and 5 Hard scenarios. None of the models were able to
resolve the Hard scenarios. GPT-4o performs better in
anomaly detection and alert-driven scenarios, while the
LLaMA-3.3-70B-Instruct model achieves comparable per-
formance to GPT-4o in data insight scenarios.

5. A Case Study on SRE-Agent Failures
Understanding the decision process of LLM-based agents
is challenging due to the complexity of agentic systems but
is feasible through detailed agent trajectory logging and a
structured prompting framework. We log each input and out-
put for planning agents and tools, including the ReAct-style
“Thought” step, enabling us to distinguish between high-
level reasoning errors (e.g., flawed strategy) and low-level
tool errors (e.g., malformed commands), enabling practical
analysis and guiding design improvements.

5.1. Analyzing Lower-Level Tool Calling and Execution

Figure 5 shows tool usage and failure types across models.
NL2Kubectl dominates usage, suggesting overreliance. En-
couraging the agent to make a more balanced use of other
tools, such as NL2Traces, could be useful, especially when
kubectl commands alone are insufficient. Smaller models
(e.g., granite-3.1-8B-instruct, llama-3.1-8B-instruct) show
more invalid tool calls, syntax errors, and repeated invoca-
tions, indicating lower accuracy and efficiency.

5.2. Quantitative Analysis of High-Level Reasoning

We quantify reasoning by aligning each exploration path
with the ground-truth fault-propagation chain. An effec-
tive agent is expected to focus its exploration around this
chain, while significant deviations may signal reasoning
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Figure 5: SRE-Agent Tool Usage Distribution

flaws. Based on this insight, we introduce two evaluation
metrics: (i) Detoured Services: |Vvisited \ Vgt|, the number
of visited services that are not on the ground-truth chain
(smaller→more focused search); and (ii) Relative Cov-

ered Services:
|Vvisited ∩ Vgt|

|Vgt|
, the fraction of ground-truth

services visited (closer to 1→better coverage).

As shown in Figure 6, successful diagnosis trajectories
show fewer detours and higher coverage than unsuccess-
ful ones, validating the metrics. Among successful tra-
jectories, GPT-4o shows detours (Kolmogorov–Smirnov
p-value ≥0.123) and coverage (p-value≥0.089) that are
comparable to other models (i.e., Granite-3.1-8B-Instruct,
Llama-3.1-8B-Instruct, and Llama-3.3-70B-Instruct), while
achieving higher coverage than Llama-3.1-8B-Instruct (p-
value=0.024). This suggests that successful agents tend to
follow similar reasoning patterns. For unsuccessful trajecto-
ries, GPT-4o significantly surpasses all baselines, showing
both fewer detours (p-value≤0.001) and greater coverage
(p-value≤ 0.011). These results underscore ITBench’s util-
ity in revealing insightful patterns in agent reasoning and
overall performance.

(a) Detoured Services (b) Relative Covered Services

Figure 6: Quantitative Analysis of High-Level Reasoning

6. Discussion and Conclusion
We presented ITBench, the first framework and experimen-
tal platform to benchmark AI Agents for IT automation
tasks. ITBench strives to capture the complexity of modern
IT systems and the diversity of IT tasks. The reproducibility
of ITBench ensures the community-driven effort despite
inherent nondeterminism of large-scale IT systems.

One of the key design principles of ITBench is ensuring its
flexibility to support diverse areas of different IT systems
and its extensibility to new scenarios. While the current
scope of ITBench is comprehensive and representative, we
plan to further enrich the benchmark suites by adding other
important processes essential to modern IT automation. Fur-
thermore, we plan to expand our benchmarking beyond
event-triggered scenarios. We are actively working to ex-
pand scenario coverage for the supported processes and pro-
mote growth through open-community contributions. We
invite the community to reproduce their real-world-inspired
incidents in a synthetic sandboxed environment leveraging
the ITBench. We expect that everyone contributing can
bring their expertise to the table.

We expect ITBench to drive the innovations of AI agent-
based techniques with a direct impact on the safety, effi-
ciency, and intelligence of today’s IT infrastructures. With
ITBench, we are starting to explore many deep, exciting
open problems: How to develop domain-specific AI agents
that specialize in certain types of IT tasks? How to orches-
trate multiple agents with various expertise to collaborate on
bigger projects? How can we ensure safety of agent-driven
solutions? How can we effectively use human-in-the-loop
while developing diverse adaptive agents? We invite every-
one to participate in answering these questions and realizing
the vision of using AI agents to automate critical IT tasks.
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Impact Statement
Ethics & Broader Impacts

This research presents a novel benchmarking framework to
measure the performance of AI agents across a wide variety
of complex and real-life IT tasks, which has the potential to
be a key enabler for AI-driven IT automation that is correct,
safe, and fast. While the primary focus is on advancing the
field of machine learning, as this effort is an open source
framework built with open source technologies, it allows
organizations with proprietary technologies to use it for
developing and benchmarking their solutions more effec-
tively. It also encourages mindsharing in the community
and lowers the barrier to innovate in IT domain.

Agents that interact with the system pose several risks. We
identify three main risks that could arise when building and
using a ITBench and associated agents, then discuss how
we incorporates measures that mitigate such problems.

First is the security risks that come with executing LM-
generated code/commands on the system. Examples include
executing commands like kubectl delete node and
rm -rf asset/. To defend against this, we containerize
the agents and also provide a self-contained Kubernetes
environment to create various scenarios.

Second, if the wider community develops an interest in IT-
Bench and associated agents and builds upon it, it is also pos-
sible that illegitimate evaluation datasets or infrastructure
can be used to inject testing devices with malicious code or
instructions to generate malicious code. For instance, an un-
official repository claiming to host an inference/evaluation
harness for ITBench and associated agents could include
a task instance with an issue description that tells the LM
agent to build key logging functionality and store it in a
hidden folder. To eliminate confusion and reduce the pos-
sibility of such an event, we provide clear guidelines listed
on our GitHub repositories, data stores, and websites indi-
cating the official repositories and channels that we actively
maintain. We also encourage third parties to incorporate any
improvements into our codebase and help with integrating
such contributions.

Lastly are the consequences of ITBench agents being de-
ployed in the real world. Prior works have conceptualized
and put forth prototypes of agents that can carry out offen-
sive security measures. It is also not difficult to imagine that
a system like SRE-Agent can be incorporated into pipelines,
resulting in the production of malicious code and libraries.
The strong performance of agents on ITBench implies that
future AI systems will likely be increasingly adept in the
aforementioned use cases. Releasing ITBench agents as
open source agents can support research toward designing
sound, effective constraints for what software engineering
agents are permitted to do. It can also serve as a system

that legal experts and policy-making entities can experi-
ment with to shape the future of what AI-driven end-to-end
software engineering could look like.

Reproducibility

To help the greater community reproduce the results pre-
sented in this paper and build on the ITBench, we open
source all of our resources that were created for this project.
The source code for the interactive pipeline, context man-
agement logic, command implementations, interface design,
and everything else is entirely available in a GitHub repos-
itory. We provide extensive text and video documentation
describing how to run and modify different parts of the
codebase. Practitioners should be able to easily recover our
findings by running the agent with simple scripts. The re-
sults presented in the main and supplementary parts of this
paper can be fully obtained by following instructions in the
repositories. Finally, we also maintain an active online help
forum to assist with any reproduction problems or questions
about how to build on ITBench.
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Appendix
In the appendix, we provide additional analyses and more
extensive discussions about ITBench, individual personas
(SRE, ComplianceOps, FinOps) and agent performance.
Data, code, and leaderboard at “link anonymized.”
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A. Related Work
LM and agents for resolving IT automation tasks. There
is a surge in use of AI/ML for handling IT automation tasks.
We describe related work for each persona.

A.1. Site Reliability Engineering

IT incident2 resolution encompasses tasks such as detec-
tion (e.g., identifying anomalies or outages) (Guo et al.,
2015; Leners et al., 2011; Sigelman et al., 2010; Fonseca
et al., 2007), diagnosis (e.g., pinpointing root causes through
metrics and logs) (Tan et al., 2019; Jha et al., 2020; Ma
et al., 2014; Salesforce, 2023), and mitigation (e.g., op-
erational fixes or code changes). These efforts often rely
on supporting tasks like ticket analysis and routing (Gao
et al., 2020; Liu et al., 2023b; Arzani et al., 2016), anomaly
detection (Liu and Paparrizos, 2024a), topology extrac-
tion (Ashok et al., 2024; Chakraborty et al., 2023; Pham
et al., 2024; Yao et al., 2024), causal (Budhathoki et al.,
2022; Microsoft and contributors, 2023; Ikram et al., 2022;
Chakraborty et al., 2023) and interventional (Wang et al.,
2023; Bagehorn et al., 2022) analysis using IT data. Clearly,
there is significant research in this area, fully automating
incident resolution or providing actionable insights to hu-
mans remains elusive due to the complexity of real-world
systems, the variability of incidents, and the challenge of
incorporating contextual knowledge into AI systems (Jha
et al., 2020). Recent advances in language models (LMs)
have led to their adoption of ticket data analysis and diagno-
sis tasks (Roy et al., 2024; Ahmed et al., 2023a; Xie et al.,
2024b; Chen et al., 2023; Zhang et al., 2024). Most notable
examples include Cloud Atlas use LLMs for causal graph
construction (Xie et al., 2024b), RCACopilot for ticket anal-
ysis (Chen et al., 2023) with the aim to diagnose and mitigate
incidents. However, they achieve poor performance com-
pared to other techniques. For example, (Roy et al., 2024)
shows that chain-of-thought only achieves accuracy of 35%.
More recently, LMs are used in agentic workflows, engaging
with real or virtual environments, using several tools at their
disposal, for tasks like web navigation (Drouin et al., 2024;
Boisvert et al., 2024; Koh et al., 2024), system control (Sahu
et al., 2024; Zhang et al., 2024; Chen et al., 2024a), and
code generation (Yang et al., 2024a). However, the initial
results of these works show a high variability in the success
rate —35% in InsightBench (Boisvert et al., 2024) and the
ReAct-based agent for ticket data analysis (Roy et al., 2024)
to 100% in Flash (Chen et al., 2024a) for incident resolution
despite the fact that it is a much harder task than identifying
planted insights in tabular and ticket data. Our own results
in this work suggest that LLMs and agents struggle to con-
sistently complete incident resolution tasks. We assert that

2We use the term scenario broadly to refer to failures, perfor-
mance problems, compliance issues and, cost anomalies.

the variability in success rate exists because of difference in
realism of these datasets. This highlights the urgent need for
standardized and open source benchmarks to evaluate and
improve the efficacy of AI methods on incident resolution
tasks effectively.

SRE-focused Benchmarks The benchmarking landscape
for IT operations (ITOps) tasks is still in its early stages,
with a few existing efforts addressing specific aspects of
the domain. AIOpsLab (Chen et al., 2024a) focuses on
resolving IT incidents only for SRE personas, covering ten
distinct problems created in a real environment. It does
not follow SRE best practices for system and application
observability, e.g., using an alert management system, lacks
comprehensive coverage analysis, and a leaderboard for
systematic automated evaluation.

InsightBench (Sahu et al., 2024) targets the analysis of Ser-
viceNow ticket data, a critical supporting task for incident
routing and finding relevant past incidents, but its reliance
on synthetic data and the lack of a real environment limit its
applicability to agentic workflows. Similarly, TSB-AD (Liu
and Paparrizos, 2024b) is designed for univariate and multi-
variate anomaly detection, a core task for incident detection.
However, it is limited to synthetic data and focuses only on
anomaly detection.

A.2. Compliance

Compliance automation software is emerging to help busi-
nesses streamline and automate compliance processes, re-
ducing the need for manual monitoring and tracking of
regulations. This ensures continuous adherence to laws. In
particular, compliance as code is a very recent development
in the IT industry motivated by companies and audit agen-
cies shifting from annual audits to expectations of continu-
ous and automated measurement of compliance to maintain
control of their regulated environments’ posture and risks
for cyberattacks.

Recent works (Papanikolaou et al., 2011; Tupsamudre et al.,
2022) have applied AI/ML techniques to speed up these
tasks, focusing on mapping regulatory requirements to stan-
dard control frameworks such as NIST 800-53 (NIST 800-
53). Our agentic automation in the current ITBench solution
pioneers this type of effort to author compliance artifacts
through AI / ML by bridging compliance as code into policy
as code. Policy engines have a longer history in the IT in-
dustry compared to compliance as code; however, emerging
general usage policy engines such as (Int, d) try to address
the need for a common framework for continuous compli-
ance. We are not aware of any effort -albeit critical and
needed- related to benchmarking of compliance automation
software, whether with or without agentic support.
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A.3. FinOps

The area of IT cost management encompasses multiple dis-
ciplines, namely FinOps, IT Financial Management (ITFM),
Technology Business Management (TBM) and Porfolio
Businesss Management (PBM). At present, the FinOps do-
main typically deals with cloud costs (Storment and Fuller,
2023; Yang et al., 2024b), which includes compute nodes,
memory, other storage, networking, etc., that are incurred
with one of the hyperscalers. ITFM includes on-prem infras-
tructure, licensing, labor, procured services, tech support,
etc. The TBM Council provides a standard taxonomy to de-
scribe cost sources, technologies, IT resources (IT towers),
applications, and services. In addition, there are industry-
specific extensions to the taxonomy, such as for healthcare,
banking, etc. In essence, this taxonomy provides a generally
accepted way of categorizing and reporting IT costs and
other metrics. PBM refers to the practice of managing a
collection of projects and programs within an organization,
ensuring alignment with the overall business strategy and
maximizing their collective value by allocating resources
efficiently. The FinOps Foundation has indicated that over
time it will include elements from ITFM, TBM, and PBM.

Currently, for FinOps, there is no benchmark that fits the
definition of benchmark that we are using in this paper.
However, over the years, the FinOps Foundation (Founda-
tion, 2025a) has compiled several KPIs that can form the
basis for use cases and scenarios for a FinOps benchmark.
Current FinOps Foundation KPIs include:

• Usage or Spend Apportionment Validation
• Total Unpredicted Variance of Spend
• Percent of Compute Spend Covered by Commitment Dis-

counts
• Effective Savings Rate Percentage
• Percentage of Commitment Discount Waste
• Percent of Unused Resources
• Auto-scaling Efficiency Rate
• Forecast Accuracy Rate (Usage, Spend)
• Percentage of Unallocated Shared CSP Cloud Cost
• Percentage Variance of Budgeted vs. Forecasted CSP

Cloud Spend
• Percentage of CSP Cloud Costs that are Tagging Policy

Compliant
• Percent Storage on Frequent Access Tier
• Percentage of Legacy Resource

With the advent of the cloud, the academic and industrial
research communities have also been active in investigating
ways to optimize costs while balancing multiple objectives.
Recent works in the space of FinOps have focused on apply-
ing machine learning and mathematical optimization tech-
niques (Qiao et al., 2021; Yang et al., 2024b) to better serve
customers’ cloud infrastructure needs while offering them
insights and recommendations on how they could optimize

their overall cloud spend. (Fangkai et al., 2023) addresses
the issue of helping customers make trade-offs between cost
and resource availability in the presence of offerings such as
spot VMs which are cheaper than on-demand VMs but have
reduced availability. They propose a framework that uses
constrained reinforcement learning to optimize cost and
availability by identifying an optimal mix of on-demand
VMs and spot VMs. Papers such as (Diao et al., 2024; Feng
et al., 2023; Quattrocchi et al., 2024) propose forecasting al-
gorithms to scale cloud resources for service level objectives,
contributing to the broader field of FinOps-driven cost op-
timization. (Osypanka and Nawrocki, 2020) uses anomaly
detection, machine learning, and particle swarm optimiza-
tion to achieve a cost-optimal cloud resource configuration.
(Liu et al., 2023a) analyze the process of using cloud storage
to explore opportunities, motivations, and challenges of cost
optimization from user perspectives. (Nodari et al., 2016)
focuses on finding the optimal combination of on-demand
and reserved instances, such that the demand is satisfied and
the costs minimized. They model this optimization problem
as a stochastic inventory control problem.

(Yehoshua et al., 2023) introduces a scalable cost optimizer
that determines the most cost-effective deployment strategy
for workloads on public or hybrid clouds, considering re-
source requirements and constraints to minimize costs. In
FinOps, there is an urgent need to move beyond comparative
scorecards and broad taxonomies to specific use cases that
test the ability of automated agents to optimize IT invest-
ments and reduce resource waste. To our knowledge, no
benchmarks exist for use cases like forecasting, anomaly
detection, or cost optimization, nor are there standardized
methods to evaluate these techniques with or without agentic
support. We are confident that ITBench will unite research
and development communities to tackle real-world prob-
lems through the power of AI and optimization.
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B. ITBench
ITBench framework, as shown in Figure 7, supports two
main phases corresponding to two personas as follows: (i)
benchmark registration phase, where the target is the
Benchmark Submitter persona, and (ii) agent registration
phase, focusing on the Agent Submitter persona and the
actual runtime benchmarking execution and evaluation.

B.1. Benchmark Registration

This phase comprises two main steps: (i) scenario develop-
ment and registration, and (ii) tasks and evaluation metrics
registration.

Scenario Development and Registration

Our scenarios are designed to instantiate real-world IT prob-
lems in realistic and manageable environments. Each sce-
nario comprises of two core components: (i) an environment
specification, and (ii) a scenario specification metadata. The
Benchmark Submitter persona then registers these scenar-
ios with ITBench, which stores them in its database. Each
scenario is described using the metadata shown in Table 7.

Table 7: Scenario Metadata and Examples.

Field Example

Type CISO, SRE, FinOps
Name For CISO: k8s CIS-b Minimize con-

tainers w/ shared net namespace
Description For CISO: Minimize the admission

of containers wishing to share the
host network namespace

Complexity Easy, Medium, Hard
Class For CISO, this is defined based

on the technology (e.g., k8s w/
Kyverno; k8s w/ OPA; Rhel9 w/
OPA).

Tasks and Evaluation Metrics Registration For each
scenario type, the Benchmark Submitter registers a well-
defined set of tasks that form the basis for the Agent per-
formance evaluation. Table 2 summarizes the ITBench cur-
rently supported IT automation tasks. Moving forward, we
plan to extend ITBench to incorporate additional tasks (e.g.,
threat analysis and resource optimization) and to broaden
its applicability to other domains (e.g., DevOps).

B.2. Agent Registration

During this phase, the Agent Submitter first registers as a
user on the platform, then follows with the Agent Registra-
tion.

B.2.1. AGENT REGISTRATION

During Agent Registration, the Agent Submitter specifies
the agent metadata as shown in Table 8.

Table 8: Agent Metadata and Examples.

Field Example

Agent Name –
Agent Type (predefined) CISO, SRE, FinOps . . .
Agent Level Beginner, Intermediate, Ex-

pert
(maps to scenario complex-
ity: Easy, Medium, Hard)

Scenario Class For CISO: rhel9 w/ OPA; Ku-
bernetes w/ Kyverno; Kuber-
netes w/ OPA, Kyverno up-
date

Once the agent has been registered, the Agent Submitter
selects the agent, and the corresponding benchmarks are re-
trieved from the database using the agent_type, agent_level,
and scenario_class specified during registration for the
Agent. The Agent Submitter subsequently receives the tasks
that the agent must complete to meet the designated objec-
tive, each of which has pre-defined evaluation metrics.

B.3. Leaderboard

Effective benchmarking of IT automation tasks, especially
when selecting LLMs tailored to an organization’s specific
needs, requires consistent tracking and comparison of agent
performance. The Leaderboard facilitates this need by offer-
ing a predefined, extensible set of performance metrics that
provide clear insights into agent performance relative to the
evaluation criteria.

The Leaderboard supports both API and UI interfaces, en-
abling a streamlined benchmarking workflow. Users must
register the agent endpoint via the Leaderboard’s UI or API.
The agent can then query the Leaderboard to retrieve and de-
ploy benchmark scenarios before reporting their operational
status. The scenarios can be deployed either automatically
by the ITBench, as described above, in its hosted environ-
ment, or manually outside the Leaderboard, in the user’s
hosted environment, in which case both agent and environ-
ment can still leverage the same Leaderboard API endpoint
to publish status updates.

The end-to-end workflow for the agent benchmarking pro-
cess, after its registration by the Agent Submitter, is illus-
trated in Figure 7, and summarized in the following.

1. New benchmark jobs are stored in the Benchmark Queue
for processing.

2. The Benchmark Runner fetches a benchmark scenario
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Figure 7: ITBench leaderboard workflow.

for a particular agent from the Benchmark Queue.
3. The Benchmark Runner provisions the environment as

per the benchmark scenario specification. The scenario’s
environment is the set of systems required for the ex-
ecution of a specific IT task.The Agent interacts with
(and can potentially modify) the environment to solve
the given IT automation tasks. A benchmark evaluation
measures the Agent’s performance based on whether it
successfully completes the tasks in the given environ-
ment. The environment could be, for instance, a Kuber-
netes cluster running a target application or a RHEL 9
host with a specific configuration to be validated. The
environment is under the direct control of the Agent
and therefore may be subject to destructive actions (in
case of faulty performance), thus functioning as a sort of
“playground.”

4. For each scenario included in the benchmark run, the
Benchmark Runner and the Agent execute the following
steps:
(a) The Agent continuously polls the get_manifest API

to monitor when a new manifest enters the Ready
state.

(b) Benchmark Runner deploys the scenario’s environ-
ment by executing the deploy_scenario function.
Each environment reports its status to the Agent
API Server using the post_bstatus API.

(c) The Benchmark Runner monitors the environment’s

status via the Agent API Server’s get_bstatus API.
Once the status becomes Deployed, it injects a fault
into the environment by executing the inject_fault
function.

(d) The Benchmark Runner continues to monitor the en-
vironment’s status using the get_bstatus API. Once
the status reaches FaultInjected, it updates the man-
ifest’s status in the Benchmark DB to Ready, in-
cluding key details such as Benchmark ID, Scenario
ID, cluster credentials, and URLs in the manifest.
This allows the Agent to access and retrieve this
manifest for working with the environment.

(e) Once the manifest status is Ready, the Agent re-
trieves it. The manifest contains URLs and creden-
tials required to launch the Agent. Before start-
ing the Agent, the Agent calls the post_status
API of the Agent API Server to report its status
as STARTED.

(f) After the Agent completes its execution, the
post_status API is called again to report the
Agent’s completion its status as FINISH.

(g) Benchmark Runner starts the evaluation and exe-
cutes the delete_scenario function.

5. Once the evaluation results for all the scenarios in the
benchmark are ready, Benchmark Runner aggregates
them and publishes the results to the Leaderboard.
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Figure 8: Example ITBench leaderboard.

We instantiated the Leaderboard evaluation metrics for a few
IT automation tasks as detailed in Section 3.1, Table 2. In
Figure 8 shows the Leaderboard landing page displaying the
benchmarking metrics and results for the CISO compliance
assessment agent.
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C. Site Reliability Engineering
C.1. Background

With the unprecedented growth in scale and complexity
of modern IT systems and infrastructures, failures are the
norm instead of exceptions (Patterson et al., 2002; Gunawi
et al., 2016; Kendrick, 2012; Di Martino et al., 2014; Veer-
araghavan et al., 2018; Liu et al., 2019; Ghosh et al., 2022).
First, hardware failures are frequent in large-scale IT infras-
tructures. For example, a new cluster at Google undergoes
about a thousand individual machine failures and thousands
of disk failures every year (Dean, 2009). Many of these
failures further trigger correlated failures (Ford et al., 2010).
New hardware fault models such as silent data corruptions
in compute units (Hochschild et al., 2021) and fail-slow
storage (Gunawi et al., 2018) further increase the challenges
of detection and mitigation. In fact, in geo-distributed hy-
perscalar infrastructures, datacenter-level disasters are no
longer rare events (Veeraraghavan et al., 2018).

Moreover, high velocity of software changes, software fail-
ures caused by code bugs (Gunawi et al., 2014) and miscon-
figurations (Xu et al., 2013) have also become a major cause
of IT system failures and service outages, significantly out-
numbering hardware failures in recent years (Maurer, 2015;
Barroso et al., 2018). For example, IT systems undertake
hundreds to thousands of configuration changes daily, which
introduces misconfigurations and triggers latent bugs (Sun
et al., 2020; Tang et al., 2015). Recent trends in software
architectures such as microservices and serverless comput-
ing (Jonas et al., 2019) are further enlarging IT reliability
challenges by magnifying system complexity and dynam-
ics with sophisticated interactions (Tang et al., 2023) and
emergent behavior (Huang et al., 2022).

The goal of Site Reliability Engineering (SRE) is to achieve
high availability and serviceability of IT systems, in the pres-
ence of the aforementioned failures (Murphy et al., 2024).
The essential job of SRE is failure management3—detecting,
diagnosing, and mitigating failures in production systems
to prevent production incidents (the failures that cause user-
perceived impacts) or to minimize the impacts and damages
of incidents when incident alerts are triggered. Specifically:

• Detection. SRE must promptly detect production fail-
ures via logs, traces, and other telemetry data; detecting
failures is the first step to prevent incidents or at least
minimize their blast radius and impacts.

• Diagnosis. SRE must analyze the root causes of detected
failures and localize the faults (e.g., the faulty component

3We follow the classic Fault-Error-Failure model (Avizienis et al., 2004), where
a fault is a root cause such as a software bug, a hardware malfunction, or a miscon-
figuration. A fault can produce abnormal behaviors referred to as errors. However,
some of these errors are transient and have no system-level effect. Only errors that
propagate and become observable manifest as failures, such as crash, hang, incorrect
result, or incomplete functionality, etc.

and the condition that triggers the fault).

• Mitigation. SRE must mitigate the failures to prevent
propagation that leads to larger failures or incidents. Mit-
igation typically follows a resolution plan outlining a
sequence of actions to restore the system to its expected
state (Chen et al., 2024b).

ITBench currently focuses on diagnosis and mitigation tasks
with plans to include more tasks such as incident detection,
prevention of similar failures/incidents (e.g., by regression
testing).

Detection is simplified with golden-signal-based alerts,
which observability tools provide natively. Though, the
challenge intensifies during an event storm, requiring SREs
to distinguish actionable alerts by suppressing false posi-
tives and prioritizing those that demand immediate attention
— a daily struggle in incident resolution. Both of these tasks
are included in ITBench by injecting multiple faults within
certain scenarios, causing a flood of alerts. The agent must
then determine which alerts to prioritize and in what order.

Urgent need of SRE automation. Currently, SRE is largely
a human-based practice—SRE engineers are at the forefront
of detecting, diagnosing, and mitigating failures and inci-
dents daily (Beyer et al., 2018; Murphy et al., 2024). How-
ever, IT systems are growing in scale and demand beyond
what human-based practice can reliably, continuously, and
efficiently manage, and the cost of human resources and
the limit of human reasoning has already become the bot-
tleneck of failure and incident resolution. Today, SRE for
IT systems has already become the major TCO (Total Cost
of Ownership) of any cloud and software companies (Boul-
ton; IDC, 2024). Hence, SRE automation is no longer an
optional enhancement, but an operational imperative.

In fact, today’s IT systems are already increasingly man-
aged by operation programs that automate labor-intensive,
human-based operations, known as IT automation. For
example, modern cloud management platforms like Kuber-
netes (Burns et al., 2016), Twine (Tang et al., 2020), and
ECS (Melissaris et al., 2022) implement operator programs
to automate a wide variety of operations such as software
upgrades, configuration, autoscaling, etc. However, so far,
SRE has not yet become a common part of IT automation
due to fundametnal challenges of failure managements.

C.2. Real-world Incident Example

Table 9 shows a real-world incident report based on SREs’
raw work notes. In this incident, SREs were notified of sev-
eral alerts of type — high error rate (>1% in last 10 minutes)
on a service — by Slack. The fault occurred due to a “node
failure” due to the accidental deletion of resources during
a decommissioning process aimed at cutting IT costs. The
fault caused shard unavailability, leading to an Elasticsearch
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failure and an SLO violation due to the error rate SLI. The
fault propagated to cause unavailability of shards which
in turn led to elasticsearch failure. The unavailability of
elasticsearch caused SLO violation of error rate SLI.

The Ops resolution plan included trial and error to finally
arrive at a state which allowed SRE personnel to execute
existing mitigation playbook4.

As shown, such incidents provide valuable information in
terms of: (i) time to detection, diagnosis (post detection)
and mitigation (post diagnosis), (ii) symptoms and customer
impact, (iii) faulty condition, fault propagation path and
depth, (iv) operation resolution plan, and (v) long term
fix and improvements. Such real world insights into fault
occurrence, propagation, and resolution are invaluable for
fault prevention, and automating incident handling.

C.3. ITBench Architecture

ITBench uses open source technologies to create completely
repeatable and reproducible incidents (scenarios) on a Ku-
bernetes platform as shown in Figure 9.

Orchestration. The core workflow involves a sequence
of interactions between the SRE-Agent5 and various com-
ponents of ITBench. Initially, SRE-Agent ( 1 ) enrolls in
the benchmark leaderboard by sending the enroll com-
mand, which prompts the ITBench to create a session ( 2 )
and provide necessary credentials and details (e.g., Kuber-
netes access, time limits). Once ready, the agent sends
the ready signal ( 3 ), triggering the scenario executor
to install a selected scenario from the scenarios database.
This specification is used to set up the environment and
inject the fault, including installation of the observability
tools ( 4 ). During the active phase ( 5 ), the agent interacts
with the environment using tools like NL2Alerts, NL2Logs,
NL2Metrics, and NL2Traces to complete the task. Upon
task completion or time expiration ( 5 ), SRE-Agent sends
the finish command ( 6 ), signaling ITBench to evaluate
the provided outputs and clean up the environment. The
scenario executor validates the work of SRE-Agent ( 7 )
restores the system to its baseline state ( 8 ). The interaction

3 — 8 continues until scenario manager sends session
finish signal ( 9 ).

4Playbook is a structured set of predefined procedures or au-
tomated scripts that outline the steps required to perform specific
operational tasks or respond to incidents. Playbooks standardize
responses, reduce errors, and enable automation of repetitive tasks,
enhancing efficiency and reliability in IT operations.

5Henceforth, we will refer to the agents handling SRE tasks as
SRE-Agent

C.3.1. PRINCIPLES

Following the bench principles indicated in the introduction,
our ITBench uses open-source technologies to construct
completely repeatable and reproducible scenarios to simu-
late real-world incidents.

• Mimic SRE Best Practices. ITBench follows the guide-
lines outlined in SRE handbook (Murphy et al., 2024)
such as alerting on golden signals per application and en-
abling monitoring and observability. Hence, in our current
version, the detection is provided out-of-the-box using the
approach outlined in (Murphy et al., 2024).

• Mimic Real-world Incidents. We systematically exam-
ined 105 real-world incidents from our SaaS products to
derive relevant incident patterns. Although we integrated
several of these patterns into our ITBench scenarios, not
all were included due to the complexities of accurately re-
producing these incidents and mirroring production-level
characteristics. Nevertheless, our ITBench will continu-
ously evolve through the ongoing incorporation of addi-
tional incident patterns. At the time of writing this paper,
ITBench supports 24% Easy, 24% Medium, and 52%
Hard incidents, as shown in Figure 11.

• Provide Observability. In real-world scenarios, SREs
use observability tools alongside command-line access
to monitor systems. These tools provide multiple data
modalities such as traces, logs, metrics, and events—and
support alerting for efficient anomaly detection, trend anal-
ysis, and automated troubleshooting. ITBench defaults to
Grafana (gra) but can support other tools including IBM
Instana (ins), Dynatrace (dyn), and Datadog (dat).

• Model Data Variability. Depending on system criticality
and budget, some data modalities may be missing; for
instance, only about 20% of applications have tracing
enabled, complicating incident diagnosis. ITBench allows
flexible control to enable, disable, or partially enable data
modalities as needed.

• Manage Scalability Scenario hyperparameters consists
of (i) environment specification and (ii) scenario specifi-
cation. Environment specification allows (i) application
selection and their related infrastructure selection (e.g.,
replica count), and data censoring parameters. Scenario
specification allows selection of hyper parameters (e.g.,
service name on which to inject fault on). ITBench creates
a database of scenarios offline using the aforementioned
hyper parameters.

• Ensure Determinism. ITBench ensures that alerts are
generated according to the scenario specifications before
making the scenarios available in ITBench. Moreover,
ITBench ensures that all the assertions (e.g., application
is running correctly, alerts are fired correctly) are passed
before sending the ‘READY’ state signal to the agent.
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Table 9: An incident that occurred on a SaaS data platform. This incident shows the complex relationship between SRE and
FinOps persona, as FinOps ensures that IT environment is cost optimized to meet the financial efficiency goals, while SREs
focus is on minimizing service impact and resolving the issue.

Incident Details

Triggering alert Seven alerts of type - “High error rate on service."

Summary

Error was encountered due to unexpected node failures and EBS volume issues
during the downscaling of the Elasticsearch (ES) cluster because of a human error.
Downscaling of ES was initiated to save AWS costs associated with running the
service.

Incident duration 180 minutes
Time to detection 60 minutes
Time to diagnosis 60 minutes
Time to mitigate 120 minutes
Symptoms [✓] Traffic: ↓, [✓] Error: ↑, [✗] Saturation, [✗] Latency
Customer impact Yes.
Fault propagation depth six

Fault propagation

↓ Human error: accidental removal of healthy nodes during decommissioning
process (maintenance window)

↓ Primary failed while replica initializing (human extrapolation based on the
context and manual validation)

↓ Shard assignments failed (ES event: shard unassigned)
↓ Elasticsearch became unhealthy (ES event: RED status)
↓ Services unable to get data from ES (trace)
↓ Increase in error rate on 7 services (events)

Faults human error, failure during recovery

Resolution plan

Undo EBS 
deletion

Backup 
Exists

Undo node 
deletion

Accept data 
loss

Recreate 
New Shards

Assert 
Elasticsearch 

recovered

Trigger node 
rebalance

Not possible

No

Not possible

Yes
Execute playbook

Resol. plan size 5 (4 human + 1 automation via playbooks)

Long term improvements
✓ Maintain 24-hour gap between instance deletion and EBS deletion
✓ Runbooks updated accordingly
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Table 10: SRE tasks

Task Task Description

Fault localization Identify the faulty entity (root cause) and fault condition.
Fault propagation analysis
(aka root cause analysis)

Identifying the causal chain from the root cause entity to the alert,
including the identification of fault condition at each step of the
chain.

Recommend mitigation actions Identifying corrective actions to resolve the incident (excluding the
execution).

Mitigate incident Executing corrective actions to clear the alert.

Remove 
Scenario

8

Evaluate7

Install 
Scenario

4

Agent
Working 5

Task Scenario Manager

Agent

Scenario 
Generator

App 1

Observability 
Tools

Scenarios

Grafana

DeathStarBench
App 
Library TrainTicket

AstronomyShop

... ...

Register1

Opencost

Jaeger Prometheus Loki

App N... ...App 2

Kubernetes Cluster (Environment)

JVMCodeReturnFault
Task 
Library CorruptImage

... ...

Task Scenario Hyper-parameters

Scenario 
Executor

Session Authentication2
Agent Ready3
Agent Finish6

Session Finish9

Figure 9: Architecture of ITBench responsible for orchestrating SRE scenarios.

C.3.2. RECREATING INCIDENTS IN ITBENCH USING
REAL-WORLD SCENARIOS

By leveraging detailed incident reports from real-world out-
ages, such as the one summarized in Table 9, we systemati-
cally reconstruct similar failure scenarios in ITBench. As
outlined in Table 11, this involves configuring a multi-node
Elasticsearch cluster with EBS volumes and introducing
targeted disruptions—ranging from altering network config-
urations (e.g., changing ports or IPs) to simulating node and
volume deletions, or disabling write operations on specific
shards. Each recreated scenario is designed to mirror the
complexity of the observed production failures with small
variations, including similar failure propagation paths, im-
pact on metrics (such as error rates and latency), and the
associated operational mitigation steps. This ensures that IT-
Bench incidents (scenarios) in ITBench accurately replicate
real-world technical details while also capturing the asso-
ciated decision-making challenges, allowing for a realistic
and representative evaluation of agents.

C.4. Characterizing ITBench incidents

Table 12 lists the 21 seed scenarios currently available in
ITBench. Evaluating each scenario with and without tracing

yields 42 SRE scenarios in total for this study. We incorpo-
rated 14 additional scenarios after the ICML submission and
before the camera-ready version, as detailed in Table 13.

Beyond these 70 (= 21×2+14×2) scenarios,ITBench can
easily produce a far larger range of fault patterns by param-
eterizing key dimensions such as the target application, the
precise location of fault injection, and the number and types
of concurrent faults. For instance, if the target application is
HotelReservation, the fault of the PodFailure scenario alone
can be applied to any of the 18 pods, effectively extending
to another 18 scenarios. In this way, ITBench can be used
to systematically generate hundreds or even thousands of
variations. In our evaluation, we focus on representative
scenarios, while still enabling users to customize and scale
their tests.

Figure 10 illustrates key incident characteristics observed
in our dataset, including the fault propagation chain length
(Figure 10a), the resolution plan size (Figure 10b), and the
number of distinct technologies involved (Figure 10c). Intu-
itively, as the length of the fault propagation chain grows,
the incident becomes more challenging to diagnose. Simi-
larly, a longer resolution plan suggests that restoring service
health requires multiple steps and interventions. The in-
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Table 11: Recreated failure scenarios using the incident description described in Table 9.

Testbed Setup

• Develop an application that uses Elasticsearch for data storage and retrieval.
• A minimum of 3 nodes in the Elasticsearch cluster must be configured.
• Attach EBS volumes to each node to simulate the volume usage conditions as in the incident.
• Create an index with a sufficient number of documents to stress the system.

Incident Scenario 1 Incident Scenario 2 Incident Scenario 3

Description Make ES unavailable by
changing port, IP address, etc.

(i) Identify a victim node:
choose one of the nodes within
the cluster and delete it, and
(ii) delete the attached EBS
volume.

Identify a victim shard and
make it read-only (i.e., disable
writes).

Fault propagation IP/Port changed → ES unavail-
able → Increased error rate in
app

Similar to incident described
in Table 9

Similar to incident described
in Table 9, except caused by
hardware failure

Ops mitigation plan Change the IP address/port to
the correct value

Similar to incident described
in Table 9

(i) Enable writes on the victim
shard, or (ii) follow the pro-
cedure similar to incident de-
scribed in Table 9

Table 12: Unique Scenarios available in ITBench.

Scenario Pattern Technologies Impacted # Fault Propagation # Resolution Steps

CacheFailure Node.js 3 2
HighCPU Java, Node.js 3 2
ServiceFailure Java, Node.js 4 3
ManualGarbageCollection Java, Node.js 3 2
MemoryLeak Python, Node.js, Go 8 6
CorruptDeployment Go, Java, Node.js 8 6
CorruptDeployment Java, Go, Node.js 7 5
CorruptDeployment Go, Node.js 2 1
NetworkDelay Go, Python, Node.js 4 1
PodFault Go, Node.js 2 2
NetworkPartition Tonic, Rust, Go, Node.js 4 1
CorruptImage Go, Node.js 3 1
CorruptImage Node.js 2 1
CPUStress Python, Node.js 2 2
HTTPRequestBodyTamperFault Ruby, Go 3 1
HTTPRequestAbortFault PHP, Go, Tonic, Rust, Node.js 4 1
HTTPRequestBodyTamperFault Ruby, Go, Node.js 3 2
JVMCodeReturnFault Java, Node.js 3 1
PodFailure Java, Node.js 1 1
IncorrectAuthentication .NET, Go, Node.js 2 1
MemoryResourceLimit Go, Node.js 1 2

volvement of various technologies introduces additional
complexity due to the diversity of tools, data sources, and
failure modes.

Since fault propagation length, resolution plan size, and
technology heterogeneity all influence the difficulty of inci-
dent resolution, we define overall task complexity as their
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Table 13: Extended (NEW) Unique Scenarios available in ITBench.

Scenario Pattern Technologies Impacted # Fault Propagation # Resolution Steps

JVMHeapStress Java 3 1
PodUnavailable Go 3 1
PodUnavailable Ruby 3 1
PortMisconfigure Kubernetes, Go 2 2
StorageClassReplace Kubernetes, Java 3 2
ReplicasetScale Kubernetes, Java 2 1
UnregisterCredentials MongoDB 4 2
NonExistentImage Kubernetes, Go 2 1
UnsupportedImage Kubernetes, Go 2 1
RedisPassword Redis, .NET 4 1
RedisOOM Redis, .NET 3 2
NodeAssign Kubernetes 1 1
BinaryIncorrect Kubernetes, Go 2 1
NetworkPolicy Kubernetes, TypeScript 3 1
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Figure 10: Characterizing ITBench scenarios.

geometric mean. Equation (6) captures this relationship:

Complexity = 3
√
(propagation path length × # resolution steps × # technologies)

(6)

This formulation offers a balanced complexity measure,
where the geometric mean ensures that all three factors con-
tribute proportionally, rather than allowing one dominant
factor to skew the assessment. While factors like required
skill sets or the number and type of diagnostic interactions
(e.g., tool invocations or queries) could further refine our
complexity measure, these factors are often highly depen-
dent on the observability platform, domain expertise, and

team-specific processes. As discussed, LMs can potentially
mitigate skill gaps through targeted fine-tuning and knowl-
edge integration, thereby reducing the variability introduced
by differences in human expertise and diagnostic strategies.
Thus, we focus on the three core factors that are more con-
sistent and inherent to the complexity of the incident itself.

Figure 11 presents the distribution of task complexity values
across our incident dataset using the above geometric mean
formulation. The results show a diverse range of scenarios,
with varying degrees of difficulty reflected in the natural
interplay among propagation depth, resolution steps, and
multi-technology integration. This complexity quantifica-
tion provides a foundation for future analyses, including
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Easy 24.0%

Medium
52.0%

Hard

24.0%

Figure 11: SRE scenario complexity.

evaluating how automated reasoning tools, enriched observ-
ability stacks, or improved operator training might shift the
distribution toward easier, more manageable tasks.

C.4.1. EXPERIMENTAL SETUP

These tasks are implemented as Ansible playbooks to bene-
fit from automation pipelines such as Ansible AWX. Below,
we present one of our fault injection implementations, which
utilizes Kubernetes network policies to simulate port block-
ing for a target service. We use roles to define different
actions related to both fault injection and fault removal re-
spectively. Our fault injections can be reconfigured using
the variables to target different services to create additional
scenarios. Each scenario has been validated to produce a
relevant alert in Grafana, which provides important context
to an agent working on a scenario.

---
- name: Define Network Policy to block port

8080
set_fact:

network_policy_spec: |
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: "deny-{{ target_service }}-{{

target_port }}"
namespace: "{{

target_namespace_project_name
}}"

spec:
podSelector:

matchLabels:
app.kubernetes.io/name: "{{

target_service }}"
policyTypes:
- Ingress
ingress:
- ports:

- protocol: TCP
port: {{ target_port }}

from: []
when:

- is_custom
- is_fault_injection or

is_fault_removal
- is_network_policy_service_block

- name: Apply Network Policy
kubernetes.core.k8s:

kubeconfig: "{{ kubeconfig }}"
state: present
definition: "{{ network_policy_spec }}"

register: network_policy_apply_result
when:

- is_custom
- is_fault_injection
- is_network_policy_service_block

- name: Remove Network Policy
kubernetes.core.k8s:

kubeconfig: "{{ kubeconfig }}"
state: absent
api_version: v1
kind: NetworkPolicy
name: "deny-{{ target_service }}-{{

target_port }}"
namespace: "{{

target_namespace_project_name }}"
register: network_policy_removal_result
when:

- is_custom
- is_fault_removal
- is_network_policy_service_block

For our experiments, we utilized an AWS m4 xlarge cluster
configured with 1 control-plane node and 3 worker nodes.
The worker nodes had 12 cores and 48 GiB of RAM, with
16 cores and 64 GiB of RAM being used in total. To gain
insights into the resource demands imposed by our scenarios,
we analyzed the cluster’s performance during a one-hour test
period. The key metrics include Persistent Volume Claim
(PVC) usage, CPU consumption, and memory utilization,
as summarized in Table 14.

Table 14: Cluster resource usage during fault injection.

Resources Usage Requests Limits

CPU 2.06571 cores 8.19 cores 6.16 cores
Memory 13.84 GiB 12.89 GiB 16.93 GiB
PVC 62.21 GiB - 160 GiB

ITBench also supports experiments on Kind clusters, of-
fering a lightweight and portable option for local testing.
We validated this capability on a machine with the follow-
ing configuration: 1 control-plane node, Intel(R) Xeon(R)
Gold 6248 CPU @ 2.50GHz, 12 CPU cores, and 16 GB
RAM, running Red Hat Enterprise Linux. This setup allows
researchers to efficiently simulate fault scenarios, such as
observability stack deployment, OpenTelemetry application
deployment, and fault injection tasks, with minimal infras-
tructure overhead. For example, Incident 22 demonstrated
an average CPU usage of 361.71% and memory consump-
tion of 93.53%, confirming the feasibility of Kind clusters
for reproducible testing.
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C.5. SRE-Agent

As described in Section 3.2, agents interact with the target
environment, collect observability data, and execute action
to accomplish its goals. For SRE, the goal is to diagnose
and mitigate incidents. Below, we describe the observability
data collected by the SRE-Agent and our LM-based, multi-
agent system implementation.

C.5.1. OBSERVABILITY DATA

Metrics Disk Write

CPU Load

ETH1 Inflow

UDP Out

Memory Usage

Logs

11-29 16:17:57,933 – INFO [/10.10.10.01:2222] – Received connection request /11.11.11.11:5555
11-29 16:17:57,954 – WARN [Worker: 188979561024] – Interrupting SendWorker
11-29 16:18:01,925 – WARN [Worker: 188979561024] – Interrupting while waiting for msg on queue
11-29 16:18:07,943 – WARN [Worker: 188979561024] – Interrupting SendWorker
11-29 16:18:07,958 – WARN [Worker: 188979561024] – Interrupting SendWorker

Traces

Frontend

Search

Geo

Mongodb

1

2

3

0

Figure 12: Multi-modality data for SRE task.

As shown in Figure 12, SRE tasks involve analyzing multi-
modal observability data: logs, traces, and metrics.

Logs. Logs are semi-structured text records that capture
hardware and software events. They are often categorized
by severity levels, such as INFO, WARN, and ERROR, to
reflect the system’s runtime status and the seriousness of its
behavior.

Traces. Request traces describe the execution flow of user
requests as they traverse through various service instances
in a distributed system. They provide a hierarchical repre-
sentation of service invocations, where each operation is
referred to as a span. A span records information about a
single service invocation, such as its start time, duration,
and associated metadata, including tags and logs. Spans are
linked together to form a trace, capturing the complete exe-
cution path of the request. Additionally, program exception
traces capture program crashes, providing valuable insights
for developers during debugging.

Metrics. Metrics provide time-series data monitoring sys-
tem performance and user-perceived indicators, such as
latency, error rates, and resource utilization.

C.5.2. SRE-AGENT ARCHITECTURE AND
IMPLEMENTATION

The SRE-Agent architecture consists of two LM-based
agents, a Diagnosis Agent and a Resolution Agent as shown
in Figure 13. We first define the following basic components
used in our implementation:

• Agent. An agent is an autonomous or semi-autonomous
software program that uses a LM to plan, make deci-
sions, interact with the target environment, and execute
actions to accomplish goals.

• Task. A task is a specific goal that the agent must
accomplish before its execution terminates. In our
implementation, a task is a complex multi-step process
(e.g. diagnosing the cause of an incident). Tasks also
have tools associated with them that the agent can use
to achieve the goal.

• Tool. A tool is a function or API call that the agent
can use to perform a specific sub-task, such as, interact
with the target environment to collect observability
data.

We now describe our implementation of each of the above
components.

Tools. Table 15 lists all the tools available to SRE-Agent.
All our tools are also LM-based, where the LM is prompted
with an utterance from the agent instructing it to perform
the required sub-task. The tools are of two types based on
whether they generate natural language (e.g., Mitigation)
or function calls (e.g., NL2Kubectl). Further, to potentially
improve the accuracy and usability of our tools, we equip
them with the following features.

• Reflection. To enable automatic correction of wrong
LM responses, they are provided with external feed-
back (Pan et al., 2023; Huang et al., 2023) from linters.
Specifically, for tools that generate function calls, lin-
ters are developed to validate the syntax and semantics
of the output. If the linter finds a problem with the gen-
erated function call, the LM is re-prompted with the
linter’s feedback so that it can attempt to fix the prob-
lem. Similarly, if the generated function call passes
linting, but causes an error upon execution, the error
message and the failing function call are used to re-
prompt the LM for a fixed function call.

• Summarizer. For some tools, such as NL2Logs and
NL2Traces, the output is not directly returned to the
agent because it is very long and contains extraneous
information. These tools utilize an additional step that
prompts a LM with the output and asks it to provide a
detailed summary with only relevant information.

Tasks: We define the following two tasks to be completed
by SRE-Agent. Each task includes a description of its com-
pletion process and the expected output upon completion.
Each task also has tools associated with it that the agent can
use to execute sub-tasks, gather information or interact with
the environment.
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Table 15: List of the tools used by SRE-Agent

Name Description Supports
Reflection

NL2Kubectl Interacts directly with Kubernetes yes
NL2Traces Interacts with Grafana API for traces yes

NL2Metrics Interacts with Grafana API for fetching metrics stored
in Prometheus yes

NL2Logs Interacts with Grafana API for fetching logs stored in
Loki yes

NL2Alerts Interacts with Grafana API for fetching alerts yes
Mitigation Generates mitigation plans no
Wait Pauses execution for the specified seconds no
Summarization Summarizes the input content no
DiagnosisJsonReport Generates JSON Report of the diagnosis no
MitigationJsonReport Generates JSON Report of the mitigation plan no

• Diagnosis Task. For diagnosis, the goal is to identify
the entire fault propagation chain, i.e., fault propaga-
tion chain (FPC) analysis, and identify the exact cause
of the problem within the chain, i.e., fault localization
(FL).

• Mitigation Task. For mitigation, the goal is to provide
natural-language mitigation plans, and execute them to
successfully clear the triggering alert. The mitigation
plans increase agent explanability and help SREs in un-
derstanding why the agent executed certain commands.

Agents. Overall, SRE-Agent consists of two agents, namely,
diagnosis and mitigation agents. Each agent is assigned
tasks that it must complete. In general, multi-agent systems
can be hierarchical or sequential. Sequential execution
allows tasks to be completed in a fixed, linear order. In hier-
archical execution, a “manager” agent determines the task
execution order and co-ordinates with the other agents. We
adopt sequential execution because it is well suited for the
SRE use case, where an incident must be diagnosed before
it can be resolved. Although, the order of task execution is
fixed, the sub-tasks or steps within each task may be com-
pleted in any order as determined by the agent itself. We
describe the overall workflow of both our agents below.

• Diagnosis Agent. First, the Diagnosis Agent uses the
NL2Alerts tool to retrieve the active alerts in the envi-
ronment. The agent then flexibly and iteratively uses
observability tools to gather traces, logs, and metrics
from the affected entity mentioned in the alert, and
entities associated with the affected entity. It may also
use NL2Kubectl commands to investigate the environ-
ment. Once the agent determines that it has sufficient
information to provide a diagnosis, it proceeds to gen-
erate a structured diagnosis report in JSON format with

its findings to facilitate evaluation. After the report is
generated, the Mitigation Agent takes over.

• Mitigation Agent. The Mitigation Agent ingests the
diagnosis report to create mitigation plans and then
utilizes the available tools to implement the plan. This
involves using NL2Kubectl commands. To ensure that
the executed commands mitigated the incident, it can
also use the NL2Alerts tools to check whether the alerts
in environment have been cleared. Further, since alerts
could sometimes temporarily appear to get cleared due
to fluctuations in a live environment, the agent can use
the Wait tool to check whether the alerts stay cleared
even after some time. Finally, upon completion of the
execution, the agent generates a JSON explaining the
mitigation steps that it took.

Tools:
Mitigation
NL2Kubectl
NL2Alerts
Wait
MitigationJSONReport

Diagnosis Agent: 
Diagnosis Task

Mitigation Agent:
Mitigation Task

Tools:
NL2Alerts
NL2Kubectl
NL2Traces
NL2Metrics
NL2Logs
DiagnosisJSONReport

Figure 13: SRE-Agent architecture
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C.6. ITBench Evaluation

C.6.1. EXPERIMENTAL DETAILS

We evaluate the SRE-Agent agent on a set of 42 SRE sce-
narios in the ITBench. For the agent’s LM-based plan-
ning component, we consider four distinct models: gpt-4o,
granite-3.1-8b-instruct, llama-3.3-70b-instruct, and llama-
3.1-8b-instruct. None of these models are fine-tuned.

Table 16 shows the main hyper-parameter values used in
our experiments. These values were chosen to ensure as
deterministic results as possible. decoding_method is ap-
plicable for all models except gpt-4o.

Table 16: Model hyper-parameters.

Hyper-parameter Value

temperature 0
top_p 1e-7
seed 42
decoding_method greedy

C.6.2. EVALUATION METRICS

We evaluate each LM-based agents on two primary tasks:
(i) Diagnosis and (ii) Mitigation.

Diagnosis. The agent is evaluated for diagnosis based on
its ability to provide accurate fault localization and fault
propagation chains. Fault localization allows SREs to iden-
tify the exact resource causing the problem, whereas fault
propagation chain allows SREs to understand how the fault
is cascading across the application stack and impacting the
application. Fault propagation chain can be further used for
other important tasks such as blast radius analysis.

• Fault localization performance is measured using pass@1
and Normalized Topology-Aware Match (NTAM).

• Fault propagation chain is assessed with NTAM. Addi-
tionally, we track Mean Time to Diagnosis (MTTD) to
gauge overall diagnostic efficiency.

Mitigation. For mitigation, we evaluate how effectively the
agent resolves incidents (i.e., clears alerts).

• Success rate is quantified using pass@1.
• Efficiency is captured through Mean Time to Resolution

(MTTR).

At the time of writing of this paper, ITBench lacks the
ability to automatically measure the natural language-based
unstructured outputs fault condition (i.e., what is wrong
with the identified resource) but have plans to extend to this
task using LM-as-a-judge (Zheng et al., 2023).

C.6.3. METRIC DEFINITIONS

pass@1. We evaluate both fault localization and mitiga-
tion using the pass@1 metric (Chen et al., 2021), which is
defined as follows:

pass@k := EScenarios

[
1−

(
n−c
k

)(
n
k

) ]
It is an unbiased estimator of correctness in k=1 trials across
all scenarios. For fault localization, correctness means
whether the predicted root cause exactly matches the ground
truth root cause. For mitigation, correctness means whether
the alerts are cleared.

Normalized Topology-aware Matching. Existing ap-
proaches for evaluating fault propagation chains and fault
localization focus on exact matches with the ground truth
(Ahmed et al., 2023b; Zhu et al., 2024; Chen et al., 2024c),
which overlooks topology and finer-grained analysis of prop-
agation chains. For example, existing approaches cannot
effectively differentiate agents and models when predicted
propagation chains or root causes do not exactly match the
ground truth, as they fail to measure how close the predic-
tions are to the actual faults. Hence, we propose a new
metric Normalized Topology-Aware Match (NTAM), which
measures agent performance compared to ground truth via
topology-aware distance calculation.

NTAM requires a topology graph, where the nodes are the
entities of the system, and edges indicate various types of
connections between them (e.g., Deployment owns Repli-
caSet). Given such a topology, it can be used to evaluate
both the set of entities in the fault propagation chains, and
the set of root cause entities for fault localization. NTAM
is inspired by topology-based distance metrics and informa-
tion retrieval concepts, such as BM25 (Fang et al., 2011),
that down-weight less discriminative features. It is a flex-
ible, general function with configurable components for
fine-grained evaluation of predicted output quality.

Specifically, it consists of the following main components:

• Topology-based distance scoring functions, which con-
sider both the edge-type and sub-tree size, rewarding
predicted entities closer to the ground truth. Further,
nodes with fewer connections (smaller sub-trees) re-
ceive higher scores, as they are more discriminative for
fault localization.

• A node importance factor based on the position of
the ground truth entity in the propagation chain. This
captures the intuition that predicting the ground truth
root-cause entity correctly should be rewarded more
than getting another entity on the chain correct.

• Penalization terms for length mismatch between the
predicted and ground-truth entities. This is to ensure
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Table 17: Experimental details

Models Scenarios Experiment Setup

#Repeats #Total %Agent Submission

granite-3.1-8B-instruct 42 10 420 98.76%
llama-3.1-8B-instruct 42 10 420 100.0%
llama-3.3-70B-instruct 42 10 420 100%
gpt-4o 42 10 420 99.75%

Note: “%Agent submission” is the percentage of all trials completed in which the agent returned
results.

that predictions having too many or too few entities get
lower scores.

All the components have corresponding hyper-parameters
that can be tuned to adjust their contributions to the overall
score. The final score is normalized to be between 0 and
1, where 1 indicates a perfect match. For fault localization,
instead of evaluating the set of all entities, only the ground-
truth and predicted root-cause entities are considered.

Mean Time to Diagnosis. For the scenarios where an agent
finishes diagnosis successfully (i.e., root cause entities are
found), we calculate MTTD, which measures how soon (in
seconds) an agent performs diagnosis. Otherwise, MTTD is
set to infinite.

Mean Time to Repair. Similarly, for mitigation, we identify
the scenarios where an agent executes an automated action
to resolve the faults successfully (i.e., alerts are cleared).
For these scenarios, we calculate MTTR (in seconds), which
measures how soon an agent performs mitigation. Other-
wise, MTTR is set to infinite.

C.6.4. EVALUATION RESULTS

We present evaluation results for four LM-based agents
across 42 SRE scenarios in the ITBench framework.

Overall agent results. gpt-4o shows the strongest per-
formance, achieving a 13.81% pass@1 in diagnosis and
11.43% pass@1 in mitigation (Table 4), significantly higher
than any other agent. Moreover, it also attains the best
scores on the NTAM metrics (FL and FPC). Notably, in
hard scenarios (Table 20), gpt-4o is the only agent capable
of performing multiple accurate diagnosis (granite only suc-
ceeded once), and none of the agents can repair the hard
scenarios. Meanwhile, llama-3.1-8B, despite having fewer
parameters, offers the fastest detection (lowest MTTD of
57.50s) and repair times (lowest MTTR of 245.13seconds)
among successful attempts. Although granite-3.1-8B shares
the same parameter size as llama-3.1-8B, it demonstrates
slightly better diagnostic capabilities yet weaker mitigation
ability. llama-3.3-70B performs second best overall, trailing

behind gpt-4o on all the metrics we compute.

Thought: To diagnose the problem from the alert, I 

need to start by getting the current alerts.

Action: using tool GetAlerts

Observation: High error rates for checkout and 

email serives under otel namespace

Thought: Received the current alerts. My next step 

is to gather more information about these services ...

Action: using tool
kubectl get deployment 

checkout -n otel -o yaml

NL2Kubectl

Observation: 

spec:

    progressDeadlineSeconds: 600

    replicas: 1 ...

Thought: The "email" deployment has a single 

replica. I should consider increasing the resources 

allocated such as increasing the memory limit or 

adding more replicas.

Action: using tool

kubectl patch deployment email
-n otel –p ‘{“spec”: {“replica”: 2}}’

Observation: deployment.apps/email patched

The alert was cleared after scaling the replicas.

NL2Kubectl

Figure 14: Sample Trajectory of llama-3.3-70b-instruct in
Scenario 15

Result analysis by scenario complexity. As we catego-
rize the benchmark scenarios into Easy, Medium, and Hard
levels based on the complexity described in Equation (6),
a clear performance gap emerges as scneario_complexity
increases. In particular, Table 18 shows lower diagnosis ac-
curacy (pass@1) in more complex scenarios, and Table 19
reveals a corresponding drop in mitigation success (pass@1).
Among the five hard scenarios, none can be resolved by any
agent in any run. By contrast, for easy scenarios, over half
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Table 18: Diagnosis pass@1 (in %).

Model Easy Medium Hard

gpt-4o 36.00 ± 4.73 7.73 ± 1.74 5.00 ± 2.24
granite-3.1-8B-instruct 8.00 ± 2.68 2.73 ± 1.05 1.00 ± 1.03
llama-3.1-8B-instruct 1.18 ± 1.20 1.36 ± 0.79 0.00 ± 0.00
llama-3.3-70B-instruct 10.00 ± 2.93 1.36 ± 0.78 0.00 ± 0.00

Table 19: Repair pass@1 (in %)

Model Easy Medium Hard

gpt-4o 21.00 ± 4.06 12.27 ± 2.19 0.00 ± 0.00
granite-3.1-8B-instruct 1.00 ± 1.01 0.00 ± 0.00 0.00 ± 0.00
llama-3.1-8B-instruct 5.88 ± 2.48 1.36 ± 0.80 0.00 ± 0.00
llama-3.3-70B-instruct 7.00 ± 2.50 3.18 ± 1.16 0.00 ± 0.00

(five out of eight) scenarios were successfully repaired by at
least one agent, and six were diagnosed correctly. We use
difference-of-proportions z-test to compare success rates
across different task levels (evaluating two levels each time).
The agent performance consistently declines from Easy to
Hard scenarios, validating our complexity model based on
propagation chain length, resolution steps, and technology
diversity.

Interdependence between diagnosis and mitigation. In-
terestingly, diagnosis and mitigation are often intuitively
assumed to be interdependent, with accurate diagnosis serv-
ing as a prerequisite for effective mitigation. However, our
findings reveal that: in some scenarios, agents can success-
fully mitigate an incident despite misidentifying the root
cause. For example, in scenario 15 (Figure 14), an agent
using the llama-3.3-70b model incorrectly identified the
root cause as “memory limit” in the service, while the real
root cause was HTTP request corruption fault; yet it still
managed to resolve the issue by scaling up the email ser-
vice pods to make it functional, essentially bypassing the
handling of actual HTTP fault. Such cases illustrate how
generic mitigation actions, such as restarting services or
scaling replicas, can sometimes fix the system symptoms
even without a fully accurate diagnosis. We observed sim-
ilar behavior in real-world SRE incident analysis, where,
despite the root cause remaining unidentified, SREs were
able to mitigate the incident.

Conversely, some scenarios highlight the opposite issue:
scenario 13, though labeled as “easy”, cannot be fixed by
any of the tested agents, even though they achieved high
scores in diagnosing the root cause. Notably, gpt-4o attained
roughly 80% pass@1 and over 0.7 on both FPC and RC
(NTAM) metrics. This implies that, although the agent
cannot fully resolve certain issues, it can still offer near-
accurate diagnostic insights, potentially assisting human
operators in debugging.

Some scenarios yield even worse outcomes. For example,
in scenario 19 (Figure 15), the agent fails to identify the
root cause and cannot repair the system, offering only a
mitigation plan at the end that is entirely ineffective.

Thought: To begin diagnosing the issue, I need to 

first gather the current alerts in the IT environment.

Action: using tool GetAlerts

Observation: High error rates for frontend service.

Thought: Received the current alerts. I will gather 

traces related to the frontend service.

Action: Retrieve traces NL2Traces

Observation: Arguments validation failed: 1 

validation error for NL2TracesCustomToolInput

Final output: [Two remediation plans in plain text]

The alert was still there.

... Many other tool usage and tries ...

Figure 15: Sample Trajectory of gpt-4o in Scenario 19

Inconsistency between runs. Another crucial observa-
tion is the agents’ inconsistency across repeated runs. For
instance, llama-3.1-8b-instruct and mistral-large-2 in sce-
nario 11 occasionally succeed in only a single run out of 10.
Though gpt-4o can reliably repair the scenario 8, its running
time can fluctuate between 100 and 800 seconds. These
inconsistencies stem from real-time telemetry fluctuations,
where minor changes (e.g., CPU utilization reported at 58%
in one run vs. 71% in another) affect LM outputs, leading
to varied diagnostic and mitigation results.

Impact of tracing on accuracy. Many benchmarks provide
raw telemetry data, a key differentiator of ITBench is its
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alert-driven workflow, which mirrors how SREs are noti-
fied of faults through golden-signal-alerts triggered from
collected telemetry data. To further assess the importance
of different telemetry sources, ITBench also supports au-
tomated telemetry data masking. As shown in Table 20
and Table 21, gpt-4o sees its diagnosis pass@1 drop from
18.10% (with traces) to 9.52% (without traces), and its miti-
gation pass@1 plummet to 2.86%. Similarly, llama-3.3-70B
experiences its diagnosis rate decline from 5.24% to 0.95%.
In fact, only three scenarios were successfully resolved by
gpt-4o once trace data was masked. Take Scenario 13 (easy
level) as an example. The agent is able to achieve an 80%
diagnosis rate in its all runs; however, when masking the
traces, the rate drops to 0. Note that all of these telemetry
masking and agent evaluation steps are integrated into IT-
Bench ’s automated pipeline. Agents can be evaluated with
different observability configurations in ITBench.

Flexibility and extensibility. Beyond scenario design, IT-
Bench is designed with flexibility and extensibility as guiding
principles, allowing for both the addition of new scenarios
within existing tasks and the support of new tasks like re-
source management. We have already integrated four dis-
tinct applications, including both microservice applications
(OpenTelemetry-Demo and Hotel-Reservation from Death-
StarBench), and non-microservice (TiDB application and
Elasticsearch application). ITBench makes it straightfor-
ward to incorporate custom applications by simply adding
an Ansible playbook. It took around four human hours for
the external collaborators to add an application to ITBench.
Moreover, by ITBench introduces realistic faults at multiple
system layers (e.g., application, virtualization), ensuring a
comprehensive evaluation of agent performance across a
wide range of failures.

C.6.5. DIAGNOSIS AND MITIGATION REPORT

Example of agent JSON report is also provided in Figure 20.
The JSON report contains information collected by the agent
during its investigation. This includes a list of the faulty
entities it encountered, as well as its best guess at the cause
of the incident. Further, it contains a list of actions the agent
took to try to mitigate the problem.
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Figure 16: Percent diagnosed for each scenario with tracing enabled.
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Figure 17: Normalized topology-aware metric (NTAM) for root cause for scenarios with tracing enabled.
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Figure 18: Normalized topology-aware metric (NTAM) for fault propagation chain (FPC) for each scenario with tracing
enabled.
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Figure 19: Percent repaired for each scenario with tracing enabled.
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{
"alert_start_time": "2025-01-25T14:54:24.976978",
"entities": [

{
"id": "checkoutservice-779456f5fb-x5824",
"root_cause": false

},
{

"id": "emailservice-768cd9c799-m6wz9",
"root_cause": true

}
],

"propagations": [
{

"source": "checkoutservice-779456f5fb-x5824",
"target": "emailservice-768cd9c799-m6wz9",
"condition": "improper configuration of emailservice to handle volume of

requests from checkoutservice",
"effect": "high error rate in checkoutservice due to emailservice not

properly handling requests"
}

],
...

Figure 20: Example agent output for Scenario 15.

...
"mitigation": [

[
{

"action": "Describe the deployment emailservice in the otel-demo
namespace to understand its current configuration"

},
{

"action": "Patch the deployment emailservice in the otel-demo
namespace to increase the memory limit of the container
emailservice to 200Mi"

},

{
"action": "Patch the deployment emailservice in the otel-demo

namespace to increase the number of replicas to 2"
}

]
]

}

Figure 21: Example agent output for Scenario 15. - Continued
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Table 20: Evaluation of SRE-agent only on scenarios with tracing enabled.

Models Diagnosis Mitigation

pass@1 (%)↑ FL (NTAM)↑ FPC (NTAM)↑ MTTD (s)↓ pass@1 (%)↑ MTTR (s)↓
granite-3.1-8B-instruct 3.33± 1.20 0.15± 0.02 0.16± 0.01 341.58± 81.71 0.48± 0.50 845.50±−
llama-3.1-8B-instruct 0.50± 0.51 0.07± 0.01 0.08± 0.01 58.24± ¯ 2.50± 1.09 245.39± 49.45
llama-3.3-70B-instruct 5.24± 1.59 0.21± 0.02 0.22± 0.02 155.78± 19.91 5.71± 1.60 449.50± 46.59
gpt-4o 18.10± 2.58 0.45± 0.05 0.37± 0.03 67.53± 3.84 20.00± 2.75 266.97± 32.95

21 scenarios, 10 runs per scenario.

Table 21: Evaluation of SRE-agent only on scenarios in which tracing is disabled.

Models Diagnosis Mitigation

pass@1 (%)↑ FL (NTAM)↑ FPC (NTAM)↑ MTTD (s)↓ pass@1 (%)↑ MTTR (s)↓
granite-3.1-8B-instruct 3.81± 1.30 0.18± 0.02 0.21± 0.02 160.97± 51.06 0.00± 0.00 —
llama-3.1-8B-instruct 1.46± 0.84 0.06± 0.01 0.07± 0.01 57.26± 2.88 1.46± 0.83 244.96± 68.53
llama-3.3-70B-instruct 0.95± 0.68 0.11± 0.02 0.10± 0.02 430.86±− 0.95± 0.67 1429.80± 552.71
gpt-4o 9.52± 2.15 0.32± 0.05 0.31± 0.04 85.19± 12.84 2.86± 1.12 385.87± 15.292

21 scenarios, 10 runs per scenario.
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D. Chief Information Security Officer (CISO)
and Benchmarking the Compliance
Assessment Agent

D.1. Background

Advances in technology are increasing application and in-
frastructure complexity. As a result, traditional approaches
that depend on a dedicated security and compliance team to
identify vulnerabilities in production systems and mitigate
them based on threat that they pose to the organization, are
no longer working. Modern organizations rely on a Devel-
opment, Security, and Operations (DevSecOps) practice, a
process in which application security is verified before de-
ployment, where security and regulatory controls are put in
place at software development time. Then, post deployment,
runtime checks take over. With these multiple layers of secu-
rity and compliance checks owned by different teams, some
of them with limited cybersecurity knowledge, not only it is
no longer feasible to have manual compliance processes for
the technical security controls, but the automation of those
processes also needs an unprecedented acceleration to keep
up the go-to-market pace and scale.

The overall process starts with CISOs, security administra-
tors, or regulators establishing and authoring the relevant
body of compliance recommendations, typically in natural
language, for specific mission critical environments. Then
they rely on dev teams or security focals to collect status
as evidence across those environments, and to validate it
against the recommendations in view of obtaining the autho-
rization to operate or other certifications. The sought after
benefit from automating the evidence collection and its val-
idation is to enable scalability, both in handling complex
environments and supporting frequent scans -daily or on
demand per system fix or update- for posture measurement
and reporting. Examples of validation automation tools are
policy engines such as Kyverno (Int, c), OPA Gatekeeper
(Int, b) for Kubernetes , Ansible (Int, a) for PaaS, or Cloud
Security Posture Management (CSPM) solutions for the
cloud. Figure 22 illustrates the dichotomy of compliance
authoring on the left versus compliance validation via pol-
icy scripts and their diverse programmatic languages on the
right.

Automating the translation of natural-language recommen-
dations into policy scripts requires an unprecedented level
of trust and synchronization across domains and experts
typically in different business units. Additionally, it also
demands an unprecedented level of technical knowledge
for the compliance teams typically focused on legal and IP
matters.

The rising popularity of AI agents and their projected ability
to handle intricate tasks have increased the demand for AI
agents managing IT systems (John, 2024; Miguel Carreon,

2024). Given the complexity of the compliance tasks, a
major hurdle for this research is establishing systematic
methods to assess the effectiveness of our AI agents prior
to their production deployment. Consequently, there is an
urgency to develop methods for evaluation of AI agents
based on real IT tasks and their corresponding environments.

We detailed our CISO compliance assessment agent deploy-
ment and execution in its git repo documentation available
in open-source (CIS, a). We present below our CISO agent
benchmarking performance using a well defined benchmark-
ing methodology with real-world scenarios and environ-
ments. A sample of those scenarios with their environment
executable automation packages is also available in open-
source (CIS, b).

D.2. Real-World Benchmarking

Our CISO compliance assessment agent (CAA) and cor-
responding bench bring together the latest technology on
compliance as code to enable the programmatic expression
of regulatory controls and their posture assessment, using
Gen AI generation of code to fulfill these tasks. Our agent
aim is to empower a compliance team in accelerating the
adoption and operation of new regulatory programs by au-
tomating the generation of code for the evidence collection
and for its posture validation against the requirements, based
on compliance requirements described in natural language.
Our benchmarking experiments cover the end-to-end agen-
tic workflow from the discovery of the policy assessment
engine in the benchmark scenario, the generation of assess-
ment policy as code and its real-time git PR management,
deployment, execution, and posture generation. Finally, the
results are evaluated, rated, and reported in our ITBench
solution leaderboard.

D.2.1. TERMS AND NOTATIONS

We define the following key terms used hereafter to describe
the main aspects of the agent framework and benchmarking
methodology:

1. Agent: An agent is an AI driven software that au-
tonomously acts on behalf of a persona to solve a given
task. We group the agents by Agent Types that reflect
the IT operations personas, for example CISO, FInOps,
or SRE type.

2. Task: A task is a specific job corresponding to the role
of a persona that the agents aim to automate. Typi-
cal tasks for CISO are to collect evidence and assess
compliance controls posture.

3. Scenario: A scenario is a real-life occurrence of a
task in a given setting. For CISO, for instance, each
Kubernetes CIS-benchmark requirement instantiated
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Figure 22: Compliance Authoring and Administration vs. Policy Validation Point Engines

on OPA is a unique scenario. The scenarios can be
grouped in classes.

4. Scenario Class: A scenario class is a class of real-
life scenarios that are grouped together expecting the
same behavior and outcome from the corresponding
persona. Examples of scenarios classes are the set
Kubernetes CIS-benchmarks on OPA engine, the set of
RHEL9 CIS-benchmarks on Ansible engine, or a set
of Kubernetes CIS-benchmarks updates on Kyverno
engine.

5. Scenario Environment: A scenario environment is the
part of the scenario that specifies the deployment set-
tings.

6. Environment State: An environment has a countable set
of states that we consider to mark a particular condition
at a specific time. Example of states are an environment
initial deployment state, an environment failure state
after a fault or non-compliant configuration injection,
or an environment remediated or compliant state after
mitigation.

7. Goal: A goal is the desired state for the environment
known as the goal state.

Agents are tasked to transition environments from their
initial state to their goal state in the most efficient manner.
At their disposal are environment actions, including requests
for observations or actuation attempts to affect the state

of the system. The agents first step towards moving the
environment into the goal state is by reasoning over the
outcomes of several observational actions to determine the
next optimal step. With a strong hypothesis for what that is,
agents seek to find and execute strategies to move towards
the goal state in the most efficient way.

Our CISO compliance assessment tasks are coupled with
pre-defined scenarios for assessing the effectiveness of the
agents delivering the automation in a standard manner. We
detail in the next section these pre-defined CISO tasks before
detailing our ITBench and CISO scenarios.

D.2.2. CISO COMPLIANCE ASSESSMENT TASKS

The compliance assessment tasks include various activities
aimed at comparing the actual state of the systems with
the desired state described in English in the policy. Based
on this comparison, the system provides a "pass" or "fail"
posture with respect to the policy.

• Identify Evidence Collector (IEC): Acquiring ev-
idence requires selecting collection mechanisms ap-
propriate to the target system’s characteristics. For
instance, evidence about the state of an application in
a Kubernetes cluster necessitates access to the Kuber-
netes API, often through tools like "kubectl" command.
For host configuration evidence, tools like Ansible
Playbooks are suitable. This IEC task and associated
agent or tools identifies the collector used in the envi-
ronment in view of generating the script for its corre-
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sponding language and interface.

• Identify Policy Assessment Tool (IPA): Evaluating
evidence against policies requires selecting a suitable
policy engine. For general scenarios, the industry is
using the open source policy engine Open Policy Agent
(OPA) (Int, d) with its specific programmatic language
Rego. Alternatively, for Kubernetes-specific configu-
rations, Kyverno policies prevalently used along OPA.
This IPA task and associated agent or tools identifies
the appropriate policy engine for the scenario’s policy
at hand, in view of generating policies code accord-
ing to the policy engine’s programmatic language and
interface.

• Collect Evidence (CE): This CE task and associated
agent or tools is responsible for the actual evidence col-
lection, including the generation of code, management
of code, deployment and execution of the evidence
collection code to acquire the actual evidence from
the environment. Proper placement and execution of
the code are necessary to achieve this in a reliable and
scalable manner.

• Scan Assessment Posture (SAP): This SAP task and
associated agent or tools is responsible for generat-
ing the posture whether the evidence does or does not
satisfy the scenario CIS-benchmark requirement. It
includes the generation of validation code, manage-
ment of code, deployment and execution of code on
the policy engine to assess the evidence and produce
the compliance posture.

Table 2 summarizes the CISO tasks initially supported in
our ITBench, namely CE and SAP. The other will be cov-
ered in subsequent releases. These tasks are executed in IT-
Bench against predefined, standard scenarios and compared
to the ground truth expected assessment posture "pass"/"fail"
stored in the ITBench under each scenario environment spec-
ification.

D.3. ITBench Architecture for handling CISO Tasks

ITBench uses open source technologies to create repeatable
and reproducible scenarios and environments for the CISO
tasks, on a Kubernetes cluster as shown in Figure 23.

D.3.1. PRINCIPLES

Following the bench principles indicated in the introduction,
our ITBench uses open-source technologies to construct
completely repeatable and reproducible scenarios that simu-
late real-world incidents.

• Mimic CISO best practices. ITBench follows the
guidelines outlined by the National Institute of Stan-
dards and Technology (NIST) Cybersecurity Framework

(CSF) (NIS) for CISOs and security teams to improve
their organization’s cybersecurity as follows: (1) Identify
critical data, systems, assets, and capabilities to protect;
(2) Protect via security measures that limit the impact of
incidents; (3) Develop a strategy to detect non-compliance
with clear procedures and tools; (4) Respond via plans to
quickly eliminate threats and mitigate damage; (5) Design
a recovery policy to support timely recovery to normal
operations. Our first ITBench release covers the CISO’s
CSF first three activities by evaluating the following com-
pliance tasks: (1) Identify and collect evidence from the
systems in the selected scenarios; (2) Implement the poli-
cies recommended in the scenarios; (3) Assess the policies
posture to detect failure into non-compliance. The remain-
ing two CISO’s CSF activities of respond and recover will
make the topic of a future ITBench release that will sup-
port agents collaboration, namely the leverage of the SRE
agent for mitigation.

• Mimic CISO real-world problems. We studied and used
in ITBench the real-world Cloud Internet Security (CIS)
Benchmarks (CIS, 2024) which are a set of best practices
for securing the IT cloud infrastructure. They are rec-
ognized worldwide as the cloud security standards. We
used those CIS-benchmarks to create our CISO compli-
ance policies scenarios of various complexity levels: 25%
Easy, 50% Medium, and 25% Hard policies (see Figure
24).

• Provide observability. Cloud Native Compute Founda-
tion (CNCF) recent Sandbox project (OSCAL-compass,
2024) released a compliance as code SDK to support the
machine readable compliance as code standard (OSCAL,
2024) of the National Institute of Standards and Technol-
ogy for programmatic usage in compliance automation.
ITBench CISO automation leverages this methodology to
represent the CIS-benchmarks requirements, detect the
events of creation or update of requirements, and trigger
the creation or update of evidence collection and valida-
tion code.

• Ensure Determinism. ITBench enforces the scenarios
and their environments are generated as per the specifica-
tion, while the environment cleanup after each scenario
ensures a clean slate for the next run.

D.3.2. ITBENCH ARCHITECTURE

The environments for the benchmarking scenarios comprise
a Kubernetes Cluster and virtual machines (VMs). Each
CISO scenario pre-defined in the ITBench as described in
the section hearafter, is managed by a deployable stack, a
software component responsible for handling the bench-
marking process and environment in a real run-time envi-
ronment.

The deployable stack manages various tasks, including
preparation ("deploy_environment"), fault injection ("in-
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Figure 23: Architecture of ITBench responsible for orchestrating CISO scenarios.

ject_fault"), agent performance evaluation ("evaluate"),
and environment cleanup ("delete_environment") for each
benchmark scenario run. Each deployable stack is specifi-
cally designed for a particular CISO compliance assessment
scenario, ensuring the necessary tools, configurations, and
policies are in place. Environment administrators define
these scenarios deployable stacks and configure the required
software, which can involve setting up policy engines, tools,
or creating conditions that simulate violations of specific
compliance requirements.

A deployable stack may for instance intentionally exhibit a
misconfiguration settings to mimic a violation of a partic-
ular compliance standard. In the execution of a scenario,
the agent is presented initially with the natural language
description of that scenario compliance requirement. Based
on the description, the agent generates the necessary arti-
facts, including scripts for evidence collection and policies
for evidence evaluation. The run-time scenario environment
is deployed and made accessible to the agent. The agent ac-
cesses the environment to retrieve evidence, deploy policies,
and work toward achieving the specified automation goal
of assessing the compliance posture, in this case as "fail" or
"not-satisfied".

During the scenario run process, the agent notifies the IT-
Bench of the start and completion of its tasks. Upon receiv-
ing the completion notification, the ITBench accesses the
environment to measure the benchmarking metrics. Once
the metrics for all predefined scenarios are collected, they
are aggregated and displayed on the ITBench Leaderboard.
Fig. 25 illustrates the end-to-end benchmarking process for
the CISO scenarios.

In the context of our CISO compliance assessment bench-

Easy 20.0%

Medium
60.0%

Hard

20.0%

Figure 24: CISO scenario complexity.

marking, the scenario environment, including Kubernetes
Clusters and VMs, is prepared by the Agent Submitter. The
setup and metric measurements are automated using a tool
called Mini-Bench. Benchmarking results, including Task
Metrics, are registered with a central Bench Server via API.
These results are displayed on the Leaderboard on the Bench
Server. This setup allows benchmarking to proceed uni-
formly, whether using the Agent Submitter’s local environ-
ment or a remote environment, as the same API interactions
are employed in both cases.

D.4. ITBench Real-World CISO Scenarios

We used in ITBench the real-world Cloud Internet Security
(CIS) Benchmarks (CIS, 2024) standard to create our CISO
compliance assessment scenarios. The technologies that
we have considered as playground for benchmarking our
CISO agent are Kubernetes and RHEL9, however, any other
technology available in CIS can be leveraged with their
CIS-benchmark infusing the policies scenario in ITBench.

Table 22 and Table 23 illustrate examples of the typical
CIS-benchmarks recommendations. Each scenario rendered
on ITBench is designed to mirror the complexity of the
recommendation. This ensures that ITBench replicates real-
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5. Kick agent Y with report

6. Evaluate (success/fail, MTTR, etc.)
7. Clear deployed scenario

2. Deploy scenario X
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4. Find report
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For every agent, do steps 1-8 for all 
relevant scenarios

Figure 25: CISO Compliance Assessment Agent end-to-end Benchmarking Process.

world compliance requirements thus allowing for a realistic
evaluation of agents.

D.5. CISO Scenario Classes and their Complexity

D.5.1. NEW-K8S-CIS-B-KYVERNO

New-K8s-CIS-b-Kyverno represents the Easy scenario class
in the ITBench. The 10 scenarios in this class are prepared
based on the CIS Benchmark for Kubernetes, specifically
focusing on the Pod Security Policy. This scenario assumes
a Kubernetes cluster with a pre-configured Kyverno policy
engine. Within the cluster, certain misconfigurations related
to Pod Security Policy are present, but the Agent is unaware
of their exact locations.

The requirements for the misconfigurations that need to be
addressed are communicated to the Agent. Based on these
requirements, the Agent generates a Kyverno policy and
deploys it to the cluster. Subsequently, the Agent collects
the report from the cluster. The accuracy of this report is
verified by checking whether it successfully identifies the
misconfigurations. If the policy is correctly generated and
deployed, the report should indicate the appropriate posture.
Conversely, if errors occur, an incorrect posture will be
reported.

In this scenario, the four Compliance Assessment Task are
evaluated as follows:

• IEC: Assessed by verifying whether the correct config-
uration is reflected in the Kyverno policy.

• IPA: Evaluated by confirming that the policy is suc-
cessfully generated for Kyverno.

• CE: Measured by verifying whether a Kyverno report
is generated in the predefined location.

• SAP: Determined by whether the posture reported in
the Kyverno report matches the expected value.

D.5.2. NEW-K8S-CIS-B-OPAREGO

New-K8s-CIS-b-Kubectl-OPARego is categorized under
Medium complexity scenarios. This benchmark comprises
10 scenarios derived from the CIS Benchmark for Kuber-
netes, specifically focusing on Pod Security Policies.

The foundational background for this scenario closely re-
sembles that of New-K8s-CIS-b-Kyverno, sharing the as-
sumption of a Kubernetes cluster as the operating environ-
ment and CIS Benchmark for Kubernetes. The key differ-
ence lies in the dual output for Open Policy Agent (OPA)
policy engine: the generation of both an evidence fetcher
script and a policy checker code.

• A fetcher script is designed to gather the required ev-
idence from the target cluster by executing kubectl
commands.

• A policy checker verifies the collected evidence for
compliance based on predefined rules. This is im-
plemented using the Open Policy Agent (OPA) and
defined through OPA Rego policies.
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Table 22: Kubernetes - Center for Internet Security Benchmarks (sample)

Section # Recommendation # Title Assessment
Status

Description

1.1.1 1.1.1.1 Ensure cramfs kernel
module is not available

Automated The ‘cramfs‘ filesystem type is a compressed read-only
Linux filesystem embedded in small footprint systems. A
‘cramfs‘ image can be used without having to first decom-
press the image.

1.1.1 1.1.1.2 Ensure freevxfs kernel
module is not available

Automated The ‘freevxfs‘ filesystem type is a free version of the Veri-
tas type filesystem. This is the primary filesystem type for
HP-UX operating systems.

1.1.1 1.1.1.3 Ensure hfs kernel mod-
ule is not available

Automated The ‘hfs‘ filesystem type is a hierarchical filesystem that
allows you to mount Mac OS filesystems.

1.1.1 1.1.1.4 Ensure hfsplus kernel
module is not available

Automated The ‘hfsplus‘ filesystem type is a hierarchical filesystem
designed to replace ‘hfs‘ that allows you to mount Mac OS
filesystems.

1.1.1 1.1.1.5 Ensure jffs2 kernel mod-
ule is not available

Automated The ‘jffs2‘ (journaling flash filesystem 2) filesystem type is
a log-structured filesystem used in flash memory devices.

1.1.1 1.1.1.8 Ensure usb-storage ker-
nel module is not avail-
able

Automated USB storage provides a means to transfer and store files en-
suring persistence and availability of the files independent
of network connection status. Its popularity and utility has
led to USB-based malware being a simple and common
means for network infiltration and a first step to establish-
ing a persistent threat within a networked environment.

1.1.1 1.1.1.9 Ensure unused filesys-
tems kernel modules are
not available

Manual Filesystem kernel modules are pieces of code that can
be dynamically loaded into the Linux kernel to extend
its filesystem capability, or so-called base kernel, of an
operating system. Filesystem kernel modules are typically
used to add support for new hardware (as device drivers),
or for adding system calls.

The goal of the agent in this scenario is to generate two out-
puts: 1) a script executing kubectl commands (fetcher), 2)
an OPA Rego policy for compliance verification (checker).

The verification process evaluates the outputs generated by
the agent as follows: The fetcher script, which consists of
kubectl commands, is executed against a real Kubernetes
cluster to collect evidence. The collected evidence is then
assessed using the generated OPA Rego policy and the OPA
policy engine to verify whether the results align with ex-
pected compliance outcomes.

The scenario is assessed on the following four Compliance
Assessment Tasks:

• IEC: Determine whether a fetcher script, incorporating
kubectl commands, is successfully generated.

• IPA: Verify if the checker, implemented as an OPA
Rego policy, is correctly generated.

• CE: Check whether evidence can be successfully col-
lected by executing the fetcher script against the clus-
ter.

• SAP: Verify that the OPA Rego policy evaluates the
collected evidence as expected, producing the correct
compliance assessment.

This approach provides a structured evaluation of the agent’s
capability to generate effective scripts and policies for Ku-
bernetes cluster compliance assessment.

D.5.3. NEW-RHEL9-CIS-B-ANSIBLE-OPA

New-RHEL9-CIS-b-Ansible-OPA belongs to the Medium
complexity scenario class and comprises 20 scenarios
based on the CIS benchmark for RHEL9 OS. This sce-
nario shares common characteristics with New-K8s-CIS-b-
Kubectl-OPARego, including the generation of two codes
(a fetcher script and a checker policy), and the use of OPA
Rego Policies for compliance verification. The primary
distinction lies in the target system: unlike New-K8s-CIS-b-
Kubectl-OPARego, which focuses on Kubernetes clusters,
this scenario targets RHEL9 hosts. Consequently, instead
of using kubectl as the fetcher script, New-RHEL9-CIS-b-
Ansible-OPA employs Ansible playbooks. The objective
of this scenario is to generate Ansible playbooks as fetcher
scripts and OPA Rego Policies as checkers.

The verification process evaluates the outputs generated by
the agent as follows: the fetcher script (Ansible playbook) is
executed against a real RHEL9 host to collect evidence. The
collected evidence is subsequently analyzed using the gener-
ated OPA Rego policy on the OPA policy engine, assessing
whether the results align with the expected compliance out-
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Table 23: Red Hat Enterprise Linux - Center for Internet Security Benchmarks (sample).

Section # Recommendation # Title Assessment
Status

Description

1.1.2 1.1.2.3 Ensure noexec option
set on /tmp partition

Automated The ‘noexec‘ mount option specifies that the filesystem
cannot contain executable binaries.

1.1.2 1.1.2.4 Ensure nosuid option
set on /tmp partition

Automated The ‘nosuid‘ mount option specifies that the filesystem can-
not contain ‘setuid‘ files.

1.1.3 – Configure /var – The ‘/var‘ directory is used by daemons and other system
services to temporarily store dynamic data. Some directories
created by these processes may be world-writable.

1.1.3 1.1.3.2 Ensure nodev option set
on /var partition

Automated The ‘nodev‘ mount option specifies that the filesystem can-
not contain special devices.

1.1.3 1.1.3.3 Ensure nosuid option
set on /var partition

Automated The ‘nosuid‘ mount option specifies that the filesystem can-
not contain ‘setuid‘ files.

1.1.4 – Configure /var/tmp – The ‘/var/tmp‘ directory is a world-writable directory used
for temporary storage by all users and some applications.
Temporary files residing in ‘/var/tmp‘ are to be preserved
between reboots.

1.1.4 1.1.4.2 Ensure noexec option
set on /var/tmp par-
tition

Automated The ‘noexec‘ mount option specifies that the filesystem
cannot contain executable binaries.

1.1.4 1.1.4.3 Ensure nosuid option
set on /var/tmp par-
tition

Automated The ‘nosuid‘ mount option specifies that the filesystem can-
not contain ‘setuid‘ files.

1.1.4 1.1.4.4 Ensure nodev option set
on /var/tmp partition

Automated The ‘nodev‘ mount option specifies that the filesystem can-
not contain special devices.

1.1.5 – Configure /var/log – The ‘/var/log‘ directory is used by system services to store
log data.

1.1.5 1.1.5.2 Ensure nodev option set
on /var/log partition

Automated The ‘nodev‘ mount option specifies that the filesystem can-
not contain special devices.

1.1.5 1.1.5.3 Ensure noexec option
set on /var/log par-
tition

Automated The ‘noexec‘ mount option specifies that the filesystem
cannot contain executable binaries.

1.1.5 1.1.5.4 Ensure nosuid option
set on /var/log par-
tition

Automated The ‘nosuid‘ mount option specifies that the filesystem can-
not contain ‘setuid‘ files.

1.1.6 – Configure
/var/log/audit

– The auditing daemon, ‘auditd‘, stores log data in the
‘/var/log/audit‘ directory.

1.1.6 1.1.6.2 Ensure noexec
option set on
/var/log/audit
partition

Automated The ‘noexec‘ mount option specifies that the filesystem
cannot contain executable binaries.

1.1.6 1.1.6.3 Ensure nodev
option set on
/var/log/audit
partition

Automated The ‘nodev‘ mount option specifies that the filesystem can-
not contain special devices.

1.1.6 1.1.6.4 Ensure nosuid
option set on
/var/log/audit
partition

Automated The ‘nosuid‘ mount option specifies that the filesystem can-
not contain ‘setuid‘ files.

1.1.7 – Configure /home – Please note that home directories could be mounted any-
where and are not necessarily restricted to ‘/home‘, nor re-
stricted to a single location, nor is the name restricted in any
way. Checks can be made by looking in ‘/etc/passwd‘, look-
ing over the mounted file systems with ‘mount‘ or querying
the relevant database with ‘getent‘.
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comes.

In this scenario, the agent’s performance is evaluated on the
following four Compliance Assessment Task:

• IEC: Does the agent generate a fetcher script in the
form of an Ansible playbook?

• IPA: Does the agent generate an OPA Rego policy for
the checker?

• CE: Can the Ansible playbook successfully execute
against an RHEL9 host and collect relevant evidence?

• SAP: Can the generated OPA Rego policy evaluate the
collected evidence and produce the expected compli-
ance results?

This scenario is designed to assess the agent’s performance
in compliance evaluation tasks for host management envi-
ronments other than Kubernetes, specifically focusing on
RHEL9 systems.

D.5.4. UPDATE-K8S-CIS-B-KYVERNO

Update-K8s-CIS-b-Kyverno falls under the scenario class
with a complexity level classified as Hard and currently
includes 10 scenarios. Unlike New-K8s-CIS-b-Kyverno,
which generates new Kyverno policies based on new re-
quirements specified for that environment in the goal, this
scenario involves a different objective. Specifically, it takes
an existing Kyverno policy as input, along with instructions
detailing modifications to the original requirements, and
generates an updated policy to meets the revised require-
ments. The updated policy is then deployed (or updated) as
the final output.

The validation process for this scenario is consistent with
the methodology used in New-K8s-CIS-b-Kyverno.

D.6. CISO ITBench Evaluation

We conduct our experiments primarily on AWS EC2 in-
stances (m4.xlarge), although ITBench can also be readily
deployed on a consumer-grade laptop using a pseudo-cluster,
thus making it easier to develop AI agents.

We measure the efficacy of our CISO compliance assess-
ment agent on a set of 50 scenarios across the four scenario
classes introduced in Table 2. Each scenario class imposes
a distinct set of CIS-benchmarks requirements (e.g., “mini-
mize the admission of containers wishing to share the host
network namespace”), each class has a specific level of com-
plexity (e.g., Easy, Medium, Hard), and generates scenario-
specific code artifacts.

In our evaluation we considered a variety of LLMs, such
as GPT-4o, Llama-3.3-70B-instruct, Llama-3.1-8B-instruct,

and Granite-3.1-8B-instruct for tasks that rely on natural
language understanding and reasoning. For code-focused
use cases, we additionally utilize GPT-4o-mini, Llama-3.1-
405b-instruct, and Mixtral-8x7b-instruct. All models use a
context window of 128K tokens, enabling them to process
more extensive input sequences.

D.6.1. EVALUATION METRICS

The efficacy of our CISO agents is measured based on
the ability to detect artifact misconfigurations (aka non-
compliance, e.g., no minimum count of containers sharing
namespace, or the count is above the threshold), or confirm
proper configurations (aka compliance), within the varied
environments of the scenario classes randomly injected with
misconfigurations.

We evaluate how effectively the agent detects the
(non)compliance using the following metrics:

• Success rate is quantified using pass@1.
• Efficiency is captured through Time to Process (TTP).

D.6.2. METRIC DEFINITIONS

pass@1. We evaluate the agent proper assessment of the
posture "pass"/"fail" using the pass@1 metric (Chen et al.,
2021), which is defined as follows:

pass@k := EScenarios

[
1−

(
n−c
k

)(
n
k

) ]
It is an unbiased estimator of correctness in k=1 trials across
all scenarios.

Time to Process. We identify the scenarios where an agent
identifies the posture successfully (i.e., misconfiguration
results in a "fail" posture, while a compliant configuraiton
results in a "pass" posture). For these task scenarios, we cal-
culate TTP, which measures how soon an agent performed
the assessment. Otherwise, TTP is set to infinite.

D.6.3. EVALUATION RESULTS

Overall agent results.

Overall our results in Table 5 and Figure 28 show the GPT-
based models dominate on both pass@1 and Time to Process
metrics. The pass@1 is nearly 2x better than second-best
models (alternating between llama-3.1-405b-instruct and
mistral-large-2), while the TTP shows a handling of the
scenarios in the minimal time across our scenario classes.

Impact of Scenario Complexity

The complexity of the CISO scenarios is directly mapped
to scenario classes. For example, Kyverno scenarios are
of Easy complexity, k8s-opa and rhel-opa are of Medium
complexity, while Kyverno-update scenarios are of Hard
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complexity. As expected, all the models struggle, as ex-
pected, as the difficulty of the scenarios increases from the
Easy kyverno class to the Hard kyverno-upadate class.

D.6.4. CISO COMPLIANCE ASSESSMENT AGENT
TRAJECTORIES

We examine two sample trajectories from our experiments
to highlight the agent’s thought patterns and actions. These
include two scenarios, one successful and one unsuccess-
ful, derived from the NEW-CIS-B-RHEL9-ANSIBLE-OPA
experiments with LLaMa 405B, focusing on the CIS Bench-
mark for RHEL9 (control section 5.1.8 and 5.2.19).

In the successful scenario, the playbook is successfully gen-
erated, tested independently, leading to successful data col-
lection, followed by the successful creation of an OPA, and
ultimately detecting issues through evaluation in the bench.

In the unsuccessful scenario, the playbook is successfully
generated and tested independently, leading to successful
data collection, but the OPA cannot be properly created.
This results in repeated syntax error corrections and retries,
eventually reaching the maximum retry limit.

Following this, we present the trajectories for both cases. In
the successful scenario the agent is tasked with performing
a compliance assessment based on the following request:

Ensure cron is restricted to authorized users. The sys-
tem must: Allow only authorized users to schedule
jobs using cron. Specific requirements:

- The file /etc/cron.allow must exist and specify the list
of authorized users.

- The file /etc/cron.deny must not exist.

- Unauthorized users (e.g., user1, user2) must not be
listed in /etc/cron.allow.

To check the condition, do the following steps. - collect
configuration from the RHEL host and save it locally.
you can use ansible-playbook to do that. - chcek if the
condition is met by using rego policy with the input
given by the step above.

for those steps, you need to create ansible playbook
‘playbook.yml‘ and OPA rego policy ‘policy.rego‘. If
you can fix the generated code, do it and run the fixed
code again. Once you get a final answer, you can quit
the work.

The agent runs this task, provided with the target environ-
ment credentials and a working directory for saving the
generated files to be submitted. The Figure 26 shows the
trajectory that the agent takes to achieve this request.

In the next scenario (CIS Benchmark control section 5.2.19),

Figure 26: Sample Trajectory of LLaMa 405B in Success
Scenario
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the agent is given a different compliance requirement. This
time, the focus is on ensuring that SSH login sessions adhere
to security best practices. However, unlike the previous
scenario, the agent encounters a critical issue: it fails to
correctly write a syntactically valid Rego policy, causing
repeated OPA errors during execution.

The compliance requirement for Scenario 5.2.19 is as fol-
lows:

Ensure SSH LoginGraceTime is set to one minute or
less

To check the condition, do the following steps. - collect
configuration from the RHEL host and save it locally.
you can use ansible-playbook to do that. - chcek if the
condition is met by using rego policy with the input
given by the step above.

for those steps, you need to create ansible playbook
‘playbook.yml‘ and OPA rego policy ‘policy.rego‘. If
you can fix the generated code, do it and run the fixed
code again. Once you get a final answer, you can quit
the work.

The agent run this task, provided with the target environment
credentials and a working directory for saving the generated
files to be submitted. The Figure 27 show the trajectory that
the agent takes to achieve this request.

After repeating this process three times, the maximum
retry limit was reached, and only the currently saved play-
book.yml and policy.rego were used at the evaluation. At
the evaluation, this policy.rego is syntactically wrong so the
evaluation did not pass.

D.6.5. CISO COMPLIANCE ASSESSMENT AGENT
OPEN-SOURCE

We invite our reader to get a more detailed introduction
to our CISO compliance assessment agent deployment and
execution in its open-source git repo documentation (CIS, a).
The CISO agent comes with a sample of scenarios and their
environment executable automation packages, available as
well in open-source (CIS, b).

Figure 27: Sample Trajectory of LLaMa 405B in Failure
Scenario
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Figure 28: Percent pass@1 for each scenario.
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Table 24: Experimental details

CISO/Agent: Models Scenarios Experiment Setup

#Repeats #Total %Exp. Completion %Agent Submission

granite-3.1-8B-instruct 50 8 400 91.41% 88.48%
mixtral-8x7B-instruct 50 8 400 91.02% 94.67%
llama-3.1-8B-instruct 50 8 400 93.21% 85.71%
llama-3.3-70B-instruct 50 8 400 92.82% 89.11%
mistral-large-2 50 8 400 94.48% 85.23%
llama-3.1-405B-instruct 50 8 400 92.43% 84.50%
gpt-4o-mini 50 8 400 95.25% 85.71%
gpt-4o 50 8 400 90.83% 90.54%

Note: “%Exp. Completion” is the percentage of experiments that were started and finished by the bench runner
correctly.
Note: “Trials Agent Submitted” is the percentage of all trials completed in which the agent returned results.

Table 25: CISO/Agent: Assessed Results

Models Scenario pass@1 (%) ↑ Avg. pass@1 (%) ↑ MPR (s) ↓
kyverno k8s-opa rhel-opa kyverno-upadate

granite-3.1-8B-instruct 7.84± 3.84 0.00± 0.00 0.00± 0.00 1.59± 1.58 1.71± 0.76 197.03± 2.52
mixtral-8x7B-instruct 7.35± 3.19 1.43± 1.42 0.00± 0.00 1.29± 4.34 3.94± 1.03 120.63± 3.77
llama-3.1-8B-instruct 8.57± 3.37 0.00± 0.00 0.00± 0.00 7.46± 3.23 3.59± 1.07 121.49± 3.00
llama-3.3-70B-instruct 18.46± 4.94 0.00± 0.00 1.43± 2.88 8.06± 3.50 9.32± 1.67 189.61± 2.71
mistral-large-2 6.56± 3.20 22.73± 5.32 7.23± 2.88 10.45± 3.77 11.55± 1.95 167.98± 3.42
llama-3.1-405B-instruct 16.22± 4.32 20.83± 4.86 8.75± 3.26 3.17± 2.22 12.46± 1.98 178.89± 3.37
gpt-4o-mini 16.18± 4.54 43.10± 6.99 30.38± 5.43 9.43± 4.08 25.19± 2.80 102.40± 3.70
gpt-4o 40.28± 5.99 39.34± 6.55 7.61± 2.81 17.74± 4.92 24.74± 2.64 101.29± 3.81

“pass@1” values are in percent. pass@1 is calculated as defined in Codex (Chen et al., 2021)
“MPR” mean processing time
kyverno = New K8s CIS-benchmarks on Kyverno, k8s-opa = New K8s CIS-benchmarks on OPA, rhel-opa = New RHEL9 CIS-benchmarks
on Ansible-OPA, kyverno-update = Update K8s CIS-benchmarks on Kyverno.
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E. Financial Operations
E.1. Background

FinOps (Finance + Operations) is an operational framework
and cultural practice which maximizes the business value
of cloud and creates shared financial accountability. One of
the primary objective is to enable timely data-driven deci-
sion making by fostering collaboration between engineering,
finance, and business teams. FinOps comprises of three it-
erative phases - Inform (Visibility & Allocation), Optimize
(Rates & Usage), and Operate (Continuous Improvement &
Usage). Importantly, success in FinOps hinges on making
iterative changes using real-time insights with data gathered
from Application Performance Management (APM), Appli-
cation Resource Management (ARM), and Finance (Cloud
Cost Management) (Storment and Fuller, 2023).

Contrary to common belief, FinOps is about maximizing
business value and not just about reducing operating costs.
The 2025 State of FinOps Report (Trask, 2025) gathered
data from 861 respondents representing $69M in public
cloud spend, with 31% currently spending more than $50

million dollars a year in public cloud, 20% spending more
than $100m/yr and over 20% spending over $1bn/yr. Similar
to the observation made in the 2024 State of FinOps Report,
workload optimization and waste reduction remained key
priorities across the board. Management of cloud discount
programs (such as Savings Plans and Reserved Instances),
and accurate forecasting of spend remained high on the list.
Other areas such as increased Automation, AI costs, and
sustainability registered growing interest. A new observa-
tion made this year was that AI spending is now managed
by the majority of respondents (63% up from 31% last year)
and is expected to impact nearly all FinOps practitioners.

E.1.1. KEY TERMS

FinOps is performed by working iteratively on the Frame-
work Capabilities through three phases (Foundation, 2025b)
namely, Inform, Optimize and Operate, which are described
below:

(1) The Inform phase involves identifying data sources for
cloud cost, usage and efficiency data. This data is then
used for budgeting, allocation, forecasting, analysis and
reporting.

(2) The Optimize phase identifies opportunities to improve
cloud efficiency using the data and capabilities devel-
oped in the Inform Phase.

(3) The Operate phase implements operationalizes FinOps
using the data and capabilities developed in the Inform
and Optimize phase.

Some of the common KPIs in the FinOps that
are amenable to optimization (full set is listed in
https://www.finops.org/wg/finops-kpis/) include

(1) Percentage Resource Utilization - This is the amount
of resources utilized as a percentage of the the total
capacity allocated.

(2) Total Unpredicted Variance of Spend - Measures the
unpredicted variance of cost associated with CSP Cloud
usage recorded over a given period of time.

(3) Auto-scaling Efficiency Rate - Maximum capacity cost
of running workload to meet workload demand / Cost
of running workload with auto-scaling to meet same
workload demand.

(4) Forecast Accuracy Rate (Usage) - Compares forecasted
vs. actual cloud usage (vCPUs, Memory, etc) over a
specific period (e.g., day, month, quarter).

(5) Forecast Accuracy Rate (Spend)- This metric compares
forecasted vs. actual cloud spend over a specific period
(e.g., day, month, quarter).
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(6) Percent of Compute Spend Covered by Commitment
Discounts - Measures the percentage of compute cost
(excluding Spot) covered by commitment discount for
a specific time period.

(7) Percentage of Commitment Discount Waste - The per-
centage of commitments not applied to on-demand
spend.

(8) Percent of Unused Resources - Measure of unused cloud
resources, e.g., unattached/orphaned storage volumes,
load balancers, EIPS, Network gateways, snapshots.

(9) Percentage of Unallocated Shared CSP Cloud Cost -
This measurement refers to expenses that cannot be
directly attributed to a specific project, team, or depart-
ment within an organization.

(10) Percentage Variance of Budgeted vs. Forecasted CSP
Cloud Spend - Measures the difference between bud-
geted costs and the forecasted costs for using CSP cloud
services

(11) Effective Savings Rate Percentage - Actual Spend with
Discounts / Equivalent Spend at On Demand Rate

(12) Percentage of CSP Cloud Costs that are Tagging Policy
Compliant - Total Costs Associated with Tagging Policy
Compliant CSP Cloud Resources During a Period of
Time / Total CSP Cloud Costs During a Period of Time.

(13) Percent Storage on Frequent Access Tier - Number of
GB in Standard (or “frequently accessed” tiers vs. total
GBs stored)

(14) Percentage of Carbon Associated with Untagged CSP
Cloud Resources

There are several analogous KPIs related to carbon foot-
prints instead of dollar costs. In the current version of the
bench our scenarios have used an alert based on variance in
spend. The remaining KPIs offer a rich basis for formulating
many additional scenarios.

E.2. Motivating Example and FinOps Scenarios

We have analyzed common FinOps scenarios in three main
categories; incidents with cost alerts, data insights gener-
ation using natural language queries, and cost anomalies
in cloud bills. Incident scenarios are triggered by a cost
alert and require diagnosis of the root cause of the alert
and remediation steps to clear the alert. Table 28 shows an
exemplar budget overrun alert-driven incident with the steps
for diagnosis and resolution. In this incident, FinOps practi-
tioners were notified of an —unusual cost increase (>20%
more than last week’s average) —alert by OpenCost. The
increase is mainly caused by the increase in replica counts as
a result of an observed load spike. The autoscaler increased
the number of replicas to serve the demand as expected.
However, budget thresholds are not updated which causes

false alerts. Agent finds out that the application is healthy
and recommends updating budget alerts based on the new
load level. Similarly, Table 29 demonstrates a sample sce-
nario where a budget overrun alert has been generated due
to increased replicas. However, in this scenario application
services are scaled up significantly despite low utilization in
containers. Agent finds out autoscaler scaled up the applica-
tion at low utilization thresholds and analyze the autoscaler
configuration. It detects low thresholds for scale up policy
and recommends updating autoscaler accordingly.

FinOps practitioners need to analyze cloud bills as part of
their daily tasks. However, existing reporting tools rely
on predefined set of reports and analyzing data outside of
these reports is not trivial. We defined new data insight
generation scenarios based on the common KPIs listed in
E.1. Each scenario starts with a natural language query
and retrieves, processes, and summarizes the related data.
Table 26 presents description of scenarios and the corre-
sponding KPIs.

Anomaly detection and management (abbreviated as “AD”)
is a key FinOps capability that allows practitioners to con-
tinuously monitor cloud spend and flag unexpected spend
events immediately. The lifecycle of cloud cost anomaly
detection includes cost monitoring, forecasting, identify-
ing drift, outliers and anomalies, identifying root causes,
and defining mitigation or resolution strategies. Under AD,
we consider two FinOps scenarios - anomaly detection and
anomaly ranking. Due to the complex topology of FinOps
business dimensions and tags that could be mapped to a
hierarchical structure, identifying the subset of dimensions
where anomalies exist, their temporal impact, persistence
and relevance to the user, an agentic solution is beneficial
in utilizing the FinOps knowledge base and data to perform
the task of anomaly detection and prioritizing them.

The anomaly detection scenario takes in a natural language
query to first gather the relevant data from a database, sub-
ject to a time period of interest, and provided values for
other relevant dimensions. From here, the data may need to
be aggregated (e.g.: hourly or daily) according to the query.
Next, an anomaly detection tool is employed to identify
anomalies. The output of the tool is summarized by the
agent and provided as the final LLM output.

Similarly, in the case of anomaly ranking, a user-specified
scoring of anomalies is provided as part of the natural lan-
guage query. Example scoring mechanisms include nor-
malized product of anomalous cost and the duration of the
anomaly. In this case, the agent is expected to gather the
relevant data from the database, perform aggregation, pass it
to the anomaly detection tool, compute an importance score
for every identified anomaly and rank order anomalies as
per the criteria specified in the query. Since the agent does
not accurately identify all anomalies (that is, precision <
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Table 26: FinOps Data Insight Scenarios

Scenario Natural Language Prompt Related KPI

Scenario 1: Cost by re-
source type

I need a summary report on the total cost for services in compute and storage
categories between 09-01-2024 and 09-30-2024. Please calculate the total cost
for each category.

Workload Optimization and
waste reduction

Scenario 2: Highest
Cost Contributors

I want to find out which applications contribute the cost most between 09-01-
2024 and 09-30-2024. Give me the list of top 3 applications with highest cost.
Ignore costs without an application information.

Workload Optimization and
waste reduction

Scenario 3: Cost Allo-
cation Performance

What is the percentage of allocated/total cost ratio per cloud provider for
September 2024. Consider a cost allocated if there is an application attribution.
Ignore records with negative costs for the calculation.

Full Allocation of spending

Scenario 4: Peak/Aver-
age Cost Ratio

List top 5 applications with highest peak to average ratio in terms of daily total
cost during September 2024. For cost calculation do not include negative costs.
Calculate maximum daily cost to average daily cost ratio per application and
give the list with application, peak cost, average cost, ratio, and peak cost date
details.

Workload Optimization and
waste reduction

Scenario 5: Cost Vari-
ance

Find the top 5 applications with highest daily cost variance between 09-01-2024
and 09-08-2024. Use population variance for ranking. Do not include records
with negative costs.

Workload Optimization and
waste reduction

Scenario 6: Commit-
ment Discount Cover-
age

Cloud providers regularly adjust bills by providing credits to the accounts
after the initial charges. Calculate the discount coverage for each sub account
including tax. Find five sub accounts which have total bill grater than 0 and
have the maximum discount percentage. Return sub account information and
discount coverage percentage.

Rate Optimization

1.0 and recall < 1.0), comparing ranking performed by the
agent to the ground truth ranking, using techniques such as
Normalized Discounted Cumulative Gain (NDCG) is not
viable. Hence, we rely on comparing the importance score
computed by the agent to the ground importance score, iden-
tifying the relative rank of an anomaly and computing the
fraction of the anomalies with the correct relative rank. This
is called the “rank score”. Table 27 presents description of
scenarios and the corresponding KPIs.

E.3. ITBench Architecture for Constructing FinOps
Scenarios

For alert-driven scenarios, we have extensively leveraged
the set up that we established for the SRE scenarios. We
employ OpenCost to monitor costs and raise an alert when
the predefined budget and efficiency thresholds are crossed.
OpenCost is an opensource tool which distributes the cost
of a virtual machine/node to the Kubernetes deployments
running on it based on the allocated resources. It selects
higher of utilization or request numbers of each container
and distributes the cost using a load distribution policy. In
our experiments, we have forced a custom pricing model
which mainly includes hourly CPU cost rate for a single
core and memory cost rate per 1 GB memory. Other pricing
components such as networking cost and spot instance pric-
ing are not the main scope of our evaluated scenarios. Thus,
we have included negligible costs for these components. We
mimic real world scenarios as explained in SRE scenarios
by including cost variation alerts.

For data insights and anomaly detection use cases, we have
leveraged sample FinOps data from FinOps Foundation
(foc) in FOCUS format. Dataset includes more than 5 mil-
lion cost records of 107 accounts for the services of AWS,
Microsoft Azure, Oracle, and GCP. We provide natural lan-
guage to SQL tool to retrieve the data from the database.
The provided tool is responsible for linting the SQL code
generated by the agent and if the code is syntactically cor-
rect, it executes the SQL query and return query results to
the agent. Similarly, for anomaly detection scenarios, agent
is responsible to generate the proper SQL code to retrieve
the related data based on given natural language prompt.
Then, the agent is responsible to execute anomaly detection
algorithms on the retrieved data and summarize the results.

E.4. Evaluation

We have evaluated agents for each FinOps scenario category
independently. For alert driven incident scenarios, we have
used the same evaluation framework used in SRE-bench by
including OpenCost and cost alerts in the scenarios. Data
insights scenarios are evaluated based on the retrieved data
accuracy and total token count consumed by the agent.

E.4.1. EVALUATION METRICS

For alert driven incident scenarios, we evaluate each LLM-
based agent for two scenarios: (i) diagnosis and (ii) mit-
igation. Data insights scenarios are evaluated based on
accuracy of the retrieved results.

Anomaly detection scenarios are explicitly evaluated on
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Table 27: FinOps AD Scenarios

Scenario Natural Language Prompt Related KPI

Scenario 1: Anomaly
identification

Generate a detailed report consisting of the distinct ‘ChargePeriodStart’ val-
ues with corresponding anomalies in ’BilledCost’ during 09-01-2024 and
09-30-2024 for the service ’Amazon Elastic Compute Cloud’ and column
‘PricingUnit’ being equal to ’Hours’. Summarize the number of anomalies
found.

Workload Optimization and
waste reduction

Scenario 2: Anomaly
ranking

Please create a report with a rank ordered list of the hours with anomalies in
billed cost during 09-01-2024 and 09-30-2024 for the Amazon Elastic Compute
Cloud service category after filtering on column PricingUnit being equal to
’Hours’. Compute an importance score for each anomaly based on the cost and
the duration for which the anomaly persisted. Finally, rank these anomalies in
the descending order of their importance score.

Workload Optimization and
waste reduction

Table 28: Optimization Use Case: Increased Cost Alert - Increasing Demand

Optimization Use Case Details

Triggering Alert Cost increase alert for an application “Foo”.

Summary

Cost alert was seen on application “Foo”. The increase was 20% higher than the expected
budget. Investigations reveal that the application is healthy and cost increase is caused
by load increase. Client budget is flexible and thus cost alert is updated accordingly to
increase the threshold. Long term fix requires additional check in CI/CD pipeline and
possible automation of budget adjustments.

Time to detection 7 days (Current practices to observe utilization metrics for cost analysis
Time to diagnose 60 minutes
Time to mitigate 15 minutes
Event Type An alert is generated to show there is more than 20% increase in expected cost.
Cost Overrun 20% increase in cost

Diagnosis Steps

• Checked infrastructure size changes. e.g. Increase in replica counts in Kubernetes
cluster.

• Found replica counts are greater than historical average.
• Checked whether there is a legit increase in application load.
• Found there is a stable increase in the application load and the cost increase is acceptable.
• Checked budget constraints of the application.
• Found application budget is flexible for scaling up.

Resolution Plan

• Calculated the new cost alert thresholds.
• Update cost alert budget thresholds to accommodate new stable load level to prevent

false alerts.

Long Term Improvements Created playbooks to ensure such handling such adjustments are automated.

the agent’s performance in identifying anomalies within a
time period of interest at a granularity (hourly, daily etc.)
of interest for a data subset defined by additional business
dimensions such as department, cost center, application,
region etc. Given the nature of the sub-tasks, the agent’s
performance is implicitly evaluated in terms of its ability to
gather the right dataset based on the prompt and to produce
the solution obtained from the anomaly detection algorithm
as the final LLM output. F1-scores are computed to evaluate
the performance of the agent on the anomaly detection sce-
nario. For ranking anomalies, we compute the rank score of
the true positive anomalies, as identified by the agent, with
the correct importance score, as per the importance defini-
tion specified by the user in the prompt. Misinterpretation
of the prompt or hallunications by the LLM will lower the

agent’s performance.

Diagnosis. The agent is evaluated on diagnosis by its ability
to provide accurate root cause of budget alerts. Diagnosis
includes the analysis steps that the agent follows to identify
the root cause of the budget alerts. Agent performance in
diagnosis is measured using pass@1 scores that indicate the
accuracy of the root cause analysis provided to the SREs.

Mitigation. Mitigation involves recommending resolution
steps for incidents to clear the alerts and optimizing the
cost and efficiency of the application. We evaluated agents
with the success rate using the pass@1 score and using
proximity scores to analyze the performance of agents to
achieve the optimal cost and efficiency metrics defined in
Section E.4.2. Both diagnosis and mitigation evaluations
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Table 29: Optimization Use Case: Increased Cost Alert - Faulty Auto-scaler

Optimization Use Case Details

Triggering Alert Cost increase alert for an application “Foo”.

Summary

Cost alert was seen on application “Foo”. The increase was 20% higher than the expected
budget. Investigations reveal that auto scaler was misconfigured. SREs manually updated
the auto scaling configuration by changing the scale up policy. Long term fix requires
additional check in CI/CD pipeline.

Time to detection 7 days (Current practices to observe utilization metrics for cost analysis
Time to diagnose 60 minutes
Time to mitigate 15 minutes
Event Type An alert is generated to show there is more than 20% increase in expected cost.
Cost Overrun 20% increase in cost

Diagnosis Steps

• Checked infrastructure size anomalies, e.g., increase in replica counts in Kubernetes
cluster.

• Found replica counts are greater than historical average.
• Checked whether there is a legit increase in application load.
• Found an increase in load and pending containers.
• Checked utilization of containers
• Found low utilization
• Checked autoscaler for scaling policy
• Found low threshold for scale up rules

Resolution Plan
• Configure auto scaler to update scaling policies.
• Manually delete extra replicas.

Long Term Improvements Created playbooks to ensure such misconfigurations do not happen for future deployments.

can be expanded in the future to automatically measure
the performance of agents using LLM-as-a-judge similar to
SRE-bench evaluations.

Data Insights. Agents are evaluated in the accuracy of
retrieved results using pass@1 scores. Partially correct
answers despite generating similar SQL codes to the ground
truth are considered failed for the scenario. Efficiency of
the agents are evaluated by calculating token utilization.

Anomaly Detection. Agents are evaluated for their ability
to identify anomalies by using F1 score.

Anomaly Ranking. For ranking of anomalies, we first
compute anomaly importance score Ia for an anomaly a as:

Ca×δa
maxa∈A(Ca×δa)

, where A represents the set of anomalies,
Ca represents the cumulative billing cost associated with
an anomaly a, and δa represents the duration for which
anomaly a persisted. Next, we compute the rank score of
the anomalies, that were correctly identified by the agent,
also having the correctly computed importance score.

E.4.2. METRIC DEFINITIONS

Metrics for Alert Driven Incident Scenarios.
pass@1. We use the same metric defined in Section C.6.2
for both diagnosis and mitigation steps recommended by
the agents.

Proximity metrics. To analyze the performance of agents
in achieving optimal cost and efficiency, we defined prox-
imity scores for hourly CPU cost, hourly memory cost,
workload CPU efficiency, and workload memory efficiency.
Proximity scores indicates the performance by calculating
the proportional absolute difference between observed and
optimal values for the measured cost or efficiency metric.
We subtract the proportional value from 1 such that hav-
ing proximity score of 1 indicates achieving the optimal
performance. Proximity scores are calculates as follows:

proximity_i = 1− |observed_i− optimal|
optimal

where i represents the experiment trial, observed is the
retrieved value for the measured metric, and optimal is the
value given in the ground truth for the same field.

Hourly CPU cost: The cost of allocating a single CPU
core for an hour. We used custom pricing policy through
opencost to ensure the ground truth values are not affected
by changes in pricing between different cloud providers and
on-premise deployments.

Hourly Memory cost: The cost of allocating 1 GB of
memory. It also uses custom pricing policy.
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Workload CPU efficiency: We take the average CPU
efficiency of all containers of the application. We calculate
CPU efficiency by dividing the CPU utilization of a
container by the request amount. For instance, if the
CPU request is 100m in the deployment configuration
but the container uses 50m, the efficiency is calculated as 50.

Workload memory efficiency: It is calculated in the same
way with CPU efficiency by dividing the utilization by
requested memory amount.

We take the arithmetic mean of all runs for each metric and
calculates the standard deviation. We present our results in
Table 6.

Metrics for Data Insight Scenarios.
pass@1. We have compared the generated results with
ground truth values for the given prompts. Only requested
fields in the prompt are evaluated. The results with identical
values with ground truth data are considered a "Pass" and
all other results are evaluated as a "Fail".

Token Utilization. Agents require different number of iter-
ations until reaching the final answer. For each run, we cal-
culated total number of tokens during an experiment run for
all iterations. Token utilization indicates how efficiently the
agent optimizes between iterations and finalize its thoughts.
This is used in evaluating the agent’s performance for the
anomaly detection scenarios as well.

Metrics for AD Scenarios.
F1 score. Treating anomalies identified by an anomaly
detection algorithm as the ground truth data, we compute
the F1 score to account for both the precision and recall of
the anomalies identified by the agent.

Rank score. This denotes the fraction of the true positive
anomalies, as identified by the agent, with the correct impor-
tance score, as per the importance definition specified by
the user in the prompt.

E.5. Results

Table 30 presents the evaluation results for data insights
scenarios. It shows that larger models perform better in both
accuracy and average token utilization. The token utiliza-
tion is mainly depending on the performance of updating the
generated SQL queries based on natural language to SQL
tool responses. Larger models understands tool feedback
better and update code accordingly. However, all models
largely failed to generate the correct queries for scenarios
that require multiple data processing steps, as can be seen in
the results of Scenarios 4, 5 and 6. We found data hallucina-
tion, making up function or column names based on prompt,
and ignoring database version as common problems for all

agents.

The results for the anomaly detection scenarios are con-
tained in table 31. The first observation is that once again
larger models, GPT-4o in this case, outperforms the smaller
Granite-3.1-8b-instruct and Llama-3.1-8b-instruct. An ex-
ception to this is the Llama-3.3-70b-instruct where the agent
was unable to translate the natural language query accu-
rately to an SQL query. It also misinterpreted the query and
thought that it was expected to detect anomalies without ac-
cessing the AD tool provided to it. Due to this, the columns
required by the AD tool were not part of the SQL query due
to which the AD tool failed to run. The end result of this
misstep was that the anomalies identified by the agent were
100% incorrect. Since the anomaly ranking scenario needed
anomalies to be identified first, the agent failed totally in
those scenarios as well when using this LLM model. For
the remaining 3 models, during data query as well as during
summarizing the output of the AD tool, we noticed that the
agent hallucinated, thereby lowering both the F1-score and
the rank score metrics.

E.6. Example Trajectories

Data insights and anomaly detection scenarios require un-
derstanding of the prompt, retrieving data, and processing it.
In our evaluations, we have found that agents commonly hal-
lucinate about the column names in the table, which results
in execution error in SQL queries. The performance of the
agents in correcting these errors in the following iterations
vary significantly. Similarly, agents are unable to consider
the version of the database server to use the proper function
names or syntax.

FinOps issues firing alerts are highly connected to used in-
frastructure and deployment configurations and policies for
Kubernetes deployments. Incidents at infrastructure or con-
figuration can trigger cost alerts. Agents commonly need
to use the same tools as SRE-agent to understand the status
of underlying infrastructure and deployment configuration
of the application to identify the root cause of a FinOps
concern. Similarly, to investigate budget variations accu-
rately, they need analyzing load and utilization patterns to
avoid diverging to irrelevant resolution recommendation.
Figure 29 shows a trajectory for Scenario 37 where agent
starts retrieving the alerts and observing CPU hourly cost
has exceeded the budget threshold. It continues checking de-
ployment details using NL2Kubectl tool and retrieve replica
counts for each deployment. Due to high number of replicas
in adservice, it considers scaling down the adservice de-
ployment. Missing utilization checks and not analyzing the
deployment details caused agent to an inaccurate diagnosis
and led to scaling down recommendation despite the high
load for the application. In a correct trajectory, an agent
would analyze the utilization and decides the high load in
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Table 30: Evaluation of Data Insights Scenarios: Pass@1 %

FinOps/Agent: Models Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Pass@1 #Token Pass@1 #Token Pass@1 #Token Pass@1 #Token Pass@1 #Token Pass@1 #Token

granite-3.1-8B-instruct 0 511096 100 10304 0 10210 0 5778 0 413810 0 9514
llama-3.1-8B-instruct 0 90424 0 76178 0 99769 0 131882 0 69447 0 60531
llama-3.3-70B-instruct 0 7347 100 6410 100 8107 0 8029 0 6350 0 7666
gpt-4o 50 6232 100 6415 50 8909 0 60973 0 6772 0 83378

Note: “# Token is the average token utilization over ten runs of each scenario.
(Pass@1 values are shown as percentage.)

Table 31: Evaluation of AD scenarios

FinOps/Agent: Models Anomaly Detection Anomaly Ranking

F1-score #Token Rank score #Token

granite-3.1-8B-instruct 0.4 ± 0.07 22024 0.3 ± 0.0 205042
llama-3.1-8B-instruct 0.4 ± 0.03 14461 0.4 ± 0.0 166614
llama-3.3-70B-instruct 0 - 0 -
gpt-4o 0.6 ± 0.0 550 0.5 ± 0.0 164313

the system and would recommend changing the budget alert
thresholds if total budget allocation allows or analyze the
deployments which could be scaled down without hurting
the application performance.

Figure 29: Sample Trajectory of unusual cost variation use
case.
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Table 32: Evaluation of Alert Driven FinOps scenarios.

Models Diagnosis Mitigation

pass@1 (%) ↑ pass@1 (%) ↑ Proximity to
Optimal CPU
Cost ↑

Proximity
to Optimal
Memory Cost
↑

Proximity to
Optimal CPU
Efficiency ↑

Proximity
to Optimal
Memory
Efficiency ↑

granite-3.1-8B-instruct 0 0 0.47± 0.01 0.48± 0.06 0.53± 0.04 0.94± 0.01
llama-3.1-8B-instruct 0 0 0.49 ± 0.01 0.46± 0.07 0.56± 0.08 0.96± 0.02
llama-3.3-70B-instruct 16.6 0 0.47± 0.01 0.49± 0.05 0.53± 0.03 0.96± 0.02
gpt-4o 33 0 0.48± 0.01 0.51± 0.02 0.63 ± 0.07 0.92± 0.08

pass@1 values are shown as percentages. Proximity values shows how close the observed values to optimal values. One represents achieving optimal and any deviations
from 1 represents sub-optimal performance.
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Figure 30: NTAM sample illustration. Node A2 is the
ground truth root cause. Orange arrows represent edges of
‘owns’ type and black arrows represent edges of ‘calls’ type.
Dotted area represents ground truth fault propagation chain.

F. Normalized Topology-aware Match
Existing work for root cause analysis has used general
metrics including lexical and semantic metrics like BLEU,
ROUGE-L, and BERTScore (Ahmed et al., 2023b), and
metrics like F1, ranked list evaluation metrics like hit rate,
etc.(Zhu et al., 2024; Chen et al., 2024c). However, these
metrics are not accurate and granular enough. For example,
if the root cause is “adservice pod”, “adservice deployment”
is a better prediction than “recommendation pod” but lex-
ical metrics do not reflect that. Similarly, rank-evaluation
metrics only capture whether the ground truth is in the pre-
dicted list or not. There is a need to develop domain-specific
metrics that accurately measure the quality of the predicted
root cause and fault propagation chains.

To this end, we propose NTAM (Normalized Topology-
Aware Match), inspired by:

• Distance-based metrics, rewarding predictions that
are “closer” in a topology graph to the ground-truth
entities.

• Information-retrieval concepts such as BM25 (Fang
et al., 2011), where features that appear very commonly
carry lower weight. By analogy, our scoring function
down-weights highly connected nodes (i.e., large sub-
tree), so that nodes that appear in many possible paths
are less rewarded.

In the following sections, we describe NTAM that can be
used both for scoring the predicted fault propagation chain
and fault localization.

F.1. Notation

We first introduce notation used in NTAM.

F.1.1. GROUND TRUTH

The ground truth G is composed of a set of P unordered
fault propagation chains (FPCs):

G = {FPp | p ∈ {1, . . . , P}}.

Each chain FPp contains I fault entities {g1, . . . , gI}.

Every entity gi has a level, denoted level(gi) = k,
which describes its position in the propagation chain
(k ∈ {1, . . . ,K}). Typically, each chain has a single root
cause entity at level K. But, in general, each unordered
fault propagation chain in the ground truth can have U root
cause entities.
Rp = {gu}, , u ∈ {1, . . . , U} For example, in Figure 30,
A2 is root cause and A2, A3, A4 is the propagation chain.

We also define an entity importance measure, GI(gi), to
capture that not all entities are equally informative:

GI(gi) =

(
K + 1

K − k + 1

)γ

,

where k = level(gi), and γ is a positive parameter. Entities
closer to the root cause (higher k) get larger importance.

F.1.2. PREDICTED OUTPUT

Similarly, the model output O is a set of Q unordered fault
propagation chains:

O = {FP ′
q | q ∈ {1, . . . , Q}}.

Each predicted chain FP ′
q consists of J fault entities

{o1, . . . , oJ}. The agent also identifies V root cause en-
tities, per propagation chain.
R′

q = {ov}, v ∈ {1, . . . , V }

F.1.3. DISTANCE

Let T be a topology graph whose nodes are the entities in
our system. We define a distance TD(gi,oj) that accounts
for:

• The type of each edge along that path. In a typical
Kubernetes-based system, as illustrated in Figure 30,
we define two main edge types:

– owns (e.g., Deployment owns ReplicaSet, Repli-
caSet owns Pod),

– calls (indicating an actual invocation or request
from one microservice to another).

Let cost(edge type) be a positive real-valued function.
We define:

cost(owns) = 1, cost(calls) = ζ.
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For example, in Figure 30, if A2 is the root cause pod
and A1 is the corresponding deployment, intuitively,
predicting A1 as the root cause is better than predicting
A6 because A6 is part of another deployment, even
though both are one hop away on the undirected graph.
So, ζ is set to be greater than 1.

• The sub-tree size of each node along a shared path in
the graph. We are inspired by information retrieval
scoring functions, such as TF–IDF or BM25 (Zhai and
Massung, 2016), where, terms that appear in many doc-
uments have lower inverse document frequency weight,
as they are less discriminative. Analogously, if a pre-
dicted node has a large sub-tree size in the topology
graph T (i.e. it is connected to many other nodes), it
is less informative for pinpointing the fault’s true loca-
tion.

For example, in Figure 30, predicting A5 is more dis-
criminative than predicting A6 because A6 calls both
A2 and A7, whereas, A5 calls only A2.

Combining the two factors above, we define edge cost be-
tween nodes x, y in T as follows:

cost(x, y) = cost(edge_type(x, y))× subtree_size(y)

Finally, TD(gi, oj) is then defined as the shortest distance
between gi and oj in weighted T, where weights are the
edge costs.

To avoid penalizing exact matches, cost(x, x) = 0

In addition to TD(gi, oj) between oj and a single entity gi
in FPp, we also define FD(FPp,oj) as the average TD
between oj and every entity in FPp.

These distance quantities guide our scoring function by
rewarding predicted entities that lie close to the ground-
truth nodes on the topology graph.

F.1.4. TASK SCORE

The overall task is to score the quality of O compared to
G, defined by S(G,O), where higher score means better
quality.

Fault localization is a special case of this task, where only
subsets Rp and R′

q are compared instead of entire FPp and
FP ′

q .

F.2. Overall Score: NTAM

We now describe all components of NTAM below.

F.2.1. GI-WEIGHTED INVERSE TOPOLOGY DISTANCE

ITDwt(gi, oj) = GI(gi) ×
( 1

TD(gi, oj) + 1

)δ
This is based on the following intuitions:

• A predicted entity closer to the ground-truth node on
the topology should get a higher score.

• Further, the farther you move from a ground-truth en-
tity, the relative penalization should decrease. In other
words, to avoid a significantly large impact on the total
score as the distance increases, the penalization should
saturate. The above two are ensured by the 1/TD term.
If TD(gi, oj) is large (involving many high-subtree-
size nodes or high-cost edges), then ITDwt(gi, oj)
becomes small, reducing the credit for matching gi
with oj . δ is a parameter to controlling how quickly
penalties grow for larger distances

• Closer to more important ground-truth entities is better.
This is ensured by the GI term.

F.2.2. GI-WEIGHTED INVERSE FD

IFDwt(FPp, oj) =
1

I

∑
gi∈FPp

ITDwt(gi, oj).

A predicted entity closer (on average) to all entities in
the FPC is preferred. Analogous intuitions described for
ITDwt above hold for IFDwt as well.

F.2.3. SCORING ONE GROUND-TRUTH CHAIN VS. ONE
PREDICTED CHAIN

Consider a single ground-truth chain FPp of size I and a
single predicted chain FP ′

q of size J . We define:

S(FPp, FP ′
q) =

I∑
i=1

S1 × S2(
|J − I|+ 1

)c , (7)

where,

S1 =
(
maxJ

[
ITDwt(gi, oj)

])α
,

S2 =
(
maxJ

[
IFDwt(FPp, oj)

])β
,

and α, β, c > 0 are parameters.

We select the best matching predicted output entity based
on distance to a single ground truth entity, and to the whole
propagation chain. The denominator

(
|J−I|+1

)c
penalizes

large mismatches in the chain length. This is based on the
following two intuitions:
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• If adding extra predicted entities that are farther away
does not add information, they should hurt the score.

• Conversely, if adding extra predicted nodes reduces
distance to ground-truth entities, do not over-penalize.

F.2.4. COMBINING ALL CHAINS: S(G,O)

Given all ground-truth chains {FP1, . . . , FPP } and pre-
dicted chains {FP ′

1, . . . , FP ′
Q}, we define:

S(G,O) =

P∑
p=1

maxQ

[
S(FPp, FP ′

q)
]

(
|P −Q|+ 1

)d .

Again, the best matching output propagation chain is se-
lected for each ground truth propagation chain. The term(
|P −Q|+ 1

)d
penalizes a mismatch in the total number

of predicted chains vs. ground-truth. Same intuitions as
described for scoring a single chain above hold.

Normalized TAM (NTAM). We normalize S(G,O) to
fall within [0, 1] by dividing by the ideal score achieved
when the prediction matches ground truth exactly:

NTAM =
S(G,O)

S(G,G)
.

Thus, NTAM = 1 indicates a perfect match.

F.3. Fault Localization: FL (NTAM)

For fault localization, only the root cause entities are con-
sidered. Let Rp denote the root-cause(s) in ground-truth
chain FPp, and R′

q the root-cause(s) in predicted chain FP ′
q .

Adapting Equation (7) to only these subsets:

S(Rp, R
′
q) =

U∑
u=1

S3 × S4(
|U − V |+ 1

)c ,
where,

S3 =
(
maxV [ ITDwt(gu, ov)

])α
,

S4 =
(
maxV [ IFDwt(FPp, ov)

])β
.

Summing over all chains, then normalizing:

FL (NTAM) =

∑P
p=1

maxQ S(Rp,R
′
q)(

|P−Q|+1
)d∑P

p=1 maxP S(Rp, Rp)
.

This measures how well the model predicted the root-cause
nodes alone.

F.4. Parameter Tuning

Key hyper-parameters used in NTAM are summarized in
Table 33.

Table 33: Key NTAM hyper-parameters.

Symbol Meaning Chosen Value

α Exponent for the max ITD
term

1

β Exponent for the max IFD
term

1

γ Power for entity impor-
tance GI

1

δ Distance penalization expo-
nent

0.289

c Chain-length mismatch
penalty exponent

0.5

d Number-of-chains mis-
match penalty exponent

0.5

ζ Ratio of cost of edge type
calls wrt cost of edge type
owns

2.1

In practice, one can use grid-search or a numeric optimiza-
tion method (Taylor et al., 2006) to select the parameter
values that best align with expert preferences. For example,
we could measure how well the ordering induced by NTAM
matches expert judgments, using standard correlation coeffi-
cients such as Kendall Tau-b (Kendall, 1945).

Currently, all values except δ are not tuned and simply
chosen to give uniform and equal weights to all terms. δ
is determined analytically leveraging domain knowledge-
based assumptions. As the distance increases by one hop, we
want ITD (non-GI-weighted) to decrease by 50%. Further,
on average, Kubernetes graphs have a subtree size of 10.
Based on these two assumptions and α = 1, we get δ =
0.289.
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