
Training Greedy Policy for Proposal Batch Selection in
Expensive Multi-Objective Combinatorial Optimization

Deokjae Lee 1 2 Hyun Oh Song 1 2 Kyunghyun Cho 3 4

Abstract
Active learning is increasingly adopted for ex-
pensive multi-objective combinatorial optimiza-
tion problems, but it involves a challenging sub-
set selection problem, optimizing the batch ac-
quisition score that quantifies the goodness of
a batch for evaluation. Due to the excessively
large search space of the subset selection prob-
lem, prior methods optimize the batch acquisition
on the latent space, which has discrepancies with
the actual space, or optimize individual acquisi-
tion scores without considering the dependencies
among candidates in a batch instead of directly
optimizing the batch acquisition. To manage the
vast search space, a simple and effective approach
is the greedy method, which decomposes the prob-
lem into smaller subproblems, yet it has difficulty
in parallelization since each subproblem depends
on the outcome from the previous ones. To this
end, we introduce a novel greedy-style subset se-
lection algorithm that optimizes batch acquisition
directly on the combinatorial space by sequential
greedy sampling from the greedy policy, specif-
ically trained to address all greedy subproblems
concurrently. Notably, our experiments on the
red fluorescent proteins design task show that our
proposed method achieves the baseline perfor-
mance in 1.69× fewer queries, demonstrating its
efficiency.

1. Introduction
In various practical design fields, including biological se-
quence design, molecular graph optimization, and chip de-
sign, challenges are typically posed as expensive multi-
objective combinatorial optimization (MOCO) problems.

1Seoul National University 2Neural Processing Research
Center 3New York University 4Genentech. Correspondence to:
Kyunghyun Cho <kc119@nyu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

These problems focus on identifying designs, represented as
discrete objects like strings or graphs, that optimize multiple
attributes, often requiring substantial resources for accurate
assessment (Ehrgott, 2005; Gómez-Bombarelli et al., 2016;
Stanton et al., 2022; Winter et al., 2019; Mirhoseini et al.,
2021). Active learning frameworks, which iteratively pro-
pose a batch of candidates and learn from the attributes
evaluated on those candidates, are increasingly employed in
these fields due to their query efficiency, which is a critical
component to handling expensive evaluation costs (Aggar-
wal et al., 2014; Jain et al., 2022; Gruver et al., 2023; Zhu
et al., 2023; Agnesina et al., 2023). In active learning, each
round entails an internal problem of selecting a proposal
batch of candidates for querying, formulated by cardinality-
constrained subset selection problem. This aims to identify
the optimal batch B ⊂ X of size n that maximizes the
batch acquisition function a : 2X → R, which quanti-
fies the goodness of a batch considering interdependencies
among candidates (González et al., 2015; Wang et al., 2016;
Daulton et al., 2020). Unfortunately, the subset selection
problem is challenging due to its prohibitively large search
space of size O(|X |n), which increases exponentially as
the batch size n increases, while the combinatorial space X
itself often has large size in practical scenarios (Polishchuk
et al., 2013).

A natural approach to efficiently solve a subset selection
problem is a greedy algorithm that sequentially constructs
a subset by adding the optimal candidate that maximizes
marginal gain in the objective set function, breaking down
the problem into a sequence of substantially smaller, man-
ageable subproblems of size O(|X |) (Nemhauser et al.,
1978). Notably, the presence of monotone submodularity
in prevalent batch acquisition functions such as JES, SM,
EHVI, and NEHVI provides a theoretical performance guar-
antee for the greedy algorithm (Goundan & Schulz, 2007;
Azimi et al., 2010). In this regard, active learning methods
son continuous spaces already adopt greedy algorithms by
solving each subproblem with first-order methods (Tu et al.,
2022; Daulton et al., 2020; 2021). However, for MOCO
problems, applying greedy algorithms is even more chal-
lenging due to their discrete nature, which prohibits the use
of first-order solvers. Instead, previous works utilize latent
space optimization (LSO) algorithms, which alternatively

1

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

optimize the batch acquisition in the continuous latent space,
which has discrepancies with the batch acquisition in the ac-
tual space, and obtain the batch by decoding the optimized
latent (Gómez-Bombarelli et al., 2016; Stanton et al., 2022),
or construct a batch by sampling candidates of high indi-
vidual acquisition scores a({x})s without considering the
interdependencies among candidates explicitly (Jain et al.,
2023).

In this work, we propose a greedy-style subset selection
algorithm for expensive MOCO problems. One direct ap-
proach is sequentially applying any combinatorial optimiza-
tion algorithm n times to solve n subproblems. However,
this sequential construction strategy has a drawback be-
cause each subproblem requires the results from preceding
subproblems, hindering the parallelization of the overall pro-
cess. To address this, we propose a novel subset selection
approach based on reinforcement learning (RL) that trains
only a single greedy policy, a set-conditioned policy capa-
ble of addressing all subproblems concurrently, instead of
sequentially training n distinct policies for n subproblems,
thereby amortizing the burden of solving n subproblems.
Our contributions can be summarized as follows:

• We propose a novel greedy-style subset selection al-
gorithm that requires training of only a single greedy
policy. Also, we suggest a novel training algorithm for
obtaining the greedy policy, along with a justification
for this approach.

• We extend the theoretical bounds of the approximated
greedy algorithm to include both near-submodular
functions and diversity functions, broadening its appli-
cability.

• Our method consistently outperforms baseline meth-
ods, constructing the batch with a higher batch acqui-
sition in various benchmarks for active learning inner
loops. Significantly, our method attains the same Hy-
pervolume indicator value as baseline methods but with
1.69× fewer queries in the multi-round active learning
benchmark on red fluorescent proteins (RFP).

2. Preliminaries
2.1. Expensive MOCO

In this work, we consider an expensive MOCO problem,
which aims to maximize an m-dimensional expensive,
black-box oracle function f : X → Rm on the combi-
natorial space X , e.g., the space of amino-acid sequences
(Tripp et al., 2020). This can be formulated as

maximize
x∈X

f(x) := (f0(x), . . . , fm−1(x)), (1)

where we define the partial order between two vectors
f(x), f(x′) ∈ Rm by the pointwise order, i.e., f(x) ⪰ f(x′)

Algorithm 1 Multi-Round Active Learning

Input: an oracle f , a surrogate model f̃ , a batch size n,
the number of rounds Nr, and the initial dataset D0.
for i = 0 to Nr − 1 do

Train a surrogate f̃ using Di.
Solve Equation (2) to select the batch B (inner loop).
Evaluate the batch B with the oracle f .
Update the dataset Di+1 ← Di ∪ {(x, f(x))}x∈B .

end for
Return NonDominatedSort(DNr

)

if and only if fi(x) ≥ fi(x
′) for all i ∈ [m] := {0, . . . ,m−

1} (Blyth, 2005). We say that a candidate x dominates an-
other candidate x′, written by x ≻ x′, if f(x) ⪰ f(x′) and
f(x) ̸= f(x′). Using the notion of dominance, we introduce
the set of the optimal solutions of Equation (1), the Pareto
set, and its images, the Pareto frontier (Konak et al., 2006).

Definition 2.1. (Pareto set and Pareto frontier) The Pareto
set P∗ ⊂ X is the set of the optimal solutions that are
not dominated by any other candidates in X . Concretely,
P∗ := {x ∈ X | ∄x′ ∈ X s.t. x′ ≻ x}. Furthermore,
the Pareto frontier is the images of the Pareto set under the
oracle function f , denoted as f(P∗) ⊂ Rm.

For the non-trivial scenarios, the Pareto set P∗ has more
than one solution due to trade-offs among oracle compo-
nents f0, . . . , fm−1 (Ehrgott, 2005). Since we consider the
scenario that a given black-box oracle function is expen-
sive, the goal is to find a good approximated Pareto set
P̃ ⊆ X in a limited query budget. To assess the quality of
an approximation set P̃ , a commonly used metric is the Hy-
pervolume indicator, which measures the volume bounded
by the reference point rref ∈ Rm and the images of the ap-
proximation set f(P̃) ⊂ Rm, written by HV(f(P̃); rref) :=
Vol(

⋃
y∈f(P̃){v ∈ Rm | rref ⪯ v ⪯ y}) (Guerreiro et al.,

2021). In this work, we consider an approximation set with
a higher Hypervolume indicator value as a better approxi-
mation of the Pareto set.

2.2. Multi-Round Active Learning

Multi-round active learning is a framework widely adopted
for optimizing an expensive oracle function in a query-
efficient manner (Aggarwal et al., 2014). This framework
involves repeatedly suggesting candidates and learning from
the oracle’s feedback on those candidates (Jain et al., 2022).
Due to the significant time costs of oracle queries, a com-
mon practice is to select a batch of candidates for each
round, enabling parallel evaluation by the oracle and thus
improving overall efficiency (Daulton et al., 2021). The
batch Bayesian optimization (BO) framework is a represen-
tative active learning approach equipped with a statistical
surrogate model that estimates the oracle using the posterior

2

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

(2) Sample
CandidatesSet-Conditioned

Policy 𝜋!"#$(⋅ ∣ 𝐵)

(1) Sample Subset
𝐵 = {𝒙!, … , 𝒙"} Candidates

𝒙 𝒋 ~ 𝜋!"#$(⋅ ∣ 𝐵)

𝑅 & = Δ' 𝒙 & ∣ 𝐵

(3) Compute
Gains given 𝐵

(5) Update
𝜃 ← 𝜃 + 𝜂 ,𝑔 𝑅 ! (𝒇(𝒙!)

(𝒇(𝒙")

(𝒇(𝒙#)

(𝒇(𝒙 $)

-𝑓"

-𝑓!

(𝒇(𝒙!)
(𝒇(𝒙#)

-𝑓"

-𝑓! (𝒇(𝒙")

Behavior
Policy 𝜋!$

"#$

(0) Update
behavior
𝜃% ← 𝜃

(4) Estimate
Derivative of
Expected Gain

Deep Set

,𝑔 ≃
𝜕𝒥(𝜃, 𝜃/)

𝜕𝜃

𝑘 ∼ Unif (𝑛)
𝐵 ∼ 𝐺𝑆 𝑎, 𝜋&%

'() , 𝑘, 1

Figure 1: The visualization of our learning method (Section 3.1). At a high level, a set-conditioned policy πset
θ is trained to

generate candidates that maximize marginal gain ∆a(· | B) when conditioned by B, where B is sampled by πset
θ itself.

distribution given previous oracle evaluations (González
et al., 2015). Algorithm 1 summarizes the overall active
learning process. For each round, a cheaper surrogate model
f̃(·; θ) is trained using data from previous steps to estimate
the expensive oracle function f . Subsequently, the inner
loop chooses the proposal batch of n candidates for query-
ing by solving the following cardinality-constrained subset
selection problem:

maximize
B⊂X

a(B) (2)

subject to |B| ≤ n,

where a(·; f̃) : 2X → R is a batch acquisition function,
introduced in the subsequent section. After finishing Nr

rounds, active learning returns non-dominated solutions
among the evaluated dataset DNr

as the approximation set
to the Pareto set.

2.3. Batch acquisition functions for MOCO

Acquisition functions are designed to quantify the value of
evaluating candidates throughout the active learning pro-
cess, balancing the trade-offs between exploitation and ex-
ploration (O’Donoghue et al., 2017). Specifically, batch
acquisition functions assess the value of evaluating a batch
B, further considering the interdependencies within the
batch (Wang et al., 2016; Tu et al., 2022; Yang et al., 2022;
Azimi et al., 2010; Park et al., 2023). In this work, we fo-
cus on batch acquisition functions based on Hypervolume
improvement (HVI), widely used in recent studies on ex-
pensive multi-objective optimization (Guerreiro et al., 2021;
Konakovic Lukovic et al., 2020; Stanton et al., 2022; Jain
et al., 2023; Lin et al., 2022). Given the evaluated solution
set P̃ and the reference point rref, HVI when evaluating a
batch B is defined as

HVI(B; f̃ , P̃, rref)

:= HV(f̃(B) ∪ f̃(P̃); rref)−HV(f̃(P̃); rref).

HVI can be directly utilized as an acquisition function for
a deterministic surrogate model. For a statistical surro-
gate model, variations of HVI such as EHVI, NEHVI, and
UCB-HVI exist (Daulton et al., 2020; 2021; Emmerich
et al., 2015). EHVI and NEHVI compute the expected
values of HVI under the assumptions of noiseless and
noisy observations, respectively. UCB-HVI utilizes up-
per confidence bound (UCB) defined as f̃UCB(x;β) :=
mean(f̃(x)) + β std(f̃(x)) ∈ Rm as a proxy vector of
the oracle and computes HVI(B; f̃UCB, P̃, rref).

2.4. Reinforcement Learning for Single-Objective
Combinatorial Optimization

Combinatorial objects can often be constructed by se-
quential actions. Deep RL-based methods for single-
objective combinatorial optimization, aimed at solving
maxx∈X R(x), train a parameterized stochastic policy πθ.
This policy, which determines actions at each state of object
construction, seeks to maximize the objective function R
(Zoph & Le, 2017; Mirhoseini et al., 2021). In this context,
the resulting state of a trajectory τ , sampled from a policy
πθ, corresponds to a combinatorial object x ∈ X , and the
return of the trajectory is given by R(x). For simplicity, we
use the same notation for the trajectory and the resulting
combinatorial object; therefore, for x ∼ πθ, R(x) repre-
sents the objective value of the corresponding combinatorial
object x, and πθ(x) represents the probability of the tra-
jectory x. Then, the given problem maxx∈X R(x) can be
translated to the following optimization problem:

maximize
θ∈Θ

Ex∼πθ
[R(x)].

In this work, we consider the most basic algorithm with the
REINFORCE update rule, θ ← θ+ ηR(x)∇θ log πθ(x), as
the optimization method (Williams, 1992). After training
the policy, we can obtain the solution by sampling from the
trained policy.

3

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Algorithm 2 Exact Greedy (Nemhauser et al., 1978)

Input: a monotone set function a : 2X → R, and a
cardinality constraint n.
Initialize B0 = ∅.
for i = 0 to n− 1 do
x∗
i ← argmaxx∈X\Bi

∆a(x | Bi).
Bi+1 ← Bi ∪ {x∗

i }.
end for
Return Bn

3. Methods
The subset selection problem (Equation (2)) for each in-
ner loop is challenging due to its large search space of the
size O(|X |n), which increases exponentially as the cardi-
nality constraint n increases. To tackle these challenges, a
simple yet effective approach is the greedy algorithm (Algo-
rithm 2), which decomposes the subset selection problem
into a series of smaller, more manageable subproblems,
each of size O(|X |) (Nemhauser et al., 1978). Specifi-
cally, each greedy subproblem maximizes the marginal gain
∆a(· | B) : X → R of a set function a : 2X → R,
defined as ∆a(x | B) := a(B ∪ {x}) − a(B) (Krause
& Golovin, 2014). However, the combinatorial space X
often has a large size owing to its high-dimensional char-
acteristics in practical applications, such as in biological
sequence design (Stanton et al., 2022). Hence, finding the
exact solution for each subproblem remains a formidable
challenge. Addressing this, we focus on the approximated
greedy algorithm (Algorithm 3), which utilizes a scalable
maximization algorithm A such as sampling-based heuris-
tics, genetic algorithms, or MDP-based methods like RL to
approximate solutions within the large space ofX (Goundan
& Schulz, 2007; Mirzasoleiman et al., 2015; Prasad et al.,
2014; Williams, 1992).

On the other hand, the sequential nature of the greedy-style
algorithms potentially hinders efficiency, as each subprob-
lem depends on the solutions of preceding steps, complicat-
ing the parallelization of the overall process. To this end,
we introduce a novel greedy-style subset selection method
utilizing the greedy policy, a set-conditioned policy trained
to handle all subproblems, with its novel training algorithm,
thereby amortizing the burden of solving n subproblems.
Furthermore, we elucidate the theoretical bound of the ap-
proximated greedy algorithm under various conditions of
the set function, as encountered in realistic scenarios.

3.1. Learning Greedy Policy

To begin, we first introduce the concepts of a set-conditioned
policy and a greedy sampling distribution. A set-conditioned
policy πset

θ is a policy that samples a candidate x ∼ πset
θ (· |

B) conditioned on any subset B. For any subproblem with

Algorithm 3 Approx. Greedy (Goundan & Schulz, 2007)

Input: a monotone set function a : 2X → R, a maxi-
mization algorithm A, and a cardinality constraint n.
Initialize B0 = ∅.
for i = 0 to n− 1 do

xi ← solution by A when maximizing ∆a(· | Bi)).
Bi+1 ← Bi ∪ {xi}.

end for
Return Bn

Algorithm 4 Greedy Sample GS(a, πset
θ , k, l)

Input: a monotone set function a, a set-conditioned pol-
icy πset

θ , a set size k, the number of samples l.
Initialize B0 = ∅.
for i = 0 to k − 1 do

Sample l candidates xi,0, . . . ,xi,l−1 ∼ πset
θ (· | Bi).

idx← argmaxj∈[l] ∆a(xi,j | Bi).
Bi+1 ← Bi ∪ {xi,idx}.

end for
Return Bk

a subset B, which maximizes ∆a(· | B), we may utilize
πset
θ (· | B) as a proposal distribution to sample the solution.

In this context, we define a greedy sampling distribution
GS(a, πset

θ , k, l) on k-subsets of X as in Algorithm 4.

Instead of regarding greedy subproblems as individual prob-
lems to solve, we amortize all subproblems into a single
problem of training a set-conditioned policy. Specifically,
the goal is to train a set-conditioned policy to be the greedy
policy πset

θ∗ that can exactly solve any subproblems encoun-
tered during the greedy sampling of πset

θ∗ itself. To formally
define the greedy policy, we first define the expected gain.

Definition 3.1. (Expected Gain) We define J (θ, θ′) as the
expected gain by πset

θ given behavior policy πset
θ′ as:

J (θ, θ′) :=
1

n

n−1∑
k=0

EB∼GS(a,πset
θ′ ,k,1)

[Ex∼πset
θ

(·|B)[∆a(x | B)]].

In short, the expected gain is the expected value of the
marginal gain ∆a(x | B) where x ∼ πset

θ (· | B) and B is
any subset encountered during the greedy sampling of πset

θ′ .
Using Definition 3.1, we formally define the greedy policy.

Definition 3.2. (Greedy Policy) A set conditioned policy
πset
θ∗ is the greedy policy if πset

θ∗ is a maximizer of the expected
gain given itself, i.e., θ∗ = argmaxθ∈Θ J (θ, θ∗).

To explain that the greedy policy defined in Definition 3.2
satisfies the desired property, we introduce Lemma 3.3.

Lemma 3.3. GS(a, πset
θ∗ , n, l) samples exact greedy solu-

tions almost surely if πset
θ∗ is the greedy policy.

4

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Hence, the greedy policy is able to address all greedy sub-
problems and replicate the exact greedy algorithm.

From now on, we introduce the training method to achieve
the greedy policy. To start, we define the partial derivative
step, a fundamental component of our update rules.

Definition 3.4. Let F : U × U → R be any continuously
differentiable function. We define the partial derivative step
on u ∈ U given any behavior u′ ∈ U as PDF (u;u

′, η) :=
u+ η ∂

∂uF (u, u′).

Using the partial derivative step defined in Definition 3.4, we
introduce two update rules along with their validity. Similar
to the assumptions such as strong convexity or smoothness
used to ensure the convergence of the gradient descent al-
gorithm (Bubeck, 2015), we assume several conditions (see
Appendix A.1) and demonstrate the convergence of the up-
date rules to the greedy policy under these assumptions.

Theorem 3.5. Let F : U × U → R be a function with
some nice conditions. Also, assume that there exists u∗ ∈ U
such that u∗ = argmaxu∈U F (u, u∗). Then, by iterating
the update rule u ← PDF (u;u

′ = u, η), u converges to
u∗ for a small η > 0. Furthermore, for any Nt > 0, by
iterating the update rule with Nt partial derivative steps
with a fixed behavior, i.e., u← (PDF (·;u′ = u, η))

Nt(u),
u converges to u∗ for a small η > 0.

Proof. Please refer to Appendix A.1 for the detailed state-
ments and proofs.

For clarity, the update rule with Nt partial derivative steps
in Theorem 3.5 on u returns un where

ui+1 = PDF (ui;u
′ = u, η)

for i = 0, . . . , n − 1, and u0 = u. Note that in practical
scenarios, J may not fulfill these assumptions. However,
our method still demonstrates empirical effectiveness in the
practical scenarios, as shown in Section 4.

Due to the infeasible expectation in J , we apply the update
rule with an MC estimator ĝ of ∂

∂θJ (θ, θ
′) which can be

computed as in Proposition 3.6.

Proposition 3.6. (Policy gradient for J) For any baseline
set function b : 2X → R and the number of episodes Ne,

ĝ =
1

Ne

Ne−1∑
j=0

(∆a(x
(j) | B)− b(B))∇θ log π

set
θ (x(j) | B),

is an unbiased MC estimator of the partial derivative
∂
∂θJ (θ, θ

′) where B ∼ 1
n

∑n−1
k=0 GS(a, πset

θ′ , k, 1) and
x(j) ∼ πset

θ (· | B) for all j ∈ [Ne].

Algorithm 5 outlines the overall process of our training
algorithm. Since every Nt step shares the behavior policy,

Algorithm 5 Training Set-Conditioned Policy

Input: a monotone set function a : 2X → R, a cardinal-
ity constraint n, the number of updates Nu, the number
of episodes per update Ne, a learning rate η, and a period
of the behavior policy update Nt.
Initialize θ randomly.
for i = 0 to Nu − 1 do

if i % Nt = 0 then
Update the behavior policy πset

θ′ ← πset
θ .

end if
Sample a set size k ∼ Unif([n]).
Sample a subset B ∼ GS(a, πset

θ′ , k, 1).
Sample Ne candidates x(1), . . . ,x(Ne) ∼ πset

θ (· | B).
for j = 0 to Ne − 1 do

Compute returns rj ← ∆a(x
(j) | B).

Normalize r̂j ← (rj −mean(r))/(std(r) + ϵ).
end for
Update θ ← θ + η

∑Ne−1
j=0 ∇θ[r̂j log π

set
θ (x(j) | B)].

end for

we can further speed-up the subset sampling by concurrently
sampling Nt subsets parallelly. For the stable training, we
use baseline techniques to normalize the returns. Finally,
Figure 1 summarizes our proposed learning method.

3.2. Architecture for set-conditioned policy

In this section, we explain the architecture of a set-
conditioned policy. Our architecture is inspired by
preference-conditioned policies (Xi Lin, 2022; Jain et al.,
2023; Zhu et al., 2023). The architecture of a preference-
conditioned policy πpc

θ can be summarized as follows:

πpc
θ (s | v) = Dec(Encpref(v)⊕ Encstate(s)),

where v is a preference vector, s is a given state, and the
decoder Dec outputs a probability vector on the action space.
Instead of the preference encoder Encpref, we propose an
architecture using a set encoder Encset, i.e.,

πset
θ (s | B) = Dec(Encset(B)⊕ Encstate(s)).

For the set encoder, we utilize the deep set architecture,
which is designed to encode a set of continuous vectors
into a single embedding vector (Zaheer et al., 2017). We
extract feat(x), the lower-dimensional continuous features
to guide the policy, for each object x ∈ B, and utilize the
set of extracted features as input to the deep set encoder,
i.e., Encset(B) := DeepSet({feat(x) | x ∈ B}). It appears
necessary to train an auxiliary feature extractor for the com-
binatorial space X , but we already have a straightforward
candidate for feat, especially when using the deterministic
surrogate model f̃ with HVI, thanks to Lemma 3.7.
Lemma 3.7. For any B,B′ ⊂ X satisfying f̃(B) = f̃(B′),
∆a(x | B) = ∆a(x | B′) for all x ∈ X .

5

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Lemma 3.7 indicates that πset
θ (· | B) and πset

θ (· | B′) solve
identical problems if f̃(B) = f̃(B′). Hence, we simply set
feat(x) = f̃(x) ∈ Rm. For cases using HVI-based batch
acquisition functions with a statistical surrogate model f̃ ,
we set feat(x) = f̃UCB(x) ∈ Rm.

For the biological sequence design problems, we further uti-
lize the MLM model, trained on previously evaluated data,
into the decoder, inspired by the architecture proposed in
LaMBO (Stanton et al., 2022). Please refer to Appendix B.2
for more details on architectures.

Utilizing a learned set-conditioned policy πset
θ∗ , we construct

a proposal batch of n candidates for querying by sampling
from GS(a, πset

θ∗ , n, l). Please refer to Appendix A.2 for the
proofs of Lemma 3.3, Proposition 3.6, and Lemma 3.7

3.3. Bounds for Approximated Greedy Algorithm

In this section, we introduce bounds for the approximated
greedy algorithm under various conditions of the set func-
tion, as encountered in active learning scenarios. First, we in-
troduce the concept of an α-approximation algorithm which
indicates the amount of approximation as in Definition 3.8.

Definition 3.8. (α-Approximation Algorithm) An algo-
rithm A is α-approximation algorithm if xi found by A is
an α-approximation to the exact solution x∗

i for each step
in Algorithm 3, i.e., ∆a(xi | Bi) ≥ α∆a(x

∗
i | Bi) =

αmaxx∈X\Bi
∆(x | Bi).

Prior research established bounds for approximated greedy
algorithms in the term of α for submodular batch acquisition
functions (Goundan & Schulz, 2007). Common batch ac-
quisition functions, such as EHVI and PES, are submodular,
but their exact values are infeasible to compute due to the ex-
pectation involved (Daulton et al., 2020; Garrido-Merchán
et al., 2023). Instead, these values are estimated using meth-
ods like MC sampling or expectation propagation. Hence,
the realized values of these acquisition functions can be
near-submodular rather than strictly submodular.

Inspired by Das & Kempe (2018), we propose a bound for
the approximated greedy algorithm when the batch acquisi-
tion function a is near-submodular, using the submodularity
ratio γ which quantifies the degree of submodularity in a.

Theorem 3.9. Let a : 2X → R be a non-negative monotone
set function. If A is an α-approximation algorithm, the re-
sulting solution Bn of Algorithm 3 is an (1−1/eαγBn,n(a))-
approximation to the optimal n-subset B∗

n, i.e., a(Bn) ≥
(1− 1/eαγBn,n(a))a(B∗

n).

Furthermore, there are works adopting heuristics to en-
hance the input diversity among evaluated candidates, aim-
ing to identify diverse modes in the search space (Kon-
akovic Lukovic et al., 2020; Jain et al., 2022; 2023; Zhu
et al., 2023). The batch acquisition function for this di-

versified subset selection problem can be expressed as
a(B) := s(B) + λdiv(Bprev ∪B), where λ is a coefficient
controlling the tradeoff, s is a generic batch acquisition func-
tion, div quantifies the input diversity, and Bprev ⊂ X is the
set of previously evaluated candidates. We mainly consider
the diversity in the form of the sum-dispersion, defined as
div(U) := 1/2 d(U,U) = 1/2

∑
x∈U

∑
x′∈U d(x,x′) for

any metric d, due to its flexibility (Gollapudi & Sharma,
2009; Borodin et al., 2012). In this case, we can simplify
the batch acquisition function a as follows:

a(B) = s(B) + λdiv(Bprev)︸ ︷︷ ︸
constant on B

+λ
∑
x∈B

d(x, Bprev)︸ ︷︷ ︸
unary on x︸ ︷︷ ︸

=:aux(B), non-negative monotone modular

+λdiv(B).

For simplicity, we assume that the batch acquisition function
is given by a(B) = s(B) + λdiv(B), neglecting the non-
negative monotone modular term aux(B), since (s+ aux)
is non-negative monotone for any non-negative monotone
s (Fujishige, 2005). Now, we propose a bound for the
approximated greedy algorithm for the diversified subset
selection problem, extending the bound for submodular
cases proved in Borodin et al. (2012).

Theorem 3.10. Let s be a non-negative monotone set
function and div be a sum-dispersion. If A is an α-
approximation algorithm, Algorithm 3 with the set func-
tion (s/2 + λdiv) returns Bn, an (αγ̂/2)-approximation
to the optimal n-subset B∗

n of (s + λdiv) where γ̂ :=
γBn∪B∗

n,n
(s).

Theorem 3.9 and Theorem 3.10 demonstrate that even if our
learning algorithm does not perfectly learn the greedy policy,
the performance bound can still be guaranteed in terms of
the level of approximation α in subproblems, even under
these realistic conditions beyond submodularity. Please
refer to Appendix A.3 for the detailed statements and proofs
of the theorems, as well as their connections to prior works.

4. Experiments
We validate the performance of our proposed method on
various benchmarks on sequence design problems based
on the tasks suggested by Stanton et al. (2022) and Jain
et al. (2023). First, we outline the benchmarks and the
baseline methods. Next, we compare the subset selection
performance of our method with the baseline methods on
single-round synthetic tasks, which correspond to the de-
terministic surrogate model scenario. Finally, we present
the results on batch BO scenarios, which utilize stochas-
tic surrogate models. Our implementation is available at
https://github.com/snu-mllab/GreedyPolicyForMOCO.

6

https://github.com/snu-mllab/GreedyPolicyForMOCO

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Table 1: Subset selection results on three bigrams tasks with various cardinality constraint n. Each value indicates the
Hypervolume indicator of discovered subset. The mean and standard deviation values are calculated for 10 trials.

Hypervolume Indicator (↑)
2 Bigrams 3 Bigrams 4 Bigrams

Method n = 4 n = 16 n = 4 n = 16 n = 64 n = 4 n = 16 n = 64 n = 256

Optimum 0.630 0.409 0.106

Exact Greedy 0.568 0.630 0.350 0.408 0.409 0.055 0.078 0.097 0.106

Ours 0.568 (0.000) 0.630 (0.000) 0.329 (0.005) 0.349 (0.007) 0.359 (0.003) 0.055 (0.000) 0.077 (0.000) 0.091 (0.002) 0.094 (0.003)
PC-RL (TS) 0.558 (0.007) 0.620 (0.003) 0.318 (0.012) 0.347 (0.003) 0.359 (0.004) 0.040 (0.005) 0.054 (0.003) 0.071 (0.002) 0.082 (0.007)
PC-RL (WS) 0.522 (0.030) 0.583 (0.018) 0.310 (0.007) 0.337 (0.008) 0.347 (0.007) 0.009 (0.009) 0.016 (0.005) 0.028 (0.005) 0.032 (0.006)
Greedy + RL 0.518 (0.002) 0.518 (0.040) 0.320 (0.000) 0.320 (0.008) 0.322 (0.001) 0.047 (0.004) 0.062 (0.005) 0.065 (0.008) 0.070 (0.004)
Greedy + HC 0.063 (0.028) 0.063 (0.028) 0.182 (0.021) 0.182 (0.021) 0.171 (0.038) 0.014 (0.008) 0.014 (0.008) 0.013 (0.008) 0.001 (0.001)
Greedy + RS 0.025 (0.002) 0.027 (0.002) 0.002 (0.001) 0.003 (0.000) 0.003 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Table 2: Subset selection results on the DNA aptamer design
task with various cardinality constraint n. The mean and
standard deviation values are calculated for 10 trials.

Hypervolume Indicator (↑)
Method n = 4 n = 16 n = 64 n = 256

Ours 0.662 (0.019) 0.717 (0.025) 0.764 (0.045) 0.778 (0.026)
PC-RL (TS) 0.515 (0.041) 0.658 (0.060) 0.712 (0.052) 0.731 (0.042)
PC-RL (WS) 0.479 (0.035) 0.530 (0.009) 0.587 (0.027) 0.611 (0.017)
Greedy + RL 0.551 (0.029) 0.705 (0.027) 0.749 (0.034) 0.739 (0.023)
Greedy + HC 0.367 (0.039) 0.388 (0.047) 0.377 (0.050) 0.372 (0.042)
Greedy + RS 0.199 (0.012) 0.226 (0.012) 0.231 (0.015) 0.232 (0.015)

4.1. Settings

Single-round experiments on synthetic tasks. In this set-
ting, we assume that a deterministic surrogate model is given
as a synthetic function. We mainly consider the subset se-
lection problem that maximizes the Hypervolume indicator
value of given deterministic synthetic functions on bigram
matching tasks with various numbers of objectives and a
DNA aptamer design task with three objectives computed by
NUPACK library (Jain et al., 2023; Zadeh et al., 2011). We
compare our method with preference-conditioned RL meth-
ods with Chebyshev scalarization, denoted PC-RL (TS), and
weight scalarization, denoted PC-RL (WS) (Xi Lin, 2022).
We also compare our method with the approximated greedy
algorithm augmented with combinatorial algorithms: RL
(Greedy + RL), hill climbing (Greedy + HC), and random
sampling (Greedy + RS) (Williams, 1992; Selman & Gomes,
2006; Mirzasoleiman et al., 2015). For a fair comparison,
we fix the number of queries to the deterministic surrogate
model across all methods.

Batch BO experiments. In this scenario, we adopt the
benchmark tasks proposed by Stanton et al. (2022) to evalu-
ate the performance of our method with statistical surrogate
models. We compare our method with several active learn-
ing methods: LaMBO, an LSO method; MBGA, a model-
based genetic algorithm; and AL-MOGFN, a GFlowNet-
based active learning method that maximizes individual

acquisition values while enhancing the diversity (Stanton
et al., 2022; Jain et al., 2023). For these methods, we use the
same architecture and training algorithm for the statistical
surrogate model (Shah & Ghahramani, 2016). As in Stanton
et al. (2022), we utilize NEHVI as the batch acquisition
for all methods. We also consider NSGA-II as a baseline
method to show the performance of a model-free method
that is not an active learning approach (Deb et al., 2002).

Though active learning frameworks assume that the sur-
rogate model is much cheaper than the oracle, we set the
number of surrogate model queries of our method to be
comparable to the baseline methods for a fair comparison.
Please refer to Appendix B.3 for more details on the experi-
mental settings containing tasks and baselines.

4.2. Results on Synthetic Tasks

Table 1 summarizes the single-round subset selection results
on bigrams tasks. The results show that our method consis-
tently outperforms the baseline methods, searching batches
with higher Hypervolume indicator values compared to the
baseline methods for all bigram tasks with various cardi-
nality constraint values we consider. In these tasks, we can
obtain the optimum and Hypervolume indicator values of
exact greedy solutions by rule-based backtracking search.
Notably, in the 2 bigrams task, our proposed algorithm finds
subsets with Hypervolume indicator values that are the same
as the exact greedy solutions. Table 2 summarizes the sub-
set selection results on the DNA aptamer design task. The
results state that our method also outperforms the baseline
methods in the DNA aptamer task, demonstrating the wide
applicability of our method. Please refer to Appendix C.1
for the additional results on single-round synthetic tasks.

4.3. Results on Batch BO Scenarios

First, we note that the prior implementations of LaMBO
and MBGA had several issues, such as incorrect compu-
tation of NEHVI. We fix these issues and reproduce the
results of baseline methods with more update steps for a

7

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Table 3: Subset selection results in the first round of the
batch BO benchmarks (RFP, 3 Bigrams, small molecules)
with NEHVI. The mean and standard deviation values are
calculated for 10 trials.

NEHVI Value (↑)
Method RFP 3 Bigrams Molecules

Ours 0.779 (0.045) 16.444 (1.529) 0.698 (0.104)
LaMBO 0.591 (0.033) 9.922 (0.688) 0.545 (0.064)
MBGA 0.654 (0.052) 12.376 (1.576) 0.483 (0.124)

fair comparison with our method. For detailed informa-
tion, please see Appendix D. Figure 2 presents the exper-
imental results on the RFP task. As shown in Figure 2a,
both variations of our methods outperform the baseline
methods in the RFP task. Remarkably, our method with
MLM achieves 25% higher relative Hypervolume indicator
value compared to the best baseline results from MBGA.
In a different view, our method with MLM demonstrates
comparable performance while requiring 1.69 times fewer
queries. Figure 2b illustrates the frontiers discovered by our
method and AL-MOGFN. The frontiers obtained through
our method completely dominate those previously discov-
ered by AL-MOGFN, demonstrating the effectiveness of
our proposed active learning method. Additionally, we pro-
vide visualizations of the non-dominated offsprings for each
color, highlighting that our method successfully discovers
improved offsprings for all ancestor proteins.

To directly validate the subset selection performance in
batch BO scenarios, we evaluate the resulting batch acquisi-
tion value of each method in the first round with the same
surrogate model and the initial data. Table 3 demonstrates
that our method achieves higher batch acquisition values
compared to baseline active learning methods, indicating
the superiority of our method in inner loop optimization
with a stochastic surrogate model. For additional results on
batch BO experiments, please refer to Appendix C.2.

5. Related Works
Genetic algorithms (GAs) for MOCO A widely-used
off-the-shelf GA method for multi-objective optimization,
NSGA-II, employs random mutations and a non-dominated
sorting for iterative population updates (Deb et al., 2002;
Konak et al., 2006). Miret et al. (2022) improved GA to
better handle large combinatorial search spaces by utiliz-
ing graph neural networks. While GAs are recognized for
their simplicity and adaptability across various types of
problems, generic GA methods may not be suitable for ex-
pensive MOCO problems because they often necessitate a
large number of queries (Turner et al., 2021).

0 250 500 750 1000
1.0

1.5

2.0

2.5

3.0

Number of queries

R
el

at
iv

e
H

yp
er

vo
lu

m
e

(↑
)

Ours w/ MLM
Ours w/o MLM
MOGFN (Original)
LaMBO (Reprod.)
LaMBO (Original)
MBGA (Reprod.)
MBGA (Original)
NSGA-II

(a) Multi-round active learning results.

10000 11000 12000 13000 14000

-20

0

20

40

60

80

SASA (↑)

St
ab

ili
ty

(↑
)

Frontier by Ours
Offsprings by Ours
Frontier by MOGFN
Offsprings by MOGFN
Initial RFPs
DsRed.M1
mScarlet
DsRed.T4
AdRed
mRouge
RFP630

(b) Discovered frontiers

Figure 2: Multi-round active learning results and the discov-
ered frontiers on the RFP task under a query limit of 1024.
(a) Midpoint, lower, and upper boundaries show the 50th,
30th, and 70th percentiles, respectively, derived from 10
trials. (b) Colored circles indicates ancestor proteins.

MOCO based on Markov decision processes (MDPs).
An emerging research direction treats combinatorial opti-
mization problems as decision-making problems, framing
them within the context of MDPs and training policies via
RL or GFlowNet frameworks (Zoph & Le, 2017; Bello
et al., 2017; Mirhoseini et al., 2021; Bengio et al., 2023).
In MOCO research, this perspective has led to the develop-
ment of methods that train policies to generate the Pareto
set (Roijers et al., 2013; Yang et al., 2019; Li et al., 2019;
Kool et al., 2019; Xi Lin, 2022; Jain et al., 2023; Zhu et al.,
2023). These methods predominantly utilize preference-
based scalarization techniques, such as weighted scalariza-
tion or weighted Chebyshev scalarization, to decompose
multi-objective problems into single-objective subproblems
(Giagkiozis & Fleming, 2015). Li et al. (2019) and Kool
et al. (2019) train multiple RL agents, each corresponding to
a single subproblem. Yang et al. (2019) amortize subprob-
lems into a single problem with a stochastic reward scalar-
ized by random preference vectors, demonstrating the train-
ing of a single RL agent to solve MOCO problems. Xi Lin
(2022) introduce a preference-conditioned RL agent, which
is trained to maximize a scalarized reward corresponding to

8

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

the conditioned preference vector. In a different approach,
Jain et al. (2023) and Zhu et al. (2023) employ GFlowNet
frameworks to enhance the diversity of the learned solu-
tions, applying this technique to solve expensive MOCO
problems, such as biological sequence design and molecular
graph discovery, in active learning frameworks.

Latent space optimization (LSO) for MOCO. Rather than
directly searching for candidates in the explicit combinato-
rial space, Stanton et al. (2022) proposed LaMBO, a LSO-
style inner loop optimization method designed for discrete
sequence data. This method involves training an autoen-
coder and proposing a batch of candidates through first-
order optimization of the batch acquisition function in a
continuous latent space (Gómez-Bombarelli et al., 2016;
Tripp et al., 2020; Shah & Ghahramani, 2016).

6. Conclusion
We propose a query-efficient optimization method for ex-
pensive MOCO problems based on active learning utilizing
a novel greedy-style subset selection algorithm. In contrast
to prior methods, our subset selection method explicitly op-
timizes the batch acquisition function on the combinatorial
space. Moreover, our subset selection algorithm trains a
greedy policy to address all greedy subproblems simultane-
ously, overcoming the typical difficulty of parallelization
in greedy-style approaches. By utilizing the trained greedy
policy, our algorithm constructs the proposal batch by se-
quential sampling from the greedy policy. Furthermore,
we extend the theoretical bound on approximated greedy
algorithms for various types of set functions containing
monotone set functions and sum-dispersion functions. Em-
pirical results on single-round subset selection benchmark
in biological sequence designs show that our method consis-
tently outperforms baseline methods, finding the batch with
higher batch acquisition value. Surprisingly, in multi-round
active learning for red fluorescent protein design, our ap-
proach achieves the same level of performance as baseline
methods but with 1.69× fewer queries, demonstrating its
effectiveness and efficiency.

Impact Statement
The primary objective of our research is to improve the
end-to-end process for solving expensive MOCO problems.
Expensive MOCO problems encompass a wide range of
complex challenges in society, including drug discovery and
chip design, which have widespread impact. Through our
approach of generating superior proposal candidates using a
greedy policy, our work has the potential to contribute to the
quicker development of new medications, and the creation
of more efficient electronic devices, potentially offering
benefits to both the industry and society.

Acknowledgement
The work was done as part of the Meta–NYU mentorship
program and partly supported by the National Science Foun-
dation (under NSF Award 1922658). Kyunghyun Cho is
supported by the Samsung Advanced Institute of Technol-
ogy (under the project Next Generation Deep Learning:
From Pattern Recognition to AI). Deokjae Lee and Hyun
Oh Song are supported by Samsung Advanced Institute of
Technology, Samsung Electronics Co., Ltd. (IO220810-
01900-01), Samsung Electronics’ Mobile eXperience (MX)
Business, Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) [No. RS-2020-II200882, (SW
STAR LAB) Development of deployable learning intelli-
gence via self-sustainable and trustworthy machine learning
and No. RS-2021-II211343, Artificial Intelligence Graduate
School Program (Seoul National University)], the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. RS-2024-00354036), and
Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry
of Education (RS-2023-00274280). Kyunghyun Cho is the
corresponding author.

References
Aggarwal, C., Kong, X., Gu, Q., Han, J., and Yu, P. Active

learning: A survey. In Data Classification, 2014.

Agnesina, A., Rajvanshi, P., Yang, T., Pradipta, G., Jiao,
A., Keller, B., Khailany, B., and Ren, H. Autodmp: Au-
tomated dreamplace-based macro placement. In ISPD,
2023.

Azimi, J., Fern, A., and Fern, X. Batch bayesian optimiza-
tion via simulation matching. In NeurIPS, 2010.

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham,
B., Wilson, A. G., and Bakshy, E. BoTorch: A Framework
for Efficient Monte-Carlo Bayesian Optimization. In
Advances in Neural Information Processing Systems 33,
2020.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. In ICLR, 2017.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and
Bengio, E. Gflownet foundations. In arXiv 2111.09266,
2023.

Bickerton, R., Paolini, G., Besnard, J., Muresan, S., and
Hopkins, A. Quantifying the chemical beauty of drugs.
In Nature chemistry, 2012.

Blyth, T. S. Lattices and ordered algebraic structures. In
Springer Verlag, 2005.

9

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Borodin, A., Lee, H. C., and Ye, Y. Max-sum diversification,
monotone submodular functions and dynamic updates. In
ACM SIGMOD-SIGACT-SIGAI, 2012.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. In arXiv 1405.4980, 2015.

Das, A. and Kempe, D. Approximate submodularity and its
applications: Subset selection, sparse approximation and
dictionary selection. In JMLR, 2018.

Daulton, S., Balandat, M., and Bakshy, E. Differentiable
expected hypervolume improvement for parallel multi-
objective bayesian optimization. In NeurIPS, 2020.

Daulton, S., Balandat, M., and Bakshy, E. Parallel bayesian
optimization of multiple noisy objectives with expected
hypervolume improvement. In NeurIPS, 2021.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. In
IEEE Transactions on Evolutionary Computation, 2002.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

Ehrgott, M. Multicriteria optimization. In Springer Science
& Business Media, 2005.

Emmerich, M., Yang, K., Deutz, A., Wang, H., and Fonseca,
C. A multicriteria generalization of bayesian global op-
timization. In Advances in Stochastic and Deterministic
Global Optimization, 2015.

Fujishige, S. Submodular functions and optimization. In
Elsevier, 2005.

Garrido-Merchán, E. C., Fernández-Sánchez, D., and
Hernández-Lobato, D. Parallel predictive entropy search
for multi-objective bayesian optimization with constraints
applied to the tuning of machine learning algorithms. In
Expert Systems with Applications, 2023.

Giagkiozis, I. and Fleming, P. Methods for multi-objective
optimization: An analysis. In Information Sciences, 2015.

Gollapudi, S. and Sharma, A. An axiomatic approach for
result diversification. In Proceedings of the 18th Interna-
tional Conference on World Wide Web, 2009.

González, J. I., Dai, Z., Hennig, P., and Lawrence, N. D.
Batch bayesian optimization via local penalization. In
AISTATS, 2015.

Goundan, P. and Schulz, A. Revisiting the greedy approach
to submodular set function maximization. In Manuscript,
2007.

Gruver, N., Stanton, S. D., Frey, N. C., Rudner, T. G. J.,
Hotzel, I., Lafrance-Vanasse, J., Rajpal, A., Cho, K.,
and Wilson, A. G. Protein design with guided discrete
diffusion. In NeurIPS, 2023.

Guerreiro, A. P., Fonseca, C. M., and Paquete, L. The
hypervolume indicator: Computational problems and al-
gorithms. In ACM Comput. Surv., 2021.

Gómez-Bombarelli, R., Duvenaud, D., Hernández-Lobato,
J., Aguilera-Iparraguirre, J., Hirzel, T., Adams, R., and
Aspuru-Guzik, A. Automatic chemical design using a
data-driven continuous representation of molecules. In
ACS Central Science, 2016.

Jain, M., Bengio, E., Hernández-Garcia, A., Rector-Brooks,
J., Dossou, B. F. P., Ekbote, C. A., Fu, J., Zhang, T.,
Kilgour, M., Zhang, D., Simine, L., Das, P., and Bengio,
Y. Biological sequence design with GFlowNets. In ICML,
2022.

Jain, M., Raparthy, S. C., Hernández-Garcia, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. In ICML, 2023.

Jung, A. A fixed-point of view on gradient methods for big
data. In Frontiers in Applied Mathematics and Statistics,
2017.

Konak, A., Coit, D. W., and Smith, A. E. Multi-objective
optimization using genetic algorithms: A tutorial. In
Reliability engineering & system safety, 2006.

Konakovic Lukovic, M., Tian, Y., and Matusik, W.
Diversity-guided multi-objective bayesian optimization
with batch evaluations. In NeurIPS, 2020.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! In ICLR, 2019.

Krause, A. and Golovin, D. Submodular function maximiza-
tion. In Cambridge University Press, 2014.

Krenn, M., Häse, F., Nigam, A., Friederich, P., and Aspuru-
Guzik, A. Self-referencing embedded strings (selfies): A
100In Machine Learning: Science and Technology, 2020.

Li, K., Zhang, T., and Wang, R. Deep reinforcement learning
for multiobjective optimization. In IEEE Transactions on
Cybernetics, 2019.

Lin, X., Yang, Z., Zhang, X.-Y., and Zhang, Q. Pareto set
learning for expensive multi-objective optimization. In
NeurIPS, 2022.

Miret, S., Chua, V. S., Marder, M., Phiellip, M., Jain, N., and
Majumdar, S. Neuroevolution-enhanced multi-objective
optimization for mixed-precision quantization. In Pro-
ceedings of the Genetic and Evolutionary Computation
Conference, 2022.

10

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E. M., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., Pak, J., Tong, A., Srinivasa, K., Hang, W.,
Tuncer, E., Le, Q. V., Laudon, J., Ho, R., Carpenter, R.,
and Dean, J. A graph placement methodology for fast
chip design. In Nature, 2021.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
J., and Krause, A. Lazier than lazy greedy. In AAAI,
2015.

Nemhauser, G., Wolsey, L., and Fisher, M. An analysis
of approximations for maximizing submodular set func-
tions—i. In Mathematical Programming, 1978.

O’Donoghue, B., Osband, I., Munos, R., and Mnih, V. The
uncertainty bellman equation and exploration. In ICML,
2017.

Park, J. W., Tagasovska, N., Maser, M., Ra, S., and Cho, K.
Botied: Multi-objective bayesian optimization with tied
multivariate ranks. In arXiv 2306.00344, 2023.

Polishchuk, P. G., Madzhidov, T. I., and Varnek, A. Esti-
mation of the size of drug-like chemical space based on
gdb-17 data. In Journal of Computer-Aided Molecular
Design, 2013.

Prasad, A., Jegelka, S., and Batra, D. Submodular meets
structured: Finding diverse subsets in exponentially-large
structured item sets. In NeurIPS, 2014.

Ravi, S. S., Rosenkrantz, D. J., and Tayi, G. K. Heuristic
and special case algorithms for dispersion problems. In
Operational Research, 1994.

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R.
A survey of multi-objective sequential decision-making.
In Journal of Artificial Intelligence Research, 2013.

Selman, B. and Gomes, C. P. Hill-climbing search. vol-
ume 81, pp. 82. Wiley, 2006.

Shah, A. and Ghahramani, Z. Pareto frontier learning with
expensive correlated objectives. In ICML, 2016.

Shen, M. W., Bengio, E., Hajiramezanali, E., Loukas, A.,
Cho, K., and Biancalani, T. Towards understanding and
improving gflownet training. In ICML, 2023.

Stanton, S., Maddox, W., Gruver, N., Maffettone, P., De-
laney, E., Greenside, P., and Wilson, A. G. Accelerating
bayesian optimization for biological sequence design with
denoising autoencoders. In ICML, 2022.

Tripp, A., Daxberger, E., and Hernández-Lobato, J. Sample-
efficient optimization in the latent space of deep genera-
tive models via weighted retraining. In NeurIPS, 2020.

Tu, B., Gandy, A., Kantas, N., and Shafei, B. Joint en-
tropy search for multi-objective bayesian optimization.
In NeurIPS, 2022.

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laakso-
nen, E., Xu, Z., and Guyon, I. Bayesian optimization is
superior to random search for machine learning hyperpa-
rameter tuning: Analysis of the black-box optimization
challenge 2020. In NeurIPS Competition and Demonstra-
tion, 2021.

Wang, J., Clark, S. C., Liu, E., and Frazier, P. Parallel
bayesian global optimization of expensive functions. In
Operational Research, 2016.

Ward, J. Oblivious and non-oblivious local search for com-
binatorial optimization. PhD thesis, 2012.

Williams, R. J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. In
Machine Language, 1992.

Winter, R., Montanari, F., Steffen, A., Briem, H., Noé, F.,
and Clevert, D.-A. Efficient multi-objective molecular
optimization in a continuous latent space. In Chemical
Science, 2019.

Xi Lin, Zhiyuan Yang, Q. Z. Pareto set learning for neural
multi-objective combinatorial optimization. In ICLR,
2022.

Yang, K., Affenzeller, M., and Dong, G. A parallel tech-
nique for multi-objective bayesian global optimization:
Using a batch selection of probability of improvement.
In Swarm and Evolutionary Computation, 2022.

Yang, R., Sun, X., and Narasimhan, K. A generalized
algorithm for multi-objective reinforcement learning and
policy adaptation. In NeurIPS, 2019.

Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R.,
Pierce, M. B., Khan, A. R., Dirks, R. M., and Pierce,
N. A. Nupack: Analysis and design of nucleic acid
systems. Journal of computational chemistry, 32(1):170–
173, 2011.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. Deep sets. In
NeurIPS, 2017.

Zhou, Y. and Spanos, C. J. Causal meets submodular: Subset
selection with directed information. In NeurIPS, 2016.

Zhu, Y., Wu, J., Hu, C., Yan, J., Hsieh, C.-Y., Hou, T.,
and Wu, J. Sample-efficient multi-objective molecular
optimization with GFlownets. In NeurIPS, 2023.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In ICLR, 2017.

11

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

A. Mathematical Details
A.1. Proof of Theorem 3.5

To start, we recall Definition 3.4 and Theorem 3.5.

Definition A.1. Let F : U × U → R be any continuously differentiable function. We define the partial derivative step on
u ∈ U given any behavior u′ ∈ U as PDF (u;u

′, η) := u+ η ∂
∂uF (u, u′).

Theorem A.2. Let F : U × U → R be a function with nice conditions. Also, assume that there exists u∗ ∈ U such that
u∗ = argmaxu∈U F (u, u∗). Then, by iterating the update rule u ← PDF (u;u

′ = u, η), u converges to u∗ for a small
η > 0. Moreover, for any Nt > 0, by iterating the update rule with Nt partial derivative steps with a fixed behavior, i.e.,
u← (PDF (·;u′ = u, η))

Nt(u), u converges to u∗ for a small η > 0.

We first introduce the intuition of the proposed update rules. Assume that F : U × U → R is a smooth function and
Fu′ := F (·, u′) : U → R is a strongly concave function on U for any u′ ∈ U . Under this assumption, if u, u′ ∈ U satisfies

∂

∂u
F (u, u′)

∣∣∣∣
u′=u

= 0, (3)

we have the following equality:

(∇Fu)(u) =
∂

∂u
F (u, u′)

∣∣∣∣
u′=u

= 0.

Due to the strong concavity, Fu has a unique maximizer and we finally get the desired property as following:

u = argmax
v∈U

Fu(v) = argmax
v∈U

F (v, u).

Inspired by Jung (2017), we design two update rules, whose fixed point satisfies Equation (3), based on partial derivative
steps in Definition A.1. For simplicity, we introduce notations∇1F ,∇2F , ∇2

1F , and ∇2∇1F as

(∇1F)(u, u′) =

(
∂

∂u
F

)
(u, u′), (∇2F)(u, u′) =

(
∂

∂u′F

)
(u, u′),

(∇2
1F)(u, u′) =

(
∂2

∂u2
F

)
(u, u′), (∇2∇1F)(u, u′) =

(
∂2

∂u′∂u
F

)
(u, u′).

From now on, we state the conditions on F required in our proof for justifying the convergence of the update rules as
follows.

Conditions (∗):

1. F is a smooth function.

2. Fu′ is a strongly concave function and the eigenvalues of the hessian (∇2Fu′) = ∇2
1F (u, u′) is uniformly bounded by

two negative values L ≤M < 0, i.e.,

L ≤ λmin
(
∇2

1F (u, u′)
)
≤ λmax

(
∇2

1F (u, u′)
)
≤M < 0,

for all u, u′ ∈ U .

3. The square matrix of second order derivatives∇2∇1F (u, u′) has singular values bounded above by M ′ < −M , i.e.,

0 ≤ σmin (∇2∇1F (u, u′)) ≤ σmax (∇2∇1F (u, u′)) ≤M ′ < −M ≤ −L,

for all u, u′ ∈ U .

Assuming these three conditions (∗) on F , we prove the following proposition first.

12

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Proposition A.3. If F : U ×U → R satisfies three conditions (∗), there exists an η > 0 and 0 < β < 1 such that the partial
derivative step PDF (u;u

′, η) satiesfies the following property:

∥PDF (u2;u
′
2, η)− PDF (u1;u

′
1, η)∥2 ≤ β∥u′

2 − u′
1∥2

for all u1, u
′
1, u2, u

′
2 ∈ U such that ∥u2 − u1∥ ≤ ∥u′

2 − u′
1∥.

Proof.

∥PDF (u2;u
′
2, η)− PDF (u1;u

′
1, η)∥2

= ∥(u2 + η∇1F (u2, u
′
2))− (u1 + η∇1F (u1, u

′
1))∥2

= ∥(u2 − u1) + η (∇1F (u2, u
′
2)−∇1F (u1, u

′
1))∥2

= ∥(u2 − u1) + η (∇1F (u2, u
′
2)−∇1F (u1, u

′
2) +∇1F (u1, u

′
2)−∇1F (u1, u

′
1))∥2

= ∥(u2 − u1) + η (∇1F (u2, u
′
2)−∇1F (u1, u

′
2)) + η (∇1F (u1, u

′
2)−∇1F (u1, u

′
1))∥2

=

∥∥∥∥(u2 − u1) + η

∫ 1

0

∇2
1F (u1 + t(u2 − u1), u

′
2)(u2 − u1)dt+ η

∫ 1

0

∇2∇1F (u1, u
′
1 + t(u′

2 − u′
1))(u

′
2 − u′

1)dt

∥∥∥∥
2

≤

∥∥∥∥∥
(
I + η

∫ 1

0

∇2
1F (u1 + t(u2 − u1), u

′
2)dt

)
︸ ︷︷ ︸

=:A

(u2 − u1)

∥∥∥∥∥
2

+

∥∥∥∥∥
(
η

∫ 1

0

∇2∇1F (u1, u
′
1 + t(u′

2 − u′
1))dt

)
︸ ︷︷ ︸

=:B

(u′
2 − u′

1)

∥∥∥∥∥
2

.

The last inequality is from the triangle inequality and the last equality is from the fundamental theorem of line integrals. By
utilizing the notion of the spectral norm, we have

∥A(u2 − u1)∥2 ≤ σmax(A)∥u2 − u1∥2 = max(|λmin(A)|, |λmax(A)|)∥u2 − u1∥2,

∥B(u′
2 − u′

1)∥2 ≤ σmax(B)∥u2 − u1∥2.

Due to the second condition in (∗), A has eigenvalues bounded by 1 + ηL and 1 + ηM , i.e.,

1 + ηL ≤ λmin(A) ≤ λmax(A) ≤ 1 + ηM.

Hence, for 0 < η < − 1
2L , A is positive definite since λmin(A) ≥ 1 + ηL > 1

2 > 0. Thus, we have

σmax(A) = λmax(A) ≤ 1 + ηM.

Moreover, utilizing the third condition in (∗), B has singular values bounded above by ηM ′, i.e.,

σmax(B) ≤ ηM ′.

As a result, we get

∥PDF (u2;u
′
2, η)−PDF (u1;u

′
1, η)∥2

≤ ∥A(u2 − u1)∥2 + ∥B(u′
2 − u′

1)∥2
≤ σmax(A)∥u2 − u1∥2 + σmax(B)∥u′

2 − u′
1∥2

≤ (σmax(A) + σmax(B))∥u′
2 − u′

1∥2 (∵ ∥u2 − u1∥2 ≤ ∥u′
2 − u′

1∥2)
≤ (1 + ηM + ηM ′)∥u′

2 − u′
1∥2.

Since 0 < M ′ < −M ≤ −L, we have 0 < 1 + ηM + ηM ′ < 1 for 0 < η < − 1
2L . Hence for 0 < η < − 1

2L and
β = (1+ηM +ηM ′) < 1, we proved that the partial derivative step satisfies the desired property, concluding the proof.

From Proposition A.3, we can derive two important corollaries.

13

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Corollary A.4. If F : U × U → R satisfies three conditions (∗), there exists an η > 0 and 0 < β < 1 such that the first
update rule of Theorem 3.5, u← PDF (u;u

′ = u, η), is a β-contraction mapping, i.e.,

∥PDF (u2;u2, η)− PDF (u1;u1, η)∥2 ≤ β∥u2 − u1∥2

for all u1, u2 ∈ U .

Proof. This corollary corresponds to Proposition A.3 of the case that u′
1 = u1 and u′

2 = u2.

Corollary A.5. If F : U × U → R satisfies three conditions (∗), there exists an η > 0 and 0 < β < 1 such that the second
update rule of Theorem 3.5, u← (PDF (·;u′ = u, η))Nt(u), is a β-contraction mapping, i.e.,

∥(PDF (·;u′ = u2, η))
Nt(u2)− (PDF (·;u′ = u1, η))

Nt(u1)∥2 ≤ β∥u2 − u1∥2.

Proof. For any given u1, u2 ∈ U , we define the following recurrence relation:

1. Initialize u
(0)
1 = u1, u(0)

2 = u2.

2. For i = 0, ..., Nt − 1,
u
(i+1)
1 = PDF (u

(i)
1 ;u1, η), u

(i+1)
2 = PDF (u

(i)
2 ;u2, η).

Let 0 < β < 1 and η > 0 be the constants that satisfies the property in Proposition A.3. Then, we prove that ∥u(i)
2 −u

(i)
1 ∥2 ≤

β∥u2−u1∥2 for all i = 1, . . . , Nt by the mathematical induction on i. We considered the initial case of i = 1 in Corollary A.4.
Next, assume that ∥u(i)

2 −u
(i)
1 ∥2 ≤ β∥u2−u1∥2 for some i ≥ 1. By plugging in u1 ← u

(i)
1 , u2 ← u

(i)
2 , u′

1 ← u1, u
′
2 ← u2

to Proposition A.3, we have

∥u(i+1)
1 − u

(i+1)
2 ∥2 = ∥PDF (u

(i)
1 ;u1, η)− PDF (u

(i)
2 ;u2, η)∥2 ≤ β∥u2 − u1∥2

since ∥u(i)
2 − u

(i)
1 ∥2 ≤ β∥u2 − u1∥2 < ∥u2 − u1∥2. Thus, we complete the proof by mathematical induction on i.

By utilizing these corollaries, we prove the convergence of our proposed update rules when F satisfies three conditions (∗).

Proof of Theorem 3.5. For simplicity we notate two update rules by

upd1(u) = PDF (u;u
′ = u, η) and upd2(u) = (PDF (·;u′ = u, η))Nt(u).

From the condition in Theorem 3.5, there exists the u∗ ∈ U such that u∗ = argmaxu∈U F (u, u∗) = argmaxu∈U Fu∗(u).
Hence, u∗ satisfies ∂

∂uF (u, u∗)
∣∣
u=u∗ = 0. Thus, u∗ is a fixed point of upd1 and upd2. By Corollary A.4, there exists

0 < β < 1 and η > 0 such that upd1 is a β-contraction mapping. For any u ∈ U , we have

∥upd1(u)− u∗∥2 = ∥upd1(u)− upd1(u
∗)∥2 ≤ β∥u− u∗∥2.

Thus, by repeatedly applying the update rule i times, we get

∥(upd1)i(u)− u∗∥2 ≤ βi∥u− u∗∥2,

which converges to 0 as i goes infinity since 0 < β < 1. Also, for the second update rule, we also have 0 < β < 1 and
η > 0 such that upd2 is a β-contraction mapping by Corollary A.5. By the same logic, we have

∥(upd2)i(u)− u∗∥2 ≤ βi∥u− u∗∥2,

which converges to 0 as i goes infinity. Hence, for both update rules, we prove the convergence to u∗, finishing the proof.

14

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

A.2. Proof of Lemma 3.3, Proposition 3.6, and Lemma 3.7

For the proof of these statements, we assume that the set-conditioned policy model has enough representative power to
model the policies so that any policy that generate candidates given any set B is corresponding to πset

θ for some θ ∈ Θ.

In Algorithm 2 and Algorithm 4, we inherently assume the unique maximizer at each step for ease of understanding.
However, rigorously, there can be multiple maximizers at each step. In such cases, we assume that Algorithm 2 and
Algorithm 4 select the candidate uniformly at random among the maximizers at each step. Consequently, there can be more
than one possible solutions from Algorithm 2. To address this, we define exact greedy solutions as follows:
Definition A.6. A n-subset Bn ⊆ X is an exact greedy solution if there exists x0, . . . ,xn−1 ∈ X that satisfies

Bn = {x0, . . . ,xn−1}, and ∀ 0 ≤ t ≤ n− 1, xt ∈ argmax
x′∈X

∆a(x
′ | {x0, . . . ,xt−1}),

where {x0, . . . ,xt−1} denotes the empty set ∅ if t = 0.

In other words, an exact greedy solution is an n-subset which can be sampled from Algorithm 2 with a positive probability.
Now, we recall and prove Lemma 3.3 by contradiction as following.
Lemma A.7. GS(a, πset

θ∗ , n, l) samples exact greedy solutions almost surely if πθ∗ is the greedy policy.

Proof. (Proof by contradiction.) Let πset
θ∗ be a greedy policy. According to Definition 3.2, we have

∀ θ ∈ Θ, J (θ∗, θ∗) ≥ J (θ, θ∗). (4)

Now, assume the opposite of the desired conclusion, that with a positive probability, GS(a, πset
θ∗ , n, l) generates x0, . . . ,xn−1

sequentially by Algorithm 4 and results in a set Bn = {x0, . . . ,xn−1} that is not an exact greedy solution. Then,
GS(a, πset

θ∗ , n, 1) also generates x0, . . . ,xn−1 with a positive probability. We denote this probability by c1 > 0, i.e.,

c1 :=

n−1∏
i=0

πset
θ∗(xi | {x0, . . . ,xi−1}) > 0. (5)

Since Bn is not an exact greedy solution, there exists at least one 0 ≤ t ≤ n− 1 such that

xt /∈ argmax
x′∈X

∆a(x
′ | {x0, . . . ,xt−1}), (6)

according to Definition A.6. For that t, let πset
ϕ be the policy that replicates πset

θ∗ for all set B ⊂ X except for {x0, . . . ,xt−1},
that satisfies

∀x ∈ X , πset
ϕ (x | B) =

{
πset
θ∗(x | B) if B ̸= {x0, . . . ,xt−1},

1{x∗
t }(x) if B = {x0, . . . ,xt−1},

where x∗
t be any maximizer of the marginal gain at t-th step, i.e., x∗

t ∈ argmaxx′∈X ∆a(x
′ | {x0, . . . ,xt−1}). Next, we

define the difference in expected return between ϕ and θ∗ given a set B as following:

C(B) := Ex∼πset
ϕ (·|B)[∆a(x | B)]− Ex∼πset

θ∗ (·|B)[∆a(x | B)].

If B ̸= {x0, . . . ,xt−1}, πset
ϕ (x | B) = πset

θ∗(x | B) for all x ∈ X . Hence, we have a zero difference C(B) = 0.

If B = {x0, . . . ,xt−1}, πset
ϕ (x | B) = 1{x∗

t }(x) =

{
1 if x = x∗

t

0 otherwise
for all x ∈ X . Hence, we have

c2 := C(B)

= ∆a(x
∗
t | B)− Ex∼πset

θ∗ (·|B)[∆a(x | B)]

=

(
max
x′∈X

∆a(x
′ | B)

)
− Ex∼πset

θ∗ (·|B)[∆a(x | B)]

(
∵ x∗

t ∈ argmax
x′∈X

∆a(x
′ | B)

)
= Ex∼πset

θ∗ (·|B)

[(
max
x′∈X

∆a(x
′ | B)

)
−∆a(x | B)

] (
∵

(
max
x′∈X

∆a(x
′ | B)

)
is a constant given B

)
≥ πset

θ∗(xt | B)

[(
max
x′∈X

∆a(x
′ | B)

)
−∆a(xt | B)

]
.

(
∵ ∀x ∈ X ,

(
max
x′∈X

∆a(x
′ | B)

)
−∆a(x | B) ≥ 0

)
(7)

15

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Here,

πset
θ∗(xt | B) = πset

θ∗(xt | {x0, . . . ,xt−1}) ≥
n−1∏
i=0

πset
θ∗(xi | {x0, . . . ,xi−1}) = c1 > 0. (∵ Equation (5)) (8)

Moreover, (
max
x′∈X

∆a(x
′ | B)

)
−∆a(xt | B) > 0. (∵ Equation (6)) (9)

By combining Equations (7), (8), and (9), we finally have c2 > 0. As a result, we have

C(B) =

{
0 if B ̸= {x0, . . . ,xt−1},
c2 > 0 if B = {x0, . . . ,xt−1}.

Using this,

J (ϕ, θ∗)− J (θ∗, θ∗)

=
1

n

n−1∑
k=0

EB∼GS(a,πset
θ∗ ,k,1)

[Ex∼πset
ϕ (·|B)[∆a(x | B)]]− 1

n

n−1∑
k=0

EB∼GS(a,πset
θ∗ ,k,1)

[Ex∼πset
θ∗ (·|B)[∆a(x | B)]]

=
1

n

n−1∑
k=0

EB∼GS(a,πset
θ∗ ,k,1)

[C(B)]

=
1

n
(GS(a, πset

θ∗ , t, 1))({x0, . . . ,xt−1})︸ ︷︷ ︸
Probability of sampling {x0, . . .xt−1}

c2

≥ 1

n

t−1∏
i=0

πset
θ∗(xi | {x0, . . . ,xi−1})︸ ︷︷ ︸

Probability of sampling x0 → · · · → xt−1

c2 ≥
1

n

n−1∏
i=0

πset
θ∗(xi | {x0, . . . ,xi−1})︸ ︷︷ ︸

Probability of sampling x0 → · · · → xn−1

c2 =
c1c2
n

> 0.

Thus, we finally have J (ϕ, θ∗) > J (θ∗, θ∗) which contradicts to Equation (4). In conclusion, we complete the proof by
contradiction.

Next, we recall and prove Proposition 3.6.

Proposition A.8. (Policy gradient for J) For any baseline set function b : 2X → R and the number of episodes Ne,

ĝ =
1

Ne

Ne−1∑
j=0

(∆a(x
(j) | B)− b(B))∇θπ

set
θ (x(j) | B),

is an unbiased MC estimator of the partial derivative ∂
∂θJ (θ, θ

′) where B ∼ 1
n

∑n−1
k=0 GS(a, πset

θ′ , k, 1).

Proof. This proposition is a variation of policy gradients and our proof also takes the same idea of the log-derivative trick
for obtaining MC estimator of the derivative (Williams, 1992). First of all, we can combine n expectations in J (θ, θ′) by
utilizing the mixture of distributions 1

n

∑n−1
k=0 GS(a, πset

θ′ , k, 1) as follows:

J (θ, θ′) = 1

n

n−1∑
k=0

EB∼GS(a,πset
θ′ ,k,1)

[Ex∼πset
θ (·|B)[∆a(x | B)]]

= EB∼ 1
n

∑n−1
k=0 GS(a,πset

θ′ ,k,1)
[Ex∼πset

θ (·|B)[∆a(x | B)]].

16

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Since the mixture of the distributions 1
n

∑n−1
k=0 GS(a, πset

θ′ , k, 1) is independent to θ, we denote this distribution by p for
simplicity. Then, our goal is to obtain the estimator of partial derivative:

∂

∂θ
J (θ, θ′) = ∂

∂θ
EB∼p[Ex∼πset

θ (·|B)[∆a(x | B)]]

=
∂

∂θ

 ∑
B⊂X ,|B|≤n

p(B)
∑
x∈X

∆a(x | B)πset
θ (x | B)


=

∑
B⊂X ,|B|≤n

p(B)

(∑
x∈X

∆a(x | B)∇θπ
set
θ (x | B)

)

=
∑

B⊂X ,|B|≤n

p(B)

(∑
x∈X

∆a(x | B)πset
θ (x | B)∇θ log π

set
θ (x | B)

) (
∵ ∇θ log π

set
θ =

∇θπ
set
θ

πset
θ

)
=

∑
B⊂X ,|B|≤n

p(B)Ex∼πset
θ (·|B)

[
∆a(x | B)∇θ log π

set
θ (x | B)

]
= EB∼p

[
Ex∼πset

θ (·|B)

[
∆a(x | B)∇θ log π

set
θ (x | B)

]]
. (10)

For the next step, we prove that following equality holds for any baseline set function b : 2X → R:

EB∼p

[
Ex∼πset

θ (·|B)

[
b(B)∇θ log π

set
θ (x | B)

]]
= 0. (11)

For any B ⊂ X , we have

Ex∼πset
θ (·|B)[b(B)∇θ log π

set
θ (x | B)] = b(B)Ex∼πset

θ (·|B)[∇θ log π
set
θ (x | B)]

= b(B)
∑
x∈X

πset
θ (x | B)∇θ log π

set
θ (x | B)

= b(B)
∑
x∈X
∇θπ

set
θ (x | B)

= b(B)∇θ

(∑
x∈X

πset
θ (x | B)

)
= b(B)∇θ(1) = 0.

Thus, we get Equation (11). By combining Equation (10) and Equation (11), we finally achieve

∂

∂θ
J (θ, θ′) = EB∼p

[
Ex∼πset

θ (·|B)

[
(∆a(x | B)− b(B))∇θ log π

set
θ (x | B)

]]
.

Finally, we derive an unbiased MC estimator ĝ of the parital derivative ∂
∂θJ (θ, θ

′) by

ĝ =
1

Ne

Ne−1∑
j=0

(∆a(x
(j) | B)− b(B))∇θ log π

set
θ (x(j) | B),

where B ∼ p and x(j) ∼ πset
θ (· | B).

Finally, we recall and prove Lemma 3.7.
Lemma A.9. For any B,B′ ⊂ X satisfying f̃(B) = f̃(B′), ∆a(x | B) = ∆a(x | B′) for all x ∈ X if a is given by HVI
and f̃ is deterministic surrogate function.

Proof. We prove the consequence directly from the definition of HVI as follows:

∆a(x | B) = HVI(B; f̃ , P̃, rref) = HV(f̃(B) ∪ f̃(P̃); rref)−HV(f̃(P̃); rref)

= HV(f̃(B′) ∪ f̃(P̃); rref)−HV(f̃(P̃); rref)

= HVI(B′; f̃ , P̃, rref) = ∆a(x | B′).

17

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

A.3. Detailed Explanation of Bounds for Approximated Greedy Algorithm

In this section, we provide a more formal explanation on bounds for approximated greedy algorithm proposed in Section 3.3.
First, we introduce the monotone submodularity.

Definition A.10. (Monotone Submodularity) A real-valued set function a : 2X → R is submodular if the inequality
∆a(x | B′) ≥ ∆a(x | B) holds for all B′ ⊂ B ⊂ X and x ∈ X \ B. Additionally, a set function a is monotone if
∆a(x | B) ≥ 0 for all B ⊂ X and x ∈ X \B. Finally, a set function s is non-negative if a(B) ≥ 0 for all B ⊂ X .

In essence, a monotone submodularity is characterized by a consistently non-negative marginal gain that diminishes as the
augmenting set enlarges. For a non-negative monotone submodular function a, the exact greedy algorithm is known to
guarantee a (1− 1/e)-approximation to the optimal n-subset B∗

n, i.e., a(Bn) ≥ (1− 1/e)a(B∗
n) (Nemhauser et al., 1978).

In Theorem 3.9, we extend this bound to the approximated greedy algorithm when a is any monotone near-submodular set
function using the notion of submodularity ratio, which is formally defined as follows.

Definition A.11. (Submodularity Ratio) Let a : 2X → R be a monotone set function. For B ⊂ X and n ≥ 1, the
submodularity ratio γB,n(a) is defined as

γB,n(a) := min
S⊂X ,B′⊂B\S,|S|≤n

∑
x∈S ∆a(x | B′)

a(B′ ∪ S)− a(B′)
≤ 1,

where we define 0/0 := 1 (S = ∅ case).

The submodularity ratio measures the extent to which the function a exhibits submodularity (Zhou & Spanos, 2016).

A.3.1. PROOF OF THEOREM 3.9

To start, we recall Theorem 3.9.

Theorem A.12. Let a : 2X → R be a non-negative monotone set function. If A is an α-approximation algorithm, the
resulting solution Bn of Algorithm 3 is an (1 − 1/eαγBn,n(a))-approxmiation to the optimal n-subset B∗

n, i.e., a(Bn) ≥
(1− 1/eαγBn,n(a))a(B∗

n).

Next, we summarize notations for the proof as follows:

Table 4: Notations for the proof of Theorem 3.9.

Notation Definition

A an α-approximation algorithm.
n ∈ N a cardinality constraint.
a : 2X → R a non-negative monotone objective set function.
xA
i ∈ X the candidate appended at i-th step of Algorithm 3 with an algorithm A.

BA
i = {xA

j | 0 ≤ j ≤ i− 1} ⊂ X the i-subset constructed by Algorithm 3 with an algorithm A.
B∗

i ∈ argmaxB⊂X ,|B|=i a(B) the optimal i-subset of a.

Our proof is an extension of the proof by Das & Kempe (2018). Using the notion of the submodularity ratio, we first prove
the following lemma.

Lemma A.13. For any 0 ≤ i < n, the following inequality holds:

∆a(x
A
i | BA

i) ≥
αγBA

n ,n(a)

n
(a(B∗

n)− a(BA
i)).

18

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Proof. Let Si := B∗
n \BA

i . Then,

∆a(x
A
i | BA

i) ≥ αmax
x∈X

∆a(x | BA
i) (∵ A is an α-approximation algorithm.)

≥ α

∑
x∈Si

∆a(x | BA
i)

|Si|
(∵ maximality)

≥ α
γBA

n ,n(a)

|Si|
(a(BA

i ∪ Si)− a(BA
i)) (∵ Definition A.11, BA

i ⊂ BA
n \ Si, |Si| ≤ |B∗

n| = n)

≥
αγBA

n ,n(a)

n
(a(BA

i ∪ Si)− a(BA
i)) (∵ |Si| ≤ |B∗

n| = n)

≥
αγBA

n ,n(a)

n
(a(B∗

n)− a(BA
i)). (∵ B∗

n ⊆ Si ∪BA
i ,monotonicity of a)

For the next step, we prove the following lemma using Lemma A.13.

Lemma A.14. For any i ≥ 0, the following inequality holds:

a(B∗
n)− a(BA

i+1) ≤
(
1−

αγBA
n ,n(a)

n

)
(a(B∗

n)− a(BA
i)).

Proof.

a(B∗
n)− a(BA

i+1) = a(B∗
n)− (a(BA

i) + ∆a(x
A
i | BA

i))

≤ (a(B∗
n)− a(BA

i))−
αγBA

n ,n(a)

n
(a(B∗

n)− a(BA
i)) (∵ Lemma A.13)

=

(
1−

αγBA
n ,n(a)

n

)
(a(B∗

n)− a(BA
i)).

Finally, we prove Theorem 3.9.

Proof of Theorem 3.9. By combining Lemma A.14 with i = 0, . . . , n− 1, we get

a(B∗
n)− a(BA

n) ≤
(
1−

αγBA
n ,n(a)

n

)n

(a(B∗
n)− a(BA

0))

≤
(
1−

αγBA
n ,n(a)

n

)n

a(B∗
n). (∵ non-negativity of a)

Finally, we get the desired bound as follows:

a(BA
n) ≥ a(B∗

n)−
(
1−

αγBA
n ,n(a)

n

)n

a(B∗
n)

=

(
1−

(
1−

αγBA
n ,n(a)

n

)n
)
a(B∗

n)

≥
(
1− 1

e
αγBA

n ,n(a)

)
a(B∗

n). (∵ (1− 1/t)t ≤ 1/e for any t ≥ 1)

19

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

A.3.2. PROOF OF THEOREM 3.10

First, we recall Theorem 3.10.
Theorem A.15. Let s be a non-negative monotone set function and div be a sum-dispersion function. If A is an α-
approximation algorithm, Algorithm 3 with the set function a = s/2 + λdiv returns Bn, an (αγ̂/2)-approximation to the
optimal n-subset B∗

n of (s+ λdiv), where γ̂ := γB∗
n∪Bn,n(s).

Theorem 3.10 suggests a bound for non-oblivious variation of the approximated greedy algorithm which guide the algorithm
with the set function a = s/2 + λdiv that is different to the actual objective function s+ λdiv (Ward, 2012). Our bound
extends the theoretical bound of the non-oblivious exact greedy algorithm proved by Borodin et al. (2012) when the objective
set function is the sum of a submodular function and a sum-dispersion function. Our proof combines the ideas from Borodin
et al. (2012) and Das & Kempe (2018). To start, we define some notations as following:

Table 5: Notations for the proof of Theorem 3.10.

Notation Definition

A an α-approximation algorithm.
n ∈ N a cardinality constraint.
s : 2X → R a non-negative monotone set function.
div : 2X → R a dispersion function defined as div(B) = 1

2

∑
x∈B

∑
x′∈B d(x,x′) for a metric d.

λ > 0 a real-valued coefficient that controlls tradeoff between s and div.
a = s+ λdiv the actual objective set function to optimize.
ã = s/2 + λdiv the set function to optimize during subproblems of Algorithm 3.
xA
i ∈ X the candidate appended at i-th step of Algorithm 3 with ã = 1

2s+ λdiv and A.
BA

i = {xA
j | 0 ≤ j ≤ i− 1} ⊂ X the i-subset constructed by Algorithm 3 with ã = 1

2s+ λdiv and A.
B∗

i ∈ argmaxB⊂X ,|B|=i a(B) the optimal i-subset of a = s+ λdiv.
γ̂ := γB∗

n∪BA
n ,n(s) the submodularity index.

For notational simplicity, we define d(B,B′) :=
∑

x∈B

∑
x′∈B′ d(x,x′) for any B,B′ ⊂ X . Then, div(B) = 1

2d(B,B).
We introduce two lemmas from the previous works (Ravi et al., 1994; Borodin et al., 2012). For the completeness, we
contain the proof of these lemmas.
Lemma A.16. (Ravi et al., 1994) For a given metric function d : X × X → R and two disjoint sets B,B′ ⊂ X , we have
the following inequality: (|B′| − 1)d(B,B′) ≥ |B|div(B′).

Proof.

|B|div(B′) =
1

2
|B|d(B′, B′)

=
1

2

∑
x∈B

∑
x′∈B′

∑
x′′∈B′

d(x′,x′′)

=
1

2

∑
x∈B

∑
x′∈B′

∑
x′′∈B′\{x′}

d(x′,x′′) (∵ d(x′,x′) = 0)

≤ 1

2

∑
x∈B

∑
x′∈B′

∑
x′′∈B′\{x′}

(d(x,x′) + d(x,x′′)) (∵ triangle inequality)

=
1

2

∑
x∈B

∑
x′∈B′

∑
x′′∈B′\{x′}

d(x,x′) +
1

2

∑
x∈B

∑
x′′∈B′

∑
x′∈B′\{x′′}

d(x,x′′)

=
|B′| − 1

2

∑
x∈B

∑
x′∈B′

d(x,x′) +
|B′| − 1

2

∑
x∈B

∑
x′′∈B′

d(x,x′′)

= (|B′| − 1)
∑
x∈B

∑
x′∈B′

d(x,x′) = (|B′| − 1)d(B,B′).

20

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Lemma A.17. (Borodin et al., 2012) For 1 ≤ i ≤ n, let U = B∗
n ∩ BA

i , V = BA
i − U , and W = B∗

n − U . If |W | > 1,
we have the following inequality:

d(BA
i ,W) ≥ i|W |

n(n− 1)
div(B∗

n).

Proof. Using Lemma A.16,

(|W | − 1)d(V,W) ≥ |V |div(W), (12)
(|W | − 1)d(U,W) ≥ |U |div(W), (13)
(|U | − 1)d(U,W) ≥ |W |div(U). (14)

Also,

div(B∗
n) =

1

2

∑
x∈B∗

n

∑
x′∈B∗

n

d(x,x′)

=
1

2

∑
x∈U∪W

∑
x′∈U∪W

d(x,x′) (∵ B∗
n = U ∪W)

=
1

2

(∑
x∈U

∑
x′∈U

d(x,x′)

)
+

(∑
x∈U

∑
x′∈W

d(x,x′)

)
+

1

2

(∑
x∈W

∑
x′∈W

d(x,x′)

)
= div(U) + d(U,W) + div(W). (15)

By combining four equations as

Equation (12)× 1

|W | − 1
+ Equation (13)× |W | − |V |

n(|W | − 1)
+ Equation (14)× i

n(n− 1)
+ Equation (15)× i|W |

n(n− 1)
,

we have the following inequality:

d(U,W) + d(V,W)− i|W |(n− |W |)
n(n− 1)(|W | − 1)

div(W) ≥ i|W |
n(n− 1)

div(B∗
n). (16)

Hence, we have the desired result as follows:

d(BA
i ,W) = d(U ∪ V,W)

= d(U,W) + d(V,W) (∵ U ∩ V = ∅)

≥ d(U,W) + d(V,W)− i|W |(n− |W |)
n(n− 1)(|W | − 1)

div(W) (∵ 1 < |W | ≤ |B∗
n| = n)

≥ i|W |
n(n− 1)

div(B∗
n). (∵ Equation (16))

For the convenience, we introduce the following lemma:
Lemma A.18. For any B ⊂ X and x ∈ X , the following inequality holds: 1

2∆a(x | B) ≤ ∆ã(x | B) ≤ ∆a(x | B).

Proof.

∆ã(x | B) =
1

2
∆s(x | B) + λ∆div(x | B) ≤ ∆s(x | B) + λ∆div(x | B) (∵ monotoniciy of s)

= ∆a(x | B),

∆ã(x | B) =
1

2
∆s(x | B) + λ∆div(x | B) ≥ 1

2
(∆s(x | B) + λ∆div(x | B)) (∵ monotoniciy of div)

=
1

2
∆a(x | B).

21

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Proof of Theorem 3.10.
(Case 1: n = 1)
Let x† ∈ X be the maximizer of ∆ã(· | ∅) and x∗ ∈ X be the maximizer of ∆a(· | ∅), i.e.{x∗} = B∗

1 . Then, we have

a(BA
1) = a({xA

0 }) = s({xA
0 }) + λdiv({xA

0 })

≥ 1

2
s({xA

0 }) + λdiv({xA
0 }) (∵ non-negativity of s)

= ã({xA
0 })

= ∆ã(x
A
0 | ∅)

≥ α∆ã(x
† | ∅) (∵ xA

0 is an α-approximation)

≥ α∆ã(x
∗ | ∅) (∵ optimality of x†)

= α

(
1

2
s({x∗}) + div({x∗})

)
≥ α

2
(s({x∗}) + div({x∗})) (∵ non-negativity of div)

=
α

2
a({x∗}) = α

2
a(B∗

1) ≥
αγ̂

2
a(B∗

1).

(Case 2: n > 1)
For any 1 ≤ i < n, let U = B∗

n ∩BA
i , V = BA

i − U , and W = B∗
n − U as in Lemma A.16.

(Case 2.a: n > 1 and |W | = 1)
In this case, we have i = n − 1 and BA

i ⊂ B∗
n since i < n. Let x∗ ∈ BA

n−1 be the element that is not in B∗
n, i.e.,

{x∗} = B∗
n \BA

n−1. Let x† ∈ X \BA
n−1 be the maximizer of ∆ã(· | BA

n−1). Then,

a(BA
n) = a(BA

n−1) + ∆a(x
A
n−1 | BA

n−1) (∵ BA
n = BA

n−1 ∪ {xA
n−1})

≥ a(BA
n−1) + α∆a(x

† | BA
n−1) (∵ xA

n−1 is an α-approximation)

≥ a(BA
n−1) + α∆ã(x

† | BA
n−1) (∵ Lemma A.18)

≥ a(BA
n−1) + α∆ã(x

∗ | BA
n−1) (∵ optimality of x†)

≥ a(BA
n−1) +

α

2
∆a(x

∗ | BA
n−1) (∵ Lemma A.18)

≥ α

2
(a(BA

n−1) + ∆a(x
∗ | BA

n−1)) (∵ non-negativity of a)

=
α

2
a(B∗

n) ≥
αγ̂

2
a(B∗

n). (∵ Definition A.11)

(Case 2.b: n > 1 and |W | > 1)
Now we can consider the case that n > 1 and |W | > 1. Using Lemma A.17, we have

d(BA
i ,W) ≥ i|W |

n(n− 1)
div(B∗

n). (17)

Using the monotonicity of s and the fact that BA
i ∪W ⊂ BA

i ∪B∗
n ⊂ BA

n ∪B∗
n, |W | ≤ |B∗

n| = n, and W ∩BA
i = ∅ with

Definition A.11, we have ∑
x∈W

∆s(x | BA
i) ≥ γ̂

(
s(BA

i ∪W)− s(BA
i)
)
≥ γ̂(s(B∗

n)− s(BA
n)). (18)

Thus, ∑
x∈W

∆ã(x | BA
i) =

∑
x∈W

(
1

2
∆s(x | BA

i) + λd(x, BA
i)

)
=
∑
x∈W

1

2
∆s(x | BA

i) + λd(W,BA
i)

≥ γ̂

2
(s(B∗

n)− s(BA
n)) +

iλ|W |
n(n− 1)

div(B∗
n). (∵ Equation (17) and Equation (18)) (19)

22

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

By utilizing the previous inequality, we have

∆ã(x
A
i | BA

i) ≥ α max
x∈X\BA

i

∆ã(x | BA
i) (∵ xA

i is an α-approximation)

≥ α

|W |
∑
x∈W

∆ã(x | BA
i)

≥ αγ̂

2|W |
(s(B∗

n)− s(BA
n)) +

iαλ

n(n− 1)
div(B∗

n) (∵ Equation (19))

≥ αγ̂

2n
(s(B∗

n)− s(BA
n)) +

iαλ

n(n− 1)
div(B∗

n). (∵ |W | ≤ |B∗
n| = n)

By summing the inequality above for all i from 0 to n− 1, we have

1

2
s(BA

n) + λdiv(BA
n) = ã(BA

n) =

n−1∑
i=0

∆ã(x
A
i | BA

i)

≥ αγ̂

2
(s(B∗

n)− s(BA
n)) +

αλ

2
div(B∗

n)

≥ αγ̂

2
(s(B∗

n)− s(BA
n) + λdiv(B∗

n)). (∵ γ̂ ≤ 1 and non-negativity of div)

Hence,
1 + αγ̂

2
s(BA

n) + λdiv(BA
n) ≥ αγ̂

2
(s(B∗

n) + λdiv(B∗
n)).

Finally, we have

a(BA
n) = s(BA

n) + λdiv(BA
n) ≥ 1 + γ̂α

2
s(BA

n) + λdiv(BA
n) (∵ γ̂, α ≤ 1)

≥ αγ̂

2
(s(B∗

n) + λdiv(B∗
n)) =

αγ̂

2
a(B∗

n).

A.3.3. CONNECTION TO PRIOR BOUNDS

Table 6: Bounds for the exact greedy algorithm and the approximated greedy algorithm.

Exact Greedy Algorithm Approximated Greedy Algorithm

Condition on Acquisition w/o diversity w/ diversity w/o diversity w/ diversity

Submodular 1− 1/e (Nemhauser et al., 1978) 1/2 (Borodin et al., 2012) 1− (1/e)α (Goundan & Schulz, 2007) α/2 (Theorem 3.10, γ = 1)
Near-submodular 1− (1/e)γ (Das & Kempe, 2018) γ/2 (Theorem 3.10, α = 1) 1− (1/e)αγ (Theorem 3.9) αγ/2 (Theorem 3.10)

Since γB,n(a) = 1 for any B, n when a is monotone submodular, Theorem 3.9 directly contains a bound for the monotone
submodular case (Corollary A.19) proved by Goundan & Schulz (2007).

Corollary A.19. Let a : X → R be a non-negative monotone submodular set function. If A is an α-approximation
algorithm, Algorithm 3 returns an (1− 1/eα)-approximation to the optimal n-subset.

Similarly, Theorem 3.10 directly contains the following corollary.

Corollary A.20. Let s be a non-negative monotone submodular set function and div be a sum-dispersion function. If A is
an α-approximation algorithm, Algorithm 3 with the set function (s/2 + λdiv) returns Bn, an (α/2)-approximation to the
optimal n-subset of (s+ λdiv).

Note that the α = 1 case of Corollary A.20 is the same as the bound for the exact greedy algorithm proved by Borodin et al.
(2012). Finally, Table 6 summarizes the prior bounds and new bounds for the exact greedy algorithm and the approximated
greedy algorithm for various conditions on the set function.

23

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

B. Implementation Details
B.1. MDP Designs

This paper considers the benchmark tasks on sequence data
such as proteins and aptamers. There are a variety of MDP
designs to model the sequence data as MDPs (Shen et al.,
2023). In this paper, we consider two designs, appending
MDP and editing MDP of MDPs following prior works (Jain
et al., 2023). First, appending MDP designs any sequence
from scratch. Assume a simple scenario that a search space
is given by the fixed length sequence space X = VL is
given by its length L and a vocabulary set V . For this space,
we can write the state space and the action space as follows:

S =

L⋃
i=0

VL ∪ {sterm},A = V ∪ {aterm}.

Here, the initial state is always given as an empty sequence,
and the MDP has a deterministic transition function T :
S ×A → S. Concretely,

T (s, a) =

{
s⊕ a if a ∈ V and len(s) ≤ L− 1 ,

sterm otherwise.

In other words, action a ∈ A appends the chosen token to
the current state s ← s ⊕ a or terminate the construction
s← sterm. As introduced in Section 2.4, a reward is given
at the terminal state by the objective value of a resulting
sequence. Hence, we do not distinguish the terms rewards
and returns in this scenario. In this MDP design, a generic
policy model πθ : S → A outputs an action distribution
(token distribution) given state s (subsequence).

Otherwise, editing MDP designs any sequence by editing a
sequence in the given pool of candidates. Hence, an action
corresponds to an edit operation on the sequence. As in Jain
et al. (2023), we concentrate on substitution operations for
the action space. In short, the state space is a possible set
of sequences obtained by editing a given pool of candidates.
The action space can be represented by

A = ([Lmax]× V) ∪ {aterm}

where Lmax is the maximum length of the sequence that
MDP considers, and V is a vocabulary set. Briefly, an
action (l, t) ∈ [Lmax]×V substitutes l-th token in the target
sequence to t.

B.2. Architectures

State encoders and action decoders. We adopt the pol-
icy model architectures described by Jain et al. (2023) for
encoding states and decoding action logits in both append-
ing and editing MDPs. The encoder architectures for both
types of MDPs leverage transformer architectures to con-
vert sequences into hidden features Devlin et al. (2019). In

the appending MDP scenario, an MLP head predicts the
action logit corresponding to the next token to be appended.
For editing MDPs, an additional MLP head is employed
to predict logits on positions, indicating the probability of
substituting at that position. For a fair comparison, we main-
tain consistent configurations for state encoders and action
decoders across all MDP-based subset selection methods
(PC-RL, PC-MOGFN, Greedy + RL, and Ours).

Set encoders. Like preference conditioning methods, we
incorporate a set encoder to extract features from given sets,
employing a deep set architecture designed for point cloud
classification tasks (Zaheer et al., 2017). This architecture
includes 3 equivariant max-pooling layers with tanh activa-
tions and a 2-layer MLP head to derive hidden features from
the sets. The parameter count in the set encoder depends
on the dimension m of each point in the set and the hidden
feature dimension Nhid, where m aligns with the number of
objectives in our approach. Note that the set encoder’s total
parameter count, calculated as 2mNhid + 6N2

hid, is substan-
tially lower than that of transformer-based state encoders.
For instance, a 3-layer transformer employed in bigrams
tasks possesses more than 30N2

hid parameters.

Incorporating MLM logits for decoding actions. Fol-
lowing Jain et al. (2023), we utilize appending MDP for
single-round subset selection tasks with deterministic ob-
jective functions. For batch BO experiments in biological
sequences, we utilize editing MDP architectures. Drawing
inspiration from the LaMBO architecture (Stanton et al.,
2022), we introduce a variant of our method that integrates
an MLM model trained on previously evaluated data points
during action decoding. Like LaMBO, which optimizes
in MLM latent space using data-trained autoencoders, our
approach benefits from initiating optimization with tokens
likely found in the evaluated data. Note that, in our experi-
mental setup, the MLM model is concurrently trained with
the surrogate model. Additionally, for the pool of candidates
to be edited, we employ hashing on the MLM predictions
for each position, introducing a minimal additional compu-
tational cost.

B.3. Experimental Settings

Single-round subset selection with Bigrams tasks. For
our main experiments in single-round subset selection, we
employ the bigrams benchmark tasks as implemented by
Stanton et al. (2022) and Jain et al. (2023). Each task is
designed around target bigrams, with each corresponding to
a specific objective. In this setup, synthetic bigram match-
ing objectives serve as a deterministic surrogate model for
tackling the active learning inner loop problem, with no
prior data points evaluated and the Hypervolume indicator
functioning as the batch acquisition function. Table 7 details
the bigrams tasks.

24

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

We compare our method against PC-RLs and greedy-based
approaches. Note that we train a single set-conditioned
policy model to sample subsets with various cardinalities in
this experiment. Our set-conditioned policy is trained with
parameters ntrain = 64, Nt = 4, over Nu = 4000 update
steps, and a batch size of Ne = 128. At every 500 steps,
we perform greedy sampling GS(a, πset

θ , n, l = 128) for
each cardinality constraint n to evaluate the Hypervolume
indicator value. After the training ends, we report the best
evaluated results for each n.

Given that ntrain/2 samples are used for subset B condition-
ing at each step, our method uses Ne+ntrain/2 = 128+32 =
160 samples per step. In contrast, other RL-based methods
using Ne = 128 operate with 20% fewer samples. For a fair
comparison, we provide other RL-based methods, including
PC-RL (TS), PC-RL (WS), and Greedy + RL, with total
5000 update steps, 25% more steps than ours.

For the PC-RL baselines, preference vectors are sampled
from a Dirichlet distribution with α = 1. Like our method,
we train a single PC-policy and utilize this policy to sample
subsets in various cardinalities ns. To construct n-subset,
we sample n preference vectors. For each vector, l = 128
candidates are sampled, conditioned on the preference vec-
tor. Then, the n-subset is formed by choosing the top can-
didate for each preference vector, adhering to protocols
established in PC-based methods (Jain et al., 2023; Zhu
et al., 2023). Similar to our approach, this sampling process
is executed for each cardinality n at every 500 steps, con-
tinuing until the total number of update steps, Nu = 5000,
is attained. For greedy approaches, optimization is car-

Table 7: Settings of bigrams tasks.

Task Target Bigrams Min. Len. Max. Len. Cardinalities

2 Bigrams AV, VC 32 36 4, 16
3 Bigrams AV, VC, CA 32 36 4, 16, 64
4 Bigrams AV, VC, CA, AW 32 36 4, 16, 64, 256

Table 8: Hyperparameters for bigrams tasks and the DNA
aptamer task

Hyperparameter Values

η 1E-4, 1E-5, 1E-6
Random Action Prob. 0, 0.05

ried out individually for each n, with a total budget of
B = Nu ∗ Ne + (Nu/500) × n × l allocated for surro-
gate model queries across the process for a fair comparison.
This allocation allows each iteration of the greedy method to
use B/n budget for optimization. Greedy + RS selects the
best sequence from B/n randomly sampled sequences at
each iteration. Greedy + HC starts from a random sequence

and iteratively moves to the optimal sequence within a 1-
Hamming distance, restarting from another random point
if necessary until the surrogate model budget of B/n is
reached. Specifically, Greedy + RL utilizes Ne = 128 and
sets Nu/n as update steps for each greedy loop. We deter-
mine the number of samples to deploy during each greedy
loop based on B/n.

All RL-based methods employ a transformer encoder ar-
chitecture with 3 layers, 8 heads, and a hidden dimension
of 128. Also, we normalize returns as in Algorithm 5 for
all RL-based methods. For RL-based methods (Ours, PC-
RLs, Greedy + RL), we tune the hyperparameters among
the combinations in Table 8. For each combination of hy-
perparameters, we run 10 trials and report the result from
the best hyperparameters.

Single-round subset selection with DNA aptamers. We
utilize three objectives, the number of hairpins, the number
of pairs, and the energy value computed by the NUPACK
library (Zadeh et al., 2011), adopting the implementation of
Jain et al. (2023). In this setting, we use a larger transformer
architecture with 4 layers, 16 heads, and a hidden dimension
of 256. We set Nu = 2000 for our method and allocate 25%
more update steps to other methods as in bigrams tasks.
Other parameter settings are identical to the bigrams tasks.

Batch BO Experiments. For the batch BO, we consider
three benchmarks from Stanton et al. (2022). Our primary
benchmark is the RFP task, which optimizes the stability
and solvent-accessible surface area (SASA) of RFPs. Addi-
tionally, we conduct experiments on two other benchmarks:
3 Bigrams (Table 7) and small molecules. The latter opti-
mizes the logP and quantitative estimate of drug-likeness
(QED) of SELFIES-encoded small molecules (Bickerton
et al., 2012; Krenn et al., 2020).

Beyond addressing the issues identified in LaMBO’s imple-
mentation (as detailed in Appendix D), we adopt similar ex-
perimental setups, with the exception of the number of sam-
ples generated at each inner loop. We train a set-conditioned
policy with ntrain = n = 16, Nt = 1, over Nu = 256 up-
date steps and a batch size of Ne = 128. At every 64 step,
we perform greedy sampling GS(a, πset

θ , n = 16, l = 16),
and propose the best sampled subset with the highest batch
acquisition value for the proposal batch. To ensure a fair
comparison, we increase the number of samples generated
per step of each baseline method, from 32 to 2048 for
MBGA, and from 16 to 256 for LaMBO. These modifi-
cation leads to improvement in performance of baseline
methods as illustrated in Figure 6. In addition, the modi-
fication results in the end-to-end process for the RFP task
taking a similar scale of runtime between 2 to 3 days for
all active learning based methods we consider in this sce-
nario. Also, we utilize the same architecture and training
algorithm for updating MTGP models for a fair compari-

25

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Table 9: Ablation on training cardinality constraint. The mean and standard deviation values are calculated for 10 trials.

Hypervolume Indicator (↑)
2 Bigrams 3 Bigrams 4 Bigrams

Method n = 4 n = 16 n = 4 n = 16 n = 64 n = 4 n = 16 n = 64 n = 256

Optimum 0.630 0.409 0.106

Exact Greedy 0.568 0.630 0.350 0.408 0.409 0.055 0.078 0.097 0.106

Ours (ntrain = 128) 0.568 (0.000) 0.630 (0.000) 0.329 (0.005) 0.345 (0.003) 0.354 (0.006) 0.055 (0.001) 0.076 (0.001) 0.090 (0.002) 0.094 (0.002)
Ours (ntrain = 64) 0.568 (0.000) 0.630 (0.000) 0.329 (0.005) 0.349 (0.007) 0.359 (0.003) 0.055 (0.000) 0.077 (0.000) 0.091 (0.002) 0.094 (0.003)
Ours (ntrain = 32) 0.568 (0.000) 0.630 (0.000) 0.328 (0.003) 0.345 (0.007) 0.359 (0.005) 0.055 (0.000) 0.076 (0.000) 0.086 (0.002) 0.089 (0.002)
Ours (ntrain = 16) 0.564 (0.013) 0.622 (0.023) 0.326 (0.006) 0.352 (0.005) 0.355 (0.005) 0.055 (0.000) 0.074 (0.001) 0.081 (0.002) 0.084 (0.001)
Ours (ntrain = 4) 0.525 (0.000) 0.537 (0.000) 0.326 (0.007) 0.347 (0.007) 0.355 (0.005) 0.052 (0.001) 0.065 (0.002) 0.069 (0.003) 0.072 (0.003)

0 250 500
1

50

100

Number of queries

R
el

at
iv

e
H

yp
er

vo
lu

m
e

(↑
)

Ours w/ MLM
Ours w/o MLM
LaMBO
MBGA
NSGA-II

Figure 3: Multi-round active learning results on the 3 Bi-
grams task when using NEHVI as the batch acquisition
function under a query limit of 512. Midpoint, lower, and
upper boundaries show the 50th, 30th, and 70th percentiles,
respectively, derived from 10 trials.

son. For set conditioning, we set the continuous features,
feat(x) := f̃UCB(x;β = 0.1), for all experiments with
statistical surrogate models. Also, we set the learning rate
η = 0.0001 and set the random action probability to 0. Fi-
nally, we set the maximum edit budget of editing MDP to 1
as in LaMBO and MBGA.

C. Additional Experiments
C.1. Additional Results on Synthetic Tasks

Ablation on cardinality constraint. In our experiments, we
differentiate training cardinality constraints from sampling
constraints during our experiments on bigrams tasks. We
adjust the training cardinality (ntrain) and evaluate the effec-
tiveness of models across varying set sizes through greedy
sampling. To ensure comparable execution speed, Nt, the
training step count, is set to max(1, ntrain/16). Table 9
demonstrates that models trained with larger set sizes yield
superior results across both smaller and larger cardinalities
in bigrams tasks. As we introduced in Appendix B.3, ‘Ours’
with training cardinality constraint ntrain = 64 corresponds
to the ‘Ours’ in Table 1.

0 250 500

1.0

1.5

2.0

2.5

Number of queries

R
el

at
iv

e
H

yp
er

vo
lu

m
e

(↑
)

Ours w/ MLM
Ours w/o MLM
LaMBO
MBGA

Figure 4: Multi-round active learning results on the RFP
task when using UCBHVI as the batch acquisition function
under a query limit of 512. Midpoint, lower, and upper
boundaries show the 50th, 30th, and 70th percentiles, re-
spectively, derived from 10 trials.

C.2. Additional Results on Batch BO Benchmarks

Additional multi-round batch BO results. Figure 3 illus-
trates the multi-round batch BO results on the 3 bigrams
task with the MTGP surrogate model and NEHVI batch
acquisition function. The results show that our method with-
out MLM achieves higher relative Hypervolume indicator
values faster than the baseline active learning results. How-
ever, for this synthetic task, MLM based strategy was not
helpful for achieving the better performance as reported in
Stanton et al. (2022). Next, we conduct multi-round batch
BO with UCBHVI batch acquisition function on the RFP
task. Figure 4 illustrates the performance of our method and
the baseline methods equipped with UCBHVI. The results
show that our methods achieve superior performance in this
setting.

Additional subset selection results in the first round. To
demonstrate the scalability and broad applicability of our
method, we additionally evaluate the first-round subset se-
lection performance, including runtime, across various batch
acquisition functions. Table 10 presents the acquisition val-
ues and runtime obtained by optimizing NEHVI, UCBHVI,

26

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

Table 10: Subset selection results in the first round when
optimizing various batch acquisition functions (NEHVI,
UCBHVI, PES) on the RFP task. ‘Ours-half’ refers to our
method with half the number of update steps. The mean and
standard deviation values are calculated for 10 trials.

(a) NEHVI.

Method NEHVI Value (↑) Runtime (mins) (↓)
Ours 0.779 (0.045) 18.9

Ours-half 0.778 (0.033) 9.5
LaMBO 0.591 (0.033) 24.4
MBGA 0.654 (0.052) 14.0

(b) UCBHVI.

Method UCBHVI Value (↑) Runtime (mins) (↓)
Ours 1.019 (0.032) 4.1

Ours-half 1.005 (0.034) 2.1
LaMBO 0.776 (0.022) 16.7
MBGA 0.844 (0.054) 9.4

(c) PES.

Method PES Value (↑) Runtime (mins) (↓)
Ours 1.233 (0.040) 12.8

LaMBO w/ FD 0.070 (0.015) 18.0
MBGA 0.207 (0.107) 29.8

and PES in the RFP task. For PES, we use the implemen-
tation in the BoTorch framwork1 and we modify LaMBO
to use a gradient approximated by finite differences (FD)
due to the non-differentiability of PES computation (Balan-
dat et al., 2020). Our method (‘Ours-half’ for NEHVI and
‘Ours’ for UCBHVI and PES) achieved higher batch acqui-
sition values in less runtime compared to baseline methods,
demonstrating the effectiveness and scalability of our ap-
proach when optimizing various batch acquisition functions
with statistical surrogate models.

C.3. Diversified subset selection results

Figure 5 illustrates the results of diversified subset selec-
tion for 2 bigrams tasks, comparing our method with PC-
MOGFN. The results show that our method succeed to
generate diverse candidates while keeping ability to gen-
erate near optimal solutions in the 2 bigrams task. Table 11
provides a summary of the diversified subset selection re-
sults in the first round on the RFP task in comparison with
AL-MOGFN. The findings indicate that our method is capa-
ble of constructing subsets that are more diverse and have
higher NEHVI values than those generated by the baseline
method. However, unlike HVI-based batch acquisition func-
tions, the features used for set conditioning in our method,
feat(x) = f̃(x), might not offer enough information to
steer the policy towards generating a variety of candidates.

1https://botorch.org/tutorials/information theoretic acquisition
functions.

0 10 20 30

0.2

0.4

0.6

β=32

λ=0 λ=0.01 λ=0.1

β=16

β=48

Diversity

H
yp

er
vo

lu
m

e
(↑

)

Ours

PC-MOGFN

Optimum

Figure 5: Diversified subset selection results on 2 bigrams
task traversing tradeoff parameters. For each tradeoff pa-
rameter, β for PC-MOGFN, and λ for Ours, we plot 3 points
for 3 different runs.

Table 11: Diversified subset selection results in the first
round of the RFP task with NEHVI. The mean and standard
deviation values are calculated for 10 trials.

Method NEHVI Value (↑) Diversity (↑)
Ours w/o MLM (λ = 0.0) 0.779 (0.045) 78.352 (6.194)

Ours w/o MLM (λ = 1.0) 0.731 (0.033) 95.917 (0.35)
AL-MOGFN (β = 16) 0.608 (0.074) 93.253 (0.346)
AL-MOGFN (β = 24) 0.613 (0.061) 93.240 (0.200)

The development of techniques for extracting features that
enhance diversity remains an area for future research in our
study.

D. Addressing Previous Issues in LaMBO
The work by Stanton et al. (2022) has made significant
contributions to establishing benchmarks for biological se-
quence design. Nonetheless, certain challenges were iden-
tified in the LaMBO implementation that impacted its per-
formance. Firstly, the original implementation wrongly
calculated the NEHVI batch acquisition values for batches
containing more than one element. Secondly, an error in the
mutation operation used in the GA methods was discovered,
adversely affecting performance across several tasks.

In our study, we rectify these issues and conduct a perfor-
mance comparison between the original version, our cor-
rected version, and an enhanced version with a larger sample
size, which we use as the baselines in our paper for a fair
comparison. Figure 6 presents the benchmark results for
the RFP task and 3 bigrams task. Notably, correcting these
issues led to a substantial improvement in performance on
the 3 bigrams task, achieving more than 3 times larger rela-
tive Hypervolume compared to the original implementation.
Additionally, it was observed that increasing the number
of samples during the inner loop contributed to improved
performance for these tasks.

27

https://botorch.org/tutorials/information_theoretic_acquisition_functions
https://botorch.org/tutorials/information_theoretic_acquisition_functions

Training Greedy Policy for Proposal Batch Selection in Expensive MOCO

0 250 500 750 1000

1.0

1.5

2.0

2.5

Number of queries

R
el

at
iv

e
H

yp
er

vo
lu

m
e

(↑
)

LaMBO (Corrected, Long)

LaMBO (Corrected)

LaMBO (Original)

MBGA (Corrected, Long)

MBGA (Corrected)

MBGA (Original)

(a) RFP

0 250 500 750 1000

50

100

Number of queries

R
el

at
iv

e
H

yp
er

vo
lu

m
e

(↑
)

(b) 3 Bigrams

Figure 6: Multi-round active learning results on the RFP task
and 3 bigrams task, comparing performance before and after
the implementation corrections. For clarity, only the median
performance from 10 trials is depicted. The corrections
resulted in significant performance enhancements in these
tasks.

28

