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Abstract
Experiment design has a rich history dating back
to the early 1920s and has found numerous crit-
ical applications across various fields since then.
However, the use and collection of users’ data
in experiments often involve sensitive personal
information, so additional measures to protect
individual privacy are required during data collec-
tion, storage, and usage. In this work, we focus
on the rigorous protection of users’ privacy (under
the notion of differential privacy (DP)) while min-
imizing the trust toward service providers. Specif-
ically, we consider the estimation of the average
treatment effect (ATE) under Neyman’s potential
outcome framework under DP and secure aggre-
gation, a distributed protocol enabling a service
provider to aggregate information without access-
ing individual data. To achieve DP, we design lo-
cal privatization mechanisms that are compatible
with secure aggregation. We show that when in-
troducing DP noise, it is imperative to 1) cleverly
split privacy budgets to estimate both the mean
and variance of the outcomes and 2) carefully cali-
brate the confidence intervals according to the DP
noise. Finally, we present comprehensive experi-
mental evaluations of our proposed schemes and
show the privacy-utility trade-offs in experiment
design.

1. Introduction
Experimental design has a long history, tracing back to
the early 1920s in the agricultural domain (Fisher, 1936),
where statisticians used mathematical tools to design and
analyze experiments. Since then, experimental design has
found many applications, e.g., in chemistry, manufactur-
ing, pharmaceuticals, and technology, etc. When designing
experiments to estimate or test the effect of a treatment
(for example, a tech company launching a new feature in
an existing product), a standard procedure is to divide par-
ticipants into test and control groups, introduce changes
(“the treatment”) to the test group, and collect feedback or
outcomes from both groups to conduct further statistical
analysis. When the test assignment is properly randomized

and the estimators or tests for the outcomes are designed
adequately, the analyst can infer the treatment effect and
make decisions accordingly. However, in many modern
applications, such as pharmaceutical and online experimen-
tal designs, experimentation usually involves participants’
private data, raising additional concerns about privacy and
security. Thus, when conducting experiments involving
sensitive personal information, additional safeguards are
desirable to protect it.

One way to enforce rigorous privacy for experiments is by
restricting the final tests or estimators used to be differen-
tially private (DP) (Dwork et al., 2006b). In a nutshell, DP
ensures that the output of a (randomized) algorithm A does
not depend strongly on the contribution of any one individ-
ual. To achieve DP, a standard approach is to add carefully
calibrated noise to the test statistics (e.g., the Laplace or
Gaussian mechanisms (Dwork et al., 2006b; 2014)) and
only using the perturbed results in downstream tasks. This
approach is usually referred to as “Central DP”, since an
analyst collects all the experimental data centrally before
sanitizing the test statistics. While Central DP schemes
control the view of downstream tasks and are relatively
straightforward to design, the analyst stores and processes
all the raw users’ data in the clear. This not only requires the
experiment participants to trust the analyst, but could make
it challenging to comply with regulations on the storage of
certain forms of personal data.

To address the above issues, an alternative approach is to
aggregate test data in a “secure” way, so that only neces-
sary population-level statistics are collected and that ana-
lysts can never see individual data. Secure aggregation can
be achieved by secure hardware or crypotographic multi-
party computation (MPC) (Ben-Or et al.; Damgård et al.,
2012) and is the focus of “federated learning and analyt-
ics” (Kairouz et al., 2019). Secure aggregation alone does
not provide any formal differential privacy guarantees. To
ensure DP, participants can locally randomize their data so
that the securely aggregated outcome satisfies the standard
DP requirement (Dwork et al., 2006a). This is referred to as
Distributed DP (in contrast to Central DP) and is growing in
prominence thanks to recent progress in practical aggrega-
tion protocols(Bonawitz et al., 2016; Bell et al., 2020). With
secure aggregation and Distributed DP, one can minimize
the level of trust in the data analysts and service providers.
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In this work, we focus on experimental design with Dis-
tributed DP. Specifically, we consider estimating and testing
the average treatment effect (ATE), subject to DP and se-
cure aggregation constraints. In our framework, to construct
private protocols we make use of a black box secure aggre-
gation primitive that we refer to as SecAgg, which can be
instantiated by (Bonawitz et al., 2016; Bell et al., 2020).

Our contributions. We present a framework that achieves
a (1− α)-confidence interval (CI) and a level-α test while
ensuring distributed DP (formally defined in Section 2). Our
framework offers several advantages, including unbiased es-
timation, efficient memory (or communication) usage, and
bounded sensitivities, enabling downstream parties to de-
velop their own privatization mechanisms. We make use of
the Poisson-binomial mechanism (PBM) (Chen et al., 2022)
as a local randomizer. To use PBM for experimental design,
we develop an improved privacy accounting tool based on
a novel bound on the Rényi divergence. This enhancement
greatly enhances efficiency in large sample scenarios. When
the objective is to obtain CIs instead of point estimators, it
is necessary to collect second-moment information such as
sample variance. We show that, via SecAgg and DP, this
can be achieved by judiciously allocating privacy budgets
for estimating the sample mean and variance. Last, our ex-
perimental study quantifies the trade-offs between privacy
and utility.

1.1. Related Works

The design of experiments to identify causal relations and
average treatment effects is crucial in various domains (Im-
bens & Rubin, 2015); when experiments involve sensitive
data, additional privacy protection is needed such as differ-
ential privacy (DP). (D’Orazio et al., 2015) proposes DP
mechanisms for summary statistics in causal inference, and
(Lee et al., 2019; Niu et al., 2022; Ohnishi & Awan, 2023)
consider estimating conditional average treatment effects
(CATE) and propose private estimation of inverse propensity
scores. These works default to a Central DP setting where
a central data curator collects and privatizes test statistics,
while (Ohnishi & Awan, 2023) explores Local DP without
a trusted curator. In contrast, we address the experimental
design problem using Distributed DP via secure aggregation
as a better compromise between privacy and security. Our
experiment design problem is related to private hypothesis
testing, which performs two-sample tests under DP when
potential outcomes come from an unknown distribution. Pre-
vious work on two-sample tests has primarily focused on
either Central DP (Rogers & Kifer, 2017; Cai et al., 2017;
Raj et al., 2020) or Local DP (Raj et al., 2020). This work is
the first to consider Distributed DP with secure aggregation.
We also analyze the distribution-free setting, where no dis-
tributional assumptions are imposed on potential outcomes.

The mechanisms in this paper are based on the difference-in-
mean estimator, which relies on private mean estimation as a
sub-routine. Differentially private mean estimation has been
extensively studied under Central DP (Dwork et al., 2006b;
2014; Balle & Wang, 2018; Agarwal et al., 2018; Biswas
et al., 2020) or Local DP (Duchi et al., 2013; Bhowmick
et al., 2018; Chen et al., 2020; Feldman & Talwar, 2021). In
addition to obtaining a point estimator for the mean, it is also
desirable to obtain a (1− α)-confidence interval (CI) for a
level-α test. Existing methods estimate both sample means
and variances separately privately (Du et al., 2020; Karwa &
Vadhan, 2017; D’Orazio et al., 2015) or use a private boot-
strap (Brawner & Honaker, 2018). Our approach resembles
the former, but is compatible with secure aggregation and
does not require a central data curator.

2. Problem Formulation and Preliminaries
We formulate the experiment design problem via the fol-
lowing Neyman-Roubin causal model. For each test unit
(“user”) i ∈ [n], we introduce the randomized treatment as-
signment variable Ti ∈ {0, 1}, which indicates whether user
i receives the treatment or not. Additionally, we consider
the potential outcomes yi(1), yi(0) ∈ Y for user i when
receiving or not receiving the treatment, respectively. For a
test unit i, the service provider can only observe one of its
potential outcomes: Xi ≜ yi(Ti). The quantity of interest
is the sample average treatment effect (SATE):

∆s(y) ≜
1

n

n∑
i=1

yi(1)− yi(0).

Notice that under the original Neyman-Roubin’s framework,
the potential outcomes y ≜ {(yi(1), yi(0))|i = 1, ..., n}
are deterministic; only the treatment variable Ti’s are ran-
domized. However, we can also impose distributional
assumptions on the potential outcomes, i.e., Yi(0)

i.i.d.∼
P0 and Yi(1)

i.i.d.∼ P1, and the quantity of interest is the
population average treatment effect (PATE):

∆p(P0, P1) ≜ EY (1)∼P1, Y (0)∼P0
[Y (1)− Y (0)] .

In this work, our goals are 1) obtaining confidence intervals
of estimated SATE (or PATE) from observed data ∆̂s(X

n),
and 2) testing if ∆s > 0 (or ∆p > 0).

2.1. Secure aggregation and distributed DP

When the service provider has access to all the observable
data Xi, it can estimate ∆s via standard difference-in-means
estimator (Imbens & Rubin, 2015), compute sample vari-
ances of Yi(0)’s and Yi(1)’s, and construct confidence inter-
vals accordingly. However, when the Xi values are treated
as sensitive, they should be aggregated securely so that only
necessary information is revealed to the service providers.
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Secure aggregation. Secure aggregation (such as
(Bonawitz et al., 2016)) enables a single server to com-
pute the population sum and, consequently the average of
local variables, while ensuring that no additional informa-
tion, apart from the sum, is disclosed to the server or other
participating entities. When applying SecAgg in experiment
design, it is important to note that SecAgg typically oper-
ates on a finite field, like most cryptographic MPC protocols.
Therefore, each outcome Xi needs to be appropriately pre-
processed (e.g., discretized) and mapped into a finite field.

Differential privacy. Secure aggregation alone does not
provide any provable privacy guarantees. Sensitive informa-
tion may still be revealed from the aggregated population
statistics, causing potential privacy leakage. To address this
issue, differential privacy (DP)(Dwork et al., 2006b) has
been adopted as the gold standard that ensures individual
information is not leaked. Specifically, it requires the ATE
estimator (or a CI of ATE) released by the service provider
to meet the following guarantee:

Definition 2.1 (Differential privacy). We say an ATE
estimator ∆̂ (Xn) is (ε, δ)-DP, if for any two possible
outcome sets y ≜ {(yi(0), yi(1))|i = 1, ..., n} and
y′ ≜ {(yi(0), yi(1))|i = 2, ..., n} ∪ {(y′1(0), y′1(1))}
differing in one user, we have Pr

{
∆̂ (Xn|y) ∈ S

}
≤

eε Pr
{
∆̂ (Xn|y′) ∈ S

}
+ δ.

A common approach to achieve DP is adding properly cali-
brated noise (such as zero-mean Gaussian noise with appro-
priate variance) to standard (non-private) ATE estimators.
However, this requires users to trust the service provider
as the server can see the unprivatized aggregated informa-
tion. To address this issue, one can instead locally perturb
individual outcome Xi before secure aggregation via a local
randomizerM(Xi). When the local noise mechanismM
is designed in a way that the sum

∑
iM(Xi) satisfies DP,

i.e.,

Pr {
∑

iM(Xi) ∈ S|y} ≤ eε Pr {
∑

iM(Xi) ∈ S|y′}+δ,
(1)

and whenM(Xi)’s are aggregated securely, one can ensure
DP even if the service provider is not trusted. The idea
of combining secure MPC with local noise dates back to
(Dwork et al., 2006a) and has been used extensively in
private federated learning and analytics (Kairouz et al., 2021;
Agarwal et al., 2018; 2021). The main challenge is that the
local noise has to be properly discretized and compatible
with secure aggregation; that is,M has to map Xi into a
space Z (typically a finite field, e.g., the integers modulo a
prime p) for SecAgg to work in. In addition to the above
(ε, δ)-DP, we use the Rényi DP definition, which allows
simpler and tighter privacy composition. See Appendix A
for a formal definition.

3. Causal inference with distributed DP
Recall that our objective is to obtain a (1− α)-confidence
interval for the Sample Average Treatment Effect (SATE) or
the Population Average Treatment Effect (PATE), while ad-
hering to the distributed differential privacy (DP) constraint
mentioned in equation (1). In Algorithm 1, we presented a
general framework for causal inference using secure aggre-
gation and distributed DP.

In this framework, the server performs secure aggregation
to gather necessary information, along with local random-
izers M1 and M2. These randomizers satisfy the dis-
tributed DP conditions defined in Definition A.2 and map
individual observable outcomes Xi and their second mo-
ments X2

i to the finite field on which secure aggregation
operates. Specifically, we haveM1 : X × [n] → Z and
M2 : X ·X ×[n]→ Z , where we useX ·X ≜ {x2|x ∈ X}
to denote the collection of all possible second moment of the
samples. In the above notation, we allow the local random-
izers to take the size of the control (or test) group, denoted
as nc ≜

∑n
i=1 (1− Ti) (or nt ≜ n− nc), as an input. This

enables the local randomizers to calibrate the noise level
based on the group size. After receiving the aggregated in-
formation, the server constructs unbiased estimators for the
sample means and variances of each group. The difference-
in-means estimator is then used to estimate the ATEs. The
second-moment information is needed for estimating the
variance, which is used to construct the confidence intervals.

The following theorem establishes privacy guarantees.

Theorem 3.1. LetM1 andM2 be local randomizers for
the first and second moments of Xi. Assume Mj(·, n∗)
satisfies (α, εj(α))-distributed Rényi DP for j ∈ {1, 2} and
n∗ ∈ [n]. Then, Algorithm 1 is (α, ε1(α) + ε2(α))-Rényi
DP.

Note that althoughM1 andM2 are invoked twice in Algo-
rithm 1, we only pay the privacy penalty once since one of
the test or control groups remains the same for two neigh-
boring datasets y and y′.

The next theorem summarizes the performance guarantees,
ensuring that Algorithm 1 gives a (1−α)-CI asymptotically.

Theorem 3.2. Under some assumptions on the local en-
coders and the estimator as listed in Appendix C and let the
calibration term (which depends onM1) be

σ2
pr(nc, nt, ε) ≜

n

nc
σ2
1(nc, ε) +

n

nt
σ2
1(nt, ε). (2)

Then Algorithm 1 gives a (1 − α)-confidence interval of
SATE or PATE.
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Algorithm 1 Causal inference with distributed DP
Input: treatment variables T1, ..., Tn ∈ {0, 1}, potential
outcomes {(yi(0), yi(1))|i = 1, ..., n}, local randomizer
M1 : X → Z ,M2 : X · X → Z , privacy budget εt and
ε2.
Output: An unbiased SATE estimator ∆̂s.
for each user i do

Obtains the observable treatment outcome Xi ≜
Tiyi(1) + (1− Ti)yi(0)
computesM(Xi), andM(X2

i ).
end for
▷ Aggregation
Server securely aggregates

∑
i TiM1(Xi, nt),∑

i(1 − Ti)M1(Xi, nc),
∑

i TiM2(X
2
i , nt) and∑

i(1− Ti)M2(X
2
i , nc).

▷ Estimation
Constructs estimators for sample means and variances:

µ̂c

(∑
i

TiM1(Xi)

)
and µ̂t

(∑
i

(1− Ti)M1(Xi)

)
;

ŝ2c

(∑
i

TiM2(X
2
i )

)
and ŝ2t

(∑
i

(1− Ti)M2(X
2
i )

)
.

Compute the ATE estimator: ∆̂ ≜ µ̂t

nt
− µ̂c

nc
.

Compute the DP calibration σ2
pr (ε, nc, nt) by (2).

Set σ̂2
s ≜ ncnt

n

(√
ŝ2t

nt
+

√
ŝ2c

nc

)2

and σ̂2
p ≜ ŝ2t

nt
+

ŝ2c
nc

.

Return: ∆̂ ± z1−α/2 · (σ̂ + σpr) for SATE and ∆̂ ±
z1−α/2 · (σ̂p + σpr) for PATE.

In Algorithm 1, the CIs of SATE and PATE take slightly
different forms because the variance of SATE σ2

s depends
on the sample covariance stc, which is an unidentifiable
quantity. Thus, we can obtain a conservative upper bound
σ̂s. On the other hand, when to estimate PATE, the variance
of the estimator does not depend on the covariance term,
and thus σ̂2

p yields an unbiased estimator on the variance.

3.1. Causal inference via Poisson-binomial mechanism

Next, we describe and analyze a particular distributed DP
scheme based on the Poisson-binomial mechanism (PBM)
(Chen et al., 2022). We make the same assumption that
the potential outcome space Y is a bounded interval and
is known ahead of time. Without loss of generality, we let
Y = [−c, c] for some c > 0.

The local randomizer MPBM consists of two main steps:
1) first mapping xi into

[
1
2 − θ, 1

2 + θ
]

by pi ≜ 1
2 + θ

cxi,
and then 2) generating a binomial random variable Zi ∼
Binom(m, pi) (see Algorithm 2 in Appendix B for a formal
statement). Upon securely aggregating

∑
i Zi, the server

can obtain an unbiased estimator on µ =
∑

i xi as

µ̂ (
∑

i Zi) ≜ c
nmθ

(∑
i Zi − mn

2

)
(3)

Recall that the server can only learn
∑

i Zi but not individ-
ual Zi’s. Next, we constructM1(·, n∗) andM2(·, n∗) in
Algorithm 1 via PBM and summarize the privacy and utility
guarantee in the following theorem.
Corollary 3.3. Let M1 and M2 be implemented
with PBM with proper parameters (see Appendix B
for the parameter selection). Then under a (ε, δ)-
DP constraint, the average width of the CIs is

Oδ

(
z1−α/2 ·

√
s2c
nc

+
s2t
nt

+ c2

ε2

(
1
n2
t
+ 1

n2
c

))
for SATE,

and Oδ

(
z1−α/2 ·

√
Var(P0)

nc
+ Var(P1)

nt
+ c2

ε2

(
1
n2
t
+ 1

n2
c

))
for PATE.

Note that the privacy parameters ofM2 has little impact on
the (asymptotic) width of CIs. This is due to the fact that as
long as we can derive a consistent estimator for the sample
variances, we can compute CIs accordingly. Therefore, we
should allocate the maximum possible privacy budget to
M1. In practice, we set the privacy budget forM1 to be
0.99 of the total privacy allocation.

3.2. Experiments
Table 1. Average widths and coverages of 90%-confidence inter-
vals for PATE. We generate Yi(0)

i.i.d.∼ N(−0.1, σ2
p) and Yi(1)

i.i.d.∼
N(0.1, σ2

p), with σp = 0.05. We divide the sample size n = 103

equally into test and control groups and simulate for 104 rounds.

ε = 0.1 ε = 1.0 ε = 1.9 ε = ∞

None private Coverage (90% CI) - - - 0.902
Width (90% CI) - - - 2.08·10−3

Gaussian Coverage (90% CI) 0.899 0.899 0.899 -
Width (90% CI) 0.771 0.078 0.044 -

PBM Coverage (90% CI) 0.898 0.900 0.903 -
Width (90% CI) 0.772 0.085 0.048 -

We compare the proposed distributed DP method, based on
PBM with (1) the none-private difference-in-mean CIs and
(2) the Central DP baseline (where we collect all observable
samples and add Gaussian noise to the difference-in-mean
estimator). From Table 1, we see that the widths of CIs
are largely determined by the DP noise and the correspond-
ing privacy levels. However, the CI widths of PBM are
very close to the Central Gaussian mechanism, indicating
that the price of adopting secure aggregation is relatively
small. Mre detailed experimental results can be found in the
Appendix F.
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A. Rényi DP for ATE
In addition to the standard (ε, δ)-approximate DP, we also use the following Rényi DP definition, which allows simpler and
tighter privacy composition.
Definition A.1 (Rényi differential privacy). We say an ATE estimator ∆̂ (Xn) is (α, ε(α))-DP, if for any two sets of
possible outcomes y ≜ {(yi(0), yi(1))|i = 1, ..., n} and y′ ≜ {(yi(0), yi(1))|i = 2, ..., n} ∪ {(y′1(0), y′1(1))} that differ in
one user, it holds that

Dα

(
∆̂ (Xn|y)

∥∥∥∆̂ (Xn|y′)
)

≜
1

α− 1
logEX∼∆̂(Xn|y)

[(
f∆̂(Xn|y)(X)

f∆̂(Xn|y′)(X)

)α]
≤ ε(α).

Similarly, for a local randomizerM : X → Z , we can define the following distributed Rényi DP.
Definition A.2 (Distributed Renyi DP). A local randomizer M is (α, ε(α))-DP, if for any two possible outcome sets
y ≜ {(yi(0), yi(1))|i = 1, ..., n} and y′ ≜ {(yi(0), yi(1))|i = 2, ..., n} ∪ {(y′1(0), y′1(1))} differing in one user, we have
Dα (

∑
iM(Xi|y)∥

∑
iM(Xi|y′)) ≤ ε(α).

B. Discrete DP Mechanisms for Secure Aggregation
In this section, we introduce discrete mechanisms that can be combined with secure aggregation for causal inference. We
analyze their performance and provide empirical evaluations in Section 3.2. These discrete mechanisms can be roughly
categorized into two classes:

Additive Noise Mechanisms: These mechanisms involve the addition of discrete noise approximating continuous Gaussian
noise. In this approach, each local observable sample Xi is first quantized into a discrete domain and then perturbed by
adding appropriate discrete random noise. Candidate noise distributions include Binomial (Agarwal et al., 2018), discrete
Gaussian (Canonne et al., 2020; Kairouz et al., 2021), and Skellam (Agarwal et al., 2021).

Randomized Response Mechanisms: This class of mechanisms is based on the concept of randomized response
introduced by Warner (Warner, 1965). In these mechanisms, each sample Xi is locally quantized into a binary value, and
randomized response is applied multiple times with an appropriate cross-over probability determined by ε. The results of
the randomized responses are summed together. Equivalently, this scheme can be viewed as having each client encode its
message as a parameter of a Binomial random variable, sending a sample of it to the server. The decoded output follows a
Poisson-binomial distribution, resulting in the Poisson-binomial mechanism (PBM).

Note that snce the output space of PBM is finite, it is compatible with secure aggregation and hence no modular-clipping
is required. Therefore, the resulting estimator is unbiased while all of the additive noise mechanisms inevitably have to
introduce small biases.

Due to the space limitation, we defer the analysis of additive noise mechanisms to supplemental material and only present
the results of randomized response mechanisms here.

B.1. Difference-in-mean estimator with the Poisson-binomial mechanism

Algorithm 2 The Poisson Binomial Mechanism
Input: c > 0, xi ∈ [−c, c]
Parameters: θ ∈ [0, 1

4 ], m ∈ N
Re-scaling xi: pi ≜ θ

cxi +
1
2 .

Privatization: Zi ≜ Binom (m, pi) ∈ Zm.
Return: Zi

Next, we describe and analyze another distributed DP scheme based on the Poisson-binomial mechanism (PBM)(Chen et al.,
2022). We make the same assumption that the potential outcome space Y is a bounded interval and is known ahead of time.
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Without loss of generality, we let Y = [−c, c] for some c > 01. Per Theorem 3.1, our goal here is to specify the Rényi DP
guarantees and the variance of the scheme.

The local randomizer MPBM is described in Algorithm 2, which consists of two main steps: 1) first mapping xi into[
1
2 − θ, 1

2 + θ
]

by pi ≜ 1
2 + θ

cxi, and then 2) generating a binomial random variable Zi ∼ Binom(m, pi).

Upon securely aggregating
∑

i Zi, the server can obtain an unbiased estimator on µ =
∑

i xi as

µ̂ (
∑

i Zi) ≜ c
nmθ

(∑
i Zi − mn

2

)
(4)

(recall that the server can only learn
∑

i Zi but not individual Zi’s). In the following theorem, we summarize the privacy
and the variance of PBM for a given set of parameters (m, θ).
Theorem B.1 (Cor. 3.3(Chen et al., 2022)). Let µ̂ from (4) be the estimator. Then for any θ ∈ [0, 1/4] and m,n ∈ N,

• µ̂ yields an unbiased estimate on µ with variance at most c2

4nmθ2 .

• Algorithm 2, together with SecAgg(Bonawitz et al., 2016), satisfies (α, ε(α))-Rényi DP for any α > 1 and

ε(α) ≥ C
(

θ2

(1−2θ)4

)
αm
n , (5)

where C > 0 is a universal constant.

From this, we can re-write the MSE (i.e., the variance) as Var (µ̂) ≤ c2

4nmθ2 = O
(

α
n2ε(α)

)
.

Since Zi ≤ m and thus
∑

i Zi ≤ nm, we set the modulo space M = nm+ 1 to avoid overflow (recall that M is the size of
the finite group SecAgg operates on). Therefore, the communication cost of Algorithm 2 is logM ≈ log n+ logm bits per
client. In addition, unlike in the additive mechanisms where the noise support is typically unbounded, there is no need to
apply modular clipping, and thus µ̂ is unbiased.
Remark B.2. A limitation of the PBM approach is that the mechanism was designed for federated learning tasks where local
messages are high-dimensional vectors (i.e., model updates) and the number of per-round users is small (usually less than
103) (Chen et al., 2022). However, in the design of the experiments, the number of tests can easily exceed millions, and the
privacy accounting algorithm in (Chen et al., 2022) becomes infeasible. In this work, we develop new efficiently-computable
bounds on the Rényi DP of PBM that are within 1% greater of the actual privacy loss, described in Appendix E.

Next, we construct the mechanismsM1(·, n∗) andM2(·, n∗) used in Algorithm 1. Let (m1,c, θ1,c), (m1,t, θ1,t) be the
parameters of PBM used for estimating the mean of the control and test groups respectively. Similarly, let (m2,c, θ2,c),
(m2,t, θ2,t) be the parameters used in estimating the second moments of the two groups. Then according to Theorem B.1,

the privacy losses ofM1(·, nc) andM1(·, nt) are O
(

αθ2
1,cm1,c

nc

)
and O

(
αθ2

1,tm1,t

nt

)
2, and the privacy losses ofM2(·, nc)

andM2(·, nt) are O
(

αθ2
2,cm2,c

nc

)
and O

(
αθ2

2,tm2,t

nt

)
. Therefore, combining Theorem B.1 with Theorem 3.1, we summarize

the guarantees of PBM in the following corollary:
Corollary B.3. LetM1 andM2 be implemented with PBM with parameters (m1,c, θ1,c), (m1,t, θ1,t), (m2,c, θ2,c), and
(m2,t, θ2,t) respecitvely. Then

1. Algorithm 1 is (α, ε(α))-Rényi DP for all lα > 1 and

ε(α) ≤ O

(
αmax

(
θ21,cm1,c

nc
,
θ21,tm1,t

nt
,
θ22,cm2,c

nc
,
θ22,cm2,c

nc

))
.

2. The average width of the (1 − α)-CI is O

(
z1−α/2 ·

√
s2c
nc

+
s2t
nt

+ c2

ntm1,tθ2
1,c

+ c2

ntm1,tθ2
1,t

)
for SATE, and

O
(
z1−α/2 ·

√
Var(P0)

nc
+ Var(P1)

nt
+ c2

ntm1,tθ2
1,c

+ c2

ntm1,tθ2
1,t

)
for PATE.

1Note that here we assume c > 0 is known beforehand, which could be true in some cases. When c is unknown, we may need to
estimate it through private range/quantile queries.

2Note that although here we present an asymptotic form of the privacy losses, in our experiments we can numerically compute the
accurate privacy budgets.
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Note that in the above expression, the parameters ofM2 do not impact the (asymptotic) width of the confidence intervals
(CIs). This is due to the fact that as long as we can derive a consistent estimator for the sample variances, we can compute
CIs accordingly. Therefore, one should allocate the maximum possible privacy budget toM1. In practice, as demonstrated
in the next section, we set the privacy budget forM1 to be 0.99 of the total privacy allocation.

Parameter selection. In order to satisfy a (ε, δ)-DP, guarantee, we select

θ21,cm1,c

nc
≈

θ21,tm1,t

nt
= Oδ

(
ε2
)
,

which implies that the average width of the CIs is O

(
z1−α/2 ·

√
s2c
nc

+
s2t
nt

+ c2

ε2

(
1
n2
t
+ 1

n2
c

))
for SATE (or

O

(
z1−α/2 ·

√
Var(P0)

nc
+ Var(P1)

nt
+ c2

ε2

(
1
n2
t
+ 1

n2
c

))
for PATE).

C. Assumptions of Theorem 3.2
Assumption C.1. Assume the estimator µ̂j , j ∈ {0, 1}, are of an additive structure. That is,

{
µ̂t(
∑

i TiM1(Xi)) =
∑

i Tiµ̂(M1(Xi));

µ̂c(
∑

i(1− Ti)M1(Xi)) =
∑

i(1− Ti)µ̂(M1(Xi)),

where µ̂ (M1(xi, n
∗)) gives an unbiased estimator, independent with Ti, on xi with variance bounded by σ2

1(n
∗, ε)3;

Assumption C.2. Assume ŝ2c and ŝ2t defined in Algorithm 1 yield consistent estimation on the sample variances s2c ≜
1

n−1

∑
i (yi(0)− ȳ(0)) and s2t ≜ 1

n−1

∑
i (yi(1)− ȳ(1)), respectively. That is, ŝ2c

(∑n
i=1(1− Ti)M2(X

2
i )
) p→ µ̂c as

n→∞ (and so does ŝt).

D. Proof of Theorem 3.1
Since both ∆̂s and σ̂s are functions of µ̂c, µ̂t, ŝ

2
c , and ŝ2t , we only need to ensure their Rényi DP due to the post-processing

properties of DP. The Rényi DP follows from a simple application of the composition theorem for Rényi DP (Mironov,
2017). □

E. Practical privacy accounting for PBM
In this section, we improve the efficiency of the privacy accounting mechanism (Chen et al., 2022), which are originally
designed for small sample and finite field sizes (usually when n,m ≤ 103) due to the batch-SGD and the natural computation
and communication constraints of using secure aggregation.

Following from the proof of Theorem 3.3 in (Chen et al., 2022), for any set of parameters (m,n, θ, α), ε(α) can be expressed
as

max
t1,t2∈[m·n], |t1−t2|≤m

Dα

(
PBinom(t1, 12−θ)+Binom(mn−t1,

1
2+θ)

∥∥PBinom(t2, 12−θ)+Binom(mn−t2,
1
2+θ)

)
. (6)

In (Chen et al., 2022), it is shown that the maximum of (6) occurs at (t1, t2) = (0,m), which suggests the following (exact)
privacy accounting mechanism in Algorithm 3.

3Indeed, we can relax the unbiasedness assumption and only require E [µ̂ (M1(xi, n
∗))] = o( 1

n
).
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Algorithm 3 Exact privacy accounting.
Input: n,m, θ, α
Return: ε(α)
P1 ← Binom(mn, 1

2 − θ) {P1 is a mn+ 1-dim vector.}
P2 ← Binom(m(n− 1), 1

2 − θ)
P ′
2 ← Binom(m, 1

2 + θ)
P2 ← P2 ∗ P ′

2 {∗ denotes the convolution operator.}
ε(α)← 1

α−1 log
(
sum

(
Pα

1

Pα−1
2

))
{sum and (·)α are performed coordinate-wisely.}

Note that the accounting involves binomial coefficients with large n, so in practice, all computations should be done in the
log space to ensure computation stability, as described in Algorithm 4. The computation bottlenecks of Algorithm 3 and
Algorithm 4 are at the convolution operation, which, when computed via fast Fourier transform, takes Õ(mn) time.

Algorithm 4 Exact privacy accounting over the log space.
Input: n,m, θ, α
Return: ε(α)
logP1 ← log

(
Binom(mn, 1

2 − θ)
)

logP2 ← log
(
Binom(m(n− 1), 1

2 − θ)
)

logP′
2 ← Binom(m, 1

2 + θ)
logP2 ← logP2 ∗̃ logP′

2 {∗̃ denotes the convolution operator over the log space.}
ε(α)← 1

α−1 logexpsum (α · logP1 + (1− α) · logP2)

E.1. Approximation for large n and m

Unfortunately, in most private analytic or causal inference tasks, the number of samples n can be up to millions (and m
may be up to thousands), making the Õ(mn) time complexity of the above algorithms infeasible. To address this issue, we
propose to account for the privacy loss via the following upper bound based on a data process inequality:

(6) ≤ max
k∈[n−1]

m ·Dα

(
PBinom(1+k, 12−θ)+Binom(n−k−1, 12+θ)

∥∥PBinom(k, 12−θ)+Binom(n−k, 12+θ)

)
. (7)

Although (7) is always strictly greater than the exact privacy loss (6), when either m or n is large, the approximation error in
ε(α) is negligible. For instance, when n = 100 and α = 2, the approximation error is less than 0.1%. By leveraging (7), we
arrive at the following approximate privacy accounting algorithm, which reduce the computational complexity to O(n):

Algorithm 5 Efficient approximate privacy.
Input: n,m, θ, α
logP1 ← log

(
Binom(n, 1

2 − θ)
)

logP2 ← log
(
Binom(n− 1, 1

2 − θ)
)

logP′
2 ← Ber( 12 + θ)

logP2 ← logP2 ∗̃ logP′
2 {∗̃ denotes the convolution operator over the log space.}

ε(α)← 1
α−1 logexpsum (α · logP1 + (1− α) · logP2).

Return: mε(α)

In our experiments, we account the Rényi DP according to Algorithm 5 and convert the (α, ε(α))-Rényi DP to (ε, δ)-DP via
the conversion lemma given in (Canonne et al., 2020).

F. Additional experiments
In this section, we provide more complete experimental results to demonstrate the utility of our proposed framework.
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F.1. Gaussian potential outcomes

In the first set of examples, we consider random treatment effects, where the potential outcomes before and after the
treatment are normally distributed: Yi(0)

i.i.d.∼ N(µ0, σ) and Yi(1)
i.i.d.∼ N(µ1, σ). Under this distributional assumption, the

PATE is defined as ∆p ≜ µ1 − µ0, while the SATE is ∆s ≜ 1
nt

∑
i Yi(1) − 1

nt

∑
i Yi(0), where nc and nt represent the

numbers of the control and test groups.

In the experiments, we set nc = nt = 103, ∆p = 0.2, and the noise level σ = 0.01. For each set of parameters of the
privatization mechanisms, we set the confidence level to be 90%, simulate for N = 10000 rounds, and report the average
widths of CIs and the empirical coverage ratios (i.e., the number of times that the true PATE lies within the estimated CIs).

In Table 2, we observe that without privacy constraints, we obtain tight CIs with a significantly higher coverage ratio than
required. Specifically, we achieve a coverage ratio of 0.98 compared to the requested 0.9 coverage ratio under a 90%
confidence constraint4. The issue of being overly conservative, however, vanishes under DP, since the DP noise dominates
the total uncertainty and is much larger than the sampling variance.

Comparing the non-private setting, we found that the width of the private CIs is significantly larger than the non-private
one, indicating that the DP noise is much larger than the sampling noise. Unfortunately, this is the price we need to pay.
However, the CI widths of the centralized Gaussian mechanism are roughly the same as the width of PBM. The difference to
the Gaussian mechanism is negligible when n and m are large enough. In Table 2, we can see that when n = 1000, setting
m = 256 is sufficient to achieve the same performance as the centralized Gaussian mechanism. This implies that although
the price for achieving DP is indispensable, the price for adopting secure aggregation to remove the trust toward the server
can be made arbitrary small, as long as we are willing to slightly increase the communication costs (which are dictated by
the finite field size m).

Table 2. Average width and coverage of 90%-confidence intervals for SATE. Gaussian potential outcomes with n = 103.

Non-private 0.980
0.002 ± 3.25e-05

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.899 0.897 0.899 0.900 0.901 0.897 0.899
0.771 ± 1.26e-07 0.199 ± 4.87e-07 0.118 ± 8.40e-07 0.084 ± 1.15e-06 0.066 ± 1.45e-06 0.055 ± 1.78e-06 0.047 ± 2.08e-06

PBM (m=256) 0.899 0.903 0.904 0.905 0.898 0.896 0.896
0.772 ± 1.26e-07 0.200 ± 4.85e-07 0.119 ± 8.34e-07 0.085 ± 1.13e-06 0.067 ± 1.42e-06 0.056 ± 1.73e-06 0.048 ± 2.00e-06

PBM (m=1024) 0.904 0.892 0.896 0.901 0.901 0.904 0.898
0.772 ± 1.26e-07 0.199 ± 4.83e-07 0.118 ± 8.23e-07 0.085 ± 1.15e-06 0.066 ± 1.47e-06 0.055 ± 1.76e-06 0.047 ± 2.07e-06

PBM (m=2048) 0.896 0.902 0.899 0.903 0.897 0.904 0.896
0.772 ± 1.27e-07 0.199 ± 4.81e-07 0.118 ± 8.16e-07 0.084 ± 1.15e-06 0.066 ± 1.45e-06 0.055 ± 1.77e-06 0.047 ± 2.08e-06

We can observe a similar trend when estimating the population level treatment effect (i.e., PATE). We see that when setting
m = 256, the width of CIs is almost the same as the the centralized Gaussian. A major difference compared to estimating
SATE, however, is that the average converge ratio of the non-private setting becomes aligned with our target confidence
level (i.e., 90% in our setting). This is because the variance estimator of PATE given in Algorithm 1 becomes unbiased since
the unidentifiable term (i.e., the covariance) are cancelled out (see the proof given in Section G for more details).

4Note that when estimating the confidence intervals of the difference-in-mean estimator for SATE, the true variance is unidentifiable.
Therefore, we can only use an upper bound to obtain a conservative interval, as discussed in the proof of Theorem 3.1.
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Table 3. Average width and coverage of 90%-confidence intervals for PATE. Gaussian potential outcomes with n = 103.

Non-private 0.901
0.002 ± 3.24e-05

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.905 0.895 0.899 0.902 0.904 0.899 0.899
0.771 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.20e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.78e-06 0.047 ± 2.07e-06

PBM (m=256) 0.902 0.900 0.900 0.903 0.906 0.900 0.903
0.772 ± 1.25e-07 0.200 ± 4.84e-07 0.119 ± 8.15e-07 0.085 ± 1.15e-06 0.067 ± 1.43e-06 0.056 ± 1.72e-06 0.048 ± 2.02e-06

PBM (m=1024) 0.900 0.897 0.902 0.900 0.904 0.898 0.896
0.772 ± 1.26e-07 0.199 ± 4.85e-07 0.118 ± 8.28e-07 0.085 ± 1.17e-06 0.066 ± 1.46e-06 0.055 ± 1.77e-06 0.047 ± 2.05e-06

PBM (m=2048) 0.897 0.902 0.901 0.901 0.899 0.902 0.898
0.772 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.19e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.77e-06 0.047 ± 2.06e-06

F.2. Constant treatment effects

In the second set of examples, we consider constant treatment effects. Specifically, we assume Yi(0)
i.i.d.∼ uniform(a, b) and

Yi(1) = Yi(0) + ∆s, where ∆s is a deterministic but unknown quantity that we want to estimate.

In the experiments, we set nc = nt = 103, ∆s = 0.2, and (a, b) = (−1,−0.8). For each set of parameters of the
privatization mechanisms, we again set the confidence level to be 90%, simulate for N = 10000 rounds, and report the
average widths of CIs and the empirical coverage ratios.

As shown in Table 4 and Table 5, under the assumption of a constant ATE, estimating SATE and PATE is essentially the
same, both theoretically and empirically. The coverage ratios for both PATE and SATE are accurate, in contrast to SATE
with random ATE. Furthermore, we observe a similar trend as in the Gaussian outcomes, where PBM achieves a negligible
error compared to the central Gaussian.

Table 4. Average width and coverage of 90%-confidence intervals for SATE. Constant treatment effect with n = 103.

Non-private 0.897
0.108 ± 1.53e-03

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.904 0.902 0.901 0.899 0.895 0.899 0.896
0.779 ± 2.11e-04 0.227 ± 7.30e-04 0.160 ± 1.03e-03 0.137 ± 1.21e-03 0.127 ± 1.30e-03 0.121 ± 1.40e-03 0.118 ± 1.41e-03

PBM (m=256) 0.893 0.904 0.904 0.900 0.897 0.898 0.897
0.779 ± 2.12e-04 0.227 ± 7.40e-04 0.160 ± 1.03e-03 0.138 ± 1.20e-03 0.127 ± 1.31e-03 0.122 ± 1.36e-03 0.118 ± 1.40e-03

PBM (m=1024) 0.896 0.900 0.905 0.901 0.900 0.904 0.895
0.779 ± 2.13e-04 0.227 ± 7.36e-04 0.160 ± 1.03e-03 0.137 ± 1.19e-03 0.127 ± 1.29e-03 0.121 ± 1.36e-03 0.118 ± 1.40e-03

PBM (m=2048) 0.898 0.897 0.902 0.901 0.903 0.900 0.899
0.779 ± 2.11e-04 0.227 ± 7.30e-04 0.160 ± 1.03e-03 0.137 ± 1.20e-03 0.127 ± 1.30e-03 0.121 ± 1.40e-03 0.118 ± 1.41e-03

Table 5. Average width and coverage of 90%-confidence intervals for PATE. Constant treatment effect with n = 103.

Non-private 0.901
0.002 ± 3.24e-05

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.905 0.895 0.899 0.902 0.904 0.899 0.899
0.771 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.20e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.78e-06 0.047 ± 2.07e-06

PBM (m=256) 0.902 0.900 0.900 0.903 0.906 0.900 0.903
0.772 ± 1.25e-07 0.200 ± 4.84e-07 0.119 ± 8.15e-07 0.085 ± 1.15e-06 0.067 ± 1.43e-06 0.056 ± 1.72e-06 0.048 ± 2.02e-06

PBM (m=1024) 0.900 0.897 0.902 0.900 0.904 0.898 0.896
0.772 ± 1.26e-07 0.199 ± 4.85e-07 0.118 ± 8.28e-07 0.085 ± 1.17e-06 0.066 ± 1.46e-06 0.055 ± 1.77e-06 0.047 ± 2.05e-06

PBM (m=2048) 0.897 0.902 0.901 0.901 0.899 0.902 0.898
0.772 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.19e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.77e-06 0.047 ± 2.06e-06
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F.3. Constant treatment effect with larger n

Finally, in the last set of experiments, we consider a larger sample size with Gaussian outcomes. We use the same set of
parameters as in Section F.1, except that nt = nc = 104. From Table 4 and Table 5, we observe that when the privacy
budget is large enough ε > 1, the CIs for both PBM and central Gaussian are very closed to the non-private one, indicating
that the error is dominated by the sampling noise instead of the DP noise. Therefore, when n is large enough (depending on
the sample variance), we can achieve DP with negligible effect on the utility.

Table 6. Average width and coverage of 90%-confidence intervals for SATE. Constant treatment effect with n = 104.

Non-private 0.896
0.034 ± 1.51e-04

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.905 0.903 0.896 0.903 0.899 0.899 0.903
0.084 ± 6.25e-05 0.040 ± 1.32e-04 0.036 ± 1.45e-04 0.035 ± 1.49e-04 0.035 ± 1.49e-04 0.035 ± 1.52e-04 0.035 ± 1.50e-04

PBM (m=256) 0.905 0.906 0.897 0.902 0.897 0.896 0.905
0.084 ± 6.15e-05 0.040 ± 1.32e-04 0.036 ± 1.42e-04 0.036 ± 1.48e-04 0.036 ± 1.47e-04 0.036 ± 1.46e-04 0.036 ± 1.47e-04

PBM (m=1024) 0.899 0.897 0.902 0.902 0.898 0.903 0.900
0.085 ± 6.16e-05 0.040 ± 1.32e-04 0.036 ± 1.45e-04 0.035 ± 1.48e-04 0.035 ± 1.49e-04 0.035 ± 1.51e-04 0.035 ± 1.52e-04

PBM (m=2048) 0.903 0.903 0.899 0.898 0.906 0.898 0.901
0.085 ± 6.22e-05 0.040 ± 1.31e-04 0.036 ± 1.45e-04 0.035 ± 1.49e-04 0.035 ± 1.49e-04 0.035 ± 1.51e-04 0.035 ± 1.50e-04

Table 7. Average width and coverage of 90%-confidence intervals for PATE. Constant treatment effect with n = 104.

Non-private 0.904
0.034 ± 1.53e-04

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.904 0.899 0.903 0.907 0.900 0.900 0.900
0.084 ± 6.23e-05 0.040 ± 1.33e-04 0.036 ± 1.42e-04 0.035 ± 1.50e-04 0.035 ± 1.51e-04 0.035 ± 1.51e-04 0.035 ± 1.51e-04

PBM (m=256) 0.903 0.897 0.907 0.911 0.901 0.900 0.899
0.084 ± 6.17e-05 0.040 ± 1.30e-04 0.036 ± 1.43e-04 0.036 ± 1.49e-04 0.036 ± 1.46e-04 0.036 ± 1.45e-04 0.036 ± 1.47e-04

PBM (m=1024) 0.899 0.898 0.905 0.903 0.904 0.901 0.896
0.085 ± 6.15e-05 0.040 ± 1.33e-04 0.036 ± 1.46e-04 0.035 ± 1.48e-04 0.035 ± 1.50e-04 0.035 ± 1.52e-04 0.035 ± 1.50e-04

PBM (m=2048) 0.905 0.900 0.901 0.903 0.903 0.896 0.901
0.085 ± 6.21e-05 0.040 ± 1.32e-04 0.036 ± 1.42e-04 0.035 ± 1.50e-04 0.035 ± 1.51e-04 0.035 ± 1.50e-04 0.035 ± 1.51e-04

G. Proof of Theorem 3.1
In this section, we provide a formal proof of the asymptotic confidence level of estimating PATE in Theorem 3.1.

Proof. We follow the standard analysis of the difference-in-mean estimator and incorporate the DP noise. To begin with, we
analyze the unprivatized estimator. Let ν̂t ≜ 1

nt

∑
i Tiyi(0) and ν̂c ≜ 1

nc

∑
i(1 − Ti)yi(1) be the unprivatized means of

the test and control groups. In addition, let s2c ≜ 1
n−1

∑
i(yi(0)− ȳ(0))2 and s2t ≜ 1

n−1

∑
i(yi(1)− ȳ(1))2 be the sample

variances; let stc ≜ 1
n−1

∑
i(yi(0)− ȳ(0))(yi(1)− ȳ(1)) be the sample covariance. Then, the variance of the (unprivatized)

difference-in-mean estimator can be computed as

Var (ν̂t − ν̂c|y) =
σ2
s

n
≜

1

n

(
nc

nt
s2t +

nt

nc
s2c + stc

)
.

The finite-sample central limit theorem (Hájek, 1961) (see also (Li & Ding, 2017; Li et al., 2018)) suggests that

√
n ((ν̂t − ν̂c)−∆s)

d→ N(0, σ2
s).

When there exists DP noise, we have, conditioned on y and Ti,

√
n ((µ̂c − µ̂t)− (ν̂t − ν̂c))

d→ N
(
0, σ2

pr(nc, nt, ε)
)
,
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where σ2
pr(nc, nt, ε) ≜ n

nc
σ2
1(nc, ε) +

n
nt
σ2
1(nt, ε) and the convergence is due to the (classical) central limit theorem and

Assumption C.1. Since the DP noise is independent with Ti, we conclude

√
n ((µ̂c − µ̂t)−∆s)

d→ N
(
0, σ2

pr(nc, nt, ε) + σ2
s)
)
,

Finally, since σ̂2
s defined in Algorithm 1 is a high probability upper bound on σ2

s from our assumptions, i.e.,

lim
n→∞

Pr
{
σ̂2
s ≥ σ2

s

}
= 1,

by Slutsky’s theorem
[
∆̂s − z1−α/2 · (σ̂s + σpr) , ∆̂s + z1−α/2 · (σ̂s + σpr)

]
gives an 1−α CI asymptotically. The analysis

for PATE is similar to the above and we leave the details to the supplementary materials.

Next, we prove the confidence level of estimating Proof. The conditional variance of the (unprivatized) difference-in-mean
estimator, given the samples yi(0)

i.i.d.∼ P0 and yi(1)
i.i.d.∼ P1 can be computed as

Var (ν̂t − ν̂c|y) =
1

n

(
nc

nt
s2t +

nt

nc
s2c + stc

)
.

Therefore, the unconditional variance is

E [Var (ν̂t − ν̂c|y)] + Var (E [ν̂t − ν̂c|y]) =
1

n

(
nc

nt
s2t +

nt

nc
s2c + 2stc

)
+

1

n

(
s2t + s2c − 2stc

)
=

s2t
nt

+
s2c
nc

.

Therefore, σ̂p in Algorithm 1 is a consistent estimator of the variance of the unprivatized estimator.

With the presence of DP noise, we follow the same analysis as SATE and add a calibration term σ2
pr(nc, nt, ε). By the

central limit theorem, the proof is complete. □


