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ABSTRACT

In recent years, Multimodal Large Language Models (MLLMs) have achieved re-
markable progress across a wide range of domains, largely benefiting from the
availability of large-scale multimodal datasets, particularly image-caption cor-
pora. Nevertheless, the community has long lacked a universal and standardized
data quality assessment framework specifically designed for such corpora. In this
paper, we propose the Chain-of-Atoms (CoA) evaluation framework along with
a corresponding Bottom2Up data sampling strategy. CoA decomposes both cap-
tions and images into minimal information units and computes precision and re-
call as objective sub-metrics. By reweighting these sub-metrics dynamically, we
introduce a style-adaptive F; (SAF1) metric to achieve better correlation with hu-
man preference. To enhance the capability of semantic decomposition, we apply
the proposed Bottom2Up strategy to construct a balanced and large-scale training
dataset. We also establish CoA Bench, a standardized benchmark for fine-grained
image-caption evaluation. Experimental results on CoA Bench and other down-
stream tasks demonstrate that CoA effectively filters noisy training samples, sig-
nificantly improves the robustness and training efficiency of MLLM. Specifically,
CoA-based data filtering during MLLM pre-training reduces the training data by
81.5% without causing performance degradation.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have achieved remarkable progress
in tasks, such as visual understanding, cross-modal retrieval, and multimodal generation. Similar to
their unimodal counterparts, the success of MLLMs is largely dependent on the availability of high-
quality, large-scale training data. Among these, image-caption pairs constitute a central resource
for building general-purpose multimodal understanding capabilities. However, compared with nat-
ural language text, image-caption corpora collected from the web often face more serious quality
concerns such as semantic mismatch, incomplete descriptions, and noisy or redundant information.
When such low-quality samples are repeatedly presented during MLLM training, the noisy signals
are amplified, impairing the model’s ability to understand and generalize to the real visual world.
Therefore, a precise and fine-grained filtering of large-scale image-caption datasets is critical to
maximizing the potential of MLLMs.

We suggest that an effective image-caption evaluation metric should ideally satisfy two key prop-
erties: interpretability and style adaptability. The former requires that the score reflects specific
strengths and weaknesses of a caption, while the latter requires a fair and consistent evaluation
across captions of varying lengths and narrative styles. However, existing image-caption evaluation
approaches fall short of these requirements (Sarto et al.| [2025). Rule-based metrics (e.g., BLEU-
4 (Papineni et al., 2002), CIDEr (Vedantam et al., 2015)) assess surface-level properties such as
n-gram overlap and keyword coverage. Although computationally efficient, they are overly sensitive
to lexical mismatches and fail to capture deeper semantic relationships, limiting both interpretabil-
ity and robustness to stylistic variation. Embedding-based metrics (e.g., CLIPScore (Hessel et al.,
2021))) measure global semantic consistency through vision-language pre-embedding models, but
the scores blur the lines between different error types (e.g. inaccurate vs. missing details) (Sarto
et al.,2025) and are sensitive to caption length due to embedding aggregation effects (Zhang et al.,
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2024), undermining interpretability and style invariance. LLM/MLLM-based metrics (Chan et al.,
2023; | Ye et al., |2025) prompt language models to score captions against detailed evaluation criteria,
leveraging rich semantic knowledge and reasoning capabilities. Nonetheless, their judgments are
sensitive to prompt design, inherently subjective, and difficult to calibrate for captions of different
styles, limiting adaptability.

The gap between the desired properties and the limitations of current methods highlights the need for
anew evaluation paradigm that achieves both interpretability and style adaptability. To address these
limitations, we propose Chain-of-Atoms (CoA), a novel framework for image-caption evaluation.
Specifically, CoA explicitly decomposes the overall quality score into two quantifiable sub-metrics:

* precision: accuracy of the caption in describing visual content.
* recall: completeness of the caption in covering visual content.

This metric-decomposition paradigm enhances the interpretability so that one can clearly understand
the basis for the rating. Furthermore, in practice, human evaluators tend to expect detailed captions
to be more comprehensive (i.e., higher recall), while being more tolerant of omissions in concise
captions (i.e., lower recall). By combining precision and recall via a flexible weighting scheme, we
propose style-adaptive F (SAFI), a metric that can naturally model such human preferences, thus
achieving human-like evaluation preferences across diverse narrative styles.

From a methodological perspective, CoA draws inspiration from the Scene Graph Generation (SGG)
task (Johnson et al, 2015} |[Yang et al., 2023) in computer vision, representing images as sets of
bounding boxes and Minimal Visual Units (MVUs), and decomposing captions into Minimal Textual
Units (MTUs). The unit-level matching is then applied to compute precision and recall. Considering
the versatility and generalization, the decomposition of MVUs and MTUs and unit-level matching
can be prompted in a single MLLM. We further introduce Bottom2Up, a strategy which enables the
construction of a large-scale, diverse, and controllable image-caption evaluation dataset, upon which
we train a CoA-MLLM for end-to-end CoA reasoning.

In experiments, we first construct the CoA Bench on which the CoA-MLLM demonstrates significant
advantages over mainstream MLLMs, including GPT (OpenAl, 2025a:b)), Qwen (Bai et al., [2025)),
and Gemini series (Google, [2025). Furthermore, we apply CoA evaluation for data filtering in both
the pre-training and supervised fine-tuning stages of MLLMs. In the pre-training stage, filtering the
LLaVA-Pretrain dataset (Liu et al., 2023} 2024a) enables the model to achieve comparable perfor-
mances using only 18.5% of the data. In the SFT stage, under the condition of heavy noise injection,
CoA filtering effectively mitigates performance degradation, resulting in a remarkable improvement
compared to noisy baselines.

Our main contributions lie in three-folds:

* We propose CoA, a novel image caption evaluation framework that decomposes a subjective
score into two objective sub-metrics and reweights a style-adaptive metric SAFI, enhancing
interpretability and style adaptability.

* We introduce a Bottom2Up sampling strategy that enables precise control over precision-recall
distributions and facilitates the construction of fine-grained image caption evaluation datasets.

» Experiments demonstrate that CoA filtering boosts MLLM performance across a wide range of
vision-language tasks, in both pre-training and supervised fine-tuning stages.

2 RELATED WORK

In this section, we provide a detailed review of existing image caption evaluation metrics and con-
duct a comprehensive analysis of their respective strengths and limitations.

Rule-based metrics rely on explicit matching rules to quantify similarity between a generated cap-
tion and one or more human-written references. BLEU (Papinenti et al., 2002) is a common metric
that measures the precision of overlapping n-grams between candidate and reference captions, in-
tegrating multiple n-gram lengths through a geometric mean and penalizing overly short outputs.
ROUGE (Lin, 2004), in contrast, focuses more on informatino recall, capturing how much of the
relevant content in the reference can be retrieved in the candidate caption. METEOR (Banerjee &
Lavie], 2005) considers stemming and synonym matching, balancing precision and recall, and ap-
plying penalties for fragmented matches to better capture fluency. CIDEr (Vedantam et al., 2015)
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assigns TF-IDF weights to n-grams so that rare but meaningful terms have greater influence on
the score, encouraging informative captions. SPICE (Anderson et al., 2016) takes a more semantic
approach by parsing captions into scene graphs of objects, attributes, and relations, and comparing
them on this structured level. In summary, rule-based metrics are easy to compute, transparent in
their operation, and well established, but their dependence on lexical or parsed overlap makes them
less robust when valid captions diverge in wording or style from the references.

Embedding-based metrics extend beyond explicit lexical overlap by projecting both visual and
textual inputs into a shared semantic space through neural network—based representations. The
UMIC metric (Lee et al., [2021), a reference-free approach, assesses image—caption compatibility
by integrating vision—language contrastive features with uncertainty modeling, thereby enhancing
robustness against noisy or ambiguous samples. TIGEr (Jiang et al., 2019) employs contrastive
embedding models designed specifically for image-caption evaluation, with optimization targeted
towards alignment with human judgment. Variants of BERTScore (Zhang et al., 2019) have been
adapted for the vision—language domain, computing token-level semantic similarity via contextual
embeddings, often fine-tuned to better capture visual relevance. VILBERT-S (Lu et al., 2019)) uti-
lizes the VILBERT architecture to embed and evaluate captions based on fine-grained cross-modal
interactions. CLIPScore (Hessel et al., 2021)) leverages the CLIP model (Radford et al., |2021)) to
independently encode the image and caption, subsequently calculating their cosine similarity as a
direct measure of semantic alignment. PAC-S (Sarto et al.,[2023a)) extends this framework by incor-
porating an auxiliary penalty term that reduces scores when captions introduce hallucinated content
unsubstantiated by the image. Collectively, embedding-based methodologies exhibit superior capac-
ity to accommodate paraphrastic variation and to capture high-level semantic congruence. However,
their performance depend on length bias and domain generalization of the vision—language models.

LLM/MLLM-based metrics have emerged as a promising direction in image-caption evaluation,
leveraging the reasoning and contextual understanding capabilities of large language models to as-
sess semantic alignment between visual and textual inputs. CLAIR (Chan et al., [2023) employs
LLMs to estimate the semantic relevance between a candidate caption and a set of reference texts.
FLEUR (Lee et al., 2024) refines MLLM-based assessments of image—caption pairs by applying
logit smoothing to the model outputs, which helps mitigate prediction noise and yields more stable,
higher-quality evaluation scores. Beyond direct similarity assessment, some methods emphasize
interpretability through statement-level analysis. FaithScore (Jing et al., |2023) decomposes a cap-
tion into atomic propositions, evaluates the factual correctness of each in isolation, and aggregates
these judgments into a final score, producing an evaluation framework with a degree of explain-
ability. RLAIF-V (Yu et al.l |2025)) introduces a novel self-feedback mechanism: captions are split
into discrete statements, reformulated as questions, and then passed to an MLLM for binary clas-
sification, encouraging more fine-grained factual consistency checks. DCScore (Ye et al., |2025)),
in turn, jointly accounts for textual accuracy and recall of visual elements; however, its strict re-
liance on reference captions constrains its applicability in scenarios where high-quality references
are unavailable. Overall, LLM/MLLM-based metrics offer enhanced semantic reasoning and the po-
tential for interpretable assessments. Nevertheless, existing works still suffer from limited scoring
dimensions and reliance on reference captions.

3 CHAIN OF ATOMS

3.1 MOTIVATION

In recent years, multimodal large language models (MLLMs) have been widely used for content un-
derstanding, leading to numerous “MLLM-as-a-judge” applications (Chen et al.,2024a;|Wang et al.,
2025} |Ye et al.l 2025). However, current MLLM-based image-caption evaluation methods face two
main challenges: (1) limited interpretability, and (2) poor style adaptability. To alleviate the above
limitations, we propose Chain-of-Atoms (CoA), a metric-decomposing framework. Unlike prior ap-
proaches that rely on a single subjective metric, our framework decomposes the overall evaluation
score into two sub-metrics: recall and precision. Specifically, recall measures the extent to which
a caption covers the visual elements of an image, while precision assesses the correctness and rele-
vance of the caption’s content. These sub-metrics are more objective by focusing on the specific and
measurable properties of the image and caption, rather than conflating numerous evaluation factors
into a single score. CoA explicitly decomposes both the image and caption into minimal information
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Chain-of-Atoms Framework
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Figure 1: Overview of the proposed CoA evaluation. For a given image-caption pair, CoA-MLLM
generates four fields: a) the <box> field contains the bounding boxes in the image; b) <scene>
contains all the minimal visual units (MVUs) in the image; ¢) <textatom> contains all the min-
imal textual units (MTUs) in the caption; and d) <result> contains the unit-level matching of
MTUs and MVUs. Based on the <result> field, the precision and recall values can be obtained
through rules, and combined to obtain the SAFI metric.

units, Minimal Visual Units (MVUs) for images and Minimal Textual Units (MTUs) for captions.
Through these units, the recall and precision are calculated by matching MVUs and MTUs on unit
level. Compared with previous studies (Jing et al., [2023} |Yu et al., 2025} Ye et al., 2025), our CoA
method overcomes the challenges of unit-level decomposition in reference-free scenarios. Addi-
tionally, another key strength of our CoA framework is its adaptability to varying narrative styles.
Human evaluators often tailor their judgment based on the level of detail in a caption: for highly
descriptive captions, they tend to reward comprehensive coverage of image elements, whereas for
concise captions, they prioritize correctness and tolerate minor omissions without penalizing ex-
cessive details. Inspired by these observations, CoA evaluation dynamically adjusts the weights of
recall and precision based on the number of MTUs, thus obtaining a new metric SAF'/. This flexibil-
ity simulates human preferences and ensures robustness across diverse narrative styles. The detailed
process of CoA is described in Section 3.2 and the synthesis of CoA dataset lies in Section 3.3.

3.2 COA EVALUATION

The proposed CoA evaluation comprises two sequential steps: decomposition and matching. To
enhance usability, these steps are designed to be completed within a single MLLM forward. Ac-
cordingly, we train a CoA-MLLM, with four structured fields as output. As illustrated in Fig-
urem the four fields, namely <box>, <scene>, <textatom>, and <result>, are denoted as
B={b1,b2,...,bc}, S ={s1,52,...,8m}, T = {t1,ta,...,tn},and R = {ry,72,...,"myN ),
respectively. Here, B and S denote the visual content, 7 denotes the textual content, and R de-
notes the unit-level matching result. The first three fields can be regarded as a structured chain of
thought (Wei et al.l 2022), whereas the last field as the result.

Each s; € Sand t; € T is a “subject-verb-object” format, regarded as a minimal visual unit (MVU)
and minimal textual unit (MTU), respectively. The <result> field contains the matchings for all
MVUs and MTUs. For § with M MVUs and 7 with N MTUs, the matching process is as follows:

Csp oty i m(sg, ty), ! [ teenm s i m(te—, si), )
TE<M = 9 . ” . ey TE>M = 9 . » . 2
si: no”, otherwise. tr—n: n0o”,  otherwise.

In Eq. (1| and Eq. [2| m(a,b) represents a semantic matching function. When a and b share similar
semantic information, m(a,b) returns true, otherwise false. This function is achieved by CoA-
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MLLM directly. In our definition, recall is the proportion of successfully matched MVUs, whereas
precision is the proportion of successfully matched MTUs, denoted as:

1M M+N
recall = i Z 1(rk =+ “Sp: no”), precision = i Z 1(7“k # “tp_n no”). 3)

k=1 k=M+1

These sub-metrics are then combined to compute the style-adaptive F; (SAF1) metric:
in (1.0 0.0, = Omin (4)
w = min U, max . B em—
’ ' emaz - amin ’

SAFI = w- Fy(r,p) + (1 —w) - p, %)

where 7, p, [ are short for recall, precision, and the number of MTUs. w stands for a dynamic
weight. Additionally, we define two thresholds, 0,,,,, and 6,,;,, as the boundaries of caption styles.
For captions containing fewer MTUs than 6,,,;,,, the style is classified as concise captions, and only
precision is considered when calculating the overall score. When the number of MTUs exceeds
Omaz, the style is classified as detailed captions, and the score balances both precision and recall
by F} metric. Specifically, when the MTU count falls between 6,,,;,, and 0,4, a linear weighting
strategy is applied, gradually transitioning from concise to detailed captions scoring to ensure a
continuous and smooth score distribution.
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Figure 2: The overview of the Bottom2Up data sampling strategy. 1) By sampling the MVUs, a
sample set containing all available MVUs can be obtained. 2) Four operations can be performed
on the sample set to obtain the synthesized MTUs: Copy, Rewrite, Synonym Replacement, and
Irrelevant Replacement. 3) The synthesized MTUs are merged into a caption, and the corresponding
recall®¥™ and precision®¥" are determined based on the sampling process according to Eq.

3.3 COA SYNTHESIZING

After finalizing the CoA evaluation pipeline, we have assessed the CoA evaluation effectiveness of
general-purpose MLLMs. However, as shown in Table [T} both open-source and proprietary mod-
els demonstrate unsatisfactory performance in precision, recall, and SAF1. Therefore, we conclude
that post-training of an MLLM is necessary to meet the requirements of CoA evaluation. Based on
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these observations, we propose Botfom2Up, a sampling strategy designed to produce CoA data that
is diverse and balanced with respect to precision, recall. In particular, Bottom2Up inverts the con-
ventional process: it first sets the desired precision and recall levels, and then synthesizes captions
to meet these targets.

As illustrated in Figure [2} Bottom2Up comprises three steps: 1) sampling, 2) rewriting, and 3)
synthesizing. Given a scene graph as raw data, it can be denoted as {Image, B, S}. In the sampling
stage, for each s, € S, we maintain it with probability p; and discard it with probability 1 — p;. The
sampled set S**" = {s§%™, s5%™, ..., s3?™} contains N MVUs, compared with M MVUs in S.

The rewriting stage comprises four atomic operations: Copy, Rewrite, Synonym Replacement, and
Irrelevant Replacement. The first three are applied sequentially to each sampled s7*™ for i =
1,2,...,N. The Copy operation is mandatory, yielding ¢;¥" < s{*™. The Rewrite operation then
modifies the object of ¢;" with probability po, rendering an incorrect proposition. The Synonym
Replacement substitutes the predicate of ¢;¥" with a synonym with probability p3, maintaining its
correctness. Traversing all elements in S**™ yields a synthesized set of MTUs, denoted as 759" =
{879, 3", .., tY" ). Additionally, Irrelevant Replacement operates independently by replacing

7Y™ with an irrelevant scene graph, ensuring no valid matching exists between 7°¥" and S.
In the synthesizing stage, we employ an MLLM to compose the MTUs into a caption:
Cap®¥™ = synthesize(7°Y"). 6)

Furthermore, based on the sampling and rewriting stage, the recall and precision of the synthesized
caption can be directly derived from probabilities:

SYyn L syn
recall’™ = p1(1 — p9), precision®™ =1 — ps. @)
1.0
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0.8 1 o014 6000 -
0.012
5000 1 R
0.6 0.010 ¢ >
- s 3
T £ § 4000
g £ g
-4 0.008 S g
0.4 & %30004 fEELEEEILEERIEL P
0.006
20004 [LPLLHEE LTt EL L]
021 0.004
: |
0.002 oo (I ETIEY T bRt
=Ll L
0.0 -+ ™ ™ ™ d 0.000 0-
.0 0.2 0.4 0.6 0.8

0. 1.0 0 10 20 30 40 50 60

Precision Number of MTUs

(a) Precision-Recall Heatmap (b) Distribution of the Number of MTUs
Figure 3: (a) The p-r distribution of the CoA dataset. (b) The distribution on number of the MTUs.

Through an iterative repetition of the above process, we can effectively synthesize sam-
ples exhibiting varying levels of recall and precision. Based on these samples, we con-
struct a CoA dataset comprising 400K samples, where each sample is represented as
{Image, Cap®¥", recall®" precision®¥™}. The statistics and distributions of the dataset are illus-
trated in Figure 3]

4 EXPERIMENTS

4.1 SETTINGS

In this section, we present the performance of the CoA-MLLM across various settings, including
evaluation on CoA Bench and applications in data filtering of MLLM training.

Model. We train CoA-MLLMs based on Qwen2.5-VL-7B 2024), GLM-4V-9B (GLM|
et all 2024} [Wang et al.| 2023) and InternVL3-8B (Zhu et al., 2025)), training details are available
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in Table [9]in the appendix. During data synthesizing, Gemini-2.0-Flash (Google, 2025) is applied.
In experiments, we evaluate several MLLMs, including LLaVA-1.5-7B (Liu et al.,[2024a), Qwen2-
VL-7B (Wang et al., 2024)), Qwen2.5-VL-72B (Bai et al} 2025), GPT-4-Vision (OpenAl, 2025a)),
GPT-5-Chat (OpenAl, [2025b)), and Claude-Sonnet4 (Anthropic, 2025)).

Datasets. We use approximately 4,000 scene graph samples from (Johnson et al.l |2015) to syn-
thesize the CoA dataset. In addition, we employ 30K images from the COCO dataset (Lin et al.,
2014) as source data to generate 400K CoA samples. For benchmark construction, we further in-
corporate the Flickr30k dataset (Plummer et al.l [2015) to evaluate the model’s generalization on
out-of-distribution data. To facilitate fine-grained evaluation, the scene graph data we use (both
public and self-synthesized) are annotated at the highest granularity, with roughly 45 MVUs per
image on average.

Benchmarks. To comprehensively evaluate the capabilities of MLLMs, we employ a diverse set
of vision-language benchmarks, including MMBench (Liu et al., [2024b), MME (Chaoyou et al.,
2023), POPE (L1 et al., 2023), MMMU (Yue et al., 2024), HallusionBench (Guan et al., 2024),
MMT-Bench (Ying et al., 2024), MM Vet (Yu et al. [2023), MMStar (Chen et al., 2024b), and Sci-
enceQA (Lu et al.| 2022).

4.2 CoA BENCH

To ensure a convenient and fair testing environment, we establish the CoA Bench. This bench-
mark takes an image—caption pair as input and requires the output of its precision, recall, and SAF1.
Compared with traditional image—captioning evaluation benchmarks, CoA Bench decomposes a sin-
gle subjective metric into multiple objective sub-metrics, thereby offering a new perspective. CoA
Bench comprises 500 samples, each includes precision and recall derived via the Bottom2Up sam-
pling strategy, together with a SAFI score obtained from human evaluation. The human evaluation
criteria are described in Table[7)in the appendix.

For comparison, we evaluate several general-purpose MLLMs, including Qwen2.5-VL series, GPT
series, Claude series, and Gemini series. 0,,;, and 0,,,, are set as 5 and 20, respectively. As
shown in Table|l} the experimental results indicate that plain prompts leads to poor performance on
recall prediction. While CoA prompt improves recall correlation and SAF] accuracy but reduces
precision correlation. Our CoA-MLLM outperforms general-purpose MLLMs across multiple met-
rics. CoA-MLLMSs fine-tuned on different backbones all demonstrate promising performance on
the CoA Bench, with Qwen2.5-VL-7B achieving the best results. In terms of recall and precision
correlation, CoA-MLLM (Qwen) leads the second place by an average of 23.49%, and leads by an
average of 6.41% on SAFI. Further analysis of the differences between the in-distribution and
out-of-distribution datasets is provided in Table[I0]in the appendix.

recall precision SAF1

Model prompt  pegr 4+ Kendt Peart Kend? Acc®S1  Aec®8 1t
Plain 1926 1187 4743  36.50 53.43 29.49
Qwen2.5-VL-72B CoA 33.01 31.87 12.87 10.53 56.12 29.63
o Plain 3042 2441  46.19  40.73 57.61 74.28
Gemini-2.0-Flash CoA 4038  30.00 2296 17.67 57.94 79.70
- Plain 2631 2138 4134  33.03 50.20 39.19
GPT-4-Vision CoA 3374 2739 2320 15.58 59.43 39.79
Plain 3826  28.00 5351 42381 57.14 71.45
GPT-5-Chat CoA  44.13 3357 3539 2426 57.13 75.46
Plain 3595 3246 3951 33.33 60.84 71.48
Claude-Sonnet4 CoA 6059 4753 4640  33.02 49.50 71.48
CoA-MLLM (Qwen2.5-VL-7B)  CoA  71.14 5842 5949  42.54 60.76 85.71
CoA-MLLM (GLM-4V-9B) CoA 6297 5424 5298  37.22 57.20 83.95
CoA-MLLM (InternVL3-8B) CoA  69.67 5838 5821 41.00 55.32 85.65

Table 1: Performance on the CoA benchmark. Pear, Kend, Acc® represent the pearson correla-
tion, kendall correlation, and the binary classification accuracy with s as the threshold, respectively.
“CoA” refers to the proposed metric-decomposition prompt whereas “plain” requires the MLLMs to
directly predict the recall and precision. The SAF1 is obtained following Eq. E}
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Moreover, to further demonstrate that the reasoning outputs of CoA-MLLM are not only highly reli-
able at the instance level but also accurate at the atom level, we manually inspect 200 samples from
the CoA Bench to verify the correctness of their atomic information. Atom-level accuracy is com-
puted in two stages: (1) performing a one-to-one comparison between model-generated Minimal
Textual Units (MTUs) and Minimal Visual Units (MVUs) with their human-verified counterparts;
and (2) validating the correctness of the model-generated MTUs and MV Us by referencing the origi-
nal captions and images, respectively. A unit is considered an overall hit if it matches in either stage.
As shown in Table [2] atom-level accuracy remains consistently high across different backbones,
indicating that CoA-MLLM exhibits strong atomic decomposition capability.

Model MVUs MTUs
CoA-MLLM (Qwen2.5-VL-7B) 82.24% 85.07%
CoA-MLLM (GLM-4v-9B) 75.80% 77.89%

CoA-MLLM (InternVL3-8B) 82.17%  75.05%

Table 2: Atom-level accuracy of CoA-MLLMs.

4.3 DATA FILTERING IN MLLM PRETRAINING AND SFT

In the MLLM pre-training stage, image—caption pairs are the most common data type, providing
a straightforward basis for aligning vision and language modalities. We have employed the CoA-
MLLM to filter the pre-training dataset and analyze the downstream performance differences. We
use LLaVA-1.5-7B (Liu et al., [2024a)) as a baseline in this stage.

We rank the samples by the SAF/ score and apply different thresholds as filtering criteria, ultimately
generating six distinct data sizesﬂ The experimental results after pre-training are presented in Ta-
ble[3] CoA-filtered data lead to substantial performance gains. With only 5.2% of the data, the
model achieves an average performance gain of 23.47% compared with the full dataset. Further,
with 64.2% of the data, it reaches 50.11% performance gain compared with the full dataset.

Pretrain SFT MMB MME POPE MMMU Hallu MMVet MMStar SciQA Average Avg Gain
595K X 1435 327.00 17.70 17.71 10.09 9.58 16.07 22.55 17.59 baseline

31K X 9.41 421.00 1950 2398 1039 9.72 2027 3842 21.72
Performance Gain -4.94 +94.00 +1.80 +6.27 +0.30 +0.14 +4.20 +15.87 +4.13 +23.47%

65K X 8.63 346.00 18.80 2446 12.51 1233 21.46 38.18 21.37
Performance Gain -5.72 +19.00 +1.10 +6.75 +2.42 4275 +539 +15.63 +3.78 +21.47%

110K X 16.45 347.00 18.40 2299 1293 15.09 2253 3391 2213
Performance Gain +2.10 +20.00 +0.70 +5.28 +2.84 4551 +6.46 +11.36 +4.53 +25.75%

162K X 1491 477.00 20.30 25.61 16.19 1137 22.01 3941 24.69
Performance Gain +0.56 +150.00 +2.60 +7.90 +6.10 +1.79 +594 +16.86 +7.09 +40.32%

233K X 13.51 603.00 16.80 24.05 14.83 11.51 19.80 33.71 2431
Performance Gain -0.84 +276.00 -0.90 +6.34 +4.74 +193 +3.73 +11.16 +6.72 +38.20%

382K X 15.75 624.00 19.10 25.10 14.19 1233 22.80 39.61 2641
Performance Gain +1.40 +297.00 +1.40 +7.39 +4.10 +2.75 +6.73 +17.06 +8.82 +50.11%

Table 3: Performance on various vision-language benchmarks without SFT. The “Pretrain” column
denotes the size of the pre-training dataset. 595K represents the original dataset, while the smaller
sizes correspond to subsets after filtering. For MME, the value is divided by 10 when computing
the average score. The “Avg Gain” column indicates the relative accuracy increase over the baseline
model trained on the full 595K dataset.

Furthermore, we perform SFT training on the pre-trained models, as shown in Table 4] All models
use the same 150K SFT dataset (Liu et al., [2023) and maintain identical hyper-parameters. The
results demonstrate that using only 5.2% of the data yields 98.77% of the downstream average per-
formance, whereas using 18.5% of the data reaches full performance. Compared with the results of

'The SAFI thresholds corresponding to different data sizes are available in the Tablein the appendix.
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Pretrain SFT MMB MME POPE MMMU Hallu MMVet MMStar SciQA Average Avg Gain
595K 150K 24.83 1163.00 7428 21.50 39.11 2555 29.60 53.53 38.40 baseline

31K 150K 13.51 1135.00 7548 2450 39.74 26.70 30.20 5543 3792
Performance Gain -11.32 -28.00 +1.20 +3.00 +0.63 +1.15 +0.60 +1.90 -047 -1.23%

65K 150K  16.09 1226.00 76.15 23.40 37.64 2550 29.53 5255 37.72
Performance Gain -8.74 +63.00 +1.87 +190 -147 -0.05 -0.07 -098 -0.68 -1.77%

110K 150K 23.37 1220.00 76.31 23.50 37.33 26.85 29.80 53.70 38.94
Performance Gain -1.46 +57.00 +2.03 +2.00 -1.78 +1.30 +0.20 +0.17 +0.54 +1.42%

162K 150K 17.04 1196.00 76.10 23.40 39.85 27.48 30.67 53.20 3845
Performance Gain -7.79 +33.00 +1.82 +1.90 +0.74 +193 +1.07 -033 +0.05 +0.14%

233K 150K 23.82 1264.00 78.03 23.40 39.96 24.17 30.73 52.16 39.30
Performance Gain -1.01 +101.00 +3.75 +1.90 +0.85 -1.38 +1.13 -1.37 +0.90 +2.36%

382K 150K  26.17 1254.00 77.03 2490 34.70 25.55 32.33 55.58 39.76
Performance Gain +1.34 +91.00 +2.75 +3.40 -441 +0.00 +2.73 +2.05 +1.36 +3.55%

Table 4: Performance on various vision-language benchmarks with SFT on 150K instruction
datasets. The “Pretrain” column denotes the size of the pre-training dataset. 595K represents the
original dataset, while the smaller sizes correspond to subsets after filtering. For MME, the value
is divided by 30 when computing the average score. The “Avg Gain” column indicates the relative
accuracy increase over the baseline model trained on the full 595K dataset.

the “pre-training only” setting, the advantage of CoA filtering narrows after SFT, likely because the
SFT dataset also facilitates modality alignment. These results demonstrate that the CoA evaluation
substantially improves the ability to identify high-quality samples, thereby delivering practical gains
in MLLM training efficiency.

To further verify the effects of the CoA evaluation, we apply it to filter the SFT training dataset.
We adopt the Qwen2-VL-7B and LLaVA-1.5-7B models as baselines and LLaVA-665K (Liu et al.,
2024a)) as the SFT dataset. We inject noisy data with low CLIP correlation scores to simulate low-
quality data commonly encountered in real-world scenarios. The experimental results are presented
in Table[5] The results indicate that, after noise injection, the average performance of both Qwen and
LLaVA decreases significantly. However, after CoA filtering, both models show robustness to noise
injection, with performance degradation remaining at a relatively controllable level, demonstrating
the practical value of CoA in data filtering.

Noise Ratio so5 e s6

Mol T 0% 10% 20% 30% 0% 0%,

X 595958.1457.1356.16 56295495 | @ @
Qwen / 595959.6158.6658.1857.9358.35 ;"

50.62 49.93 48.97 48.80 47.34 46.50 N —

LLaVA v/ 50.6250.64 50.43 49.53 49.72 49.13 o« [ — |
Table 5: Performance comparison of Qwen and o
LLaVA models under different ratios of noise in-  Figure 4: Performance comparison across
jection in SFT, with and without data filtering. different filters in MLLM pre-training.

4.4 ABLATIONS

To verify the effectiveness and necessity of the proposed CoA evaluation, we conduct ablation stud-
ies on different data-filtering methods. As shown in Figure ] and Table [6] we compare CoA with
three baselines: CLIPScore (Hessel et al., [2021)) and PAC-S (Sarto et al.| 2023b)), two CLIP-based
methods for measuring vision—language consistency, and the Precision-only filter, which ranks sam-
ples solely based on the precision metric derived from CoA-MLLM. Across all data scales, CoA
consistently outperforms both CLIPScore and PAC-S, achieving the highest average downstream
performance and demonstrating that decomposing image-caption data into atomic semantic units ef-
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fectively captures fine-grained semantic mismatches. Notably, although the majority of captions in
the training dataset are short (over 60%), relying solely on the precision metric results in a significant
performance drop compared with the SAFI metric, highlighting the necessity of jointly considering
both correctness and comprehensiveness when evaluating image—caption pairs. Furthermore, all
filtering strategies surpass the No-Filter baseline, reinforcing the importance of multimodal data fil-
tering and supporting the motivation of our study. Additional ablation studies on hyperparameters
are provided in Figure 3]

Filter MME Hallusion MMT MMStar ScienceQA  Avg

595K  No-Filter 327 1009 1771 16.07 22.55 16.55
CLIPScore 324 11.67 2744  19.40 26.68 20.28
PAC-S 296 6.83 2437 21.20 33.71 20.18
3IK ponly 415 1324 1902 16.53 1824 1758
CoA 421 1039 2398 2027 38.42 22.82
CLIPScore 341 11.04 2520 2020 26.98 20.09
PAC-S 291 1009 2501  21.67 35.05 21.27
1I0K  Pp_only 317 778 1931  17.60 27.66 17.64
CoA 347 1293 2299 2253 33.91 21.94
CLIPScore 483 1209 2196  20.71 26.07 21.00
PAC-S 455 1672 2261  19.80 30.04 22.39
233K Pp-only 483 1924 2193 19.46 3272 23.50
CoA 603 1483 2405  19.80 3371 24.51
CLIPScore 549 2008 2446 2046 27.61 24.01
PAC-S 288 1125 2382 2207 35.65 21.44
382K poonly 444 13.88  21.87 2046 28.06 21.29
CoA 624 1419 2510  22.80 39.61 26.58
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Figure 5: Ablation studies on 6,,,, and 0,,;,

5 CONCLUSION

In this paper, we introduce Chain-of-Atoms (CoA), a metric-decomposition framework for im-
age—caption evaluation. By separating the overall score into sub-metrics, CoA mitigates the lim-
itations of prior approaches in interpretability and style adaptability. We further present Bottom2Up,
a data sampling strategy that synthesizes large-scale, diverse image—caption evaluation datasets.
Building on these components, we train CoA-MLLM, a multimodal large language model capable
of end-to-end CoA inference. On the CoA Bench, CoA-MLLM outperforms existing general-purpose
MLLMs and achieves the highest correlation with human judgments. We also demonstrate its effec-
tiveness for data filtering, achieving downstream performance comparable to using the full dataset
while training on only about 18.5% of the pre-training data, thereby improving efficiency. We be-
lieve that CoA holds promising potential for multimodal quality evaluation, and in future work, we
aim to extend it to a wide range of vision—language corpora beyond image—caption tasks.

10
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Reproducibility Statement

We have made every effort to ensure that the results reported in this paper are reproducible. Exper-
imental configurations, including hyper-parameters, training settings, and implementation details,
are described in the appendix. A full description of the CoA framework and the Botfom2Up strategy,
together with the exact prompts, is provided to facilitate reproduction of our experiments. Details
of the datasets including evaluation criteria, data distributions, and thresholds are documented in
the appendix to ensure consistent evaluation. Necessary case visualizations are also included to
improve other researchers’ understanding of the CoA framework. We believe these measures will
enable other researchers to reproduce our work and further advance the field.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used to aid in the writing and polishing of the paper. Specif-
ically, we use LLMs to assist in refining the language, improving readability, and ensuring clarity
in various sections of the paper. The LLMs help with tasks such as sentence rephrasing, grammar
checking, and enhancing the overall flow of the text.

It is important to note that the LLMs are not involved in the research design, implementation, results,
and conclusions. The authors take full responsibility for all content in this paper. We have ensured
that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or
scientific misconduct.

A.2 DATASETS

For the proposed CoA dataset, this section further analyzes the human evaluation criteria and data
distribution. Table [/| presents the manual evaluation criteria for the SAFI metric applied to im-
age—caption pairs. The criteria adopts a discrete five-point scale, with distinct definitions for the
detail and concise styles. We regard samples with SAFI > 0.6 as high-quality data; otherwise, they
are classified as low-quality. Consequently, in the CoA data filtering stage, we consider two filtering
metrics: Acc®® and Acc®®.

SAF1  Human Evaluation Criteria

The caption is completely accurate.
1.00 Detail Describe most of visual elements accurately.
Concise Cover the main visual elements, background can be ignored.

The caption is generally accurate, with only minor errors in details or background.
080 Detail Cover the main visual elements, background can be ignored.
Concise Mention the main visual element without describing it.

The main objects and scenes are mentioned, but the attributes are incorrect.
0.60  Detail and Concise The main visual subject is mentioned.

Describes the image incorrectly or includes irrelevant content.
040  The description does not mention the main visual subject.

<0.20 The caption is completely irrelevant to the image and does not cover any visual elements.

Table 7: The human evaluation criteria of CoA Bench.

During the MLLM pre-training stage, the LLaVA-Pretrain dataset (Liu et al., [2023)) contains 595K
image—caption pairs. We set the SAF threshold to 0.99, 0.95, 0.9, 0.8, 0.6, 0.4, and 0.2 to obtain
subsets of different sizes. For each threshold, the number of samples, as well as the counts for the
concise and detail caption styles, are listed in Table [§] Note that, all samples with the number of
MTUs greater than 6,,;,, are categorized as detail style.

SAFI Threshold Count Concise (%) Detail (%) Overall (%)

0.99 31K 3% 7% 5.32%
0.95 65K 5% 15% 10.91%
0.9 110K 6% 27% 18.48%
0.8 162K 8% 40% 27.22%
0.6 233K 18% 54% 39.15%
04 286K 31% 61% 48.06%
0.2 382K 46% 79% 64.20%

Table 8: The SAF threshold of data filtering.
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For Figure [3]in the main text, we conduct a further analysis to enhance understanding of the data
distribution. As shown in Figure[6] the heatmap on the left clearly exhibits three distinct distribu-
tional regions, which essentially correspond to different distributions of MTU counts in the right
figure. Since the number of synthesized MTUs set () equals the size of the sampled set (), and
the maintain rate for each sampled MVU is p;, the number of synthesized MTUs can be expressed
as N = py - M, where M denotes the number of original MVUs. According to Eq. 3] the p-r
relationship is as follows:

recall  pi(1—p2)
precision 1 —po

=Dp1. (8)

Therefore, in the p-r distribution, the slope of the line recall = p; - precision is proportional to
the number of MTUs. Since our sampling strategy emphasizes medium-length captions, the p—r
heatmap exhibits a clear partitioning effect.
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Figure 6: Correspondence between the p-r heatmap and the MTU number distribution.

A.3 EXPERIMENTS

The hyper-parameters used for training CoA-MLLM are shown in Table 9}

Hyper-parameter Value
DeepSpeed configuration zero3
attention type flash attention 2
Freeze vision tower False
Freeze LLM False
Freeze merger False
Batchsize 128
Image min pixels 128 x 28 x 28
Image max pixels 256 x 28 x 28
Base learning rate le-5
Merger learning rate le-5
Vision learning rate 2e-6
Weight decay 0.1
Warmup ratio 0.03
LR scheduler cosine

Table 9: Training hyper-parameters used for fine-tuning Qwen-2.5-VL.

During CoA-MLLM training, we synthesize the training data from the SG Dataset (Johnson et al.)
and COCO as the original data sources. Since CoA Bench mixes in-

distribution (ID) and out-of-distribution (OOD) data, we report results separately for both ID and
OOD datasets. CoA Bench employs SG Dataset, COCO, and Flickr30K in proportions of 20%,
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40%, and 40%, respectively. Quantitative results demonstrate that CoA-MLLM exhibits no signif-
icant performance degradation on OOD data compared with ID, proving strong generalization and
providing a feasibility validation for its application to large-scale data filtering.

SG Dataset (ID) COCO (ID) Flickr30K (OOD)
Model recall  precision SAFI recall precision SAFI recall precision SAFI

Qwen2.5-VL-7B  43.64 22.20 3571 33.35 16.72 2550 18.34 9.22 30.72
Gemini-2.0-Flash ~ 34.99 18.01 73.24  29.73 15.99 78.44 4521 22.69 84.21

GPT-4-Vision 48.11 19.50 47.00 24.68 14.43 38.66 29.16 23.19 37.24
GPT-5-Chat 36.55 19.39 66.00 33.30 19.47 77.50 37.40 33.08 78.17
Claude-Sonnet4 66.00 4251 66.00 47.26 42.82 73.50 51.97 37.59 72.22
CoA-MLLM 87.21 64.86 85.86 66.27 60.27 81.00 71.30 59.84 90.40

Table 10: Performance on ID and OOD data of CoA Bench. The metrics for recall, precision are
pearson correlation, and Acc’-® is applied on SAF].

Model Noise Filter MME POPE Hallu MMT MMVet MMStar SciQA  Average
0% X 1904 88.85 57.71 56.00  39.68 49.13 78.18 59.59
10% X 1962 87.56 5436 56.31  37.38 47.40 7491 58.14

o 10% v 2027 88.58 60.25 5526  39.82 47.13 75.55 59.61
£ 20% X 1968 88.42 56.25 54.84 34.86 44.73 71.64 57.13
2 20% v 1804 8895 55.10 56.67  40.69 47.67 76.45 58.66
ﬁ 30% X 1910 86.27 5336 54.68  36.85 40.46 73.74 56.16
é} 30% v 1880 89.18 5552 56.22  37.94 46.67 74.71 58.18
= 40% X 1876  86.01 54.28 55.00 35.65 42.87 73.31 56.29
& 40% v 1874 8818 53.63 56.82  36.63 47.80 75.58 57.93
&
5 50% X 1835 8582 51.57 5257 3443 41.87 72.52 54.95
50% v 1981 86.47 5815 5696  36.47 46.07 74.81 58.35
0% X 1623 8575 39.33 4234 3220 32.80 67.37 48.62
10% X 1676  83.99 4731 4698  28.76 34.33 66.23 49.93
= 10% v 1764 84.74 49.16 47.10  29.22 33.87 66.28 50.64
Y 20% X 1787 85.84 42.00 42.00 31.24 34.00 63.06 48.97
;<> 20% v 1743  86.94 4448 4471 32.54 35.93 64.85 50.43
" 30% X 1652 83.62 40.80 45.06 30.39 33.33 67.07 48.80
é;’ 30% v 1695 84.82 4248 4522 31.70 34.87 65.25 49.53
] 40% X 1588 8522 40.06 41.82 30.46 30.40 63.73 47.34
2 40% v 1633  86.55 42.80 4543 3553 32.87 64.05 49.72
&
5 50% X 1598 83.92 40.79 38.60 27.84 31.20 63.21 46.50
50% v 1583 8575 43.00 46.33  30.00 34.13 65.15 49.13

Table 11: Details on CoA filtering in MLLM SFT stage.

Table[TT|provides a detailed presentation of the MLLM SFT data filtering experiments (correspond-
ing to Table [5). We compare different benchmarks and varying noise ratios on Qwen2.5-VL-7B-
pretrain and LLaVA-1.5-7B-pretrain models.

We conduct an ablation study on the hyper-parameters 6,,;, and ,,.x in Eq. Eﬂ, as shown in Fig-
ure [71 Experiments are carried out under two metrics Acc’® and Acc®®, with search ranges
Omin € {1,3,5,7,9,11,13,15,17,19,21} and 0,0 € {10,12,14, 16,18, 20,22, 24, 26, 28, 30}.
The results indicate that Acc®% and Acc-® exhibit different preferences for hyper-parameters. We
ultimately set 0,,;, = 5 and 0;,, = 20 to balance the two metrics.

To ensure a fair comparison during the pre-training stage, we further investigate the impact of CoA
filtering on model performance under the same data size. As shown in Table[I2] we randomly sample
subsets of 31K, 110K, 233K, and 382K from a total of 595K pre-training samples, and apply CoA
filtering to obtain datasets of the same sizes. We then conduct one-stage pre-training of LLaVA-
1.5-7B on these subsets and evaluat the models across multiple benchmarks. The results indicate
that even at the same data scale, CoA-filtered datasets provide the model with a higher performance
ceiling, consistent with the conclusions reported in Table 3| of the main paper.
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Figure 7: Ablation studies on 6,,,, and 0,,;,

76

Pretrain Sampler MMB MME

POPE MMMU Hallu

MMVet MMStarSciQA  Average

random 7.90 360 27.00 1890 10.09 9.77 21.67 35.20 20.81
31K CoA 941 421 1950 2398 1039 972 2027 3842 21.72
random 12.50 343  15.04 17.90 1335 890 1993 3847 20.05
10K CoA 1645 347 1840 2299 1293 15.09 2253 3391 22.13
random 15.86 174 2454 1750 925 1239 18.87 32.97 18.59
233K CoA 1351 603 1680 24.05 14.83 1151 19.80 33.71 24.31
random 10.59 333 3941 18.00 12.83 1124 1890 27.81 21.52
382K CoA 1575 624 19.10 25.10 14.19 1233 22.80 39.61 26.41

Table 12: Comparison between CoA-filtered data and random sampling with the same data size.

Pretrain SFT MMB MME POPE MMMUHallu MMVet MMStarSciQA Average Avg
Gain
595K 665K 6430 1510.70 86.10 26.50 40.80 29.72 3340 65.79 49.62 baseline
3IK 665K  64.85 1653.04 85.94 2650 37.75 29.50 33.67 6435 49.71 +0.17%
65K 665K  63.73 159521 86.68 28.60 39.75 25.69 3327 67.29 49.77 +0.31%
110K 665K  55.04 161824 82.87 27.90 3891 3995 3473 65.79 49.89 +0.55%
162K 665K  64.18 1589.51 86.14 2720 4196 30.18 34.07 65.39 50.26 +1.29%
233K 665K  67.47 1707.82 86.88 26.20 39.33 28.81 33.07 65.84 50.57 +1.90%
382K 665K  73.49 164596 86.07 27.20 38.80 28.49 3420 66.24 51.17 +3.12%

Table 13: Performance on various vision-language benchmarks with SFT on 665K datasets.
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To further validate that CoA effectively selects high-quality training data, we extend the SFT training
dataset to the LLaVA-665K datasets and evaluate the models on multiple benchmarks. As presented
in Table T3] we first pre-train the model on CoA-filtered image—caption datasets of different sizes,
and then conduct subsequent SFT training using the exact same dataset. The experiments show that
pre-training with CoA-filtered data significantly enhances the model’s downstream capabilities.

A.4 CASE STUDY

In this section, we visualize cases of CoA-MLLM output. We select three samples including concise
caption (Figure 8)), medium-length caption (Figure[9), and detailed caption (Figure[T0) to provide a
more comprehensive illustration of the CoA format.

A.5 PROMPTS

In this section, we provide all prompts used in this paper to ensure reproducibility of the experimen-
tal results. Figure [TT] shows the CoA prompt, which strictly defines the CoA format and requires
outputs to follow the specified structure. In practical use, we also supply an in-context example.
However, due to page limitations, it is not listed here, but it can be constructed in a manner similar
to that in Figure[9] Correspondingly, Figure 2] presents a plain prompt that requires the MLLM to
directly predict precision and recall. Figures% and Figure [T4]are the prompts used in Bottom2Up
during the synthesizing and rewriting stages, respectively. Figure[I3]is the prompt for constructing
scene graphs.
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Figure 8: An example of CoA-MLLM output for a concise image-caption pair. All bounding boxes
generated by CoA-MLLM are visualized on the image.
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Caption

The open book on the left has
a covered title, and a hand is
holding it. A tortoiseshell cat
sits on the woman. The mirror
is on the wall. The mantel is
behind the cat, and the
woodwork is beneath the
mantel, on the right side. The
moulding is beside the wall,
on the left side. The stereo is
behind the book.
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: S9: glasses. 1, are, clear S36: mirror. 1, on, wall.1 : / R Matches N\ :
: S10: glasses.1, are, round S37: mirror.1, behind, woman. 1 1 ! : :
11 S11: glasses.1, are, glass S38: wall.1, behind, woman.1 i : S1:no S17: no S33: no S49: no : :
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\\:\ ___________________________________________ e N ———— -’ r

Figure 9: An example of CoA-MLLM output for a medium-length image-caption pair. All bounding
boxes generated by CoA-MLLM are visualized on the image.
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Caption

A white man is on a soft, neutral-
colored, and made bed that has white
pillows on it. The man, who is opposite
the plain wall, is wearing a black shirt
and is with a silver and open laptop that
is on the bed, by the man. The laptop is
on the bed. A large and dirty mirror
below the closed nightstand reflects a
woman using a flashing camera. The
woman has a blue skirt. A black clock
is on the nightstand, which is on and by
the bed. A black television is in the
mirror and by the wall, and there are
flowers on the television. An old phone
is by the bed. A round table is near the
closed door and by the wall; the door is
below the vent, which is by the door.
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S MVUs : T2: man.1, is, white T25: clock.1, on, nightstand. 1
1 T3 4 e, 8
: man.l1, on, bed.1 S33: woman.1, using, camera.2 : L?; Eeg'}’ L SOf; ¥§2 nfgl}:ts:ang.i, 1bs, céozeil
: man.l, is, white S34: camera.2, is, flashing 1 SLLbg fs’ LD : nfg SIETTEL L, L Bk
. . A . 1 T5: bed.l, is, neutral T28: nightstand.1, on, bed.1
: man.l, is, fat S35: clock.1, on, nightstand.1 1 N X N
- man.1, is, sitting $36: nightstand. 1, is, closed 1 T6: man.1, wearing, shirt.1 T29: door.1, is, closed
. 7 . C o : T7: shirt.1, is, black T30: tv.1, in, mirror. 1
: man.l, is, caucasian S37: nightstand. 1, by, bed.1 H . .
X . _ 1 T8:man.1, with, laptop.1 T31: tv.1, is, black
S6: bed.1, is, soft S38: nightstand.1, by, door.1 1 T9: lapton 1. is. silver T32: mirror. 1. is. lar
S7: bed.1, is, made S39: door.1, is, closed : lelalp e ’1 s', A T33: . S '1’ .s, ;, g
S8: bed.1, is, neat S40: tv.1, in, mirror.1 1 Tll: apto;ll. )15, oPen £ wall 1 T34: r;lnrror. ’115’ myl
S9: bed.1, is, white S41: tv.1, is, off : 3 WL, @Epesilis @b wellb 8 llonEEsll, @i, i
. . . 1 T12: wall.1, is, plain T35: door.1, below, vent.1
S10: man.1, wearing, shirt.1 S42: tv.1, is, black H .
i . C N 1 T13:bed.1, with, man.1 T36: table.1, near, door. 1
S11: shirt.1, is, black S43: mirror. 1, is, silver I T14: bed.1. h il 1 T37: table.1. i d
S12: man.1, wearing, shorts.1 ~ S44: mirror.1, is, closed 1 : ? ollp R fEIIShE, s 1G]l T, Tt}
) A 1 T15: pillows.1, on, bed.1 T38: table.1, by, wall.1
S13: shorts.1, are, brown S45: flowers.1, on, tv.1 1 N
1 X q 3 1 T16: laptop.1, on, bed.1 T39: wall.1, opposite of, man.1
S14: man.1, with, laptop.1 S46: flowers. 1, are, yellow 1 A A R
[ . 1 T17: laptop.1, by, man.1 T40: television.1, in, mirror. 1
I S15: laptop.1, is, silver S47: door.1, below, vent.1 H L.
X . X . ; 1 T18: laptop.1, on top of, bed.1 T41: television.1, by, wall.1
: S16: laptop.1, is, open S48: vent.1, is, white I T19: 1 h 1 T42: ph 1. by, bed.1
| S17: man.1, opposite of, wall.1 S49: door.1, by, mirror.1 1 SRS DI (S S SR, LUp Wk
1 . . ) 1 T20: camera.l1, is, silver T43: phone.1, is, old
1 S18:wall.l, is, tan S50: table.1, by, door.1 1 3 . N H
1 S19: wall.1, is, painted S51: table.1, is, gray : T21: woman.1, has, skirt.1 T44: mirror.1, on, nightstand.1
[ . ) ) 7 1 T22: skirt.1, is, blue T45: vent.1, by, door.1 1
: S20: bed.1, with, man.1 S52: table.1, by, wall.l ' T23: woman.1. usine. camera.2 'I i
I S21: bed.1, has, pillows.1 S53: wall.1, opposite of, man.1 } % _~° o & i 4 :
1 S22: pillows.1, on, bed.1 S54: television.1, in, mirror.1 ey iy = :
1 S23: pillows.1, against, wall.1 ~ S55: television. 1, by, wall.1 Il R Matches !
1 o i 8 2 SETI SISTO  $29: $43: S57: T8 SI4  T22:S32  T36:
i S24:pillows.1, behind, man.1  S56: phone.1, Py, befi'l Is2m2  sieTio s3o: 120 Sthno  SSETH ToiSIS 12383 T3ing :
: S25: laptop.1, on, bed.1 S57: phone.1, is, white } S3:10 SI7:TI1  S31:T21 S45:T34  S59:mo  TI0:S16 T24:S34  T38:S52 :
I S26: laptop.1, by, man.1 $58: phone. 1, is, old =S4fno SiSino ST Siino - Semo IS TS5 Taesss F
| S27:laptop.1, on top of, bed.1  $59: mirror.1, by, door.1 IS6T ST SeTi Sine Qs TinSn Ts Tiisss § b
! $28: woman.1, has, camera.l ~ S60: mirror.1, by, wall.1 V$7:14 S2TI4 S3ST2S S49imo Selino  TI4S2L T28ino  T42:S56 I |
1 : A L B 050 S=e/B . 1 S8:no S22:TI5  $36:T26  S50:no TI: S TIS:S22  T29:S39 T43:858 11
: S29: woman.1, is, standing S61: vent.1, above, door.1 189:n0 $23:n0  S37:T27 S5m0 T2:S2 T16:S25 T30:S40 Tddino 11
1 5 is. si . Isio: S24imo S38:no  SS:T38  T3:S6  TIT:S26 T31:S42  T45:S62
1 S530: camera.1, is, SIlve'r S62: vent.1, by, door.1 : S25: T016 $39: TOZ9 $53:T39  T4:S7 TI8:827  T32:no
1 S31: woman.1, has, skirt.1 S63: vent.1, by, wall.1 H $26:T17  S40:T30 S54:T40  T5:no TI9:828  T33:no
: S32: Skll’t.l iS blue S27:TI8  S4l:no $55: T4l T6:S10 T20: S30  T34:845
% > ¥ S28:TI9  S42:T31  $56:T42  T7:SII  T21:S31  T35: 47
R e N o Lt e it -

1

Figure 10: An example of CoA-MLLM output for a detailed image-caption pair. All bounding boxes

generated by CoA-MLLM are visualized on the image.
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Given an input image (**Image**) and an associated image description text
(**Caption**), please complete the following steps in strict sequence, and strictly adhere
to the specified output formatting rules:
### 1. Object Annotation in the Image
- Detect and annotate **all objects** present in the image with bounding boxes.
- For multiple instances of the same object category, append an index to the object name
(e.g., man.1, car.2, etc.)
- The annotation format for each object must be: “category.index: [x1, y1, X2, y2]', where
[x1, y1] is the top-left and [x2, y2] is the bottom-right corner coordinates of the box.
- Output each detected object on a separate line, and do **not** include any object
categories that are not present.
- All object outputs must be enclosed inside "<box> ... </box>" tags.
### 2. Scene Graph Extraction **from the Image**
- Only use the image content (do **not** use the description text).
- Extract inter-object **relations** and **attributes** from the image, and output as
subject-predicate-object (triples).
- Two triple types:
- **Relation triples:** (subject, predicate, object) — both subject and object must be
object names from step 1.
- **Attribute triples:** (subject, predicate, attribute) — subject must be from step 1;
attribute should be a descriptive word (e.g., color, status, shape).
- Begin each triple with an ordered label (e.g., S1:, S2: ...). Output **one triple per line**.
- Enclose the entire scene graph output inside "<scene> ... </scene>" tags.
### 3. Atomic Triple Extraction **from the Description Text**
- Only use the provided text description (do **not** use the image).
- Carefully split the description into the smallest atomic facts, each in triple form.
- Two triple types:
- **Relation triples:** (subject, predicate, object).
- **Attribute triples:** (subject, predicate, attribute).
- Use sequential numbering (e.g., T1:, T2:, T3: ...), one per line.
- All atomic triples are enclosed inside ‘<textatom> ... </textatom>" tags.
### 4. Matching Between Scene Graph and Atomic Text Triples
- For **every single triple** (from scene S# and textatom T#), check if there is a
matching counterpart in the other list.
- There must be no one-to-many or many-to-one matches: if Sx matches Ty, then Ty must
only match Sx, and neither may match any other triple.
- Output format:
- 'Sx: Ty" means Sx matches Ty.
- "Sx: no” means Sx has **no** matching Ty.
- "Ty: Sx* means Ty matches Sx.
- "Ty: no” means Ty has **no** matching Sx.
- Every Sx and Ty must be checked; do **not** omit any.
- All matching results must be inside ‘<result> ... </result>" tags.
**NOTES:**
- Use the prescribed tags (‘<box>', '<scene>", '<textatom>", ‘<result>") exactly and in
proper order.
- Number S#/T# sequentially, no skipping or duplicating.
- No extra text, only the required formatted output.
- When generating the output, **strictly follow these format rules.

Figure 11: The CoA prompt.
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Given an input image (**Image**) and an associated image description text (**Caption**),
please complete the following steps in strict sequence, and strictly adhere to the specified
output formatting rules:

**Judge the precision and recall of the caption**

precision: accuracy of the caption in describing the visual content.

recall: completeness of the caption in covering visual information.

the value of precision and recall should between 1 to 10, where 1 means the lowest and 10
the highest.

**NOTES:**
- Use the prescribed tags (‘<precision>", "<recall>") exactly and in proper order.
- When generating the output, **strictly follow these format rules.

Figure 12: The plain prompt for CoA Bench.

You will be given input in the following format:

input_text = f'Box list: {boxes}; Triplets: {value}'

- The Box list provides the bounding boxes for objects mentioned in the triplets, in the
standard format [x1, y1, x2, y2] (top left and bottom right coordinates).

- The Triplets section contains several triplets: “T1: subject, verb, object, T2: subject,
verb, object, ...”.

Your task is to write a image-caption-style description.

Rules

1. Capture every fact expressed by the triplets, none may be omitted and no new facts
may be added.

2. You may freely paraphrase: replace words with clear synonyms, change word order,
merge ideas, or add small connecting words so the sentence reads naturally. The overall
meaning of each original subject-verb-object relation must stay the same.

3. Nouns with different suffixes represent different instances of the same category and
need to be distinguished by natural language when generating captions (man.1, car.3,
book.2,... are unacceptable).

4. Remove the labels (T1, T2, ...) and output ONLY the final caption, no lists, no bullet
points, no commentary.

5. Integrate the positional information from the bounding boxes:

- Mention the absolute position of objects as indicated by their box (e.g., “on the left
side”, “near the top right corner”, etc.), if possible.

- Describe the relative positions and spatial relationships of the objects in the image,
based on both the box information and the relationships described in the triplets.

- If a box is not mentioned in the triplets, do not include any information about that object
in the caption.

- If a triplet refers to an object not found in the box list, you can still express the
relationship without including positional information about that object.

6. The final caption must blend the relationship and position details smoothly and
naturally, as in a normal image caption.

Figure 13: The prompt for the synthesizing stage in Bottom2Up.
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You are given a triplet required to change in the order “subject, predicate, object” and
several reference triplets (each also in “subject, predicate, object” form).

1. Decide the triple type.

* Relation triple: the object is a noun.

* Attribute triple: the object is an adjective.

2. Rules for a relation triple:

» Randomly choose either the predicate or the object (not both) to replace; keep the
subject unchanged.

* The replacement must stay in the same grammatical and semantic category:

— If the predicate is a spatial term, replace it with a different spatial term; if it is an action
verb, replace it with a different action verb, etc.

— If the object denotes a person, replace it with another person; if it denotes a plant,
replace it with another plant, and so on.

* The new triple must convey a clearly different meaning; do not use near-synonyms or
minor tweaks.

3. Rules for an attribute triple:

* Replace only the object (the adjective); keep the subject and predicate unchanged.

» The new adjective must belong to the same attribute dimension:

— size (big <-> small),

— color (red <-> yellow),

— texture (smooth <-> rough), etc.

* Ensure the meaning changes substantially; no near-synonyms or mere degree shifts
(e.g., “very big — huge” is not allowed).

4. Additional reference check:

* The generated triple must not conflict with any of the provided reference triplets.

— No subject-predicate-object combination identical to a reference triplet.

— No subject-predicate-object combination that merely inverts the attribute dimension of a
reference triple (e.g., if a reference is “man, is, tall” then “man, is, short™ is also
prohibited, if a reference is “man, is, sitting then “man, is, running is also prohibited).
— For relation triples, avoid replacements that result in a subject-predicate-object
appearing in any reference triple.

5. Common-sense & non-triviality

* The generated triple must be logically plausible and consistent with general knowledge
(e.g., “ground, above, sky” is invalid).

6. For all cases:

* Preserve the exact “subject, predicate, object” order and the comma separators.

* Output nothing except the new triplet.

Figure 14: The prompt for the rewriting stage in Bottom2Up.
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Given an input image (Image) and an associated image description text (Caption), please
complete the following steps in strict sequence, and strictly adhere to the specified output
formatting rules:
1. Object Annotation in the Image

Detect and annotate all objects present in the image with bounding boxes.

For multiple instances of the same object category, append an index to the object name
(e.g., man.1, car.2, etc.)

The annotation format for each object must be: category.index: [x1, y1, x2, y2], where
[x1, y1] is the top-left and [x2, y2] is the bottom-right corner coordinates of the box.

Output each detected object on a separate line, and do not include any object categories
that are not present.

All object outputs must be enclosed inside <box> ... </box> tags.
2. Scene Graph Extraction from the Image
Only use the image content (do not use the description text).

Extract inter-object relations and attributes from the image, and output as subject-
predicate-object (triples).

Two triple types:

Relation triples: (subject, predicate, object) — both subject and object must be object
names from step 1.

Attribute triples: (subject, predicate, attribute) — subject must be from step 1; attribute
should be a descriptive word (e.g., color, status, shape).

Begin each triple with an ordered label (e.g., S1:, S2: ...). Output one triple per line.

The box and scene should be as detail as possible, at least 20 triples.

Enclose the entire scene graph output inside <scene> ... </scene> tags.
IMPORTANT:
Only output the <box> ... </box> and <scene> ... </scene> sections.
Do NOT include any other tags or text. Strictly follow the required formatting.

Figure 15: The prompt for constructing scene graph.
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