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ABSTRACT

In recent years, Multimodal Large Language Models (MLLMs) have achieved re-
markable progress across a wide range of domains, largely benefiting from the
availability of large-scale multimodal datasets, particularly image-caption cor-
pora. Nevertheless, the community has long lacked a universal and standardized
data quality assessment framework specifically designed for such corpora. In this
paper, we propose the Chain-of-Atoms (CoA) evaluation framework along with
a corresponding Bottom2Up data sampling strategy. CoA decomposes both cap-
tions and images into minimal information units and computes precision and re-
call as objective sub-metrics. By reweighting these sub-metrics dynamically, we
introduce a style-adaptive F1 (SAF1) metric to achieve better correlation with hu-
man preference. To enhance the capability of semantic decomposition, we apply
the proposed Bottom2Up strategy to construct a balanced and large-scale training
dataset. We also establish CoA Bench, a standardized benchmark for fine-grained
image-caption evaluation. Experimental results on CoA Bench and other down-
stream tasks demonstrate that CoA effectively filters noisy training samples, sig-
nificantly improves the robustness and training efficiency of MLLM. Specifically,
CoA-based data filtering during MLLM pre-training reduces the training data by
81.5% without causing performance degradation.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have achieved remarkable progress
in tasks, such as visual understanding, cross-modal retrieval, and multimodal generation. Similar to
their unimodal counterparts, the success of MLLMs is largely dependent on the availability of high-
quality, large-scale training data. Among these, image-caption pairs constitute a central resource
for building general-purpose multimodal understanding capabilities. However, compared with nat-
ural language text, image-caption corpora collected from the web often face more serious quality
concerns such as semantic mismatch, incomplete descriptions, and noisy or redundant information.
When such low-quality samples are repeatedly presented during MLLM training, the noisy signals
are amplified, impairing the model’s ability to understand and generalize to the real visual world.
Therefore, a precise and fine-grained filtering of large-scale image-caption datasets is critical to
maximizing the potential of MLLMs.

We suggest that an effective image-caption evaluation metric should ideally satisfy two key prop-
erties: interpretability and style adaptability. The former requires that the score reflects specific
strengths and weaknesses of a caption, while the latter requires a fair and consistent evaluation
across captions of varying lengths and narrative styles. However, existing image-caption evaluation
approaches fall short of these requirements (Sarto et al., 2025). Rule-based metrics (e.g., BLEU-
4 (Papineni et al., 2002), CIDEr (Vedantam et al., 2015)) assess surface-level properties such as
n-gram overlap and keyword coverage. Although computationally efficient, they are overly sensitive
to lexical mismatches and fail to capture deeper semantic relationships, limiting both interpretabil-
ity and robustness to stylistic variation. Embedding-based metrics (e.g., CLIPScore (Hessel et al.,
2021)) measure global semantic consistency through vision-language pre-embedding models, but
the scores blur the lines between different error types (e.g. inaccurate vs. missing details) (Sarto
et al., 2025) and are sensitive to caption length due to embedding aggregation effects (Zhang et al.,
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2024), undermining interpretability and style invariance. LLM/MLLM-based metrics (Chan et al.,
2023; Ye et al., 2025) prompt language models to score captions against detailed evaluation criteria,
leveraging rich semantic knowledge and reasoning capabilities. Nonetheless, their judgments are
sensitive to prompt design, inherently subjective, and difficult to calibrate for captions of different
styles, limiting adaptability.

The gap between the desired properties and the limitations of current methods highlights the need for
a new evaluation paradigm that achieves both interpretability and style adaptability. To address these
limitations, we propose Chain-of-Atoms (CoA), a novel framework for image-caption evaluation.
Specifically, CoA explicitly decomposes the overall quality score into two quantifiable sub-metrics:

• precision: accuracy of the caption in describing visual content.
• recall: completeness of the caption in covering visual content.

This metric-decomposition paradigm enhances the interpretability so that one can clearly understand
the basis for the rating. Furthermore, in practice, human evaluators tend to expect detailed captions
to be more comprehensive (i.e., higher recall), while being more tolerant of omissions in concise
captions (i.e., lower recall). By combining precision and recall via a flexible weighting scheme, we
propose style-adaptive F1 (SAF1), a metric that can naturally model such human preferences, thus
achieving human-like evaluation preferences across diverse narrative styles.

From a methodological perspective, CoA draws inspiration from the Scene Graph Generation (SGG)
task (Johnson et al., 2015; Yang et al., 2023) in computer vision, representing images as sets of
bounding boxes and Minimal Visual Units (MVUs), and decomposing captions into Minimal Textual
Units (MTUs). The unit-level matching is then applied to compute precision and recall. Considering
the versatility and generalization, the decomposition of MVUs and MTUs and unit-level matching
can be prompted in a single MLLM. We further introduce Bottom2Up, a strategy which enables the
construction of a large-scale, diverse, and controllable image-caption evaluation dataset, upon which
we train a CoA-MLLM for end-to-end CoA reasoning.

In experiments, we first construct the CoA Bench on which the CoA-MLLM demonstrates significant
advantages over mainstream MLLMs, including GPT (OpenAI, 2025a;b), Qwen (Bai et al., 2025),
and Gemini series (Google, 2025). Furthermore, we apply CoA evaluation for data filtering in both
the pre-training and supervised fine-tuning stages of MLLMs. In the pre-training stage, filtering the
LLaVA-Pretrain dataset (Liu et al., 2023; 2024a) enables the model to achieve comparable perfor-
mances using only 18.5% of the data. In the SFT stage, under the condition of heavy noise injection,
CoA filtering effectively mitigates performance degradation, resulting in a remarkable improvement
compared to noisy baselines.

Our main contributions lie in three-folds:

• We propose CoA, a novel image caption evaluation framework that decomposes a subjective
score into two objective sub-metrics and reweights a style-adaptive metric SAF1, enhancing
interpretability and style adaptability.

• We introduce a Bottom2Up sampling strategy that enables precise control over precision-recall
distributions and facilitates the construction of fine-grained image caption evaluation datasets.

• Experiments demonstrate that CoA filtering boosts MLLM performance across a wide range of
vision-language tasks, in both pre-training and supervised fine-tuning stages.

2 RELATED WORK

In this section, we provide a detailed review of existing image caption evaluation metrics and con-
duct a comprehensive analysis of their respective strengths and limitations.

Rule-based metrics rely on explicit matching rules to quantify similarity between a generated cap-
tion and one or more human-written references. BLEU (Papineni et al., 2002) is a common metric
that measures the precision of overlapping n-grams between candidate and reference captions, in-
tegrating multiple n-gram lengths through a geometric mean and penalizing overly short outputs.
ROUGE (Lin, 2004), in contrast, focuses more on informatino recall, capturing how much of the
relevant content in the reference can be retrieved in the candidate caption. METEOR (Banerjee &
Lavie, 2005) considers stemming and synonym matching, balancing precision and recall, and ap-
plying penalties for fragmented matches to better capture fluency. CIDEr (Vedantam et al., 2015)
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assigns TF–IDF weights to n-grams so that rare but meaningful terms have greater influence on
the score, encouraging informative captions. SPICE (Anderson et al., 2016) takes a more semantic
approach by parsing captions into scene graphs of objects, attributes, and relations, and comparing
them on this structured level. In summary, rule-based metrics are easy to compute, transparent in
their operation, and well established, but their dependence on lexical or parsed overlap makes them
less robust when valid captions diverge in wording or style from the references.

Embedding-based metrics extend beyond explicit lexical overlap by projecting both visual and
textual inputs into a shared semantic space through neural network–based representations. The
UMIC metric (Lee et al., 2021), a reference-free approach, assesses image–caption compatibility
by integrating vision–language contrastive features with uncertainty modeling, thereby enhancing
robustness against noisy or ambiguous samples. TIGEr (Jiang et al., 2019) employs contrastive
embedding models designed specifically for image-caption evaluation, with optimization targeted
towards alignment with human judgment. Variants of BERTScore (Zhang et al., 2019) have been
adapted for the vision–language domain, computing token-level semantic similarity via contextual
embeddings, often fine-tuned to better capture visual relevance. ViLBERT-S (Lu et al., 2019) uti-
lizes the ViLBERT architecture to embed and evaluate captions based on fine-grained cross-modal
interactions. CLIPScore (Hessel et al., 2021) leverages the CLIP model (Radford et al., 2021) to
independently encode the image and caption, subsequently calculating their cosine similarity as a
direct measure of semantic alignment. PAC-S (Sarto et al., 2023a) extends this framework by incor-
porating an auxiliary penalty term that reduces scores when captions introduce hallucinated content
unsubstantiated by the image. Collectively, embedding-based methodologies exhibit superior capac-
ity to accommodate paraphrastic variation and to capture high-level semantic congruence. However,
their performance depend on length bias and domain generalization of the vision–language models.

LLM/MLLM-based metrics have emerged as a promising direction in image-caption evaluation,
leveraging the reasoning and contextual understanding capabilities of large language models to as-
sess semantic alignment between visual and textual inputs. CLAIR (Chan et al., 2023) employs
LLMs to estimate the semantic relevance between a candidate caption and a set of reference texts.
FLEUR (Lee et al., 2024) refines MLLM-based assessments of image–caption pairs by applying
logit smoothing to the model outputs, which helps mitigate prediction noise and yields more stable,
higher-quality evaluation scores. Beyond direct similarity assessment, some methods emphasize
interpretability through statement-level analysis. FaithScore (Jing et al., 2023) decomposes a cap-
tion into atomic propositions, evaluates the factual correctness of each in isolation, and aggregates
these judgments into a final score, producing an evaluation framework with a degree of explain-
ability. RLAIF-V (Yu et al., 2025) introduces a novel self-feedback mechanism: captions are split
into discrete statements, reformulated as questions, and then passed to an MLLM for binary clas-
sification, encouraging more fine-grained factual consistency checks. DCScore (Ye et al., 2025),
in turn, jointly accounts for textual accuracy and recall of visual elements; however, its strict re-
liance on reference captions constrains its applicability in scenarios where high-quality references
are unavailable. Overall, LLM/MLLM-based metrics offer enhanced semantic reasoning and the po-
tential for interpretable assessments. Nevertheless, existing works still suffer from limited scoring
dimensions and reliance on reference captions.

3 CHAIN OF ATOMS

3.1 MOTIVATION

In recent years, multimodal large language models (MLLMs) have been widely used for content un-
derstanding, leading to numerous “MLLM-as-a-judge” applications (Chen et al., 2024a; Wang et al.,
2025; Ye et al., 2025). However, current MLLM-based image-caption evaluation methods face two
main challenges: (1) limited interpretability, and (2) poor style adaptability. To alleviate the above
limitations, we propose Chain-of-Atoms (CoA), a metric-decomposing framework. Unlike prior ap-
proaches that rely on a single subjective metric, our framework decomposes the overall evaluation
score into two sub-metrics: recall and precision. Specifically, recall measures the extent to which
a caption covers the visual elements of an image, while precision assesses the correctness and rele-
vance of the caption’s content. These sub-metrics are more objective by focusing on the specific and
measurable properties of the image and caption, rather than conflating numerous evaluation factors
into a single score. CoA explicitly decomposes both the image and caption into minimal information
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Caption of the given image
a group of people sitting on a 
wooden bench near a beach 
boardwalk, with child……

Chain-of-Atoms Framework

ℬ Bounding Boxes
hair.1: [449, 317, 519, 391]
skirt.1: [452, 459, 569, 533] 
sign.1: [700, 1, 917, 74]
chair.1: [463, 285, 613, 446]
child.1: [387, 388, 392, 365]

" MVUs
s1: child.1, in, chair.1
s2: chair.1, is, wooden
s3: chair.1, is, short
s4: child.1, has, hair.1
s5: hair.1, is, blond

$ MTUs
t1: child.1, has, hair.1 
t2: chair.1, is, metal
t3: chair.1, is, heavy
t4: child.1, in, chair.1

"
User

Assistant

Evaluate the caption 
through the !"# format.

<box>Bounding Boxes</box>
<scene>MVUs</scene>
<textatom>MTUs</textatom>
<result>Matches</result>

Matches

precision
0.5

recall
0.4

Regular 
Expression

SAF1
0.45

Reweighting

ℛ Matches
s1: t4
s2: no
s3: no
s4: t1
s5: no

t1: s4
t2: no
t3: no
t4: s1

CoA Evaluation

Unit Level Matching

Input: Image-Caption Pair Output: %&' Format

Figure 1: Overview of the proposed CoA evaluation. For a given image-caption pair, CoA-MLLM
generates four fields: a) the <box> field contains the bounding boxes in the image; b) <scene>
contains all the minimal visual units (MVUs) in the image; c) <textatom> contains all the min-
imal textual units (MTUs) in the caption; and d) <result> contains the unit-level matching of
MTUs and MVUs. Based on the <result> field, the precision and recall values can be obtained
through rules, and combined to obtain the SAF1 metric.

units, Minimal Visual Units (MVUs) for images and Minimal Textual Units (MTUs) for captions.
Through these units, the recall and precision are calculated by matching MVUs and MTUs on unit
level. Compared with previous studies (Jing et al., 2023; Yu et al., 2025; Ye et al., 2025), our CoA
method overcomes the challenges of unit-level decomposition in reference-free scenarios. Addi-
tionally, another key strength of our CoA framework is its adaptability to varying narrative styles.
Human evaluators often tailor their judgment based on the level of detail in a caption: for highly
descriptive captions, they tend to reward comprehensive coverage of image elements, whereas for
concise captions, they prioritize correctness and tolerate minor omissions without penalizing ex-
cessive details. Inspired by these observations, CoA evaluation dynamically adjusts the weights of
recall and precision based on the number of MTUs, thus obtaining a new metric SAF1. This flexibil-
ity simulates human preferences and ensures robustness across diverse narrative styles. The detailed
process of CoA is described in Section 3.2 and the synthesis of CoA dataset lies in Section 3.3.

3.2 COA EVALUATION

The proposed CoA evaluation comprises two sequential steps: decomposition and matching. To
enhance usability, these steps are designed to be completed within a single MLLM forward. Ac-
cordingly, we train a CoA-MLLM, with four structured fields as output. As illustrated in Fig-
ure 1, the four fields, namely <box>, <scene>, <textatom>, and <result>, are denoted as
B = {b1, b2, . . . , bC}, S = {s1, s2, . . . , sM}, T = {t1, t2, . . . , tN}, andR = {r1, r2, . . . , rM+N},
respectively. Here, B and S denote the visual content, T denotes the textual content, and R de-
notes the unit-level matching result. The first three fields can be regarded as a structured chain of
thought (Wei et al., 2022), whereas the last field as the result.

Each si ∈ S and tj ∈ T is a “subject-verb-object” format, regarded as a minimal visual unit (MVU)
and minimal textual unit (MTU), respectively. The <result> field contains the matchings for all
MVUs and MTUs. For S with M MVUs and T with N MTUs, the matching process is as follows:

rk≤M =

{
“sk : tj”, if m(sk, tj),

“sk: no”, otherwise.
(1) rk>M =

{
“tk−M : si”, if m(tk−M , si),

“tk−M : no”, otherwise.
(2)

In Eq. 1 and Eq. 2, m(a, b) represents a semantic matching function. When a and b share similar
semantic information, m(a, b) returns true, otherwise false. This function is achieved by CoA-
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MLLM directly. In our definition, recall is the proportion of successfully matched MVUs, whereas
precision is the proportion of successfully matched MTUs, denoted as:

recall =
1

M
·

M∑
k=1

1
(
rk ̸= “sk: no”

)
, precision =

1

N
·

M+N∑
k=M+1

1
(
rk ̸= “tk−M : no”

)
. (3)

These sub-metrics are then combined to compute the style-adaptive F1 (SAF1) metric:

w = min

(
1.0,max

(
0.0,

l − θmin

θmax − θmin

))
, (4)

SAF1 = w · F1(r, p) + (1− w) · p, (5)

where r, p, l are short for recall, precision, and the number of MTUs. w stands for a dynamic
weight. Additionally, we define two thresholds, θmax and θmin, as the boundaries of caption styles.
For captions containing fewer MTUs than θmin, the style is classified as concise captions, and only
precision is considered when calculating the overall score. When the number of MTUs exceeds
θmax, the style is classified as detailed captions, and the score balances both precision and recall
by F1 metric. Specifically, when the MTU count falls between θmin and θmax, a linear weighting
strategy is applied, gradually transitioning from concise to detailed captions scoring to ensure a
continuous and smooth score distribution.

"!"#$ MTUs
t1: child.1, in, chair.1
t2: chair.1, is, wooden
t3: chair.1, is, short
t4: child.1, has, hair.1

"%"#$ MTUs
t1: child.1, in, car
t2: chair.1, is, wooden
t3: chair.1, is, light
t4: child.1, has, hair.1

"&"#$ MTUs
t1: child.1, sit, car
t2: chair.1, is , wooden
t3: chair.1, is, light
t4: child.1, with, hair.1

"'"#$ MTUs
t1: sky.1, is, cloudy
t2: stroller.1, is, blue
t3: man.1, in, stroller.1
t4: stroller.2, is, black

s1: child.1, in, chair.1
s2: chair.1, is, wooden

s3: chair.1, is, short
s4: child.1, has, hair.1

s5: hair.1, is, blond
（discarded）

! MVUs
s1: child.1, in, chair.1
s2: chair.1, is, wooden
s3: chair.1, is, short
s4: child.1, has, hair.1
s5: hair.1, is, blond

hair.1: [449, 317, 519, 391]
skirt.1: [452, 459, 569, 533] 
sign.1: [700, 1, 917, 74]
chair.1: [463, 285, 613, 446]
child.1: [387, 388, 392, 365]

ℬ Bounding BoxesImage

Scene Graph

!() irrelevant MVUs

!"$%

&'()*+' ,%-"-%.

/))'0'12-+

Synthesize

Sample

1)
 sa

m
pl

in
g

2)
 re

w
rit

in
g

3)
 sy

nt
he

siz
in

g
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Image, Cap&"#$, 
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Image, Cap'"#$, 
)'8200'"#$, $)'8*9*"-'"#$

Bottom2Up Sampling

!"#$ Sampled Set

Figure 2: The overview of the Bottom2Up data sampling strategy. 1) By sampling the MVUs, a
sample set containing all available MVUs can be obtained. 2) Four operations can be performed
on the sample set to obtain the synthesized MTUs: Copy, Rewrite, Synonym Replacement, and
Irrelevant Replacement. 3) The synthesized MTUs are merged into a caption, and the corresponding
recallsyn and precisionsyn are determined based on the sampling process according to Eq. 7.

3.3 COA SYNTHESIZING

After finalizing the CoA evaluation pipeline, we have assessed the CoA evaluation effectiveness of
general-purpose MLLMs. However, as shown in Table 1, both open-source and proprietary mod-
els demonstrate unsatisfactory performance in precision, recall, and SAF1. Therefore, we conclude
that post-training of an MLLM is necessary to meet the requirements of CoA evaluation. Based on
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these observations, we propose Bottom2Up, a sampling strategy designed to produce CoA data that
is diverse and balanced with respect to precision, recall. In particular, Bottom2Up inverts the con-
ventional process: it first sets the desired precision and recall levels, and then synthesizes captions
to meet these targets.

As illustrated in Figure 2, Bottom2Up comprises three steps: 1) sampling, 2) rewriting, and 3)
synthesizing. Given a scene graph as raw data, it can be denoted as {Image,B,S}. In the sampling
stage, for each si ∈ S, we maintain it with probability p1 and discard it with probability 1−p1. The
sampled set Ssam = {ssam1 , ssam2 , . . . , ssamN } contains N MVUs, compared with M MVUs in S.

The rewriting stage comprises four atomic operations: Copy, Rewrite, Synonym Replacement, and
Irrelevant Replacement. The first three are applied sequentially to each sampled ssami for i =
1, 2, ..., N . The Copy operation is mandatory, yielding tsyni ← ssami . The Rewrite operation then
modifies the object of tsyni with probability p2, rendering an incorrect proposition. The Synonym
Replacement substitutes the predicate of tsyni with a synonym with probability p3, maintaining its
correctness. Traversing all elements in Ssam yields a synthesized set of MTUs, denoted as T syn =
{tsyn1 , tsyn2 , . . . , tsynN }. Additionally, Irrelevant Replacement operates independently by replacing
T syn with an irrelevant scene graph, ensuring no valid matching exists between T syn and S.

In the synthesizing stage, we employ an MLLM to compose the MTUs into a caption:

Capsyn = synthesize(T syn). (6)

Furthermore, based on the sampling and rewriting stage, the recall and precision of the synthesized
caption can be directly derived from probabilities:

recallsyn = p1(1− p2), precisionsyn = 1− p2. (7)
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Figure 3: (a) The p-r distribution of the CoA dataset. (b) The distribution on number of the MTUs.

Through an iterative repetition of the above process, we can effectively synthesize sam-
ples exhibiting varying levels of recall and precision. Based on these samples, we con-
struct a CoA dataset comprising 400K samples, where each sample is represented as
{Image,Capsyn, recallsyn, precisionsyn}. The statistics and distributions of the dataset are illus-
trated in Figure 3.

4 EXPERIMENTS

4.1 SETTINGS

In this section, we present the performance of the CoA-MLLM across various settings, including
evaluation on CoA Bench and applications in data filtering of MLLM training.

Model. We train CoA-MLLMs based on Qwen2.5-VL-7B (Wang et al., 2024), GLM-4V-9B (GLM
et al., 2024; Wang et al., 2023) and InternVL3-8B (Zhu et al., 2025), training details are available
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in Table 9 in the appendix. During data synthesizing, Gemini-2.0-Flash (Google, 2025) is applied.
In experiments, we evaluate several MLLMs, including LLaVA-1.5-7B (Liu et al., 2024a), Qwen2-
VL-7B (Wang et al., 2024), Qwen2.5-VL-72B (Bai et al., 2025), GPT-4-Vision (OpenAI, 2025a),
GPT-5-Chat (OpenAI, 2025b), and Claude-Sonnet4 (Anthropic, 2025).

Datasets. We use approximately 4,000 scene graph samples from (Johnson et al., 2015) to syn-
thesize the CoA dataset. In addition, we employ 30K images from the COCO dataset (Lin et al.,
2014) as source data to generate 400K CoA samples. For benchmark construction, we further in-
corporate the Flickr30k dataset (Plummer et al., 2015) to evaluate the model’s generalization on
out-of-distribution data. To facilitate fine-grained evaluation, the scene graph data we use (both
public and self-synthesized) are annotated at the highest granularity, with roughly 45 MVUs per
image on average.

Benchmarks. To comprehensively evaluate the capabilities of MLLMs, we employ a diverse set
of vision-language benchmarks, including MMBench (Liu et al., 2024b), MME (Chaoyou et al.,
2023), POPE (Li et al., 2023), MMMU (Yue et al., 2024), HallusionBench (Guan et al., 2024),
MMT-Bench (Ying et al., 2024), MMVet (Yu et al., 2023), MMStar (Chen et al., 2024b), and Sci-
enceQA (Lu et al., 2022).

4.2 CoA BENCH

To ensure a convenient and fair testing environment, we establish the CoA Bench. This bench-
mark takes an image–caption pair as input and requires the output of its precision, recall, and SAF1.
Compared with traditional image–captioning evaluation benchmarks, CoA Bench decomposes a sin-
gle subjective metric into multiple objective sub-metrics, thereby offering a new perspective. CoA
Bench comprises 500 samples, each includes precision and recall derived via the Bottom2Up sam-
pling strategy, together with a SAF1 score obtained from human evaluation. The human evaluation
criteria are described in Table 7 in the appendix.

For comparison, we evaluate several general-purpose MLLMs, including Qwen2.5-VL series, GPT
series, Claude series, and Gemini series. θmin and θmax are set as 5 and 20, respectively. As
shown in Table 1, the experimental results indicate that plain prompts leads to poor performance on
recall prediction. While CoA prompt improves recall correlation and SAF1 accuracy but reduces
precision correlation. Our CoA-MLLM outperforms general-purpose MLLMs across multiple met-
rics. CoA-MLLMs fine-tuned on different backbones all demonstrate promising performance on
the CoA Bench, with Qwen2.5-VL-7B achieving the best results. In terms of recall and precision
correlation, CoA-MLLM (Qwen) leads the second place by an average of 23.49%, and leads by an
average of 6.41% on SAF1. Further analysis of the differences between the in-distribution and
out-of-distribution datasets is provided in Table 10 in the appendix.

Model prompt
recall precision SAF1

Pear ↑ Kend ↑ Pear ↑ Kend ↑ Acc0.6 ↑ Acc0.8 ↑

Qwen2.5-VL-72B
Plain 19.26 11.87 47.43 36.50 53.43 29.49
CoA 33.01 31.87 12.87 10.53 56.12 29.63

Gemini-2.0-Flash
Plain 30.42 24.41 46.19 40.73 57.61 74.28
CoA 40.38 30.00 22.96 17.67 57.94 79.70

GPT-4-Vision
Plain 26.31 21.38 41.34 33.03 50.20 39.19
CoA 33.74 27.39 23.20 15.58 59.43 39.79

GPT-5-Chat
Plain 38.26 28.00 53.51 42.81 57.14 71.45
CoA 44.13 33.57 35.39 24.26 57.13 75.46

Claude-Sonnet4
Plain 35.95 32.46 39.51 33.33 60.84 71.48
CoA 60.59 47.53 46.40 33.02 49.50 71.48

CoA-MLLM (Qwen2.5-VL-7B) CoA 71.14 58.42 59.49 42.54 60.76 85.71
CoA-MLLM (GLM-4V-9B) CoA 62.97 54.24 52.98 37.22 57.20 83.95
CoA-MLLM (InternVL3-8B) CoA 69.67 58.38 58.21 41.00 55.32 85.65

Table 1: Performance on the CoA benchmark. Pear, Kend, Accs represent the pearson correla-
tion, kendall correlation, and the binary classification accuracy with s as the threshold, respectively.
“CoA” refers to the proposed metric-decomposition prompt whereas “plain” requires the MLLMs to
directly predict the recall and precision. The SAF1 is obtained following Eq. 5.
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Moreover, to further demonstrate that the reasoning outputs of CoA-MLLM are not only highly reli-
able at the instance level but also accurate at the atom level, we manually inspect 200 samples from
the CoA Bench to verify the correctness of their atomic information. Atom-level accuracy is com-
puted in two stages: (1) performing a one-to-one comparison between model-generated Minimal
Textual Units (MTUs) and Minimal Visual Units (MVUs) with their human-verified counterparts;
and (2) validating the correctness of the model-generated MTUs and MVUs by referencing the origi-
nal captions and images, respectively. A unit is considered an overall hit if it matches in either stage.
As shown in Table 2, atom-level accuracy remains consistently high across different backbones,
indicating that CoA-MLLM exhibits strong atomic decomposition capability.

Model MVUs MTUs
CoA-MLLM (Qwen2.5-VL-7B) 82.24% 85.07%
CoA-MLLM (GLM-4v-9B) 75.80% 77.89%
CoA-MLLM (InternVL3-8B) 82.17% 75.05%

Table 2: Atom-level accuracy of CoA-MLLMs.

4.3 DATA FILTERING IN MLLM PRETRAINING AND SFT

In the MLLM pre-training stage, image–caption pairs are the most common data type, providing
a straightforward basis for aligning vision and language modalities. We have employed the CoA-
MLLM to filter the pre-training dataset and analyze the downstream performance differences. We
use LLaVA-1.5-7B (Liu et al., 2024a) as a baseline in this stage.

We rank the samples by the SAF1 score and apply different thresholds as filtering criteria, ultimately
generating six distinct data sizes1. The experimental results after pre-training are presented in Ta-
ble 3. CoA-filtered data lead to substantial performance gains. With only 5.2% of the data, the
model achieves an average performance gain of 23.47% compared with the full dataset. Further,
with 64.2% of the data, it reaches 50.11% performance gain compared with the full dataset.

Pretrain SFT MMB MME POPE MMMU Hallu MMVet MMStar SciQA Average Avg Gain

595K ✗ 14.35 327.00 17.70 17.71 10.09 9.58 16.07 22.55 17.59 baseline

31K ✗ 9.41 421.00 19.50 23.98 10.39 9.72 20.27 38.42 21.72
Performance Gain -4.94 +94.00 +1.80 +6.27 +0.30 +0.14 +4.20 +15.87 +4.13 +23.47%

65K ✗ 8.63 346.00 18.80 24.46 12.51 12.33 21.46 38.18 21.37
Performance Gain -5.72 +19.00 +1.10 +6.75 +2.42 +2.75 +5.39 +15.63 +3.78 +21.47%

110K ✗ 16.45 347.00 18.40 22.99 12.93 15.09 22.53 33.91 22.13
Performance Gain +2.10 +20.00 +0.70 +5.28 +2.84 +5.51 +6.46 +11.36 +4.53 +25.75%

162K ✗ 14.91 477.00 20.30 25.61 16.19 11.37 22.01 39.41 24.69
Performance Gain +0.56 +150.00 +2.60 +7.90 +6.10 +1.79 +5.94 +16.86 +7.09 +40.32%

233K ✗ 13.51 603.00 16.80 24.05 14.83 11.51 19.80 33.71 24.31
Performance Gain -0.84 +276.00 -0.90 +6.34 +4.74 +1.93 +3.73 +11.16 +6.72 +38.20%

382K ✗ 15.75 624.00 19.10 25.10 14.19 12.33 22.80 39.61 26.41
Performance Gain +1.40 +297.00 +1.40 +7.39 +4.10 +2.75 +6.73 +17.06 +8.82 +50.11%

Table 3: Performance on various vision-language benchmarks without SFT. The “Pretrain” column
denotes the size of the pre-training dataset. 595K represents the original dataset, while the smaller
sizes correspond to subsets after filtering. For MME, the value is divided by 10 when computing
the average score. The “Avg Gain” column indicates the relative accuracy increase over the baseline
model trained on the full 595K dataset.

Furthermore, we perform SFT training on the pre-trained models, as shown in Table 4. All models
use the same 150K SFT dataset (Liu et al., 2023) and maintain identical hyper-parameters. The
results demonstrate that using only 5.2% of the data yields 98.77% of the downstream average per-
formance, whereas using 18.5% of the data reaches full performance. Compared with the results of

1The SAF1 thresholds corresponding to different data sizes are available in the Table 8 in the appendix.
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Pretrain SFT MMB MME POPE MMMU Hallu MMVet MMStar SciQA Average Avg Gain

595K 150K 24.83 1163.00 74.28 21.50 39.11 25.55 29.60 53.53 38.40 baseline

31K 150K 13.51 1135.00 75.48 24.50 39.74 26.70 30.20 55.43 37.92
Performance Gain -11.32 -28.00 +1.20 +3.00 +0.63 +1.15 +0.60 +1.90 -0.47 -1.23%

65K 150K 16.09 1226.00 76.15 23.40 37.64 25.50 29.53 52.55 37.72
Performance Gain -8.74 +63.00 +1.87 +1.90 -1.47 -0.05 -0.07 -0.98 -0.68 -1.77%

110K 150K 23.37 1220.00 76.31 23.50 37.33 26.85 29.80 53.70 38.94
Performance Gain -1.46 +57.00 +2.03 +2.00 -1.78 +1.30 +0.20 +0.17 +0.54 +1.42%

162K 150K 17.04 1196.00 76.10 23.40 39.85 27.48 30.67 53.20 38.45
Performance Gain -7.79 +33.00 +1.82 +1.90 +0.74 +1.93 +1.07 -0.33 +0.05 +0.14%

233K 150K 23.82 1264.00 78.03 23.40 39.96 24.17 30.73 52.16 39.30
Performance Gain -1.01 +101.00 +3.75 +1.90 +0.85 -1.38 +1.13 -1.37 +0.90 +2.36%

382K 150K 26.17 1254.00 77.03 24.90 34.70 25.55 32.33 55.58 39.76
Performance Gain +1.34 +91.00 +2.75 +3.40 -4.41 +0.00 +2.73 +2.05 +1.36 +3.55%

Table 4: Performance on various vision-language benchmarks with SFT on 150K instruction
datasets. The “Pretrain” column denotes the size of the pre-training dataset. 595K represents the
original dataset, while the smaller sizes correspond to subsets after filtering. For MME, the value
is divided by 30 when computing the average score. The “Avg Gain” column indicates the relative
accuracy increase over the baseline model trained on the full 595K dataset.

the “pre-training only” setting, the advantage of CoA filtering narrows after SFT, likely because the
SFT dataset also facilitates modality alignment. These results demonstrate that the CoA evaluation
substantially improves the ability to identify high-quality samples, thereby delivering practical gains
in MLLM training efficiency.

To further verify the effects of the CoA evaluation, we apply it to filter the SFT training dataset.
We adopt the Qwen2-VL-7B and LLaVA-1.5-7B models as baselines and LLaVA-665K (Liu et al.,
2024a) as the SFT dataset. We inject noisy data with low CLIP correlation scores to simulate low-
quality data commonly encountered in real-world scenarios. The experimental results are presented
in Table 5. The results indicate that, after noise injection, the average performance of both Qwen and
LLaVA decreases significantly. However, after CoA filtering, both models show robustness to noise
injection, with performance degradation remaining at a relatively controllable level, demonstrating
the practical value of CoA in data filtering.

Model Filter
Noise Ratio

0% 10% 20% 30% 40% 50%

Qwen
✗ 59.59 58.14 57.13 56.16 56.29 54.95
✓ 59.59 59.61 58.66 58.18 57.93 58.35

LLaVA
✗ 50.62 49.93 48.97 48.80 47.34 46.50
✓ 50.62 50.64 50.43 49.53 49.72 49.13

Table 5: Performance comparison of Qwen and
LLaVA models under different ratios of noise in-
jection in SFT, with and without data filtering.
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Figure 4: Performance comparison across
different filters in MLLM pre-training.

4.4 ABLATIONS

To verify the effectiveness and necessity of the proposed CoA evaluation, we conduct ablation stud-
ies on different data-filtering methods. As shown in Figure 4 and Table 6, we compare CoA with
three baselines: CLIPScore (Hessel et al., 2021) and PAC-S (Sarto et al., 2023b), two CLIP-based
methods for measuring vision–language consistency, and the Precision-only filter, which ranks sam-
ples solely based on the precision metric derived from CoA-MLLM. Across all data scales, CoA
consistently outperforms both CLIPScore and PAC-S, achieving the highest average downstream
performance and demonstrating that decomposing image-caption data into atomic semantic units ef-
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fectively captures fine-grained semantic mismatches. Notably, although the majority of captions in
the training dataset are short (over 60%), relying solely on the precision metric results in a significant
performance drop compared with the SAF1 metric, highlighting the necessity of jointly considering
both correctness and comprehensiveness when evaluating image–caption pairs. Furthermore, all
filtering strategies surpass the No-Filter baseline, reinforcing the importance of multimodal data fil-
tering and supporting the motivation of our study. Additional ablation studies on hyperparameters
are provided in Figure 5.

Filter MME Hallusion MMT MMStar ScienceQA Avg

595K No-Filter 327 10.09 17.71 16.07 22.55 16.55

31K

CLIPScore 324 11.67 27.44 19.40 26.68 20.28
PAC-S 296 6.83 24.37 21.20 33.71 20.18
P-only 415 13.24 19.12 16.53 18.24 17.58
CoA 421 10.39 23.98 20.27 38.42 22.82

110K

CLIPScore 341 11.04 25.20 20.20 26.98 20.09
PAC-S 291 10.09 25.01 21.67 35.05 21.27
P-only 317 7.78 19.31 17.60 27.66 17.64
CoA 347 12.93 22.99 22.53 33.91 21.94

233K

CLIPScore 483 12.09 21.96 20.71 26.07 21.00
PAC-S 455 16.72 22.61 19.80 30.04 22.39
P-only 483 19.24 21.93 19.46 32.72 23.50
CoA 603 14.83 24.05 19.80 33.71 24.51

382K

CLIPScore 549 20.08 24.46 20.46 27.61 24.01
PAC-S 288 11.25 23.82 22.07 35.65 21.44
P-only 444 13.88 21.87 20.46 28.06 21.29
CoA 624 14.19 25.10 22.80 39.61 26.58

Table 6: Performance analysis of MLLM pre-training across different filter settings.
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Figure 5: Ablation studies on θmax and θmin

5 CONCLUSION

In this paper, we introduce Chain-of-Atoms (CoA), a metric-decomposition framework for im-
age–caption evaluation. By separating the overall score into sub-metrics, CoA mitigates the lim-
itations of prior approaches in interpretability and style adaptability. We further present Bottom2Up,
a data sampling strategy that synthesizes large-scale, diverse image–caption evaluation datasets.
Building on these components, we train CoA-MLLM, a multimodal large language model capable
of end-to-end CoA inference. On the CoA Bench, CoA-MLLM outperforms existing general-purpose
MLLMs and achieves the highest correlation with human judgments. We also demonstrate its effec-
tiveness for data filtering, achieving downstream performance comparable to using the full dataset
while training on only about 18.5% of the pre-training data, thereby improving efficiency. We be-
lieve that CoA holds promising potential for multimodal quality evaluation, and in future work, we
aim to extend it to a wide range of vision–language corpora beyond image–caption tasks.
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Reproducibility Statement
We have made every effort to ensure that the results reported in this paper are reproducible. Exper-
imental configurations, including hyper-parameters, training settings, and implementation details,
are described in the appendix. A full description of the CoA framework and the Bottom2Up strategy,
together with the exact prompts, is provided to facilitate reproduction of our experiments. Details
of the datasets including evaluation criteria, data distributions, and thresholds are documented in
the appendix to ensure consistent evaluation. Necessary case visualizations are also included to
improve other researchers’ understanding of the CoA framework. We believe these measures will
enable other researchers to reproduce our work and further advance the field.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used to aid in the writing and polishing of the paper. Specif-
ically, we use LLMs to assist in refining the language, improving readability, and ensuring clarity
in various sections of the paper. The LLMs help with tasks such as sentence rephrasing, grammar
checking, and enhancing the overall flow of the text.

It is important to note that the LLMs are not involved in the research design, implementation, results,
and conclusions. The authors take full responsibility for all content in this paper. We have ensured
that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or
scientific misconduct.

A.2 DATASETS

For the proposed CoA dataset, this section further analyzes the human evaluation criteria and data
distribution. Table 7 presents the manual evaluation criteria for the SAF1 metric applied to im-
age–caption pairs. The criteria adopts a discrete five-point scale, with distinct definitions for the
detail and concise styles. We regard samples with SAF1 > 0.6 as high-quality data; otherwise, they
are classified as low-quality. Consequently, in the CoA data filtering stage, we consider two filtering
metrics: Acc0.6 and Acc0.8.

SAF1 Human Evaluation Criteria

1.00
The caption is completely accurate.
Detail Describe most of visual elements accurately.
Concise Cover the main visual elements, background can be ignored.

0.80
The caption is generally accurate, with only minor errors in details or background.
Detail Cover the main visual elements, background can be ignored.
Concise Mention the main visual element without describing it.

0.60
The main objects and scenes are mentioned, but the attributes are incorrect.
Detail and Concise The main visual subject is mentioned.

0.40
Describes the image incorrectly or includes irrelevant content.
The description does not mention the main visual subject.

≤0.20 The caption is completely irrelevant to the image and does not cover any visual elements.

Table 7: The human evaluation criteria of CoA Bench.

During the MLLM pre-training stage, the LLaVA-Pretrain dataset (Liu et al., 2023) contains 595K
image–caption pairs. We set the SAF1 threshold to 0.99, 0.95, 0.9, 0.8, 0.6, 0.4, and 0.2 to obtain
subsets of different sizes. For each threshold, the number of samples, as well as the counts for the
concise and detail caption styles, are listed in Table 8. Note that, all samples with the number of
MTUs greater than θmin are categorized as detail style.

SAF1 Threshold Count Concise (%) Detail (%) Overall (%)

0.99 31K 3% 7% 5.32%
0.95 65K 5% 15% 10.91%
0.9 110K 6% 27% 18.48%
0.8 162K 8% 40% 27.22%
0.6 233K 18% 54% 39.15%
0.4 286K 31% 61% 48.06%
0.2 382K 46% 79% 64.20%

Table 8: The SAF1 threshold of data filtering.
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For Figure 3 in the main text, we conduct a further analysis to enhance understanding of the data
distribution. As shown in Figure 6, the heatmap on the left clearly exhibits three distinct distribu-
tional regions, which essentially correspond to different distributions of MTU counts in the right
figure. Since the number of synthesized MTUs set () equals the size of the sampled set (), and
the maintain rate for each sampled MVU is p1, the number of synthesized MTUs can be expressed
as N = p1 · M , where M denotes the number of original MVUs. According to Eq. 3, the p-r
relationship is as follows:

recall

precision
=

p1(1− p2)

1− p2
= p1. (8)

Therefore, in the p-r distribution, the slope of the line recall = p1 · precision is proportional to
the number of MTUs. Since our sampling strategy emphasizes medium-length captions, the p–r
heatmap exhibits a clear partitioning effect.

zone. 1

zone. 2

zone. 3

zone. 3 zone. 2 zone. 1

Figure 6: Correspondence between the p-r heatmap and the MTU number distribution.

A.3 EXPERIMENTS

The hyper-parameters used for training CoA-MLLM are shown in Table 9.

Hyper-parameter Value

DeepSpeed configuration zero3
attention type flash attention 2

Freeze vision tower False
Freeze LLM False

Freeze merger False
Batchsize 128

Image min pixels 128 × 28 × 28
Image max pixels 256 × 28 × 28
Base learning rate 1e-5

Merger learning rate 1e-5
Vision learning rate 2e-6

Weight decay 0.1
Warmup ratio 0.03
LR scheduler cosine

Table 9: Training hyper-parameters used for fine-tuning Qwen-2.5-VL.

During CoA-MLLM training, we synthesize the training data from the SG Dataset (Johnson et al.,
2015) and COCO (Lin et al., 2014) as the original data sources. Since CoA Bench mixes in-
distribution (ID) and out-of-distribution (OOD) data, we report results separately for both ID and
OOD datasets. CoA Bench employs SG Dataset, COCO, and Flickr30K in proportions of 20%,
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40%, and 40%, respectively. Quantitative results demonstrate that CoA-MLLM exhibits no signif-
icant performance degradation on OOD data compared with ID, proving strong generalization and
providing a feasibility validation for its application to large-scale data filtering.

Model
SG Dataset (ID) COCO (ID) Flickr30K (OOD)

recall precision SAF1 recall precision SAF1 recall precision SAF1

Qwen2.5-VL-7B 43.64 22.20 35.71 33.35 16.72 25.50 18.34 9.22 30.72
Gemini-2.0-Flash 34.99 18.01 73.24 29.73 15.99 78.44 45.21 22.69 84.21
GPT-4-Vision 48.11 19.50 47.00 24.68 14.43 38.66 29.16 23.19 37.24
GPT-5-Chat 36.55 19.39 66.00 33.30 19.47 77.50 37.40 33.08 78.17
Claude-Sonnet4 66.00 42.51 66.00 47.26 42.82 73.50 51.97 37.59 72.22

CoA-MLLM 87.21 64.86 85.86 66.27 60.27 81.00 71.30 59.84 90.40

Table 10: Performance on ID and OOD data of CoA Bench. The metrics for recall, precision are
pearson correlation, and Acc0.8 is applied on SAF1.

Model Noise Filter MME POPE Hallu MMT MMVet MMStar SciQA Average

Q
w

en2-V
L

-7B
-pretrain

0% ✗ 1904 88.85 57.71 56.00 39.68 49.13 78.18 59.59

10% ✗ 1962 87.56 54.36 56.31 37.38 47.40 74.91 58.14
10% ✓ 2027 88.58 60.25 55.26 39.82 47.13 75.55 59.61

20% ✗ 1968 88.42 56.25 54.84 34.86 44.73 71.64 57.13
20% ✓ 1804 88.95 55.10 56.67 40.69 47.67 76.45 58.66
30% ✗ 1910 86.27 53.36 54.68 36.85 40.46 73.74 56.16
30% ✓ 1880 89.18 55.52 56.22 37.94 46.67 74.71 58.18
40% ✗ 1876 86.01 54.28 55.00 35.65 42.87 73.31 56.29
40% ✓ 1874 88.18 53.63 56.82 36.63 47.80 75.58 57.93
50% ✗ 1835 85.82 51.57 52.57 34.43 41.87 72.52 54.95
50% ✓ 1981 86.47 58.15 56.96 36.47 46.07 74.81 58.35

L
L

aVA
-1.5-7B

-pretrain

0% ✗ 1623 85.75 39.33 42.34 32.20 32.80 67.37 48.62

10% ✗ 1676 83.99 47.31 46.98 28.76 34.33 66.23 49.93
10% ✓ 1764 84.74 49.16 47.10 29.22 33.87 66.28 50.64
20% ✗ 1787 85.84 42.00 42.00 31.24 34.00 63.06 48.97
20% ✓ 1743 86.94 44.48 44.71 32.54 35.93 64.85 50.43
30% ✗ 1652 83.62 40.80 45.06 30.39 33.33 67.07 48.80
30% ✓ 1695 84.82 42.48 45.22 31.70 34.87 65.25 49.53
40% ✗ 1588 85.22 40.06 41.82 30.46 30.40 63.73 47.34
40% ✓ 1633 86.55 42.80 45.43 35.53 32.87 64.05 49.72
50% ✗ 1598 83.92 40.79 38.60 27.84 31.20 63.21 46.50
50% ✓ 1583 85.75 43.00 46.33 30.00 34.13 65.15 49.13

Table 11: Details on CoA filtering in MLLM SFT stage.

Table 11 provides a detailed presentation of the MLLM SFT data filtering experiments (correspond-
ing to Table 5). We compare different benchmarks and varying noise ratios on Qwen2.5-VL-7B-
pretrain and LLaVA-1.5-7B-pretrain models.

We conduct an ablation study on the hyper-parameters θmin and θmax in Eq. 4, as shown in Fig-
ure 7. Experiments are carried out under two metrics Acc0.6 and Acc0.8, with search ranges
θmin ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21} and θmax ∈ {10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.
The results indicate that Acc0.6 and Acc0.8 exhibit different preferences for hyper-parameters. We
ultimately set θmin = 5 and θmax = 20 to balance the two metrics.

To ensure a fair comparison during the pre-training stage, we further investigate the impact of CoA
filtering on model performance under the same data size. As shown in Table 12, we randomly sample
subsets of 31K, 110K, 233K, and 382K from a total of 595K pre-training samples, and apply CoA
filtering to obtain datasets of the same sizes. We then conduct one-stage pre-training of LLaVA-
1.5-7B on these subsets and evaluat the models across multiple benchmarks. The results indicate
that even at the same data scale, CoA-filtered datasets provide the model with a higher performance
ceiling, consistent with the conclusions reported in Table 3 of the main paper.
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(b)  Acc0.8 heatmap on max and min
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Figure 7: Ablation studies on θmax and θmin

Pretrain Sampler MMB MME POPE MMMUHallu MMVet MMStarSciQA Average

31K
random 7.90 360 27.00 18.90 10.09 9.77 21.67 35.20 20.81

CoA 9.41 421 19.50 23.98 10.39 9.72 20.27 38.42 21.72

110K
random 12.50 343 15.04 17.90 13.35 8.90 19.93 38.47 20.05

CoA 16.45 347 18.40 22.99 12.93 15.09 22.53 33.91 22.13

233K
random 15.86 174 24.54 17.50 9.25 12.39 18.87 32.97 18.59

CoA 13.51 603 16.80 24.05 14.83 11.51 19.80 33.71 24.31

382K
random 10.59 333 39.41 18.00 12.83 11.24 18.90 27.81 21.52

CoA 15.75 624 19.10 25.10 14.19 12.33 22.80 39.61 26.41

Table 12: Comparison between CoA-filtered data and random sampling with the same data size.

Pretrain SFT MMB MME POPE MMMUHallu MMVet MMStarSciQA Average Avg
Gain

595K 665K 64.30 1510.70 86.10 26.50 40.80 29.72 33.40 65.79 49.62 baseline

31K 665K 64.85 1653.04 85.94 26.50 37.75 29.50 33.67 64.35 49.71 +0.17%
65K 665K 63.73 1595.21 86.68 28.60 39.75 25.69 33.27 67.29 49.77 +0.31%
110K 665K 55.04 1618.24 82.87 27.90 38.91 39.95 34.73 65.79 49.89 +0.55%
162K 665K 64.18 1589.51 86.14 27.20 41.96 30.18 34.07 65.39 50.26 +1.29%
233K 665K 67.47 1707.82 86.88 26.20 39.33 28.81 33.07 65.84 50.57 +1.90%
382K 665K 73.49 1645.96 86.07 27.20 38.80 28.49 34.20 66.24 51.17 +3.12%

Table 13: Performance on various vision-language benchmarks with SFT on 665K datasets.
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To further validate that CoA effectively selects high-quality training data, we extend the SFT training
dataset to the LLaVA-665K datasets and evaluate the models on multiple benchmarks. As presented
in Table 13, we first pre-train the model on CoA-filtered image–caption datasets of different sizes,
and then conduct subsequent SFT training using the exact same dataset. The experiments show that
pre-training with CoA-filtered data significantly enhances the model’s downstream capabilities.

A.4 CASE STUDY

In this section, we visualize cases of CoA-MLLM output. We select three samples including concise
caption (Figure 8), medium-length caption (Figure 9), and detailed caption (Figure 10) to provide a
more comprehensive illustration of the CoA format.

A.5 PROMPTS

In this section, we provide all prompts used in this paper to ensure reproducibility of the experimen-
tal results. Figure 11 shows the CoA prompt, which strictly defines the CoA format and requires
outputs to follow the specified structure. In practical use, we also supply an in-context example.
However, due to page limitations, it is not listed here, but it can be constructed in a manner similar
to that in Figure 9. Correspondingly, Figure 12 presents a plain prompt that requires the MLLM to
directly predict precision and recall. Figures. 13 and Figure 14 are the prompts used in Bottom2Up
during the synthesizing and rewriting stages, respectively. Figure 15 is the prompt for constructing
scene graphs.
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Caption
A standing man on the right is holding a silver phone. The man is behind another man. 
The man on the left has a phone, and is by a glass, while a wet glass is also visible. A 
yellow lemon is also in the scene. 

! MVUs

S1: man.1, holding, phone.1
S2: man.1, is, sitting
S3: man.1, is, laughing
S4: phone.1, is, silver
S5: phone.1, is, on
S6: man.1, by, phone.1
S7: man.1, by, glass.1
S8: glass.1, is, wet
S9: glass.1, is, clear
S10: man.1, has, picture.1
S11: man.1, in front of, man.2
S12: man.2, is, sitting
S13: man.1, has, teeth.1
S14: teeth.1, are, white
S15: man.1, has, ear.1
S16: man.1, has, shirt.1
S17: shirt.1, is, white
S18: shirt.1, is, printed
S19: phone.1, by, man.1
S20: phone.1, on, man.1
S21: glass.1, on, table.1
S22: table.1, is, brown
S23: table.1, is, wood

S24: table.1, is, full
S25: table.1, has, glass.1
S26: table.1, has, plate.1
S27: plate.1, is, white
S28: table.1, under, plate.1
S29: table.1, under, glass.1
S30: man.3, holding, phone.2
S31: man.3, is, sitting
S32: phone.2, is, silver
S33: man.3, by, woman.1
S34: woman.1, is, sitting
S35: woman.1, is, blonde
S36: woman.1, is, smoking
S37: man.3, has, phone.2
S38: man.2, has, shirt.2
S39: shirt.2, is, orange
S40: lemon.1, on, glass.1
S41: lemon.1, is, yellow
S42: plate.1, on, table.1
S43: glass.2, on, table.1
S44: glass.2, is, clear

" MTUs
T1: man.1, holding, 
phone.1
T2: man.1, is, standing 
T3: phone.1, is, silver
T4: man.1, behind, man.2 
T5: man.1, has, phone.2 
T6: glass.2, is, wet 
T7: lemon.1, is, yellow

ℛ Matches
S1: T1
S2: no
S3: no
S4: T3
S5: no
S6: no
S7: no
S8: no
S9: no
S10: no
S11: no
S12: no
S13: no
S14: no
S15: no
S16: no
S17: no

S18: no
S19: no
S20: no
S21: no
S22: no
S23: no
S24: no
S25: no
S26: no
S27: no
S28: no
S29: no
S30: no
S31: no
S32: no
S33: no
S34: no

S35: no
S36: no
S37: no
S38: no
S39: no
S40: no
S41: T7
S42: no
S43: no
S44: no
T1: S1
T2: no
T3: S4
T4: no
T5: no
T6: no
T7: S41

Input: Image-Caption Pair

Output: !"# Output by !"#-MLLM

Figure 8: An example of CoA-MLLM output for a concise image-caption pair. All bounding boxes
generated by CoA-MLLM are visualized on the image.
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Caption

The open book on the left has 
a covered title, and a hand is 
holding it. A tortoiseshell cat 
sits on the woman. The mirror 
is on the wall. The mantel is 
behind the cat, and the 
woodwork is beneath the 
mantel, on the right side. The 
moulding is beside the wall, 
on the left side. The stereo is 
behind the book. 

! MVUs

S1: book.1, in, hands.1
S2: book.1, is, open
S3: book.1, is, paper
S4: hands.1, holding, book.1
S5: woman.1, holding, book.1
S6: woman.1, is, caucasian
S7: woman.1, is, white
S8: woman.1, wearing, glasses.1
S9: glasses.1, are, clear
S10: glasses.1, are, round
S11: glasses.1, are, glass
S12: woman.1, wearing, sweater.1
S13: sweater.1, is, black
S14: woman.1, has, eyes.1
S15: woman.1, wearing, ring.1
S16: ring.1, is, gold
S17: woman.1, has, hair.1
S18: hair.1, is, brown
S19: cat.1, on, woman.1
S20: cat.1, is, black
S21: cat.1, is, brown
S22: cat.1, is, sitting
S23: cat.1, is, tortoiseshell
S24: cat.1, has, eyes.1
S25: stereo.1, behind, woman.1
S26: stereo.1, is, black
S27: stereo.1, behind, book.1

S28: stereo.1, under, picture.1
S29: picture.1, is, wood
S30: frame.1, on, wall.1
S31: frame.1, is, brown
S32: frame.1, is, wood
S33: picture.1, in, mirror.1
S34: mirror.1, is, glass
S35: picture.1, on, wall.1
S36: mirror.1, on, wall.1
S37: mirror.1, behind, woman.1
S38: wall.1, behind, woman.1
S39: wall.1, behind, cat.1
S40: moulding.1, on, wall.1
S41: moulding.1, is, white
S42: moulding.2, on, wall.1
S43: moulding.2, is, white
S44: woodwork.1, on, wall.1
S45: woodwork.1, is, brown
S46: woodwork.1, behind, cat.1
S47: title.1, on, book.1
S48: title.1, is, printed
S49: author.1, on, book.1
S50: author.1, is, printed
S51: price.1, on, book.1
S52: price.1, is, printed
S53: manuscript.1, on, frame.1
S54: moulding.2, behind, stereo.1

" MTUs
T1: book.1, is, open
T2: hands.1, holding, 
book.1
T3: cat.1, on, woman.1
T4: cat.1, is, tortoiseshell
T5: stereo.1, behind, 
book.1
T6: mirror.1, on, wall.1

T7: moulding.1, beside, 
wall.1
T8: woodwork.1, under, 
mantel.1 
T9: woodwork.1, behind, 
cat.1
T10: title.1, is, covered

ℛ Matches

S1: no
S2: T1
S3: no
S4: T2
S5: no
S6: no
S7: no
S8: no
S9: no
S10: no
S11: no
S12: no
S13: no
S14: no
S15: no
S16: no

S17: no
S18: no
S19: T3
S20: no
S21: no
S22: no
S23: T4
S24: no
S25: no
S26: no
S27: T5
S28: no
S29: no
S30: no
S31: no
S32: no

S33: no
S34: no
S35: no
S36: T6
S37: no
S38: no
S39: no
S40: no
S41: no
S42: no
S43: no
S44: no
S45: no
S46: T9
S47: no
S48: no

S49: no
S50: no
S51: no
S52: no
S53: no
S54: no
T1: S2
T2: S4
T3: S19
T4: S23
T5: S27
T6: S36
T7: no
T8: no
T9: S46
T10: no

Input: Image-Caption Pair

Output: !"# Output by !"#-MLLM

Figure 9: An example of CoA-MLLM output for a medium-length image-caption pair. All bounding
boxes generated by CoA-MLLM are visualized on the image.
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Caption

A white man is on a soft, neutral-
colored, and made bed that has white 
pillows on it. The man, who is opposite 
the plain wall, is wearing a black shirt 
and is with a silver and open laptop that 
is on the bed, by the man. The laptop is 
on the bed. A large and dirty mirror 
below the closed nightstand reflects a 
woman using a flashing camera. The 
woman has a blue skirt. A black clock 
is on the nightstand, which is on and by 
the bed. A black television is in the 
mirror and by the wall, and there are 
flowers on the television. An old phone 
is by the bed. A round table is near the 
closed door and by the wall; the door is 
below the vent, which is by the door. 

! MVUs
S1: man.1, on, bed.1
S2: man.1, is, white
S3: man.1, is, fat
S4: man.1, is, sitting
S5: man.1, is, caucasian
S6: bed.1, is, soft
S7: bed.1, is, made
S8: bed.1, is, neat
S9: bed.1, is, white
S10: man.1, wearing, shirt.1
S11: shirt.1, is, black
S12: man.1, wearing, shorts.1
S13: shorts.1, are, brown
S14: man.1, with, laptop.1
S15: laptop.1, is, silver
S16: laptop.1, is, open
S17: man.1, opposite of, wall.1
S18: wall.1, is, tan
S19: wall.1, is, painted
S20: bed.1, with, man.1
S21: bed.1, has, pillows.1
S22: pillows.1, on, bed.1
S23: pillows.1, against, wall.1
S24: pillows.1, behind, man.1
S25: laptop.1, on, bed.1
S26: laptop.1, by, man.1
S27: laptop.1, on top of, bed.1
S28: woman.1, has, camera.1
S29: woman.1, is, standing
S30: camera.1, is, silver
S31: woman.1, has, skirt.1
S32: skirt.1, is, blue

S33: woman.1, using, camera.2
S34: camera.2, is, flashing
S35: clock.1, on, nightstand.1
S36: nightstand.1, is, closed
S37: nightstand.1, by, bed.1
S38: nightstand.1, by, door.1
S39: door.1, is, closed
S40: tv.1, in, mirror.1
S41: tv.1, is, off
S42: tv.1, is, black
S43: mirror.1, is, silver
S44: mirror.1, is, closed
S45: flowers.1, on, tv.1
S46: flowers.1, are, yellow
S47: door.1, below, vent.1
S48: vent.1, is, white
S49: door.1, by, mirror.1
S50: table.1, by, door.1
S51: table.1, is, gray
S52: table.1, by, wall.1
S53: wall.1, opposite of, man.1
S54: television.1, in, mirror.1
S55: television.1, by, wall.1
S56: phone.1, by, bed.1
S57: phone.1, is, white
S58: phone.1, is, old
S59: mirror.1, by, door.1
S60: mirror.1, by, wall.1
S61: vent.1, above, door.1
S62: vent.1, by, door.1
S63: vent.1, by, wall.1

" MTUs
T1: man.1, on, bed.1
T2: man.1, is, white
T3: bed.1, is, soft
T4: bed.1, is, made
T5: bed.1, is, neutral
T6: man.1, wearing, shirt.1
T7: shirt.1, is, black
T8: man.1, with, laptop.1
T9: laptop.1, is, silver
T10: laptop.1, is, open
T11: man.1, opposite of, wall.1
T12: wall.1, is, plain
T13: bed.1, with, man.1
T14: bed.1, has, pillows.1
T15: pillows.1, on, bed.1
T16: laptop.1, on, bed.1
T17: laptop.1, by, man.1
T18: laptop.1, on top of, bed.1
T19: woman.1, has, camera.1
T20: camera.1, is, silver
T21: woman.1, has, skirt.1
T22: skirt.1, is, blue
T23: woman.1, using, camera.2

T24: camera.2, is, flashing
T25: clock.1, on, nightstand.1
T26: nightstand.1, is, closed
T27: nightstand.1, by, bed.1
T28: nightstand.1, on, bed.1
T29: door.1, is, closed
T30: tv.1, in, mirror.1
T31: tv.1, is, black
T32: mirror.1, is, large
T33: mirror.1, is, dirty
T34: flowers.1, on, tv.1
T35: door.1, below, vent.1
T36: table.1, near, door.1
T37: table.1, is, round
T38: table.1, by, wall.1
T39: wall.1, opposite of, man.1
T40: television.1, in, mirror.1
T41: television.1, by, wall.1
T42: phone.1, by, bed.1
T43: phone.1, is, old
T44: mirror.1, on, nightstand.1
T45: vent.1, by, door.1

ℛ Matches
S1: T1
S2: T2
S3: no
S4: no
S5: no
S6: T3
S7: T4
S8: no
S9: no
S10: T6
S11: T7
S12: no
S13: no
S14: T8

S15: T9
S16: T10
S17: T11
S18: no
S19: no
S20: T13
S21: T14
S22: T15
S23: no
S24: no
S25: T16
S26: T17
S27: T18
S28: T19

S29: no
S30: T20
S31: T21
S32: T22
S33: T23
S34: T24
S35: T25
S36: T26
S37: T27
S38: no
S39: T29
S40: T30
S41: no
S42: T31

S43: no
S44: no
S45: T34
S46: no
S47: T35
S48: no
S49: no
S50: no
S51: no
S52: T38
S53: T39
S54: T40
S55: T41
S56: T42

S57: no
S58: T43
S59: no
S60: no
S61: no
S62: T45
S63: no
T1: S1
T2: S2
T3: S6
T4: S7
T5: no
T6: S10
T7: S11

T8: S14
T9: S15
T10: S16
T11: S17
T12: no
T13: S20
T14: S21
T15: S22
T16: S25
T17: S26
T18: S27
T19: S28
T20: S30
T21: S31

T22: S32
T23: S33
T24: S34
T25: S35
T26: S36
T27: S37
T28: no
T29: S39
T30: S40
T31: S42
T32: no
T33: no
T34: S45
T35: S47

T36: no
T37: no
T38: S52
T39: S53
T40: S54
T41: S55
T42: S56
T43: S58
T44: no
T45: S62

Input: Image-Caption Pair

Output: !"# Output by !"#-MLLM

Figure 10: An example of CoA-MLLM output for a detailed image-caption pair. All bounding boxes
generated by CoA-MLLM are visualized on the image.
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Given an input image (**Image**) and an associated image description text 
(**Caption**), please complete the following steps in strict sequence, and strictly adhere 
to the specified output formatting rules:
### 1. Object Annotation in the Image
- Detect and annotate **all objects** present in the image with bounding boxes.
- For multiple instances of the same object category, append an index to the object name 
(e.g., man.1, car.2, etc.)
- The annotation format for each object must be: `category.index: [x1, y1, x2, y2]`, where 
[x1, y1] is the top-left and [x2, y2] is the bottom-right corner coordinates of the box.
- Output each detected object on a separate line, and do **not** include any object 
categories that are not present.
- All object outputs must be enclosed inside `<box> ... </box>` tags.
### 2. Scene Graph Extraction **from the Image**
- Only use the image content (do **not** use the description text).
- Extract inter-object **relations** and **attributes** from the image, and output as 
subject-predicate-object (triples).
- Two triple types:

- **Relation triples:** (subject, predicate, object) — both subject and object must be 
object names from step 1.

- **Attribute triples:** (subject, predicate, attribute) — subject must be from step 1; 
attribute should be a descriptive word (e.g., color, status, shape).
- Begin each triple with an ordered label (e.g., S1:, S2: ...). Output **one triple per line**.
- Enclose the entire scene graph output inside `<scene> ... </scene>` tags.
### 3. Atomic Triple Extraction **from the Description Text**
- Only use the provided text description (do **not** use the image).
- Carefully split the description into the smallest atomic facts, each in triple form.
- Two triple types:

- **Relation triples:** (subject, predicate, object).
- **Attribute triples:** (subject, predicate, attribute).

- Use sequential numbering (e.g., T1:, T2:, T3: ...), one per line.
- All atomic triples are enclosed inside `<textatom> ... </textatom>` tags.
### 4. Matching Between Scene Graph and Atomic Text Triples
- For **every single triple** (from scene S# and textatom T#), check if there is a 
matching counterpart in the other list.
- There must be no one-to-many or many-to-one matches: if Sx matches Ty, then Ty must 
only match Sx, and neither may match any other triple.
- Output format:

- `Sx: Ty` means Sx matches Ty.
- `Sx: no` means Sx has **no** matching Ty.
- `Ty: Sx` means Ty matches Sx.
- `Ty: no` means Ty has **no** matching Sx.
- Every Sx and Ty must be checked; do **not** omit any.

- All matching results must be inside `<result> ... </result>` tags.
**NOTES:**
- Use the prescribed tags (`<box>`, `<scene>`, `<textatom>`, `<result>`) exactly and in 
proper order.
- Number S#/T# sequentially, no skipping or duplicating.
- No extra text, only the required formatted output.
- When generating the output, **strictly follow these format rules.

Figure 11: The CoA prompt.
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Given an input image (**Image**) and an associated image description text (**Caption**), 
please complete the following steps in strict sequence, and strictly adhere to the specified 
output formatting rules:

**Judge the precision and recall of the caption**
precision: accuracy of the caption in describing the visual content.
recall: completeness of the caption in covering visual information.
the value of precision and recall should between 1 to 10, where 1 means the lowest and 10 
the highest.

**NOTES:**
- Use the prescribed tags (`<precision>`, `<recall>`) exactly and in proper order.
- When generating the output, **strictly follow these format rules.

Figure 12: The plain prompt for CoA Bench.

You will be given input in the following format:
input_text = f'Box list: {boxes}; Triplets: {value}'
- The Box list provides the bounding boxes for objects mentioned in the triplets, in the 
standard format [x1, y1, x2, y2] (top left and bottom right coordinates).
- The Triplets section contains several triplets: “T1: subject, verb, object, T2: subject, 
verb, object, …”.
Your task is to write a image-caption-style description.
Rules
1. Capture every fact expressed by the triplets, none may be omitted and no new facts 
may be added.
2. You may freely paraphrase: replace words with clear synonyms, change word order, 
merge ideas, or add small connecting words so the sentence reads naturally. The overall 
meaning of each original subject-verb-object relation must stay the same.
3. Nouns with different suffixes represent different instances of the same category and 
need to be distinguished by natural language when generating captions (man.1, car.3, 
book.2,... are unacceptable).
4. Remove the labels (T1, T2, …) and output ONLY the final caption, no lists, no bullet 
points, no commentary.
5. Integrate the positional information from the bounding boxes:
- Mention the absolute position of objects as indicated by their box (e.g., “on the left 
side”, “near the top right corner”, etc.), if possible.
- Describe the relative positions and spatial relationships of the objects in the image, 
based on both the box information and the relationships described in the triplets.
- If a box is not mentioned in the triplets, do not include any information about that object 
in the caption.
- If a triplet refers to an object not found in the box list, you can still express the 
relationship without including positional information about that object.
6. The final caption must blend the relationship and position details smoothly and 
naturally, as in a normal image caption.

Figure 13: The prompt for the synthesizing stage in Bottom2Up.
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You are given a triplet required to change in the order “subject, predicate, object” and 
several reference triplets (each also in “subject, predicate, object” form).
1. Decide the triple type.
• Relation triple: the object is a noun.
• Attribute triple: the object is an adjective.
2. Rules for a relation triple:
• Randomly choose either the predicate or the object (not both) to replace; keep the 
subject unchanged.
• The replacement must stay in the same grammatical and semantic category:
– If the predicate is a spatial term, replace it with a different spatial term; if it is an action 
verb, replace it with a different action verb, etc.
– If the object denotes a person, replace it with another person; if it denotes a plant, 
replace it with another plant, and so on.
• The new triple must convey a clearly different meaning; do not use near-synonyms or 
minor tweaks.
3. Rules for an attribute triple:
• Replace only the object (the adjective); keep the subject and predicate unchanged.
• The new adjective must belong to the same attribute dimension:
– size (big <-> small),
– color (red <-> yellow),
– texture (smooth <-> rough), etc.
• Ensure the meaning changes substantially; no near-synonyms or mere degree shifts 
(e.g., “very big → huge” is not allowed).
4. Additional reference check:
• The generated triple must not conflict with any of the provided reference triplets.
– No subject-predicate-object combination identical to a reference triplet.
– No subject-predicate-object combination that merely inverts the attribute dimension of a 
reference triple (e.g., if a reference is “man, is, tall” then “man, is, short” is also 
prohibited, if a reference is “man, is, sitting then “man, is, running is also prohibited).
– For relation triples, avoid replacements that result in a subject-predicate-object 
appearing in any reference triple.
5. Common-sense & non-triviality
• The generated triple must be logically plausible and consistent with general knowledge 
(e.g., “ground, above, sky” is invalid).
6. For all cases:
• Preserve the exact “subject, predicate, object” order and the comma separators.
• Output nothing except the new triplet.

Random change

Figure 14: The prompt for the rewriting stage in Bottom2Up.
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Given an input image (Image) and an associated image description text (Caption), please 
complete the following steps in strict sequence, and strictly adhere to the specified output 
formatting rules:
1. Object Annotation in the Image

Detect and annotate all objects present in the image with bounding boxes.
For multiple instances of the same object category, append an index to the object name 

(e.g., man.1, car.2, etc.)
The annotation format for each object must be: category.index: [x1, y1, x2, y2], where 

[x1, y1] is the top-left and [x2, y2] is the bottom-right corner coordinates of the box.
Output each detected object on a separate line, and do not include any object categories 

that are not present.
All object outputs must be enclosed inside <box> ... </box> tags.

2. Scene Graph Extraction from the Image
Only use the image content (do not use the description text).

Extract inter-object relations and attributes from the image, and output as subject-
predicate-object (triples).

Two triple types:
Relation triples: (subject, predicate, object) — both subject and object must be object 

names from step 1.
Attribute triples: (subject, predicate, attribute) — subject must be from step 1; attribute 

should be a descriptive word (e.g., color, status, shape).
Begin each triple with an ordered label (e.g., S1:, S2: ...). Output one triple per line.
The box and scene should be as detail as possible, at least 20 triples.
Enclose the entire scene graph output inside <scene> ... </scene> tags.

IMPORTANT:
Only output the <box> ... </box> and <scene> ... </scene> sections.
Do NOT include any other tags or text. Strictly follow the required formatting.

Figure 15: The prompt for constructing scene graph.
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