

000 001 CHAIN OF ATOMS: FINE-GRAINED SEMANTIC EVAL- 002 UATION FOR IMAGE–CAPTION DATA VIA ATOMIC DE- 003 COMPOSITION 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 In recent years, Multimodal Large Language Models (MLLMs) have achieved re-
014 markable progress across a wide range of domains, largely benefiting from the
015 availability of large-scale multimodal datasets, particularly image-caption cor-
016 pora. Nevertheless, the community has long lacked a universal and standardized
017 data quality assessment framework specifically designed for such corpora. In this
018 paper, we propose the *Chain-of-Atoms* (*CoA*) evaluation framework along with
019 a corresponding *Bottom2Up* data sampling strategy. *CoA* decomposes both cap-
020 tions and images into minimal information units and computes *precision* and *re-
call* as objective sub-metrics. By reweighting these sub-metrics dynamically, we
021 introduce a style-adaptive F_1 (*SAF1*) metric to achieve better correlation with hu-
022 man preference. To enhance the capability of semantic decomposition, we apply
023 the proposed *Bottom2Up* strategy to construct a balanced and large-scale training
024 dataset. We also establish *CoA* Bench, a standardized benchmark for fine-grained
025 image-caption evaluation. Experimental results on *CoA* Bench and other down-
026 stream tasks demonstrate that *CoA* effectively filters noisy training samples, sig-
027 nificantly improves the robustness and training efficiency of MLLM. Specifically,
028 *CoA*-based data filtering during MLLM pre-training reduces the training data by
029 81.5% without causing performance degradation.
030

1 INTRODUCTION

031 In recent years, Multimodal Large Language Models (MLLMs) have achieved remarkable progress
032 in tasks, such as visual understanding, cross-modal retrieval, and multimodal generation. Similar to
033 their unimodal counterparts, the success of MLLMs is largely dependent on the availability of high-
034 quality, large-scale training data. Among these, image-caption pairs constitute a central resource
035 for building general-purpose multimodal understanding capabilities. However, compared with nat-
036 ural language text, image-caption corpora collected from the web often face more serious quality
037 concerns such as semantic mismatch, incomplete descriptions, and noisy or redundant information.
038 When such low-quality samples are repeatedly presented during MLLM training, the noisy signals
039 are amplified, impairing the model’s ability to understand and generalize to the real visual world.
040 Therefore, a precise and fine-grained filtering of large-scale image-caption datasets is critical to
041 maximizing the potential of MLLMs.
042

043 We suggest that an effective image-caption evaluation metric should ideally satisfy two key prop-
044 erties: interpretability and style adaptability. The former requires that the score reflects specific
045 strengths and weaknesses of a caption, while the latter requires a fair and consistent evaluation
046 across captions of varying lengths and narrative styles. However, existing image-caption evaluation
047 approaches fall short of these requirements (Sarto et al., 2025). Rule-based metrics (e.g., BLEU-
048 4 (Papineni et al., 2002), CIDEr (Vedantam et al., 2015)) assess surface-level properties such as
049 n-gram overlap and keyword coverage. Although computationally efficient, they are overly sensitive
050 to lexical mismatches and fail to capture deeper semantic relationships, limiting both interpretabil-
051 ity and robustness to stylistic variation. Embedding-based metrics (e.g., CLIPScore (Hessel et al.,
052 2021)) measure global semantic consistency through vision-language pre-embedding models, but
053 the scores blur the lines between different error types (e.g. inaccurate vs. missing details) (Sarto
et al., 2025) and are sensitive to caption length due to embedding aggregation effects (Zhang et al.,

054 2024), undermining interpretability and style invariance. LLM/MLLM-based metrics (Chan et al.,
 055 2023; Ye et al., 2025) prompt language models to score captions against detailed evaluation criteria,
 056 leveraging rich semantic knowledge and reasoning capabilities. Nonetheless, their judgments are
 057 sensitive to prompt design, inherently subjective, and difficult to calibrate for captions of different
 058 styles, limiting adaptability.

059 The gap between the desired properties and the limitations of current methods highlights the need for
 060 a new evaluation paradigm that achieves both interpretability and style adaptability. To address these
 061 limitations, we propose ***Chain-of-Atoms (CoA)***, a novel framework for image-caption evaluation.
 062 Specifically, *CoA* explicitly decomposes the overall quality score into two quantifiable sub-metrics:
 063

- 064 • *precision*: accuracy of the caption in describing visual content.
- 065 • *recall*: completeness of the caption in covering visual content.

066 This metric-decomposition paradigm enhances the interpretability so that one can clearly understand
 067 the basis for the rating. Furthermore, in practice, human evaluators tend to expect detailed captions
 068 to be more comprehensive (i.e., higher *recall*), while being more tolerant of omissions in concise
 069 captions (i.e., lower *recall*). By combining *precision* and *recall* via a flexible weighting scheme, we
 070 propose style-adaptive F_1 (*SAF1*), a metric that can naturally model such human preferences, thus
 071 achieving human-like evaluation preferences across diverse narrative styles.

072 From a methodological perspective, *CoA* draws inspiration from the Scene Graph Generation (SGG)
 073 task (Johnson et al., 2015; Yang et al., 2023) in computer vision, representing images as sets of
 074 bounding boxes and Minimal Visual Units (MVUs), and decomposing captions into Minimal Textual
 075 Units (MTUs). The unit-level matching is then applied to compute *precision* and *recall*. Considering
 076 the versatility and generalization, the decomposition of MVUs and MTUs and unit-level matching
 077 can be prompted in a single MLLM. We further introduce *Bottom2Up*, a strategy which enables the
 078 construction of a large-scale, diverse, and controllable image-caption evaluation dataset, upon which
 079 we train a *CoA*-MLLM for end-to-end *CoA* reasoning.

080 In experiments, we first construct the *CoA* Bench on which the *CoA*-MLLM demonstrates significant
 081 advantages over mainstream MLLMs, including GPT (OpenAI, 2025a;b), Qwen (Bai et al., 2025),
 082 and Gemini series (Google, 2025). Furthermore, we apply *CoA* evaluation for data filtering in both
 083 the pre-training and supervised fine-tuning stages of MLLMs. In the pre-training stage, filtering the
 084 LLaVA-Pretrain dataset (Liu et al., 2023; 2024a) enables the model to achieve comparable perfor-
 085 mances using only 18.5% of the data. In the SFT stage, under the condition of heavy noise injection,
 086 *CoA* filtering effectively mitigates performance degradation, resulting in a remarkable improvement
 087 compared to noisy baselines.

088 Our main contributions lie in three-folds:

- 089 • We propose *CoA*, a novel image caption evaluation framework that decomposes a subjective
 090 score into two objective sub-metrics and reweights a style-adaptive metric *SAF1*, enhancing
 091 interpretability and style adaptability.
- 092 • We introduce a *Bottom2Up* sampling strategy that enables precise control over *precision-recall*
 093 distributions and facilitates the construction of fine-grained image caption evaluation datasets.
- 094 • Experiments demonstrate that *CoA* filtering boosts MLLM performance across a wide range of
 095 vision-language tasks, in both pre-training and supervised fine-tuning stages.

096 2 RELATED WORK

099 In this section, we provide a detailed review of existing image caption evaluation metrics and con-
 100 duct a comprehensive analysis of their respective strengths and limitations.

101 **Rule-based metrics** rely on explicit matching rules to quantify similarity between a generated cap-
 102 tion and one or more human-written references. BLEU (Papineni et al., 2002) is a common metric
 103 that measures the precision of overlapping n-grams between candidate and reference captions, in-
 104 tegrating multiple n-gram lengths through a geometric mean and penalizing overly short outputs.
 105 ROUGE (Lin, 2004), in contrast, focuses more on informatino recall, capturing how much of the
 106 relevant content in the reference can be retrieved in the candidate caption. METEOR (Banerjee &
 107 Lavie, 2005) considers stemming and synonym matching, balancing precision and recall, and ap-
 108 plying penalties for fragmented matches to better capture fluency. CIDEr (Vedantam et al., 2015)

108 assigns TF-IDF weights to n-grams so that rare but meaningful terms have greater influence on
 109 the score, encouraging informative captions. SPICE (Anderson et al., 2016) takes a more semantic
 110 approach by parsing captions into scene graphs of objects, attributes, and relations, and comparing
 111 them on this structured level. In summary, rule-based metrics are easy to compute, transparent in
 112 their operation, and well established, but their dependence on lexical or parsed overlap makes them
 113 less robust when valid captions diverge in wording or style from the references.

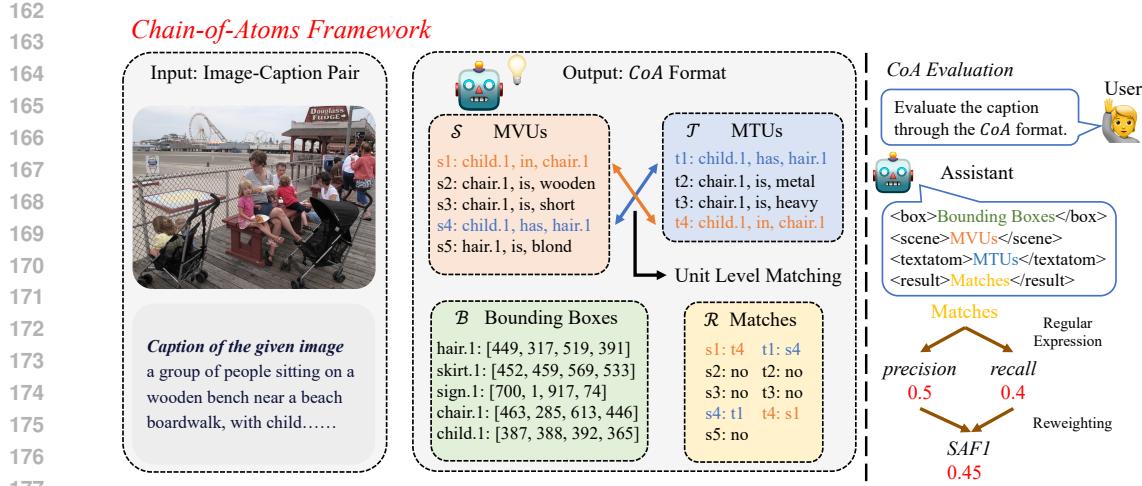
114 **Embedding-based metrics** extend beyond explicit lexical overlap by projecting both visual and
 115 textual inputs into a shared semantic space through neural network-based representations. The
 116 UMIC metric (Lee et al., 2021), a reference-free approach, assesses image–caption compatibility
 117 by integrating vision–language contrastive features with uncertainty modeling, thereby enhancing
 118 robustness against noisy or ambiguous samples. TIGEr (Jiang et al., 2019) employs contrastive
 119 embedding models designed specifically for image-caption evaluation, with optimization targeted
 120 towards alignment with human judgment. Variants of BERTScore (Zhang et al., 2019) have been
 121 adapted for the vision–language domain, computing token-level semantic similarity via contextual
 122 embeddings, often fine-tuned to better capture visual relevance. ViLBERT-S (Lu et al., 2019) util-
 123 izes the ViLBERT architecture to embed and evaluate captions based on fine-grained cross-modal
 124 interactions. CLIPScore (Hessel et al., 2021) leverages the CLIP model (Radford et al., 2021) to
 125 independently encode the image and caption, subsequently calculating their cosine similarity as a
 126 direct measure of semantic alignment. PAC-S (Sarto et al., 2023a) extends this framework by incor-
 127 porating an auxiliary penalty term that reduces scores when captions introduce hallucinated content
 128 unsubstantiated by the image. Collectively, embedding-based methodologies exhibit superior capac-
 129 ity to accommodate paraphrastic variation and to capture high-level semantic congruence. However,
 130 their performance depend on length bias and domain generalization of the vision–language models.

131 **LLM/MLLM-based metrics** have emerged as a promising direction in image-caption evaluation,
 132 leveraging the reasoning and contextual understanding capabilities of large language models to as-
 133 sess semantic alignment between visual and textual inputs. CLAIR (Chan et al., 2023) employs
 134 LLMs to estimate the semantic relevance between a candidate caption and a set of reference texts.
 135 FLEUR (Lee et al., 2024) refines MLLM-based assessments of image–caption pairs by applying
 136 logit smoothing to the model outputs, which helps mitigate prediction noise and yields more stable,
 137 higher-quality evaluation scores. Beyond direct similarity assessment, some methods emphasize
 138 interpretability through statement-level analysis. FaithScore (Jing et al., 2023) decomposes a cap-
 139 tion into atomic propositions, evaluates the factual correctness of each in isolation, and aggregates
 140 these judgments into a final score, producing an evaluation framework with a degree of explain-
 141 ability. RLAIF-V (Yu et al., 2025) introduces a novel self-feedback mechanism: captions are split
 142 into discrete statements, reformulated as questions, and then passed to an MLLM for binary clas-
 143 sification, encouraging more fine-grained factual consistency checks. DCScore (Ye et al., 2025),
 144 in turn, jointly accounts for textual accuracy and recall of visual elements; however, its strict re-
 145 liance on reference captions constrains its applicability in scenarios where high-quality references
 146 are unavailable. Overall, LLM/MLLM-based metrics offer enhanced semantic reasoning and the po-
 147 tential for interpretable assessments. Nevertheless, existing works still suffer from limited scoring
 148 dimensions and reliance on reference captions.

3 CHAIN OF ATOMS

3.1 MOTIVATION

152 In recent years, multimodal large language models (MLLMs) have been widely used for content un-
 153 derstanding, leading to numerous “MLLM-as-a-judge” applications (Chen et al., 2024a; Wang et al.,
 154 2025; Ye et al., 2025). However, current MLLM-based image-caption evaluation methods face two
 155 main challenges: (1) limited interpretability, and (2) poor style adaptability. To alleviate the above
 156 limitations, we propose *Chain-of-Atoms (CoA)*, a metric-decomposing framework. Unlike prior ap-
 157 proaches that rely on a single subjective metric, our framework decomposes the overall evaluation
 158 score into two sub-metrics: *recall* and *precision*. Specifically, *recall* measures the extent to which
 159 a caption covers the visual elements of an image, while *precision* assesses the correctness and rele-
 160 vance of the caption’s content. These sub-metrics are more objective by focusing on the specific and
 161 measurable properties of the image and caption, rather than conflating numerous evaluation factors
 162 into a single score. *CoA* explicitly decomposes both the image and caption into minimal information



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

Figure 1: Overview of the proposed *CoA* evaluation. For a given image-caption pair, *CoA-MLLM* generates four fields: a) the `<box>` field contains the bounding boxes in the image; b) `<scene>` contains all the minimal visual units (MVUs) in the image; c) `<textatom>` contains all the minimal textual units (MTUs) in the caption; and d) `<result>` contains the unit-level matching of MTUs and MVUs. Based on the `<result>` field, the *precision* and *recall* values can be obtained through rules, and combined to obtain the *SAF1* metric.

units, Minimal Visual Units (MVUs) for images and Minimal Textual Units (MTUs) for captions. Through these units, the *recall* and *precision* are calculated by matching MVUs and MTUs on unit level. Compared with previous studies (Jing et al., 2023; Yu et al., 2025; Ye et al., 2025), our *CoA* method overcomes the challenges of unit-level decomposition in reference-free scenarios. Additionally, another key strength of our *CoA* framework is its adaptability to varying narrative styles. Human evaluators often tailor their judgment based on the level of detail in a caption: for highly descriptive captions, they tend to reward comprehensive coverage of image elements, whereas for concise captions, they prioritize correctness and tolerate minor omissions without penalizing excessive details. Inspired by these observations, *CoA* evaluation dynamically adjusts the weights of *recall* and *precision* based on the number of MTUs, thus obtaining a new metric *SAF1*. This flexibility simulates human preferences and ensures robustness across diverse narrative styles. The detailed process of *CoA* is described in Section 3.2 and the synthesis of *CoA* dataset lies in Section 3.3.

3.2 COA EVALUATION

The proposed *CoA* evaluation comprises two sequential steps: decomposition and matching. To enhance usability, these steps are designed to be completed within a single MLLM forward. Accordingly, we train a *CoA-MLLM*, with four structured fields as output. As illustrated in Figure 1, the four fields, namely `<box>`, `<scene>`, `<textatom>`, and `<result>`, are denoted as $\mathcal{B} = \{b_1, b_2, \dots, b_C\}$, $\mathcal{S} = \{s_1, s_2, \dots, s_M\}$, $\mathcal{T} = \{t_1, t_2, \dots, t_N\}$, and $\mathcal{R} = \{r_1, r_2, \dots, r_{M+N}\}$, respectively. Here, \mathcal{B} and \mathcal{S} denote the visual content, \mathcal{T} denotes the textual content, and \mathcal{R} denotes the unit-level matching result. The first three fields can be regarded as a structured chain of thought (Wei et al., 2022), whereas the last field as the result.

Each $s_i \in \mathcal{S}$ and $t_j \in \mathcal{T}$ is a “subject-verb-object” format, regarded as a minimal visual unit (MVU) and minimal textual unit (MTU), respectively. The `<result>` field contains the matchings for all MVUs and MTUs. For \mathcal{S} with M MVUs and \mathcal{T} with N MTUs, the matching process is as follows:

$$r_{k \leq M} = \begin{cases} "s_k : t_j", & \text{if } m(s_k, t_j), \\ "s_k: no", & \text{otherwise.} \end{cases} \quad (1) \quad r_{k > M} = \begin{cases} "t_{k-M} : s_i", & \text{if } m(t_{k-M}, s_i), \\ "t_{k-M}: no", & \text{otherwise.} \end{cases} \quad (2)$$

In Eq. 1 and Eq. 2, $m(a, b)$ represents a semantic matching function. When a and b share similar semantic information, $m(a, b)$ returns true, otherwise false. This function is achieved by *CoA*-

MLLM directly. In our definition, *recall* is the proportion of successfully matched MVUs, whereas *precision* is the proportion of successfully matched MTUs, denoted as:

$$\text{recall} = \frac{1}{M} \cdot \sum_{k=1}^M \mathbf{1}(r_k \neq "s_k: \text{no}"), \quad \text{precision} = \frac{1}{N} \cdot \sum_{k=M+1}^{M+N} \mathbf{1}(r_k \neq "t_{k-M}: \text{no}"). \quad (3)$$

These sub-metrics are then combined to compute the style-adaptive F_1 (*SAFI*) metric:

$$w = \min \left(1.0, \max \left(0.0, \frac{l - \theta_{\min}}{\theta_{\max} - \theta_{\min}} \right) \right), \quad (4)$$

$$\text{SAFI} = w \cdot F_1(r, p) + (1 - w) \cdot p, \quad (5)$$

where r, p, l are short for *recall*, *precision*, and the number of MTUs. w stands for a dynamic weight. Additionally, we define two thresholds, θ_{\max} and θ_{\min} , as the boundaries of caption styles. For captions containing fewer MTUs than θ_{\min} , the style is classified as concise captions, and only *precision* is considered when calculating the overall score. When the number of MTUs exceeds θ_{\max} , the style is classified as detailed captions, and the score balances both *precision* and *recall* by F_1 metric. Specifically, when the MTU count falls between θ_{\min} and θ_{\max} , a linear weighting strategy is applied, gradually transitioning from concise to detailed captions scoring to ensure a continuous and smooth score distribution.

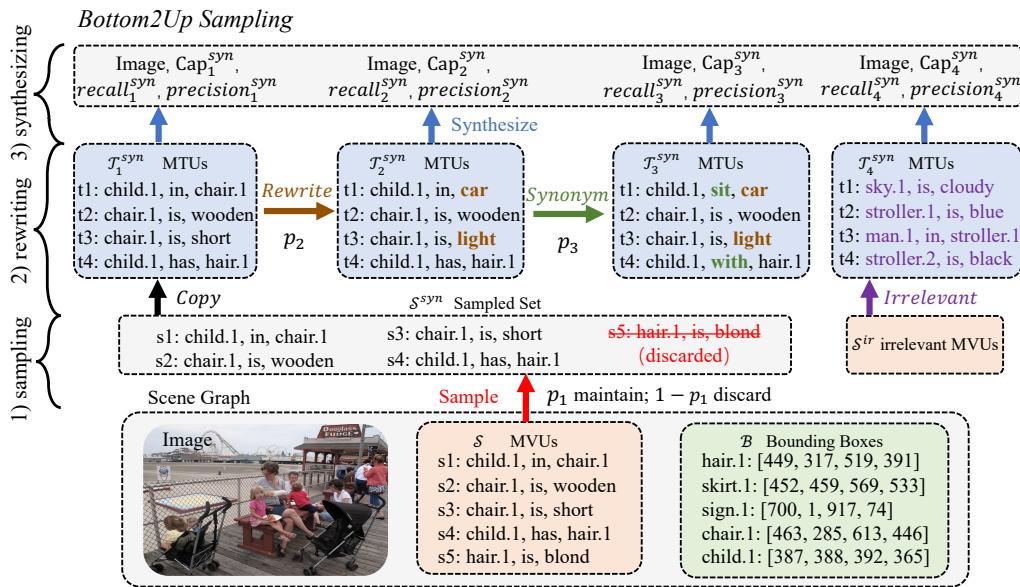


Figure 2: The overview of the *Bottom2Up* data sampling strategy. 1) By sampling the MVUs, a sample set containing all available MVUs can be obtained. 2) Four operations can be performed on the sample set to obtain the synthesized MTUs: *Copy*, *Rewrite*, *Synonym Replacement*, and *Irrelevant Replacement*. 3) The synthesized MTUs are merged into a caption, and the corresponding $\text{recall}^{\text{syn}}$ and $\text{precision}^{\text{syn}}$ are determined based on the sampling process according to Eq. 7.

3.3 CoA SYNTHESIZING

After finalizing the *CoA* evaluation pipeline, we have assessed the *CoA* evaluation effectiveness of general-purpose MLLMs. However, as shown in Table 1, both open-source and proprietary models demonstrate unsatisfactory performance in *precision*, *recall*, and *SAFI*. Therefore, we conclude that post-training of an MLLM is necessary to meet the requirements of *CoA* evaluation. Based on

270 these observations, we propose *Bottom2Up*, a sampling strategy designed to produce *CoA* data that
 271 is diverse and balanced with respect to *precision*, *recall*. In particular, *Bottom2Up* inverts the
 272 conventional process: it first sets the desired *precision* and *recall* levels, and then synthesizes captions
 273 to meet these targets.

274 As illustrated in Figure 2, *Bottom2Up* comprises three steps: 1) sampling, 2) rewriting, and 3)
 275 synthesizing. Given a scene graph as raw data, it can be denoted as $\{\text{Image}, \mathcal{B}, \mathcal{S}\}$. In the sampling
 276 stage, for each $s_i \in \mathcal{S}$, we maintain it with probability p_1 and discard it with probability $1 - p_1$. The
 277 sampled set $\mathcal{S}^{\text{sam}} = \{s_1^{\text{sam}}, s_2^{\text{sam}}, \dots, s_N^{\text{sam}}\}$ contains N MVUs, compared with M MVUs in \mathcal{S} .
 278

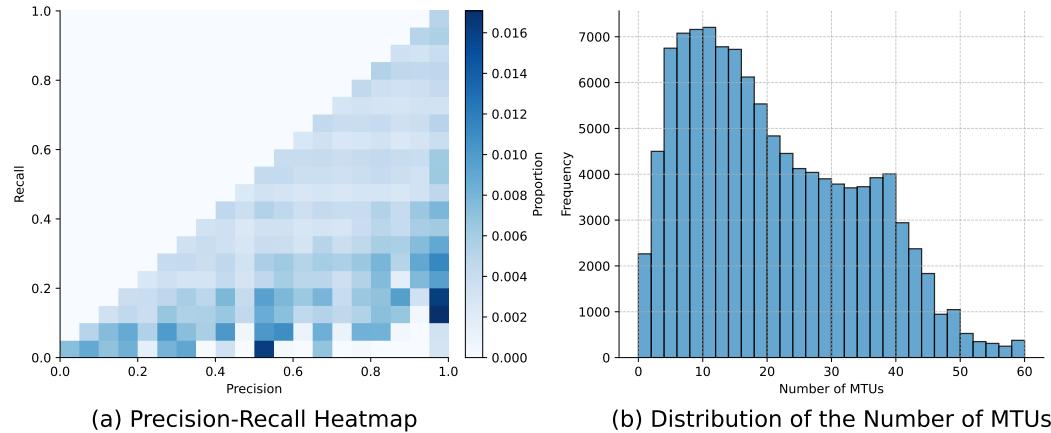
279 The rewriting stage comprises four atomic operations: *Copy*, *Rewrite*, *Synonym Replacement*, and
 280 *Irrelevant Replacement*. The first three are applied sequentially to each sampled s_i^{sam} for $i =$
 281 $1, 2, \dots, N$. The *Copy* operation is mandatory, yielding $t_i^{\text{syn}} \leftarrow s_i^{\text{sam}}$. The *Rewrite* operation then
 282 modifies the object of t_i^{syn} with probability p_2 , rendering an incorrect proposition. The *Synonym*
 283 *Replacement* substitutes the predicate of t_i^{syn} with a synonym with probability p_3 , maintaining its
 284 correctness. Traversing all elements in \mathcal{S}^{sam} yields a synthesized set of MTUs, denoted as $\mathcal{T}^{\text{syn}} =$
 285 $\{t_1^{\text{syn}}, t_2^{\text{syn}}, \dots, t_N^{\text{syn}}\}$. Additionally, *Irrelevant Replacement* operates independently by replacing
 286 \mathcal{T}^{syn} with an irrelevant scene graph, ensuring no valid matching exists between \mathcal{T}^{syn} and \mathcal{S} .
 287

288 In the synthesizing stage, we employ an MLLM to compose the MTUs into a caption:
 289

$$\text{Cap}^{\text{syn}} = \text{synthesize}(\mathcal{T}^{\text{syn}}). \quad (6)$$

290 Furthermore, based on the sampling and rewriting stage, the *recall* and *precision* of the synthesized
 291 caption can be directly derived from probabilities:
 292

$$\text{recall}^{\text{syn}} = p_1(1 - p_2), \quad \text{precision}^{\text{syn}} = 1 - p_2. \quad (7)$$



304 Figure 3: (a) The p - r distribution of the *CoA* dataset. (b) The distribution on number of the MTUs.
 305

310 Through an iterative repetition of the above process, we can effectively synthesize samples
 311 exhibiting varying levels of *recall* and *precision*. Based on these samples, we construct a *CoA* dataset comprising 400K samples, where each sample is represented as
 312 $\{\text{Image}, \text{Cap}^{\text{syn}}, \text{recall}^{\text{syn}}, \text{precision}^{\text{syn}}\}$. The statistics and distributions of the dataset are illus-
 313 trated in Figure 3.
 314

316 4 EXPERIMENTS

318 4.1 SETTINGS

320 In this section, we present the performance of the *CoA*-MLLM across various settings, including
 321 evaluation on *CoA* Bench and applications in data filtering of MLLM training.
 322

323 **Model.** We train *CoA*-MLLMs based on Qwen2.5-VL-7B (Wang et al., 2024), **GLM-4V-9B (GLM**
 324 **et al., 2024; Wang et al., 2023)** and **InternVL3-8B (Zhu et al., 2025)**, training details are available

in Table 9 in the appendix. During data synthesizing, Gemini-2.0-Flash (Google, 2025) is applied. In experiments, we evaluate several MLLMs, including LLaVA-1.5-7B (Liu et al., 2024a), Qwen2-VL-7B (Wang et al., 2024), Qwen2.5-VL-72B (Bai et al., 2025), GPT-4-Vision (OpenAI, 2025a), GPT-5-Chat (OpenAI, 2025b), and Claude-Sonnet4 (Anthropic, 2025).

Datasets. We use approximately 4,000 scene graph samples from (Johnson et al., 2015) to synthesize the *CoA* dataset. In addition, we employ 30K images from the COCO dataset (Lin et al., 2014) as source data to generate 400K *CoA* samples. For benchmark construction, we further incorporate the Flickr30k dataset (Plummer et al., 2015) to evaluate the model’s generalization on out-of-distribution data. To facilitate fine-grained evaluation, the scene graph data we use (both public and self-synthesized) are annotated at the highest granularity, with roughly 45 MVUs per image on average.

Benchmarks. To comprehensively evaluate the capabilities of MLLMs, we employ a diverse set of vision-language benchmarks, including MMBench (Liu et al., 2024b), MME (Chaoyou et al., 2023), POPE (Li et al., 2023), MMMU (Yue et al., 2024), HallusionBench (Guan et al., 2024), MMT-Bench (Ying et al., 2024), MMVet (Yu et al., 2023), MMStar (Chen et al., 2024b), and ScienceQA (Lu et al., 2022).

4.2 *CoA* BENCH

To ensure a convenient and fair testing environment, we establish the *CoA* Bench. This benchmark takes an image–caption pair as input and requires the output of its *precision*, *recall*, and *SAF1*. Compared with traditional image–captioning evaluation benchmarks, *CoA* Bench decomposes a single subjective metric into multiple objective sub-metrics, thereby offering a new perspective. *CoA* Bench comprises 500 samples, each includes *precision* and *recall* derived via the *Bottom2Up* sampling strategy, together with a *SAF1* score obtained from human evaluation. The human evaluation criteria are described in Table 7 in the appendix.

For comparison, we evaluate several general-purpose MLLMs, including Qwen2.5-VL series, GPT series, Claude series, and Gemini series. θ_{min} and θ_{max} are set as 5 and 20, respectively. As shown in Table 1, the experimental results indicate that plain prompts leads to poor performance on *recall* prediction. While *CoA* prompt improves *recall* correlation and *SAF1* accuracy but reduces *precision* correlation. Our *CoA*-MLLM outperforms general-purpose MLLMs across multiple metrics. *CoA*-MLLMs fine-tuned on different backbones all demonstrate promising performance on the *CoA* Bench, with Qwen2.5-VL-7B achieving the best results. In terms of *recall* and *precision* correlation, *CoA*-MLLM (Qwen) leads the second place by an average of 23.49%, and leads by an average of 6.41% on *SAF1*. Further analysis of the differences between the in-distribution and out-of-distribution datasets is provided in Table 10 in the appendix.

Model	prompt	recall		precision		<i>SAF1</i>	
		<i>Pear</i> \uparrow	<i>Kend</i> \uparrow	<i>Pear</i> \uparrow	<i>Kend</i> \uparrow	<i>Acc</i> ^{0.6} \uparrow	<i>Acc</i> ^{0.8} \uparrow
Qwen2.5-VL-72B	Plain	19.26	11.87	47.43	36.50	53.43	29.49
	CoA	33.01	31.87	12.87	10.53	56.12	29.63
Gemini-2.0-Flash	Plain	30.42	24.41	46.19	40.73	57.61	74.28
	CoA	40.38	30.00	22.96	17.67	57.94	79.70
GPT-4-Vision	Plain	26.31	21.38	41.34	33.03	50.20	39.19
	CoA	33.74	27.39	23.20	15.58	59.43	39.79
GPT-5-Chat	Plain	38.26	28.00	53.51	42.81	57.14	71.45
	CoA	44.13	33.57	35.39	24.26	57.13	75.46
Claude-Sonnet4	Plain	35.95	32.46	39.51	33.33	60.84	71.48
	CoA	60.59	47.53	46.40	33.02	49.50	71.48
CoA-MLLM (Qwen2.5-VL-7B)	CoA	71.14	58.42	59.49	42.54	60.76	85.71
CoA-MLLM (GLM-4V-9B)	CoA	62.97	54.24	52.98	37.22	57.20	83.95
CoA-MLLM (InternVL3-8B)	CoA	69.67	58.38	58.21	41.00	55.32	85.65

Table 1: Performance on the *CoA* benchmark. *Pear*, *Kend*, *Acc*^s represent the pearson correlation, kendall correlation, and the binary classification accuracy with *s* as the threshold, respectively. “CoA” refers to the proposed metric-decomposition prompt whereas “plain” requires the MLLMs to directly predict the *recall* and *precision*. The *SAF1* is obtained following Eq. 5.

378 Moreover, to further demonstrate that the reasoning outputs of *CoA-MLLM* are not only highly reliable
 379 at the instance level but also accurate at the atom level, we manually inspect 200 samples from
 380 the *CoA* Bench to verify the correctness of their atomic information. Atom-level accuracy is com-
 381 puted in two stages: (1) performing a one-to-one comparison between model-generated Minimal
 382 Textual Units (MTUs) and Minimal Visual Units (MVUs) with their human-verified counterparts;
 383 and (2) validating the correctness of the model-generated MTUs and MVUs by referencing the origi-
 384 nal captions and images, respectively. A unit is considered an overall hit if it matches in either stage.
 385 As shown in Table 2, atom-level accuracy remains consistently high across different backbones,
 386 indicating that *CoA-MLLM* exhibits strong atomic decomposition capability.

Model	MVUs	MTUs
CoA-MLLM (Qwen2.5-VL-7B)	82.24%	85.07%
CoA-MLLM (GLM-4v-9B)	75.80%	77.89%
CoA-MLLM (InternVL3-8B)	82.17%	75.05%

392 Table 2: Atom-level accuracy of *CoA-MLLMs*.
 393394 4.3 DATA FILTERING IN MLLM PRETRAINING AND SFT
 395

396 In the MLLM pre-training stage, image–caption pairs are the most common data type, providing
 397 a straightforward basis for aligning vision and language modalities. We have employed the *CoA-*
 398 *MLLM* to filter the pre-training dataset and analyze the downstream performance differences. We
 399 use LLaVA-1.5-7B (Liu et al., 2024a) as a baseline in this stage.

400 We rank the samples by the *SAF1* score and apply different thresholds as filtering criteria, ultimately
 401 generating six distinct data sizes¹. The experimental results after pre-training are presented in Ta-
 402 ble 3. *CoA*-filtered data lead to substantial performance gains. With only 5.2% of the data, the
 403 model achieves an average performance gain of 23.47% compared with the full dataset. Further,
 404 with 64.2% of the data, it reaches 50.11% performance gain compared with the full dataset.
 405

Pretrain	SFT	MMB	MME	POPE	MMMU	Hallu	MMVet	MMStar	SciQA	Average	Avg Gain
595K	✗	14.35	327.00	17.70	17.71	10.09	9.58	16.07	22.55	17.59	baseline
31K	✗	9.41	421.00	19.50	23.98	10.39	9.72	20.27	38.42	21.72	
Performance Gain		-4.94	+94.00	+1.80	+6.27	+0.30	+0.14	+4.20	+15.87	+4.13	+23.47%
65K	✗	8.63	346.00	18.80	24.46	12.51	12.33	21.46	38.18	21.37	
Performance Gain		-5.72	+19.00	+1.10	+6.75	+2.42	+2.75	+5.39	+15.63	+3.78	+21.47%
110K	✗	16.45	347.00	18.40	22.99	12.93	15.09	22.53	33.91	22.13	
Performance Gain		+2.10	+20.00	+0.70	+5.28	+2.84	+5.51	+6.46	+11.36	+4.53	+25.75%
162K	✗	14.91	477.00	20.30	25.61	16.19	11.37	22.01	39.41	24.69	
Performance Gain		+0.56	+150.00	+2.60	+7.90	+6.10	+1.79	+5.94	+16.86	+7.09	+40.32%
233K	✗	13.51	603.00	16.80	24.05	14.83	11.51	19.80	33.71	24.31	
Performance Gain		-0.84	+276.00	-0.90	+6.34	+4.74	+1.93	+3.73	+11.16	+6.72	+38.20%
382K	✗	15.75	624.00	19.10	25.10	14.19	12.33	22.80	39.61	26.41	
Performance Gain		+1.40	+297.00	+1.40	+7.39	+4.10	+2.75	+6.73	+17.06	+8.82	+50.11%

421 Table 3: Performance on various vision-language benchmarks without SFT. The “Pretrain” column
 422 denotes the size of the pre-training dataset. 595K represents the original dataset, while the smaller
 423 sizes correspond to subsets after filtering. For MME, the value is divided by 10 when comput-
 424 ing the average score. The “Avg Gain” column indicates the relative accuracy increase over the baseline
 425 model trained on the full 595K dataset.

426
 427 Furthermore, we perform SFT training on the pre-trained models, as shown in Table 4. All models
 428 use the same 150K SFT dataset (Liu et al., 2023) and maintain identical hyper-parameters. The
 429 results demonstrate that using only 5.2% of the data yields 98.77% of the downstream average per-
 430 formance, whereas using 18.5% of the data reaches full performance. Compared with the results of
 431

¹The *SAF1* thresholds corresponding to different data sizes are available in the Table 8 in the appendix.

	Pretrain	SFT	MMB	MME	POPE	MMMU	Hallu	MMVet	MMStar	SciQA	Average	Avg Gain
595K	595K	150K	24.83	1163.00	74.28	21.50	39.11	25.55	29.60	53.53	38.40	baseline
31K	31K	150K	13.51	1135.00	75.48	24.50	39.74	26.70	30.20	55.43	37.92	
Performance Gain	-11.32	-28.00	+1.20	+3.00	+0.63	+1.15	+0.60	+1.90	-0.47	-1.23%		
65K	65K	150K	16.09	1226.00	76.15	23.40	37.64	25.50	29.53	52.55	37.72	
Performance Gain	-8.74	+63.00	+1.87	+1.90	-1.47	-0.05	-0.07	-0.98	-0.68	-1.77%		
110K	110K	150K	23.37	1220.00	76.31	23.50	37.33	26.85	29.80	53.70	38.94	
Performance Gain	-1.46	+57.00	+2.03	+2.00	-1.78	+1.30	+0.20	+0.17	+0.54	+1.42%		
162K	162K	150K	17.04	1196.00	76.10	23.40	39.85	27.48	30.67	53.20	38.45	
Performance Gain	-7.79	+33.00	+1.82	+1.90	+0.74	+1.93	+1.07	-0.33	+0.05	+0.14%		
233K	233K	150K	23.82	1264.00	78.03	23.40	39.96	24.17	30.73	52.16	39.30	
Performance Gain	-1.01	+101.00	+3.75	+1.90	+0.85	-1.38	+1.13	-1.37	+0.90	+2.36%		
382K	382K	150K	26.17	1254.00	77.03	24.90	34.70	25.55	32.33	55.58	39.76	
Performance Gain	+1.34	+91.00	+2.75	+3.40	-4.41	+0.00	+2.73	+2.05	+1.36	+3.55%		

Table 4: Performance on various vision-language benchmarks with SFT on 150K instruction datasets. The “Pretrain” column denotes the size of the pre-training dataset. 595K represents the original dataset, while the smaller sizes correspond to subsets after filtering. For MME, the value is divided by 30 when computing the average score. The “Avg Gain” column indicates the relative accuracy increase over the baseline model trained on the full 595K dataset.

the “pre-training only” setting, the advantage of *CoA* filtering narrows after SFT, likely because the SFT dataset also facilitates modality alignment. These results demonstrate that the *CoA* evaluation substantially improves the ability to identify high-quality samples, thereby delivering practical gains in MLLM training efficiency.

To further verify the effects of the *CoA* evaluation, we apply it to filter the SFT training dataset. We adopt the Qwen2-VL-7B and LLaVA-1.5-7B models as baselines and LLaVA-665K (Liu et al., 2024a) as the SFT dataset. We inject noisy data with low CLIP correlation scores to simulate low-quality data commonly encountered in real-world scenarios. The experimental results are presented in Table 5. The results indicate that, after noise injection, the average performance of both Qwen and LLaVA decreases significantly. However, after *CoA* filtering, both models show robustness to noise injection, with performance degradation remaining at a relatively controllable level, demonstrating the practical value of *CoA* in data filtering.

Model	Filter	Noise Ratio				
		0%	10%	20%	30%	40%
Qwen	✗	59.59	58.14	57.13	56.16	56.29
	✓	59.59	59.61	58.66	58.18	57.93
LLaVA	✗	50.62	49.93	48.97	48.80	47.34
	✓	50.62	50.64	50.43	49.53	49.72

Table 5: Performance comparison of Qwen and LLaVA models under different ratios of noise injection in SFT, with and without data filtering.

4.4 ABLATIONS

To verify the effectiveness and necessity of the proposed *CoA* evaluation, we conduct ablation studies on different data-filtering methods. As shown in Figure 4 and Table 6, we compare *CoA* with three baselines: CLIPScore (Hessel et al., 2021) and PAC-S (Sarto et al., 2023b), two CLIP-based methods for measuring vision–language consistency, and the Precision-only filter, which ranks samples solely based on the *precision* metric derived from *CoA*-MLLM. Across all data scales, *CoA* consistently outperforms both CLIPScore and PAC-S, achieving the highest average downstream performance and demonstrating that decomposing image-caption data into atomic semantic units ef-

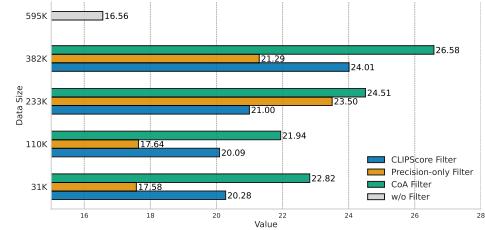
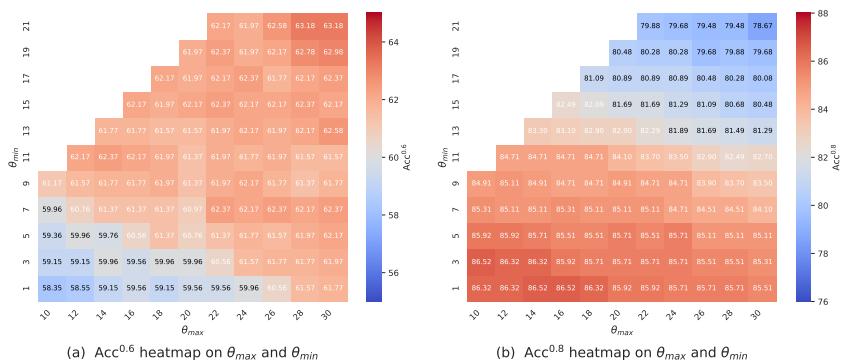


Figure 4: Performance comparison across different filters in MLLM pre-training.

486 effectively captures fine-grained semantic mismatches. Notably, although the majority of captions in
 487 the training dataset are short (over 60%), relying solely on the *precision* metric results in a significant
 488 performance drop compared with the *SAFI* metric, highlighting the necessity of jointly considering
 489 both correctness and comprehensiveness when evaluating image–caption pairs. Furthermore, all
 490 filtering strategies surpass the No-Filter baseline, reinforcing the importance of multimodal data fil-
 491 tering and supporting the motivation of our study. Additional ablation studies on hyperparameters
 492 are provided in Figure 5.

	Filter	MME	Hallusion	MMT	MMStar	ScienceQA	Avg
595K	No-Filter	327	10.09	17.71	16.07	22.55	16.55
31K	CLIPScore	324	11.67	27.44	19.40	26.68	20.28
	PAC-S	296	6.83	24.37	21.20	33.71	20.18
	P-only	415	13.24	19.12	16.53	18.24	17.58
	CoA	421	10.39	23.98	20.27	38.42	22.82
110K	CLIPScore	341	11.04	25.20	20.20	26.98	20.09
	PAC-S	291	10.09	25.01	21.67	35.05	21.27
	P-only	317	7.78	19.31	17.60	27.66	17.64
	CoA	347	12.93	22.99	22.53	33.91	21.94
233K	CLIPScore	483	12.09	21.96	20.71	26.07	21.00
	PAC-S	455	16.72	22.61	19.80	30.04	22.39
	P-only	483	19.24	21.93	19.46	32.72	23.50
	CoA	603	14.83	24.05	19.80	33.71	24.51
382K	CLIPScore	549	20.08	24.46	20.46	27.61	24.01
	PAC-S	288	11.25	23.82	22.07	35.65	21.44
	P-only	444	13.88	21.87	20.46	28.06	21.29
	CoA	624	14.19	25.10	22.80	39.61	26.58

Table 6: Performance analysis of MLLM pre-training across different filter settings.

Figure 5: Ablation studies on θ_{max} and θ_{min}

5 CONCLUSION

In this paper, we introduce *Chain-of-Atoms* (*CoA*), a metric-decomposition framework for image–caption evaluation. By separating the overall score into sub-metrics, *CoA* mitigates the limitations of prior approaches in interpretability and style adaptability. We further present *Bottom2Up*, a data sampling strategy that synthesizes large-scale, diverse image–caption evaluation datasets. Building on these components, we train *CoA-MLLM*, a multimodal large language model capable of end-to-end *CoA* inference. On the *CoA* Bench, *CoA-MLLM* outperforms existing general-purpose MLLMs and achieves the highest correlation with human judgments. We also demonstrate its effectiveness for data filtering, achieving downstream performance comparable to using the full dataset while training on only about 18.5% of the pre-training data, thereby improving efficiency. We believe that *CoA* holds promising potential for multimodal quality evaluation, and in future work, we aim to extend it to a wide range of vision–language corpora beyond image–caption tasks.

540 **Reproducibility Statement**

541 We have made every effort to ensure that the results reported in this paper are reproducible. Experimental configurations, including hyper-parameters, training settings, and implementation details, 542 are described in the appendix. A full description of the *CoA* framework and the *Bottom2Up* strategy, 543 together with the exact prompts, is provided to facilitate reproduction of our experiments. Details 544 of the datasets including evaluation criteria, data distributions, and thresholds are documented in 545 the appendix to ensure consistent evaluation. Necessary case visualizations are also included to 546 improve other researchers' understanding of the *CoA* framework. We believe these measures will 547 enable other researchers to reproduce our work and further advance the field.

549 **REFERENCES**

550

551 Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional 552 image caption evaluation. In *European conference on computer vision*, pp. 382–398. Springer, 2016.

553

554

555 Anthropic. The claude 4 model family. 2025.

556

557 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, 558 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 559 2025.

560

561 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved 562 correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic 563 evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.

564

565 David Chan, Suzanne Petryk, Joseph E Gonzalez, Trevor Darrell, and John Canny. Clair: Evaluating 566 image captions with large language models. *arXiv preprint arXiv:2310.12971*, 2023.

567

568 Fu Chaoyou, Chen Peixian, Shen Yunhang, Qin Yulei, Zhang Mengdan, Lin Xu, Yang Jinrui, Zheng 569 Xiawu, Li Ke, Sun Xing, et al. Mme: A comprehensive evaluation benchmark for multimodal 570 large language models. *arXiv preprint arXiv:2306.13394*, 3, 2023.

571

572 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, 573 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge 574 with vision-language benchmark. In *Forty-first International Conference on Machine Learning*, 2024a.

575

576 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi 577 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language 578 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024b.

579

580 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu 581 Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, 582 Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, 583 Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, 584 Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, 585 Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan 586 Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, 587 Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language 588 models from glm-130b to glm-4 all tools, 2024.

589

590 Google. Gemini 2.0 flash. 2025. URL <https://modelcards.withgoogle.com/assets/documents/gemini-2-flash.pdf>.

591

592 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang 593 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for 594 entangled language hallucination and visual illusion in large vision-language models. In *Proceedings 595 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14375–14385, 2024.

594 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 595 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
 596

597 Ming Jiang, Qiuyuan Huang, Lei Zhang, Xin Wang, Pengchuan Zhang, Zhe Gan, Jana Diesner,
 598 and Jianfeng Gao. Tiger: Text-to-image grounding for image caption evaluation. *arXiv preprint
 599 arXiv:1909.02050*, 2019.

600 Liqiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du. Faithscore: Fine-grained evaluations of
 601 hallucinations in large vision-language models. *arXiv preprint arXiv:2311.01477*, 2023.
 602

603 Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and
 604 Li Fei-Fei. Image retrieval using scene graphs. In *Proceedings of the IEEE conference on com-
 605 puter vision and pattern recognition*, pp. 3668–3678, 2015.

606 Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Trung Bui, and Kyomin Jung. Umic: An un-
 607 referenced metric for image captioning via contrastive learning. *arXiv preprint arXiv:2106.14019*,
 608 2021.

609 Yebin Lee, Imseong Park, and Myungjoo Kang. Fleur: An explainable reference-free evaluation
 610 metric for image captioning using a large multimodal model. *arXiv preprint arXiv:2406.06004*,
 611 2024.

612 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 613 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.
 614

615 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 616 branches out*, pp. 74–81, 2004.

617 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 618 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 619 conference on computer vision*, pp. 740–755. Springer, 2014.

620 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 621 in neural information processing systems*, 36:34892–34916, 2023.
 622

623 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 624 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 625 pp. 26296–26306, 2024a.

626 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 627 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 628 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.
 629

630 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
 631 guistic representations for vision-and-language tasks. *Advances in neural information processing
 632 systems*, 32, 2019.

633 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 634 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 635 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 636 2022.

637 OpenAI. Gpt-4v. 2025a. URL <https://openai.com/index/gpt-4v-system-card/>.
 638

639 OpenAI. Gpt-5. 2025b. URL <https://openai.com/index/gpt-5-system-card/>.
 640

641 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 642 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association
 643 for Computational Linguistics*, pp. 311–318, 2002.

644 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
 645 lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
 646 to-sentence models. In *Proceedings of the IEEE international conference on computer vision*, pp.
 647 2641–2649, 2015.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 650 models from natural language supervision. In *International conference on machine learning*, pp.
 651 8748–8763. PMLR, 2021.

652 Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Positive-
 653 augmented contrastive learning for image and video captioning evaluation. In *Proceedings of the*
 654 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 6914–6924, 2023a.

655 Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Positive-
 656 Augmented Contrastive Learning for Image and Video Captioning Evaluation. In *Proceedings of*
 657 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023b.

658 Sara Sarto, Marcella Cornia, Rita Cucchiara, et al. Image captioning evaluation in the age of mul-
 659 timodal llms: Challenges and future perspectives. In *Proceedings of the 34th International Joint*
 660 *Conference on Artificial Intelligence*, 2025.

661 Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
 662 description evaluation. In *Proceedings of the IEEE conference on computer vision and pattern*
 663 *recognition*, pp. 4566–4575, 2015.

664 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 665 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 666 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

667 Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
 668 Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
 669 Cogvlm: Visual expert for pretrained language models, 2023.

670 Zhenting Wang, Shuming Hu, Shiyu Zhao, Xiaowen Lin, Felix Juefei-Xu, Zhuowei Li, Ligong Han,
 671 Harihar Subramanyam, Li Chen, Jianfa Chen, et al. Mllm-as-a-judge for image safety without
 672 human labeling. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 673 14657–14666, 2025.

674 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 675 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 676 *neural information processing systems*, 35:24824–24837, 2022.

677 Xu Yang, Jiawei Peng, Zihua Wang, Haiyang Xu, Qinghao Ye, Chenliang Li, Songfang Huang, Fei
 678 Huang, Zhangzikang Li, and Yu Zhang. Transforming visual scene graphs to image captions. In
 679 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume*
 680 *1: Long Papers)*, pp. 12427–12440, 2023.

681 Qinghao Ye, Xianhan Zeng, Fu Li, Chunyuan Li, and Haoqi Fan. Painting with words: El-
 682 evating detailed image captioning with benchmark and alignment learning. *arXiv preprint*
 683 *arXiv:2503.07906*, 2025.

684 Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang,
 685 Yuqi Lin, Shuo Liu, et al. Mmt-bench: A comprehensive multimodal benchmark for evaluating
 686 large vision-language models towards multitask agi. *arXiv preprint arXiv:2404.16006*, 2024.

687 Tianyu Yu, Haoye Zhang, Qiming Li, Qixin Xu, Yuan Yao, Da Chen, Xiaoman Lu, Ganqu Cui,
 688 Yunkai Dang, Taiwen He, et al. Rlaif-v: Open-source ai feedback leads to super gpt-4v trust-
 689 worthiness. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 690 19985–19995, 2025.

691 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 692 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*
 693 *preprint arXiv:2308.02490*, 2023.

694 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 695 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 696 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 697 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

702 Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and Jiaqi Wang. Long-clip: Unlocking the
703 long-text capability of clip. In *European conference on computer vision*, pp. 310–325. Springer,
704 2024.

705
706 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
707 ing text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019.

708 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
709 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
710 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

Large Language Models (LLMs) are used to aid in the writing and polishing of the paper. Specifically, we use LLMs to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The LLMs help with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLMs are not involved in the research design, implementation, results, and conclusions. The authors take full responsibility for all content in this paper. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

A.2 DATASETS

For the proposed *CoA* dataset, this section further analyzes the human evaluation criteria and data distribution. Table 7 presents the manual evaluation criteria for the *SAF1* metric applied to image–caption pairs. The criteria adopts a discrete five-point scale, with distinct definitions for the detail and concise styles. We regard samples with $SAF1 > 0.6$ as high-quality data; otherwise, they are classified as low-quality. Consequently, in the *CoA* data filtering stage, we consider two filtering metrics: $Acc^{0.6}$ and $Acc^{0.8}$.

SAF1	Human Evaluation Criteria
1.00	<p>The caption is completely accurate.</p> <p>Detail Describe most of visual elements accurately.</p> <p>Concise Cover the main visual elements, background can be ignored.</p>
0.80	<p>The caption is generally accurate, with only minor errors in details or background.</p> <p>Detail Cover the main visual elements, background can be ignored.</p> <p>Concise Mention the main visual element without describing it.</p>
0.60	<p>The main objects and scenes are mentioned, but the attributes are incorrect.</p> <p>Detail and Concise The main visual subject is mentioned.</p>
0.40	<p>Describes the image incorrectly or includes irrelevant content.</p> <p>The description does not mention the main visual subject.</p>
≤0.20	The caption is completely irrelevant to the image and does not cover any visual elements.

Table 7: The human evaluation criteria of *CoA* Bench.

During the MLLM pre-training stage, the LLaVA-Pretrain dataset (Liu et al., 2023) contains 595K image–caption pairs. We set the *SAF1* threshold to 0.99, 0.95, 0.9, 0.8, 0.6, 0.4, and 0.2 to obtain subsets of different sizes. For each threshold, the number of samples, as well as the counts for the concise and detail caption styles, are listed in Table 8. Note that, all samples with the number of MTUs greater than θ_{min} are categorized as detail style.

SAF1 Threshold	Count	Concise (%)	Detail (%)	Overall (%)
0.99	31K	3%	7%	5.32%
0.95	65K	5%	15%	10.91%
0.9	110K	6%	27%	18.48%
0.8	162K	8%	40%	27.22%
0.6	233K	18%	54%	39.15%
0.4	286K	31%	61%	48.06%
0.2	382K	46%	79%	64.20%

Table 8: The *SAF1* threshold of data filtering

For Figure 3 in the main text, we conduct a further analysis to enhance understanding of the data distribution. As shown in Figure 6, the heatmap on the left clearly exhibits three distinct distributional regions, which essentially correspond to different distributions of MTU counts in the right figure. Since the number of synthesized MTUs set () equals the size of the sampled set (), and the maintain rate for each sampled MVU is p_1 , the number of synthesized MTUs can be expressed as $N = p_1 \cdot M$, where M denotes the number of original MVUs. According to Eq. 3, the p - r relationship is as follows:

$$\frac{recall}{precision} = \frac{p_1(1 - p_2)}{1 - p_2} = p_1. \quad (8)$$

Therefore, in the p - r distribution, the slope of the line $recall = p_1 \cdot precision$ is proportional to the number of MTUs. Since our sampling strategy emphasizes medium-length captions, the p - r heatmap exhibits a clear partitioning effect.

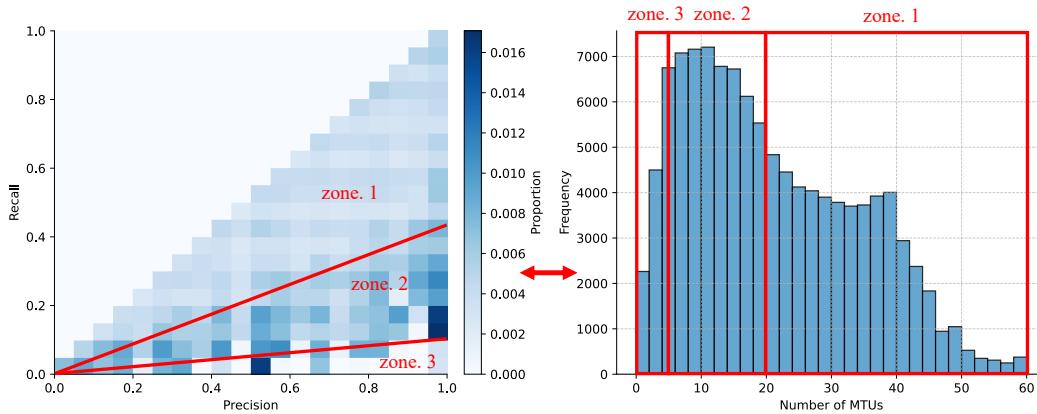


Figure 6: Correspondence between the p - r heatmap and the MTU number distribution.

A.3 EXPERIMENTS

The hyper-parameters used for training *CoA-MLLM* are shown in Table 9.

Hyper-parameter	Value
DeepSpeed configuration	zero3
attention type	flash attention 2
Freeze vision tower	False
Freeze LLM	False
Freeze merger	False
Batchsize	128
Image min pixels	$128 \times 28 \times 28$
Image max pixels	$256 \times 28 \times 28$
Base learning rate	$1e-5$
Merger learning rate	$1e-5$
Vision learning rate	$2e-6$
Weight decay	0.1
Warmup ratio	0.03
LR scheduler	cosine

Table 9: Training hyper-parameters used for fine-tuning Qwen-2.5-VL.

During *CoA-MLLM* training, we synthesize the training data from the SG Dataset (Johnson et al., 2015) and COCO (Lin et al., 2014) as the original data sources. Since *CoA* Bench mixes in-distribution (ID) and out-of-distribution (OOD) data, we report results separately for both ID and OOD datasets. *CoA* Bench employs SG Dataset, COCO, and Flickr30K in proportions of 20%,

864 40%, and 40%, respectively. Quantitative results demonstrate that *CoA*-MLLM exhibits no significant performance degradation on OOD data compared with ID, proving strong generalization and
 865 providing a feasibility validation for its application to large-scale data filtering.
 866

Model	SG Dataset (ID)			COCO (ID)			Flickr30K (OOD)		
	recall	precision	SAF1	recall	precision	SAF1	recall	precision	SAF1
Qwen2.5-VL-7B	43.64	22.20	35.71	33.35	16.72	25.50	18.34	9.22	30.72
Gemini-2.0-Flash	34.99	18.01	73.24	29.73	15.99	78.44	45.21	22.69	84.21
GPT-4-Vision	48.11	19.50	47.00	24.68	14.43	38.66	29.16	23.19	37.24
GPT-5-Chat	36.55	19.39	66.00	33.30	19.47	77.50	37.40	33.08	78.17
Claude-Sonnet4	66.00	42.51	66.00	47.26	42.82	73.50	51.97	37.59	72.22
CoA-MLLM	87.21	64.86	85.86	66.27	60.27	81.00	71.30	59.84	90.40

875 Table 10: Performance on ID and OOD data of *CoA* Bench. The metrics for *recall*, *precision* are
 876 pearson correlation, and $Acc^{0.8}$ is applied on *SAF1*.
 877

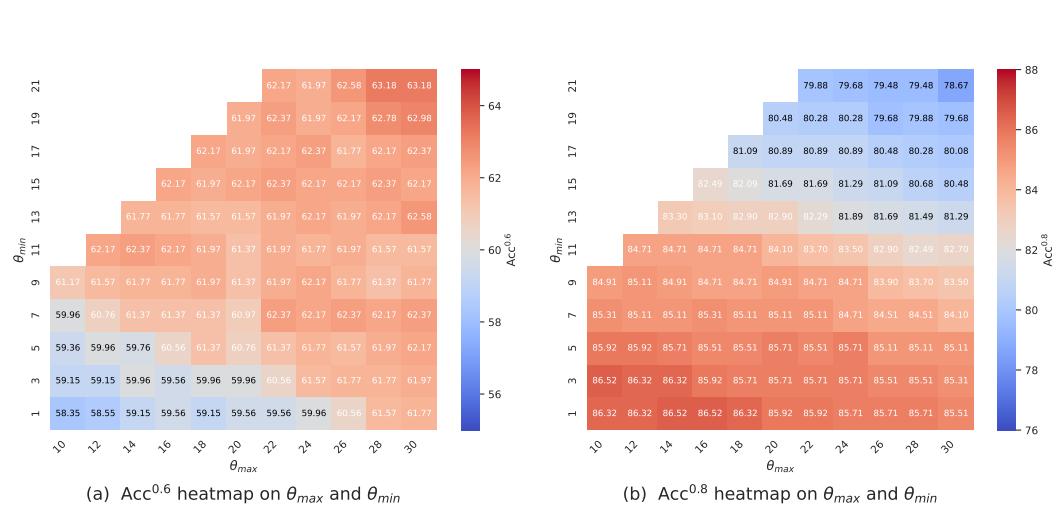
Model	Noise	Filter	MME	POPE	Hallu	MMT	MMVet	MMStar	SciQA	Average
Qwen2.5-VL-7B-pretrain	0%	✗	1904	88.85	57.71	56.00	39.68	49.13	78.18	59.59
	10%	✗	1962	87.56	54.36	56.31	37.38	47.40	74.91	58.14
	10%	✓	2027	88.58	60.25	55.26	39.82	47.13	75.55	59.61
	20%	✗	1968	88.42	56.25	54.84	34.86	44.73	71.64	57.13
	20%	✓	1804	88.95	55.10	56.67	40.69	47.67	76.45	58.66
	30%	✗	1910	86.27	53.36	54.68	36.85	40.46	73.74	56.16
	30%	✓	1880	89.18	55.52	56.22	37.94	46.67	74.71	58.18
	40%	✗	1876	86.01	54.28	55.00	35.65	42.87	73.31	56.29
	40%	✓	1874	88.18	53.63	56.82	36.63	47.80	75.58	57.93
	50%	✗	1835	85.82	51.57	52.57	34.43	41.87	72.52	54.95
	50%	✓	1981	86.47	58.15	56.96	36.47	46.07	74.81	58.35
LLaVA-1.5-7B-pretrain	0%	✗	1623	85.75	39.33	42.34	32.20	32.80	67.37	48.62
	10%	✗	1676	83.99	47.31	46.98	28.76	34.33	66.23	49.93
	10%	✓	1764	84.74	49.16	47.10	29.22	33.87	66.28	50.64
	20%	✗	1787	85.84	42.00	42.00	31.24	34.00	63.06	48.97
	20%	✓	1743	86.94	44.48	44.71	32.54	35.93	64.85	50.43
	30%	✗	1652	83.62	40.80	45.06	30.39	33.33	67.07	48.80
	30%	✓	1695	84.82	42.48	45.22	31.70	34.87	65.25	49.53
	40%	✗	1588	85.22	40.06	41.82	30.46	30.40	63.73	47.34
	40%	✓	1633	86.55	42.80	45.43	35.53	32.87	64.05	49.72
	50%	✗	1598	83.92	40.79	38.60	27.84	31.20	63.21	46.50
	50%	✓	1583	85.75	43.00	46.33	30.00	34.13	65.15	49.13

901 Table 11: Details on *CoA* filtering in MLLM SFT stage.
 902

903 Table 11 provides a detailed presentation of the MLLM SFT data filtering experiments (corresponding
 904 to Table 5). We compare different benchmarks and varying noise ratios on Qwen2.5-VL-7B-
 905 pretrain and LLaVA-1.5-7B-pretrain models.
 906

907 We conduct an ablation study on the hyper-parameters θ_{\min} and θ_{\max} in Eq. 4, as shown in Figure
 908 7. Experiments are carried out under two metrics $Acc^{0.6}$ and $Acc^{0.8}$, with search ranges
 909 $\theta_{\min} \in \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21\}$ and $\theta_{\max} \in \{10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30\}$.
 910 The results indicate that $Acc^{0.6}$ and $Acc^{0.8}$ exhibit different preferences for hyper-parameters. We
 911 ultimately set $\theta_{\min} = 5$ and $\theta_{\max} = 20$ to balance the two metrics.
 912

913 To ensure a fair comparison during the pre-training stage, we further investigate the impact of *CoA*
 914 filtering on model performance under the same data size. As shown in Table 12, we randomly sample
 915 subsets of 31K, 110K, 233K, and 382K from a total of 595K pre-training samples, and apply *CoA*
 916 filtering to obtain datasets of the same sizes. We then conduct one-stage pre-training of LLaVA-
 917 1.5-7B on these subsets and evaluate the models across multiple benchmarks. The results indicate
 918 that even at the same data scale, *CoA*-filtered datasets provide the model with a higher performance
 919 ceiling, consistent with the conclusions reported in Table 3 of the main paper.
 920

Figure 7: Ablation studies on θ_{max} and θ_{min}

Pretrain	Sampler	MMB	MME	POPE	MMMUHallu	MMVet	MMStar	SciQA	Average
31K	random	7.90	360	27.00	18.90	10.09	9.77	21.67	35.20
	CoA	9.41	421	19.50	23.98	10.39	9.72	20.27	38.42
110K	random	12.50	343	15.04	17.90	13.35	8.90	19.93	38.47
	CoA	16.45	347	18.40	22.99	12.93	15.09	22.53	33.91
233K	random	15.86	174	24.54	17.50	9.25	12.39	18.87	32.97
	CoA	13.51	603	16.80	24.05	14.83	11.51	19.80	33.71
382K	random	10.59	333	39.41	18.00	12.83	11.24	18.90	27.81
	CoA	15.75	624	19.10	25.10	14.19	12.33	22.80	39.61

Table 12: Comparison between CoA-filtered data and random sampling with the same data size.

Pretrain	SFT	MMB	MME	POPE	MMMUHallu	MMVet	MMStar	SciQA	Average	Avg Gain
595K	665K	64.30	1510.70	86.10	26.50	40.80	29.72	33.40	65.79	49.62
31K	665K	64.85	1653.04	85.94	26.50	37.75	29.50	33.67	64.35	49.71
65K	665K	63.73	1595.21	86.68	28.60	39.75	25.69	33.27	67.29	49.77
110K	665K	55.04	1618.24	82.87	27.90	38.91	39.95	34.73	65.79	49.89
162K	665K	64.18	1589.51	86.14	27.20	41.96	30.18	34.07	65.39	50.26
233K	665K	67.47	1707.82	86.88	26.20	39.33	28.81	33.07	65.84	50.57
382K	665K	73.49	1645.96	86.07	27.20	38.80	28.49	34.20	66.24	51.17

Table 13: Performance on various vision-language benchmarks with SFT on 665K datasets.

972 To further validate that *CoA* effectively selects high-quality training data, we extend the SFT training
 973 dataset to the LLaVA-665K datasets and evaluate the models on multiple benchmarks. As presented
 974 in Table 13, we first pre-train the model on *CoA*-filtered image–caption datasets of different sizes,
 975 and then conduct subsequent SFT training using the exact same dataset. The experiments show that
 976 pre-training with *CoA*-filtered data significantly enhances the model’s downstream capabilities.
 977

978 **A.4 CASE STUDY**

980 In this section, we visualize cases of *CoA*-MLLM output. We select three samples including concise
 981 caption (Figure 8), medium-length caption (Figure 9), and detailed caption (Figure 10) to provide a
 982 more comprehensive illustration of the *CoA* format.

983 **A.5 PROMPTS**

985 In this section, we provide all prompts used in this paper to ensure reproducibility of the experimen-
 986 tal results. Figure 11 shows the *CoA* prompt, which strictly defines the *CoA* format and requires
 987 outputs to follow the specified structure. In practical use, we also supply an in-context example.
 988 However, due to page limitations, it is not listed here, but it can be constructed in a manner similar
 989 to that in Figure 9. Correspondingly, Figure 12 presents a plain prompt that requires the MLLM to
 990 directly predict *precision* and *recall*. Figures. 13 and Figure 14 are the prompts used in *Bottom2Up*
 991 during the synthesizing and rewriting stages, respectively. Figure 15 is the prompt for constructing
 992 scene graphs.

993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026

1027

1028 Input: Image-Caption Pair

1029

1030 **Caption**1031 A standing man on the right is holding a silver phone. The man is behind another man.
1032 The man on the left has a phone, and is by a glass, while a wet glass is also visible. A
1033 yellow lemon is also in the scene.

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

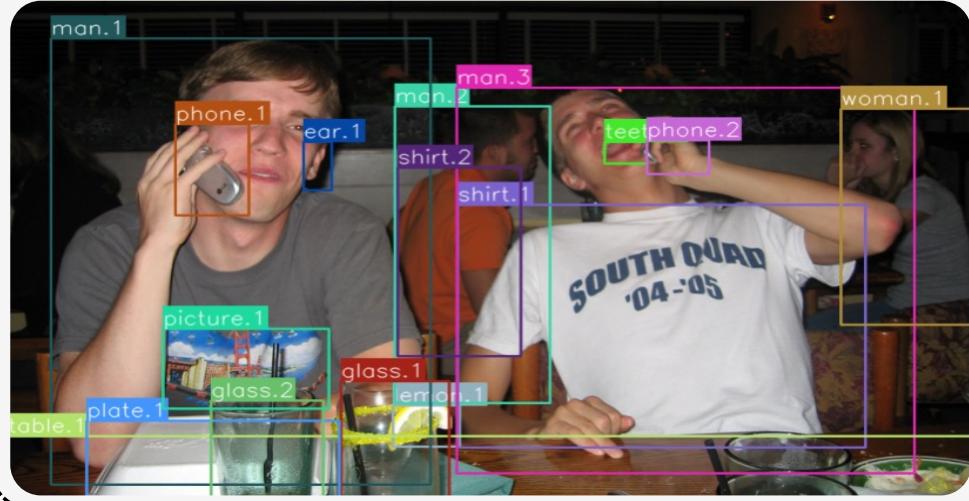
1047

1048

1049

1050

1051



1052

Output: *CoA* Output by *CoA-MLLM*

1053

1054

 \mathcal{S} MVUs

S1: man.1, holding, phone.1
 S2: man.1, is, sitting
 S3: man.1, is, laughing
 S4: phone.1, is, silver
 S5: phone.1, is, on
 S6: man.1, by, phone.1
 S7: man.1, by, glass.1
 S8: glass.1, is, wet
 S9: glass.1, is, clear
 S10: man.1, has, picture.1
 S11: man.1, in front of, man.2
 S12: man.2, is, sitting
 S13: man.1, has, teeth.1
 S14: teeth.1, are, white
 S15: man.1, has, ear.1
 S16: man.1, has, shirt.1
 S17: shirt.1, is, white
 S18: shirt.1, is, printed
 S19: phone.1, by, man.1
 S20: phone.1, on, man.1
 S21: glass.1, on, table.1
 S22: table.1, is, brown
 S23: table.1, is, wood

S24: table.1, is, full
 S25: table.1, has, glass.1
 S26: table.1, has, plate.1
 S27: plate.1, is, white
 S28: table.1, under, plate.1
 S29: table.1, under, glass.1
 S30: man.3, holding, phone.2
 S31: man.3, is, sitting
 S32: phone.2, is, silver
 S33: man.3, by, woman.1
 S34: woman.1, is, sitting
 S35: woman.1, is, blonde
 S36: woman.1, is, smoking
 S37: man.3, has, phone.2
 S38: man.2, has, shirt.2
 S39: shirt.2, is, orange
 S40: lemon.1, on, glass.1
 S41: lemon.1, is, yellow
 S42: plate.1, on, table.1
 S43: glass.2, on, table.1
 S44: glass.2, is, clear

\mathcal{T} MTUs
 T1: man.1, holding, phone.1
 T2: man.1, is, standing
 T3: phone.1, is, silver
 T4: man.1, behind, man.2
 T5: man.1, has, phone.2
 T6: glass.2, is, wet
 T7: lemon.1, is, yellow

 \mathcal{R} Matches

S1: T1	S18: no	S35: no
S2: no	S19: no	S36: no
S3: no	S20: no	S37: no
S4: T3	S21: no	S38: no
S5: no	S22: no	S39: no
S6: no	S23: no	S40: no
S7: no	S24: no	S41: T7
S8: no	S25: no	S42: no
S9: no	S26: no	S43: no
S10: no	S27: no	S44: no
S11: no	S28: no	T1: S1
S12: no	S29: no	T2: no
S13: no	S30: no	T3: S4
S14: no	S31: no	T4: no
S15: no	S32: no	T5: no
S16: no	S33: no	T6: no
S17: no	S34: no	T7: S41

1076

1077

Figure 8: An example of *CoA-MLLM* output for a concise image-caption pair. All bounding boxes generated by *CoA-MLLM* are visualized on the image.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

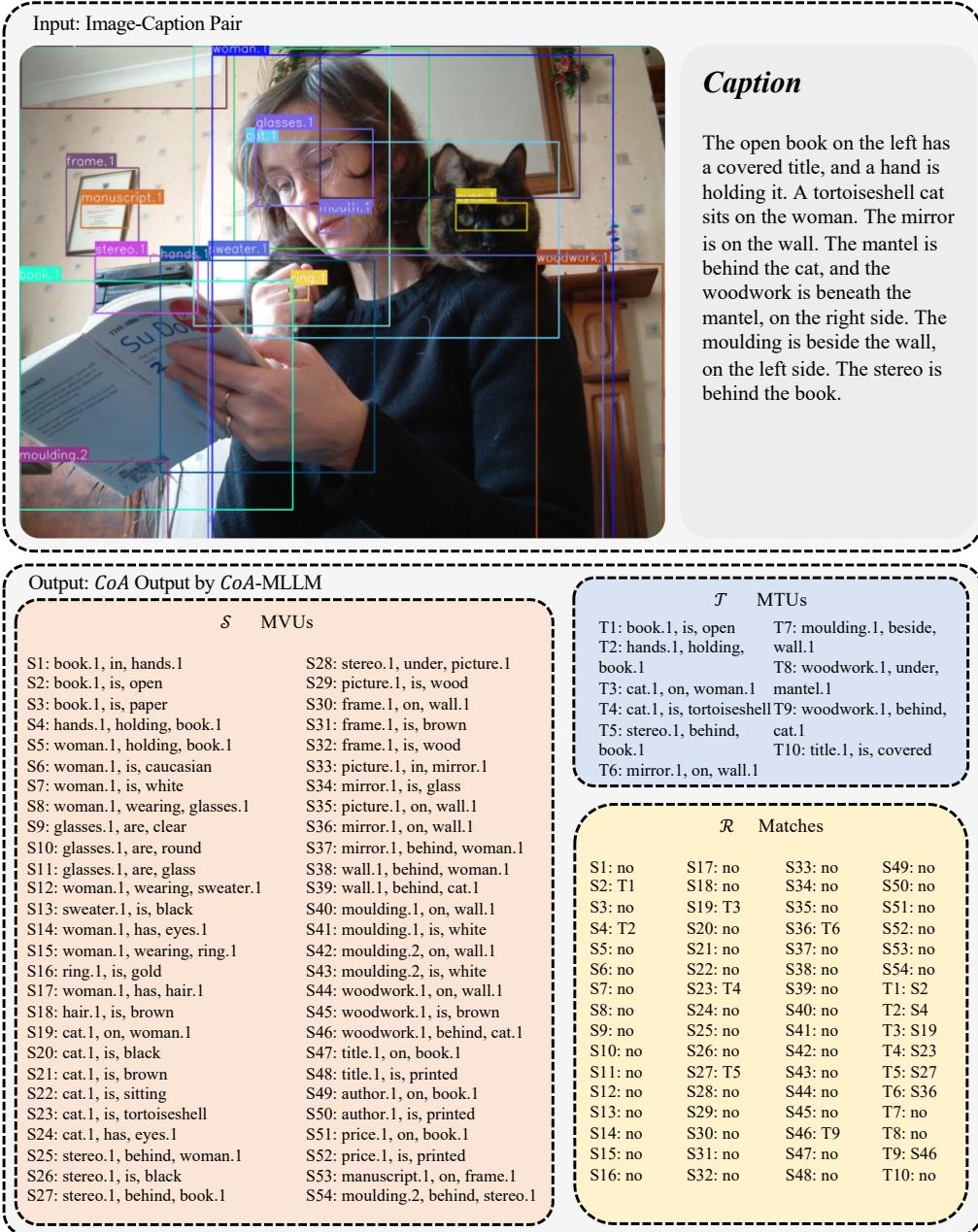


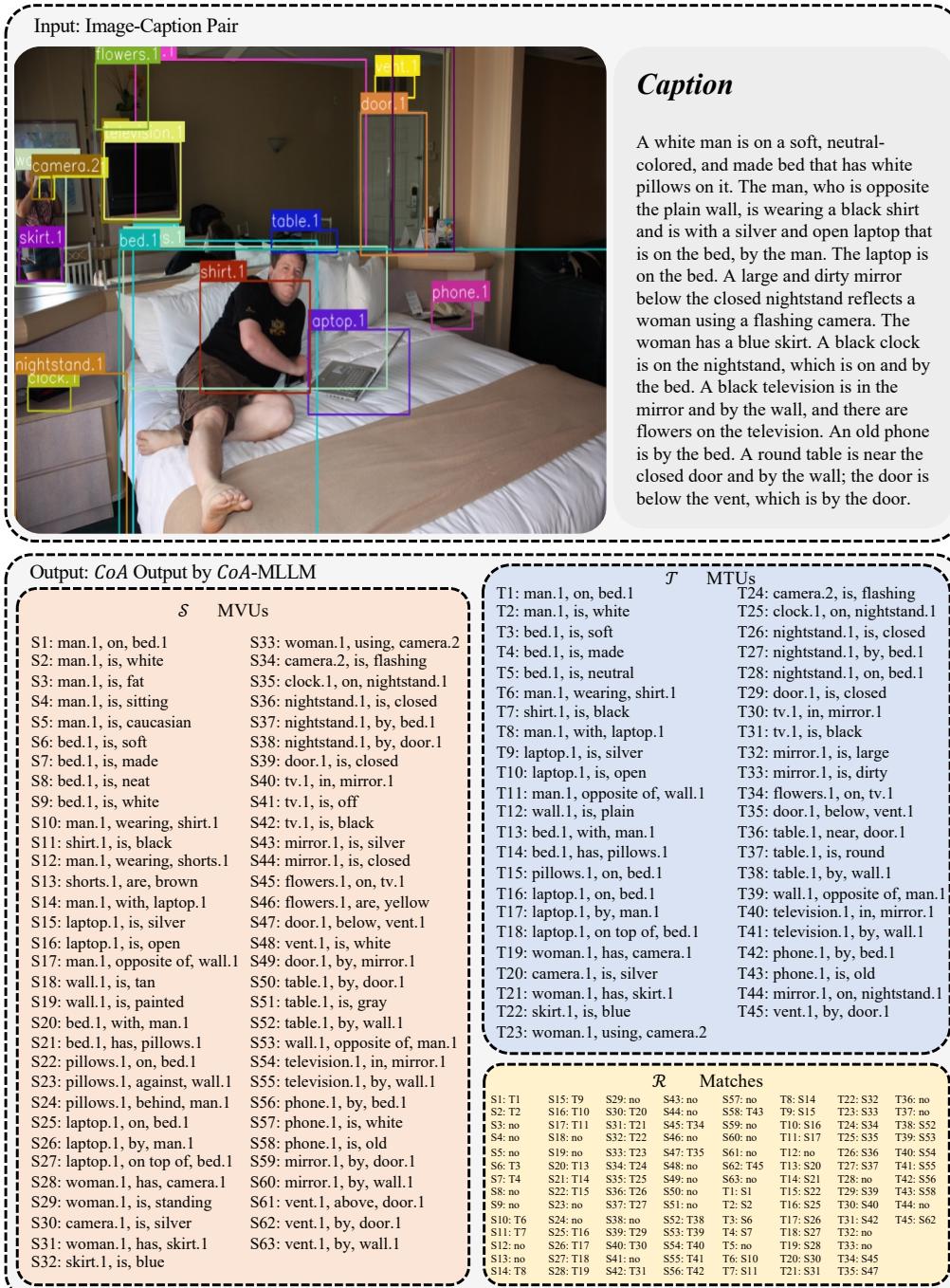
Figure 9: An example of *CoA-MLLM* output for a medium-length image-caption pair. All bounding boxes generated by *CoA-MLLM* are visualized on the image.

1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

1181
1182
1183
1184
1185
1186
1187



Caption

A white man is on a soft, neutral-colored, and made bed that has white pillows on it. The man, who is opposite the plain wall, is wearing a black shirt and is with a silver and open laptop that is on the bed, by the man. The laptop is on the bed. A large and dirty mirror below the closed nightstand reflects a woman using a flashing camera. The woman has a blue skirt. A black clock is on the nightstand, which is on and by the bed. A black television is in the mirror and by the wall, and there are flowers on the television. An old phone is by the bed. A round table is near the closed door and by the wall; the door is below the vent, which is by the door.

<i>T</i>	MTUs
T1: man.1, on, bed.1	T24: camera.2, is, flashing
T2: man.1, is, white	T25: clock.1, on, nightstand.1
T3: bed.1, is, soft	T26: nightstand.1, is, closed
T4: bed.1, is, made	T27: nightstand.1, by, bed.1
T5: bed.1, is, neutral	T28: nightstand.1, on, bed.1
T6: man.1, wearing, shirt.1	T29: door.1, is, closed
T7: shirt.1, is, black	T30: tv.1, in, mirror.1
T8: man.1, with, laptop.1	T31: tv.1, is, black
T9: laptop.1, is, silver	T32: mirror.1, is, large
T10: laptop.1, is, open	T33: mirror.1, is, dirty
T11: man.1, opposite of, wall.1	T34: flowers.1, on, tv.1
T12: wall.1, is, plain	T35: door.1, below, vent.1
T13: bed.1, with, man.1	T36: table.1, near, door.1
T14: bed.1, has, pillows.1	T37: table.1, is, round
T15: pillows.1, on, bed.1	T38: table.1, by, wall.1
T16: laptop.1, on, bed.1	T39: wall.1, opposite of, man.1
T17: laptop.1, by, man.1	T40: television.1, in, mirror.1
T18: laptop.1, on top of, bed.1	T41: television.1, by, wall.1
T19: woman.1, has, camera.1	T42: phone.1, by, bed.1
T20: camera.1, is, silver	T43: phone.1, is, old
T21: woman.1, has, skirt.1	T44: mirror.1, on, nightstand.1
T22: skirt.1, is, blue	T45: vent.1, by, door.1
T23: woman.1, using, camera.2	

		R Matches													
S1:	T1:	S15:	T9:	S29:	no:	S43:	no:	S57:	no:	T8:	S14:	T22:	S32:	T36:	no
S2:	T2:	S16:	T10:	S30:	T20:	S44:	no:	S58:	T43:	T9:	S15:	T23:	S33:	T37:	no
S3:	no:	S17:	T11:	S31:	T21:	S45:	T44:	S59:	no:	T10:	S16:	T24:	S34:	T38:	S52
S4:	no:	S18:	T12:	S32:	T24:	S46:	no:	S60:	no:	T11:	S17:	T25:	S35:	T39:	S53
S5:	no:	S19:	no:	S33:	T23:	S47:	T45:	S61:	no:	T12:	no:	T26:	S36:	T40:	S54
S6:	T3:	S20:	T13:	S34:	T24:	S48:	no:	S62:	T45:	T13:	S20:	T27:	S37:	T41:	S55
S7:	T4:	S21:	T14:	S35:	T25:	S49:	no:	S63:	no:	T14:	S21:	T28:	no:	T42:	S56
S8:	no:	S22:	T15:	S36:	T26:	S50:	no:	T1:	S1:	T15:	S22:	T29:	S39:	T43:	S58
S9:	no:	S23:	no:	S37:	T27:	S51:	no:	T2:	S2:	T16:	S25:	T30:	S40:	T44:	no
S10:	T6:	S24:	no:	S38:	no:	S52:	T38:	T3:	S6:	T17:	S26:	T31:	S42:	T45:	S62
S11:	T7:	S25:	T16:	S39:	T29:	S53:	T39:	T4:	S7:	T18:	S27:	T32:	no:		
S12:	no:	S26:	T17:	S40:	T30:	S54:	T40:	T5:	no:	T19:	S28:	T33:	no:		
S13:	no:	S27:	T18:	S41:	no:	S55:	T41:	T6:	S10:	T20:	S30:	T34:	S45:		
S14:	T8:	S28:	T19:	S42:	T31:	S56:	T42:	T7:	S11:	T21:	S31:	T35:	S47:		

Figure 10: An example of *CoA-MLLM* output for a detailed image-caption pair. All bounding boxes generated by *CoA-MLLM* are visualized on the image.

1188
 1189
 1190 Given an input image (**Image**) and an associated image description text
 1191 (**Caption**), please complete the following steps in strict sequence, and strictly adhere
 1192 to the specified output formatting rules:
 1193 **### 1. Object Annotation in the Image**
 1194 - Detect and annotate **all objects** present in the image with bounding boxes.
 1195 - For multiple instances of the same object category, append an index to the object name
 1196 (e.g., man.1, car.2, etc.)
 1197 - The annotation format for each object must be: `category.index: [x1, y1, x2, y2]`, where
 1198 [x1, y1] is the top-left and [x2, y2] is the bottom-right corner coordinates of the box.
 1199 - Output each detected object on a separate line, and do **not** include any object
 1200 categories that are not present.
 1201 - All object outputs must be enclosed inside `<box> ... </box>` tags.
 1202 **### 2. Scene Graph Extraction **from the Image****
 1203 - Only use the image content (do **not** use the description text).
 1204 - Extract inter-object **relations** and **attributes** from the image, and output as
 1205 subject-predicate-object (triples).
 1206 - Two triple types:
 1207 - **Relation triples:** (subject, predicate, object) — both subject and object must be
 1208 object names from step 1.
 1209 - **Attribute triples:** (subject, predicate, attribute) — subject must be from step 1;
 1210 attribute should be a descriptive word (e.g., color, status, shape).
 1211 - Begin each triple with an ordered label (e.g., S1:, S2: ...). Output **one triple per line**.
 1212 - Enclose the entire scene graph output inside `<scene> ... </scene>` tags.
 1213 **### 3. Atomic Triple Extraction **from the Description Text****
 1214 - Only use the provided text description (do **not** use the image).
 1215 - Carefully split the description into the smallest atomic facts, each in triple form.
 1216 - Two triple types:
 1217 - **Relation triples:** (subject, predicate, object).
 1218 - **Attribute triples:** (subject, predicate, attribute).
 1219 - Use sequential numbering (e.g., T1:, T2:, T3: ...), one per line.
 1220 - All atomic triples are enclosed inside `<textatom> ... </textatom>` tags.
 1221 **### 4. Matching Between Scene Graph and Atomic Text Triples**
 1222 - For **every single triple** (from scene S# and textatom T#), check if there is a
 1223 matching counterpart in the other list.
 1224 - There must be no one-to-many or many-to-one matches: if Sx matches Ty, then Ty must
 1225 only match Sx, and neither may match any other triple.
 1226 - Output format:
 1227 - 'Sx: Ty' means Sx matches Ty.
 1228 - 'Sx: no' means Sx has **no** matching Ty.
 1229 - 'Ty: Sx' means Ty matches Sx.
 1230 - 'Ty: no' means Ty has **no** matching Sx.
 1231 - Every Sx and Ty must be checked; do **not** omit any.
 1232 - All matching results must be inside `<result> ... </result>` tags.
 1233 ****NOTES:****
 1234 - Use the prescribed tags (`<box>`, `<scene>`, `<textatom>`, `<result>`) exactly and in
 1235 proper order.
 1236 - Number S#/T# sequentially, no skipping or duplicating.
 1237 - No extra text, only the required formatted output.
 1238 - When generating the output, **strictly** follow these format rules.
 1239
 1240
 1241

Figure 11: The *CoA* prompt.

1242
 1243
 1244 Given an input image (**Image***) and an associated image description text (**Caption**),
 1245 please complete the following steps in strict sequence, and strictly adhere to the specified
 1246 output formatting rules:
 1247
 1248 ****Judge the precision and recall of the caption****
 1249 precision: accuracy of the caption in describing the visual content.
 1250 recall: completeness of the caption in covering visual information.
 1251 the value of precision and recall should between 1 to 10, where 1 means the lowest and 10
 1252 the highest.
 1253
 1254 ****NOTES:****
 1255 - Use the prescribed tags ('<precision>', '<recall>') exactly and in proper order.
 1256 - When generating the output, ****strictly** follow these format rules.
 1257

Figure 12: The plain prompt for *CoA* Bench.

1258
 1259
 1260
 1261
 1262 You will be given input in the following format:
 1263 `input_text = fBox list: {boxes}; Triplets: {value}'`
 1264 - The Box list provides the bounding boxes for objects mentioned in the triplets, in the
 1265 standard format [x1, y1, x2, y2] (top left and bottom right coordinates).
 1266 - The Triplets section contains several triplets: “T1: subject, verb, object, T2: subject,
 1267 verb, object, ...”.
 1268 Your task is to write a image-caption-style description.
 1269
 1270 Rules
 1271 1. Capture every fact expressed by the triplets, none may be omitted and no new facts
 1272 may be added.
 1273 2. You may freely paraphrase: replace words with clear synonyms, change word order,
 1274 merge ideas, or add small connecting words so the sentence reads naturally. The overall
 1275 meaning of each original subject-verb-object relation must stay the same.
 1276 3. Nouns with different suffixes represent different instances of the same category and
 1277 need to be distinguished by natural language when generating captions (man.1, car.3,
 1278 book.2,... are unacceptable).
 1279 4. Remove the labels (T1, T2, ...) and output ONLY the final caption, no lists, no bullet
 1280 points, no commentary.
 1281 5. Integrate the positional information from the bounding boxes:
 1282 - Mention the absolute position of objects as indicated by their box (e.g., “on the left
 1283 side”, “near the top right corner”, etc.), if possible.
 1284 - Describe the relative positions and spatial relationships of the objects in the image,
 1285 based on both the box information and the relationships described in the triplets.
 1286 - If a box is not mentioned in the triplets, do not include any information about that object
 1287 in the caption.
 1288 - If a triplet refers to an object not found in the box list, you can still express the
 1289 relationship without including positional information about that object.
 1290 6. The final caption must blend the relationship and position details smoothly and
 1291 naturally, as in a normal image caption.
 1292
 1293
 1294
 1295

Figure 13: The prompt for the synthesizing stage in *Bottom2Up*.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303 You are given a triplet required to change in the order “subject, predicate, object” and
 1304 several reference triplets (each also in “subject, predicate, object” form).
 1305 1. Decide the triple type.
 1306 • Relation triple: the object is a noun.
 1307 • Attribute triple: the object is an adjective.
 1308 2. Rules for a relation triple:
 1309 • Randomly choose either the predicate or the object (not both) to replace; keep the
 1310 subject unchanged.
 1311 • The replacement must stay in the same grammatical and semantic category:
 1312 – If the predicate is a spatial term, replace it with a different spatial term; if it is an action
 1313 verb, replace it with a different action verb, etc.
 1314 – If the object denotes a person, replace it with another person; if it denotes a plant,
 1315 replace it with another plant, and so on.
 1316 • The new triple must convey a clearly different meaning; do not use near-synonyms or
 1317 minor tweaks.
 1318 3. Rules for an attribute triple:
 1319 • Replace only the object (the adjective); keep the subject and predicate unchanged.
 1320 • The new adjective must belong to the same attribute dimension:
 1321 – size (big <-> small),
 1322 – color (red <-> yellow),
 1323 – texture (smooth <-> rough), etc.
 1324 • Ensure the meaning changes substantially; no near-synonyms or mere degree shifts
 1325 (e.g., “very big → huge” is not allowed).
 1326 4. Additional reference check:
 1327 • The generated triple must not conflict with any of the provided reference triplets.
 1328 – No subject-predicate-object combination identical to a reference triplet.
 1329 – No subject-predicate-object combination that merely inverts the attribute dimension of a
 1330 reference triple (e.g., if a reference is “man, is, tall” then “man, is, short” is also
 1331 prohibited, if a reference is “man, is, sitting then “man, is, running is also prohibited).
 1332 – For relation triples, avoid replacements that result in a subject-predicate-object
 1333 appearing in any reference triple.
 1334 5. Common-sense & non-triviality
 1335 • The generated triple must be logically plausible and consistent with general knowledge
 1336 (e.g., “ground, above, sky” is invalid).
 1337 6. For all cases:
 1338 • Preserve the exact “subject, predicate, object” order and the comma separators.
 1339 • Output nothing except the new triplet.

Figure 14: The prompt for the rewriting stage in *Bottom2Up*.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Given an input image (Image) and an associated image description text (Caption), please complete the following steps in strict sequence, and strictly adhere to the specified output formatting rules:

1. Object Annotation in the Image

Detect and annotate all objects present in the image with bounding boxes.

For multiple instances of the same object category, append an index to the object name (e.g., man.1, car.2, etc.)

The annotation format for each object must be: category.index: [x1, y1, x2, y2], where [x1, y1] is the top-left and [x2, y2] is the bottom-right corner coordinates of the box.

Output each detected object on a separate line, and do not include any object categories that are not present.

All object outputs must be enclosed inside <box> ... </box> tags.

2. Scene Graph Extraction from the Image

Only use the image content (do not use the description text).

Extract inter-object relations and attributes from the image, and output as subject-predicate-object (triples).

Two triple types:

Relation triples: (subject, predicate, object) — both subject and object must be object names from step 1.

Attribute triples: (subject, predicate, attribute) — subject must be from step 1; attribute should be a descriptive word (e.g., color, status, shape).

Begin each triple with an ordered label (e.g., S1:, S2: ...). Output one triple per line.

The box and scene should be as detail as possible, at least 20 triples.

Enclose the entire scene graph output inside <scene> ... </scene> tags.

IMPORTANT:

Only output the <box> ... </box> and <scene> ... </scene> sections.

Do NOT include any other tags or text. Strictly follow the required formatting.

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 15: The prompt for constructing scene graph.