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ABSTRACT

There has recently been a flurry of exciting advances in deep learning models
on point clouds. However, these advances have been hampered by the difficulty
of creating labelled point cloud datasets: sparse point clouds often have unclear
label identities for certain points, while dense point clouds are time-consuming to
annotate. Inspired by mask-based pre-training in the natural language processing
community, we propose a pre-training mechanism based point clouds completion.
It works by masking occluded points that result from observations at different
camera views. It then optimizes a completion model that learns how to reconstruct
the occluded points, given the partial point cloud. In this way, our method learns a
pre-trained representation that can identify the visual constraints inherently embed-
ded in real-world point clouds. We call our method Occlusion Completion (OcCo).
We demonstrate that OcCo learns representations that improve the semantic un-
derstandings as well as generalization on downstream tasks over prior methods,
transfer to different datasets, reduce training time and improve label efficiency.

1 INTRODUCTION

Point clouds are a natural representation of 3D objects. Recently, there has been a flurry of exciting
new point cloud models in areas such as segmentation (Landrieu & Simonovsky, 2018; Yang et al.,
2019a; Hu et al., 2020a) and object detection (Zhou & Tuzel, 2018; Lang et al., 2019; Wang et al.,
2020b). Current 3D sensing modalities (i.e., 3D scanners, stereo cameras, lidars) have enabled
the creation of large repositories of point cloud data (Rusu & Cousins, 2011; Hackel et al., 2017).
However, annotating point clouds is challenging as: (1) Point cloud data can be sparse and at low
resolutions, making the identity of points ambiguous; (2) Datasets that are not sparse can easily
reach hundreds of millions of points (e.g., small dense point clouds for object classification (Zhou
& Neumann, 2013) and large vast point clouds for 3D reconstruction (Zolanvari et al., 2019));
(3) Labelling individual points or drawing 3D bounding boxes are both more complex and time-
consuming compared with annotating 2D images (Wang et al., 2019a). Since most methods require
dense supervision, the lack of annotated point cloud data impedes the development of novel models.

On the other hand, because of the rapid development of 3D sensors, unlabelled point cloud datasets
are abundant. Recent work has developed unsupervised pre-training methods to learn initialization for
point cloud models. These are based on designing novel generative adversarial networks (GANs) (Wu
et al., 2016; Han et al., 2019; Achlioptas et al., 2018) and autoencoders (Hassani & Haley, 2019; Li
et al., 2018a; Yang et al., 2018). However, completely unsupervised pre-training methods have been
recently outperformed by the self-supervised pre-training techniques of (Sauder & Sievers, 2019)
and (Alliegro et al., 2020). Both methods work by first voxelizing point clouds, then splitting each
axis into k parts, yielding k3 voxels. Then, voxels are randomly permuted, and a model is trained
to rearrange the permuted voxels back to their original positions. The intuition is that such a model
learns the spatial configuration of objects and scenes. However, such random permutation destroys
all spatial information that the model could have used to predict the final object point cloud.

Our insight is that partial point-cloud masking is a good candidate for pre-training in point-clouds
because of two reasons: (1) The pre-trained model requires spatial and semantic understanding
of the input point clouds to be able to reconstruct masked shapes. (2) Mask-based completion
tasks have become the de facto standard for learning pre-trained representations in natural language
processing (NLP) (Mikolov et al., 2013; Devlin et al., 2018; Peters et al., 2018). Different from
random permutations, masking respects the spatial constraints that are naturally encoded in point
clouds of real-world objects and scenes. Given this insight, we propose Occlusion Completion (OcCo)
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Figure 1: OcCo consists of two steps: (a) occlusion o(·) of a point cloud P based on a random camera
view-point into a partial point cloud P̃ , and (b) a model c(·) that completes the occluded point cloud
P̄ so that P̄ ≈ P . We demonstrate that the completion model c(·) can be used as initialization for
downstream tasks, leading to faster training and better generalization over existing methods.

a self-supervised pre-training method that consists of (a) a mechanism to generate occluded point
clouds, and (b) a completion task to reconstruct the occluded point cloud.

Specifically, in (a) point clouds are generated by determining what part of objects would be occluded
if the underlying object was observed from a particular view-point. In fact, many point clouds
generated from a fixed 3D sensor will have occlusions exactly like this. Given an occluded point
cloud, the goal of the completion task (b) is to learn a model that accurately reconstructs the missing
parts of the point cloud. For a model to perform this task well, it needs to learn to encode localized
structural information, based on the context and geometry of partial objects. This is something that is
useful for any point cloud model to know, even if used only for classification or segmentation.

We demonstrate that the weights learned by our pre-training method on a single unsupervised dataset
can be used as initialization for models in downstream tasks (e.g., object classification, part and
semantic segmentation) to improve them, even on completely different datasets. Specifically our
pre-training technique: (i) leads to improved generalization over prior baselines on the downstream
tasks of object classification, object part and scene semantic segmentation; (ii) speeds up model
convergence, in some cases, by up to 5×; (iii) maintains improvements as the size of the labelled
downstream dataset decreases; (iv) can be used for a variety of state-of-the-art point cloud models.

2 OCCLUSION COMPLETION

We now introduce Occlusion Completion (OcCo). Our approach is shown in Figure 1. Our main
insight is that by continually occluding point clouds and learning a model c(·) to complete them, the
weights of the completion model can be used as initialization for downstream tasks (e.g., classification,
segmentation) , speeding up training and improving generalization over other initialization techniques.

Throughout we assume point clouds P are sets of points in 3D Euclidean space, P = {p1, p2, ..., pn},
where each point pi is a vector of coordinates (xi, yi, zi) and features (e.g. color and normal). We
begin by describing the components that make up our occlusion mapping o(·). Then we detail how to
learn a completion model c(·), giving pseudocode and the architectural details in appendix. Finally
we discuss the criteria on validating the effectiveness of a pre-training model for 3D point clouds.

2.1 GENERATING OCCLUSIONS

We first describe a randomized occlusion mapping o : P → P (where P is the space of all point
clouds) from a full point cloud P to an occluded point cloud P̃ . We will do so by determining which
points are occluded when the point cloud is viewed from a particular camera position. This requires
three steps: (1) A projection of the point cloud (in a world reference frame) into the coordinates of a
camera reference frame; (2) Determining which points are occluded based on the camera view-points;
(3) Mapping the points back from the camera reference frame to the world reference frame.

Viewing the point cloud from a camera. A camera defines a projection from a 3D world reference
frame into a distinctive 3D camera reference frame. It does so by specifying a camera model and
a camera view-point from which the projection occurs. The simplest camera model is the pinhole
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camera, and view-point projection for it is given by a simple linear equation:[
xcam
ycam
zcam

]
=

[
f γ w/2
0 f h/2
0 0 1

]
︸ ︷︷ ︸

intrinsic
[ K ]

[
r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

]
︸ ︷︷ ︸

rotation | translation
[ R | t ]

xyz
1

 . (1)

In the above, (x, y, z) are the original point cloud coordinates, the matrix including r and t entries is
the concatenation of a 3D rotation matrix with a 3D translation vector, and the final matrix to the left
is the camera intrinsic matrix (f specifies the camera focal length, γ is the skewness between the x
and y axes in the camera, and w, h are the width and height of the camera image). Given these, the
final coordinates (xcam, ycam, zcam) are the positions of the point in the camera reference frame. We
will refer to the intrinsic matrix as K and the rotation/translation matrix as [R|t].

Determining occluded points. We can think of the point (xcam, ycam, zcam) in multiple ways: (a) as
a 3D point in the camera reference frame, (b) as a 2D pixel with coordinates (fxcam/zcam, fycam/zcam)
with a depth of zcam. In this way, some 2D points resulting from the projection may be occluded by
others if they have the same pixel coordinates, but appear at a larger depth. To determine which points
are occluded, we first use Delaunay triangulation to reconstruct a polygon mesh from the points, and
remove the points which belong to the hidden surfaces that are determined via z-buffering.

Mapping back from camera frame to world frame. Once occluded points are removed, we re-
project the point cloud to the original world reference frame, via the following linear transformation:x
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Our randomized occlusion mapping o(·) is constructed as follows. Fix an initial point cloud P . Given
a camera intrinsics matrix K, sample rotation/translation matrices [[R1|t1], . . . , [RV |tV ]], where V
is the number of views. For each view v ∈ [V ], project P into the camera frame of that view-point
using eq. (1), find occluded points and remove them, then map the rest back to the world reference
using eq. (2). This yields the final occluded world frame point cloud for view-point v: P̃v .

2.2 THE COMPLETION TASK

Given an occluded point cloud P̃ produced by o(·), the goal of the completion task is to learn a
completion mapping c : P → P from P̃ to a completed point cloud P . We say that a completion
mapping is accurate w.r.t. loss `(·, ·) if EP̃∼o(P)`(c(P̃),P) → 0. The structure of the completion
model c(·) is an “encoder-decoder” network (Dai et al., 2017b; Yuan et al., 2018; Tchapmi et al.,
2019; Wang et al., 2020a). The encoder maps an occluded point cloud to a vector, and the decoder
reconstructs the full shape. After pre-training, the encoder weights can be used as initialization for
downstream tasks. In appendix we gives pseudocode for OcCo and describes the architectures.

3 EXPERIMENTS

3.1 PRE-TRAINING AND DOWNSTREAM TRAINING DETAILS

We evaluate how OcCo improves the learning and generalization of a number of classification and
segmentation tasks. Here we describe the details of training in each setting.

OcCo pre-training. For all experiments, we will use a single pre-training dataset based on Mod-
elNet40 (Wu et al., 2015). It includes 12,311 synthesized objects from 40 object categories, di-
vided into 9,843 training objects and 2,468 testing objects. To construct the pre-training dataset,
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Figure 2: Examples of self-occluded objects generated by our method.

we generate occluded point clouds based on the training objects with a fixed camera intrinsics
{f = 1000, γ = 0, ω = 1600, h = 1200}, 10 random selected viewpoints and zero translation.
Figure 2 shows examples of the resulting occluded point clouds. Given these, we train an “encoder-
decoder” style completion model c(·). For encoders, similar to prior completion models (Tchapmi
et al., 2019; Wang et al., 2020a; Wen et al., 2020a), we consider PointNet (Qi et al., 2017a), PCN (Yuan
et al., 2018) and DGCNN (Wang et al., 2019b). These networks encode an occluded point cloud
into a 1024-dimensional vector. We adapted the folding-based decoder from (Yuan et al., 2018) to
complete the point clouds in a two-stage procedure. We use the Chamfer Distance (CD) as our loss
function `(·, ·). We use Adam (Kingma & Ba, 2015) with an initial learning rate of 1e-4, decayed by
0.7 every 10 epochs to a minimum value of 1e-6, for a total of 50 epochs. We use a batch size of 32
and set the momentum in the batch normalisation to be 0.9.

Few-shot learning. We use ModelNet40 and Syndey10 (De Deuge et al., 2013) for “K-way N -
shot” learning. During training, K classes are randomly selected and for each class we sample N
random samples, then the model is tested on the same K classes . As in Sharma & Kaul (2020), we
represent each object with 100 points. We use the same training settings as used in the next paragraph.

Object classification. We use three 3D object recognition benchmarks: ModelNet40, Scan-
Net10 (Qin et al., 2019) and ScanObjectNN (Uy et al., 2019); we describe them in the appendix. All
objects are represented with 1024 points. We use the same training settings as the original works.
Concretely, for PCN and PointNet, we use the Adam optimizer with an initial learning rate 1e-3,
decayed by 0.7 every 20 epochs to a minimum value of 1e-5. For DGCNN, we use the SGD optimizer
with a momentum of 0.9 and a weight decay of 1e-4. The learning rate starts from 0.1 and then
reduces using cosine annealing Loshchilov & Hutter (2017) with a minimum value of 1e-3. We use
dropout Srivastava et al. (2014) in the fully connected layers before the softmax output layer. The
dropout rate of PointNet and PCN is set to 0.7, and is 0.5 for DGCNN. For all three models, we train
them for 200 epochs with a batch size of 32. We report the results based on three runs.

Part segmentation. We use the ShapeNetPart (Armeni et al., 2016) benchmark for object part
segmentation. This dataset contains 16,881 objects from 16 categories, and has 50 parts in total. Each
object is represented with 2048 points, and we use the same training settings as the original work.

Semantic segmentation. We use the S3DIS benchmark (Armeni et al., 2016) for semantic indoor
scene segmentation. It contains 3D scans collected via Matterport scanners in 6 different places,
encompassing 271 rooms. Each point, described by a 9-dimensional vector (including coordinates,
RGB values and normalised location), is labeled as one of 13 semantic categories (e.g. chair, table
and floor). We use the same preprocessing procedures and training settings as the original work.

3.2 WHAT IS LEARNED FROM OCCO PRE-TRAINING

Alongside OcCo’s ability to improve learning tasks we analyze the properties of the pre-trained
representation itself. Here we describe the approaches we use for such analyses.

Visualisation of learned features. Feature visualisation (Olah et al., 2017) is widely used to
qualitatively understand the role of a convolutional neural network unit. It links highly activated
parts of a CNN channel with human concepts which have semantic meaning. Ideally the pre-training
process learns disentangled features that are useful to distinguish different parts of an object or a scene.
These learned features will be beneficial to not only few-shot learning, but also object recognition
and part and scene segmentation.
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Detection of semantic concepts. To quantitatively analyse the learned features of pre-training, we
adapt network dissection (Bau et al., 2017; 2020) to determine the number of concept detectors in a
pre-trained point cloud feature encoder. Specifically, for the k-th channel, we first create a binary
activation mask Mk based on highly activated point subsets. Since point cloud encoders usually learn
each point feature either independently or via neighborhood aggregation, the feature maps usually
do not change in the vertical direction (see Figure 3). Therefore we can skip the retrieval step and
directly quantify the alignment between an activation mask Mk and the n-th concept mask Cn (i.e.,
object parts) via mean intersection of union (mIoU) over a collection of point clouds DP :

mIoU(k,n) = EP∼DP
[ |Mk(P) ∩ Cn(P)|
|Mk(P) ∪ Cn(P)|

]
(3)

where | · | is the set cardinality. mIoU(k,n) can be interpreted as how well unit k detects concept c.

Structural invariance/equivariance under SO(3) transformation. Pre-training should learn a
representation that is robust under under rigid SO(3) transformations (i.e., rotation, translation,
permutation). Although a single representation might vary after transformation, the cluster structures
should be preserved. We use adjusted mutual information (AMI) (Nguyen et al., 2009) based on the
clustering Ω and the ground truth label C, which prevents the score from monotonically increasing
when the number of clusters increases,

AMI(Ω, C) = EP∼DP
[

I(Ω; C)− E[I(Ω; C)]
(H(Ω) + H(C))/2− E[I(Ω; C)]

]
(4)

where Ω is the clustering determined by the learned embeddings Enc(·) and unsupervised clustering
methods such as K-means. I(Ω;C) =

∑
k

∑
j P (wk ∩ cj) log

P (wk∩cj)
P (wk)P (cj)

denotes the mutual
information, H(·) is the entropy. AMI has a maximal of 1 when two partitions are identical, and
reaches a minimal of 0 if two clusters are total uncorrelated. It is calculated as:

L = EP∼DP ,S∼SO(3) [AMI(Ω,Enc(S(P)))] (5)

Once we finish the pre-training on ModelNet40, we first analyse the learned features and embeddings
of the OcCo PointNet via the tests or probes described above. Specifically, we examine the learned
concepts of the pre-trained encoders on ShapeNetPart. We assign activation mask Mk with points
that have top 20% highest values in the k-th unit of the feature, and the n-th concept mask Cn is
derived from the ground-truth annotations of the n-th object parts. We ignore the object parts which
have less than 100 points. We call k-th channel a detector of concept n when mIoU(k,n) > 0.5.

We analyze the learned embeddings of the pre-trained encoders on ShapeNet10 and ScanObjectNN.
We cluster the learned embeddings Enc(P) into Ω with K-means and calculate the AMI w.r.t labels.
Since the encoders are permutation invariant, here we consider rotation, translation and jittering.

3.3 COMPLETION RESULTS AND PROBE TESTS

Visualisation of learned features. In Figure 3, we first visualize the features learned by
OcCo PointNet on the objects from test split of ModelNet40. We visualize each learned feature by

n × 3

In
pu

tP
oi
nt
s T-Net (3)

Conv1D

(64)
Feat 1

n × 64

ReLU
T-Net (64)

Conv1D
(128)

n × 128 n × 1024
1 × 1024

Feat 2

ReLU
Conv1D

(1024)
Feat 3 Global Feat

MaxPool

53rd Channel of Feat 1 712th Channel of Feat 3 T-SNE on Embedding

Part Segmentation
Object Classification
Scene Segmentation
Few-Shot Learning

…

Further
Fine-Tuning

Figure 3: Visualisation on the learned features and embeddings of OcCo-initialised encoders. Above
half illustrates the location of learned features in the architecture of PointNet (Qi et al., 2017a).
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Figure 4: Number of (unique) detected object parts in the feature maps of random, Jigsaw and
OcCo-initialised PointNet. Digit in the bracket is the number of parts in that object category.

coloring the points according to their channel values. We find that, in early stage the encoder is able
to learn low-level geometric primitives, i.e., planes, cylinders and cones, while later the network
recognises more complex shapes like wings, leafs and upper bodies. We use t-SNE on the embeddings
of OcCo encoders based on ShapeNet10, distinguishable clusters are formed for different categories.

Number of concept detectors. In Figure 4, we sketch the number of detected parts based on
random, Jigsaw and OcCo (trained for 10 epochs and 50 epochs)-initialised PointNet. We find that,
while keeping the previously learned concepts, OcCo helps the encoder progressively detect more
object parts as the training proceeds. We show that OcCo have outperformed prior methods in terms
of total detected parts (numbers in legends). We provide visualisations in the appendix.

Table 1: Adjusted mutual information (AMI) under transformations. We reported the mean and std
over 10 runs. ‘J’, ‘T’, ‘R’ stand for jittering, translation and rotation respectively.

Transformation ShapeNet10 ScanObjectNN
J T R VFH M2DP Jigsaw OcCo VFH M2DP Jigsaw OcCo

0.12±0.01 0.22±0.03 0.33±0.04 0.51±0.03 0.05±0.02 0.18±0.02 0.29±0.02 0.44±0.03
X 0.12±0.02 0.19±0.02 0.32±0.02 0.45±0.02 0.06±0.02 0.17±0.02 0.27±0.02 0.42±0.04
X X 0.13±0.03 0.21±0.02 0.29±0.07 0.38±0.04 0.04±0.02 0.18±0.03 0.24±0.04 0.39±0.06
X X X 0.07±0.03 0.20±0.04 0.28±0.03 0.35±0.05 0.04±0.01 0.16±0.03 0.18±0.09 0.34±0.06

Invariance/Equivariance under SO(3) transformation. We compare Jigsaw and OcCo -
initialised PointNet encoder with two hand-crafted point cloud global descriptors: viewpoint feature
histogram (VFH) (Rusu et al., 2010) and M2DP (He et al., 2016) in Table 1. Each point cloud is
represented as a vector, and we use K-means for clustering, where K is set as the number of categories.
We show that OcCo pre-training helps the networks to learn better embeddings of point cloud objects,
especially when they are occluded and with outlier points (ScanObjectNN).

3.4 FEW-SHOT LEARNING

We use the same setting and train/test split as (Sharma & Kaul, 2020) (cTree), and report the mean
and standard deviation across on 10 runs. The top half of the table reports results for eight randomly
initialized point cloud models, while the bottom-half reports results on two models across three
pre-training methods. We bold the best results (and those whose standard deviation overlaps the
mean of the best result). It is worth mentioning (Sharma & Kaul, 2020) pre-trained the encoders on
both datasets before fine tuning, while we only pre-trained once on ModelNet40. The results show
that models pre-trained with OcCo either outperform or have standard deviations that overlap with
the best method in 7 out of 8 settings.

6



Under review as a conference paper at ICLR 2021

Table 2: Few-shot classification accuracy

Baseline
ModelNet40 Sydney10

5-way 10-way 5-way 10-way
10-shot 20-shot 10-shot 20-shot 10-shot 20-shot 10-shot 20-shot

3D-GAN 55.8±10.7 65.8±9.9 40.3±6.5 48.4±5.6 54.2±4.6 58.8±5.8 36.0±6.2 45.3±7.9
FoldingNet 33.4±13.1 35.8±18.2 18.6±6.5 15.4±6.8 58.9±5.6 71.2±6.0 42.6±3.4 63.5±3.9
Latent-GAN 41.6±16.9 46.2±19.7 32.9±9.2 25.5±9.9 64.5±6.6 79.8±3.4 50.5±3.0 62.5±5.1
PointCapsNet 42.3±17.4 53.0±18.7 38.0±14.3 27.2±14.9 59.4±6.3 70.5±4.8 44.1±2.0 60.3±4.9
PointNet++ 38.5±16.0 42.4±14.2 23.1±7.0 18.8±5.4 79.9±6.8 85.0±5.3 55.4±2.2 63.4±2.8
PointCNN 65.4±8.9 68.6±7.0 46.6±4.8 50.0±7.2 75.8±7.7 83.4±4.4 56.3±2.4 73.1±4.1

PointNet, Rand 52.0±12.2 57.8±15.5 46.6±13.5 35.2±15.3 74.2±7.3 82.2±5.1 51.4±1.3 58.3±2.6
PointNet, cTree 63.2±10.7 68.9±9.4 49.2±6.1 50.1±5.0 76.5±6.3 83.7±4.0 55.5±2.3 64.0±2.4
PointNet, OcCo 89.7±6.1 92.4±4.9 83.9±5.6 89.7±4.6 77.7±8.0 84.9±4.9 60.9±3.7 65.5±5.5
DGCNN, Rand 31.6±9.0 40.8±14.6 19.9±6.5 16.9±4.8 58.3±6.6 76.7±7.5 48.1±8.2 76.1±3.6
DGCNN, Jigsaw 34.3±4.1 42.2±11.0 26.0±7.5 29.9±8.2 52.5±6.6 79.6±6.0 52.7±3.3 69.1±2.6
DGCNN, cTree 60.0±8.9 65.7±8.4 48.5±5.6 53.0±4.1 86.2±4.4 90.9±2.5 66.2±2.8 81.5±2.3
DGCNN, OcCo 90.6±2.8 92.5±6.0 82.9±4.1 86.5±7.1 79.9±6.7 86.4±4.7 63.3±2.7 77.6±3.9

3.5 OBJECT CLASSIFICATION RESULTS

We now compare OcCo against prior initialization approaches on object classification tasks. Table 3
compares OcCo-initialization to random (Rand) and (Sauder & Sievers, 2019)’s (Jigsaw) initialization
on various object classification datasets among different encoders. “MN40”, “ScN10” and “SO15”
stand for ModelNet40, ScanNet10 and ScanObjectNN respectively. Recall that OcCo-initialization
is pre-trained only on occlusions generated from the train split of ModelNet40. We color blue the
best results for each encoder and bold in black the overall best result (and those whose standard
deviation overlaps the mean of the best result) for each dataset. We show that OcCo-initialized
models outperform all baselines. These results demonstrate that the OcCo-initialized models have
strong transfer capabilities on out-of-domain datasets. We make more comparisons in the appendix.

Table 3: Comparison between OcCo , Jigsaw and Rand initialization on 3D object recognition
benchmarks. After confirming the scores from (Qi et al., 2017a; Wang et al., 2019b; Uy et al., 2019;
Sauder & Sievers, 2019) are reproducible, we reported the mean and standard error over three runs.

Dataset PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

MN40 89.2±0.1 89.6±0.1 90.1±0.1 89.3±0.1 89.6±0.2 90.3±0.2 92.5±0.4 92.3±0.3 93.0±0.2
ScN10 76.9±0.2 77.2±0.2 78.0±0.2 77.0±0.3 77.9±0.3 78.2±0.3 76.1±0.7 77.8±0.5 78.5±0.3
SO15 73.5±0.5 76.5±0.4 80.0±0.2 78.3±0.3 78.2±0.1 80.4±0.2 82.4±0.4 82.7±0.8 83.9±0.4

3.6 OBJECT PART SEGMENTATION RESULTS

Table 4 compares OcCo-initialization to random and (Sauder & Sievers, 2019)’s (Jigsaw) initialization
on object part segmentation task. We show that OcCo-initialized models outperform or match others
in terms of accuracy and IoU in all three encoders, demonstrating representations derived from
completing occluded ModelNet40 improves the performance of part segmentation.

Table 4: Overall point prediction accuracy (mAcc) and mean intersection of union (mIoU) on
ShapeNetPart. We reported the mean and standard error based on three runs.

PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

mAcc 92.8±0.5 93.1±0.3 93.4±0.4 92.3±0.6 92.6±0.5 93.0±0.5 92.2±0.5 92.7±0.5 94.4±0.4
mIoU 82.2±1.4 82.2±1.6 83.4±1.1 81.3±1.5 81.2±1.7 82.3±1.4 84.4±0.7 84.3±0.7 85.0±0.6

3.7 SEMANTIC SEGMENTATION

Here we compare random, Jigsaw and OcCo initialization on semantic segmentation task. We follow
the same design of PointNet and DGCNN, use a k-fold train-test procedure as in (Armeni et al.,
2016). The results are reported in Table 5. OcCo-initialized models outperform random and jigsaw-
initialized ones, demonstrating that the pre-trained representations derived from completing occluded
ModelNet40 brings improvements on segmenting indoor scenes which consist of occluded objects.1

1We noticed that the random initialised/pre-trained model in (Sauder & Sievers, 2019) (mIoU=40.3/41.2) did
not achieve the similar results as the original DGCNN (mIoU=56.1). They consider a transductive setting which
is not directly comparable to ours, so here we stick to the supervised setting and report our reproduced scores.
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Figure 5: Learning curves of random, Jigsaw and OcCo , ‘10%’ is the portion of used training data

Table 5: Overall point prediction accuracy (mAcc) and mean class intersection of union (mIoU) on
the S3DIS averaged across 6-cv-fold over three runs. OcCo encoders are pre-trained on ModelNet40.

PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

mAcc 78.2±0.4 80.1±0.7 82.0±0.6 82.9±0.5 83.7±0.4 85.1±0.3 83.7±0.4 84.1±0.4 84.6±0.3
mIoU 47.0±0.8 52.6±1.1 54.9±0.6 51.1±1.4 52.2±1.1 53.4±1.2 54.9±1.2 55.6±0.8 58.0±1.0

3.8 LEARNING CURVES

We plot the learning curves for classification and segmentation tasks in Figure 5. We observe that the
models with OcCo initialization converge faster to better test accuracy than the random and sometimes
Jigsaw-initialized models. For example, on ModelNet40 with a PCN encoder, the OcCo-initialized
model takes around 10 epochs to converge, while the randomly initialized model takes around 50
epochs. Similarly, for ScanObjectNN with DGCNN encoder, the OcCo-initialized model converges
around 20 epochs and to a better test accuracy than the random and Jigsaw-initialized model.

4 RELATED WORK

4.1 DEEP MODELS FOR POINT CLOUDS

Work on deep models for point clouds can largely be divided into three different structural approaches:
(a) pointwise-based networks, (b) convolution-based networks, and (c) graph-based networks. We call
the networks that independently process each point, before aggregating these point representations:
pointwise-based networks (Qi et al., 2017a;b; Joseph-Rivlin et al., 2019; Duan et al., 2019; Zhao
et al., 2019; Yang et al., 2019c; Lin et al., 2019). One well-known method, PointNet, devises a novel
neural network that is designed to respect the permutation invariance of point clouds. Each point is
independently fed into a multi-layer perceptron, then outputs are aggregated using a permutation-
invariant function (e.g., max-pooling) to obtain a global point cloud representation. Another class of
methods are convolution-based networks (Hua et al., 2018; Su et al., 2018; Li et al., 2018b; Atzmon
et al., 2018; Landrieu & Simonovsky, 2018; Hermosilla et al., 2018; Groh et al., 2018; Rao et al.,
2019). These works map point clouds to regular grid structures and extend the classic convolution
operator to handle these grid structures. A representative model, PCNN (Atzmon et al., 2018), defines
two operators, extension and restriction, for mapping point cloud functions to volumetric functions
and vise versa. The third class of models is graph-based networks (Simonovsky & Komodakis,
2017; Wang et al., 2019b; Shen et al., 2018; Wang et al., 2018; Zhang & Rabbat, 2018; Chen
et al., 2019). These networks regard each point as a vertex of a graph and generate edges based on
spatial information and node similarities. A popular method is DGCNN (Wang et al., 2019b), which
introduces a new operation, EdgeConv, to aggregate local features and a graph update module to learn
dynamic graph relations from layer to layer. NRS (Cao et al., 2020) uses a neural random subspace
method based on the encoded embeddings to further improve the model performance.
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4.2 PRE-TRAINING FOR POINT CLOUDS

Pre-training models on unlabelled data are gaining popularity recently due to its success on a wide
range of tasks, such as natural language understanding (Mikolov et al., 2013; Devlin et al., 2018),
object detection (He et al., 2020; Chen et al., 2020) and graph representations (Hu et al., 2020c;d). The
representations learned from these pre-trained models can be used as a good initializer in downstream
tasks, where task-specific annotated samples are scarce. The three most common pre-training
objectives for point clouds are based on: (i) generative adversarial networks (GAN), (ii) autoencoders,
and (iii) spatial relation (Sauder & Sievers, 2019; Sharma & Kaul, 2020). However, GANs for
point clouds are limited to non-point-set inputs, i.e., voxelized representations (Wu et al., 2016),
2D depth images of point clouds (Han et al., 2019), and latent representations from autoencoders
(Achlioptas et al., 2018), as sampling point sets from a neural network is non-trivial. Thus these
GAN approaches cannot leverage the natural order-invariance of point-sets. Autoencoders (Yang
et al., 2018; Li et al., 2018a; Hassani & Haley, 2019; Shi et al., 2020) learn to encode point clouds
into a latent space before reconstructing these point clouds from their latent representation. Similar
to these methods, generative models based on normalizing flow (Yang et al., 2019b) and approximate
convex decomposition (Gadelha et al., 2020) have been shown effective for the unsupervised learning
on point clouds. However, both GAN and autoencoder-based pre-training methods have been
recently outperformed on downstream tasks by the pre-training technique of Sauder & Sievers (2019)
or Sharma & Kaul (2020) in few-shot setting.

These methods are based on spatial relation reconstruction, which aims to reconstruct points clouds
given rearranged point clouds as input. To this end, Sauder & Sievers (2019) equally split the 3D
space into k3 voxels, rearrange k3 voxels and train a model to predict the original voxel label for each
point. However, these random permutations destroy all spatial information that the model could have
used to predict the true point cloud. Inspired by cover-trees (Beygelzimer et al., 2006), Sharma &
Kaul (2020) utilised ball covers for hierarchical partitioning of points. They then train a model to
classify each point to their assigned clusters. However, the selection of the ball centroids is somewhat
random and they need to pre-train from scratch for each fine-tuning task. Instead, our method creates
spatially realistic occlusions that a completion model learns to reconstruct. As such, this model learns
how to naturally encode 3D object shape and contextual information. Recently there is a new method
called PointContrast (Xie et al., 2020b) which mainly uses contrastive learning for pre-training indoor
segmentation models. Our method is more general and transferable compared with theirs.

Point cloud completion (Yuan et al., 2018) has received attentions in recent years. Most works
aim at achieving a lower reconstruction loss by incorporating 1) a better encoder (Xie et al., 2020a;
Huang et al., 2020), 2) a better decoder (Tchapmi et al., 2019; Wen et al., 2020b); 3) cascaded
refinement (Wang et al., 2020a) and 4) multi-viewed consistency (Hu et al., 2020b).

Completing 3D shapes for model initialisation has been considered before. Schönberger et al. (2018)
used scene completion (Song et al., 2017; Dai et al., 2020; Hou et al., 2020) as an auxiliary task to
initialise 3D voxel descriptors for visual localisation. They generated nearly-complete and partial
voxelised scenes based on depth images and trained a variational autoencoder for completion. They
have showed that the pre-trained encoder is more robust under different viewpoints and weather
conditions. We adapt this idea to pre-training for point clouds. We have shown that our initialisation
is better than random and prior methods in terms of 1) object understanding; 2) invariance under
transformations; and 3) downstream task performance.

5 DISCUSSION

In this work, we have demonstrated that why and how the Occlusion Completion (OcCo) learns the
representations on point clouds that are more transformation invariant, more accurate in few-shot
learning, and in various classification and segmentation fine tuning tasks, compared to prior work. In
future, it would be interesting to design a completion model that is explicitly aware the view-point of
the occlusion. A model like this would likely converge even quicker, and require fewer parameters,
as this knowledge could act as a stronger inductive bias during learning. In general, we advocate for
structuring deep models using graphical constraints as an inductive bias to improve learning.
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Daniel Guo, Bernardo Ávila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi Munos, and
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A DESIGN OF THE COMPLETION MODEL

Previous point completion models (Dai et al., 2017b; Yuan et al., 2018; Tchapmi et al., 2019; Wang
et al., 2020a) all use an ”encoder-decoder” architecture. The encoder maps a partial point cloud to a
vector of a fixed dimension, and the decoder reconstructs the full point cloud.

In the OcCo experiments, we exclude the last few MLPs of PointNet and DGCNN, and use the
remaining architecture as the encoder to map a partial point cloud into a 1024-dimensional vector. We
adapt the folding-based decoder design from PCN, which is a two-stage point cloud generator that
produces a coarse and a fine-grained output point cloud (Ycoarse, Yfine) for each input. We removed
all the batch normalisation layers in the folding-based decoder since we find it brings negative effects
in the completion process in terms of Chamfer distance loss and convergent speed. On the basis of
prior self-supervised learning methods, SimCLR (Chen et al., 2020), MoCo (He et al., 2020) and
BYOL (Guo et al., 2020), we find the batch normalisation is important in the encoder yet harmful for
our decoder. Also, we find the L2 normalisation in the Adam optimiser is undesirable for completion
training but brings improvements on the downstream fine-tuning tasks.

The predicted coarse point cloud Ŷcoarse, which represents the global geometry of a shape, is
generated via a set of fully connected layers. A folding-based generator is used to predict the local
fine structures of each point in Ŷcoarse, this results in Ŷfine. The folding based structures is proved to
be good at approximating a smooth surface which reflects the local geometry. During training, Ycoarse
and Yfine are generated via randomly sampling 1024 and 16384 points from the mesh, respectively.

We use either Chamfer Distance (CD) or Earth Mover Distance (EMD) as the loss function for the
completion model. We use a normalised and symmetric (thus commutative) version of Chamfer
Distance (CD) to quantify the differences between two point clouds P̂ and P :

CD(P̂ , P ) =
1

|P̂ |
∑
x̂∈P̂

min
x∈P
||x̂− x||2 +

1

|P |
∑
x∈P

min
x̂∈P̂
||x− x̂||2. (6)

Note that it is no need that the two point cloud P̂ and P have the same size. But when calculating the
Earth Mover Distance (EMD), P̂ and P are usually required to have the same number of points:

EMD(P̂ , P ) = min
φ:P̂→P

1

|P̂ |
∑
x̂∈P̂

||x̂− φ(x̂)||2, (7)

where φ is a bijection between points in P̂ and P . Note that EMD is not commutative. Since finding
the optimal mapping φ is quite time consuming, we use its approximation form Bertsekas (1985).

The loss l of the completion task is a adaptive weighted sum of coarse and fine generations:

l = d1(Ŷcoarse, Ycoarse) + α ∗ d2(Ŷfine, Yfine), (8)

where the step-wise trade-off coefficient α incrementally grows during training. In our experiments,
we find that even with approximation, it is still suboptimal to use EMD for d2, since it is inefficient to
solve the approximate bijection mapping φ for over 16k point pairs. We evaluate both ‘EMD+CD’
and ‘CD+CD’ combinations for the loss l. We have found that OcCo with ‘EMD+CD’ loss has
achieved comparable performance yet longer time in the downstream classification tasks compared
with the ‘CD+CD’. We use ‘CD+CD’ as the loss function in the OcCo pre-training process described
in Section. 3.1 in terms of simplicity and efficiency.

B QUALITATIVE RESULTS FROM OCCO PRE-TRAINING

In this section, we show some qualitative results of OcCo pre-training by visualising the input,
coarse output, fine output and ground truth at different training epochs and encoders. In Figure. 6,
Figure. 7 and Figure. 8, we notice that the trained completion models are able to complete even
difficult occluded shapes such as plants and planes. In Figure. 9 we plot some failure examples of
completed shapes, possibly due to their complicated fine structures, while it is worth mentioning that
the completed model can still completed these objects under the same category.
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Figure 6: OcCo pre-training with PCN encoder on occluded ModelNet40.

Figure 7: OcCo pre-training with PointNet encoder on occluded ModelNet40.
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Figure 8: OcCo pre-training with DGCNN encoder on occluded ModelNet40.

Figure 9: Failure completed examples during OcCo pre-training.
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C VISUALISATION OF PART ACTIVATION MAP AND GROUND TRUTH

Figure 10: Learned features in OcCo pre-training

D ANALYSIS ON THE EFFECTS OF OCCO PRE-TRAINING DATASETS

We compare the occluded datasets based on ModelNet40 and ShapeNet8 for the OcCo pre-training.
We construct the ModelNet Occluded using the methods described in Section 2 and for ShapeNet
Occluded we directly use the data provided in the PCN, whose generation method are similar
but not exactly the same with ours. Basic statistics of these two datasets are reported in Table 6.
Compared with the ShapeNet Occluded dataset which is publicized by PCN and used in all the
follow-ups(Tchapmi et al., 2019; Wang et al., 2020a), our occluded ModelNet dataset has more object
categories, more view-points, more points per object and therefore is more challenging. We believe
such differences will help the encoder models learn a more comprehensive and robust representation
which is transferable to downstream tasks. To support our idea, we perform OcCo pre-training on
these two datasets respectively, and test their performance on ModelNet40 and ShapeNet Occluded
classification benchmarks.

Table 6: Statistics of occluded datasets for OcCo pre-training
Name # of Class # of Object # of Views # of Points/Object

ShapeNet Occluded (PCN) 8 30974 8 1045
ModelNet Occluded (OcCo ) 40 12304 10 20085
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The reason of choosing these two datasets for benchmarking is, ShapeNet Occluded is the out-of-
domain data for the models pre-trained on ModelNet Occluded, and vice versa. We believe it will
give us sufficient information on which occluded dataset should be preferred the OcCo pre-training.
The Results are shown in Table 7.

Table 7: Performance of OcCo pre-trained models with different pre-trained datasets

OcCo Settings Classification Accuracy
Encoder Pre-Trained Dataset ModelNet Oc ShapeNet Oc

PointNet ShapeNet Oc 81.0 94.1
ModelNet Oc 85.6 95.0

PCN ShapeNet Oc 81.6 94.4
ModelNet Oc 85.1 95.1

DGCNN ShapeNet Oc 86.7 94.5
ModelNet Oc 89.1 95.1

From Table 7, we see that the OcCo models pre-trained on ShapeNet Occluded do not perform as
well as the ones pre-trained on ModelNet Occluded in most cases. Thus in our experiments, we
reports the results pre-trained on ModelNet Occluded.

By visualising the objects from the ShapeNet Occluded (in Figure. 11), we believe this performance
deficiency in downstream fine-training of pre-trained models is due to the quality of the generated
occluded point clouds (in comparison with our generated dataset shown in Figure. 2). Further, we
think our dataset is a more challenging task for all the present completion models.

Figure 11: Examples from ShapeNet Occluded which fail to depict the underlying object shapes

E DETAILED RESULTS ON TRAINING A LINEAR SVM FOR CLASSIFICATION

We first described the benchmark datasets that are used for classification in Table 8.
Table 8: Statistics of classification datasets

Name Type # Class # Training # Testing

(MN40) ModelNet40 (Wu et al., 2015) synthesized 40 9,843 2,468
(SN10) ScanNet10 (Dai et al., 2017a) real scanned 10 6,110 1,769
(SO15) ScanObjectNN (Uy et al., 2019) real scanned 15 2,304 576

To make a comprehensive and convincing comparison, we follow the similar procedures from
(Achlioptas et al., 2018; Han et al., 2019; Sauder & Sievers, 2019; Wu et al., 2016; Yang et al., 2018),
to train a linear Support Vector Machine (SVM) to examine the generalisation of OcCo encoders
that are pre-trained on occluded objects from ModelNet40. For all six classification datasets, we
fit a linear SVM on the output 1024-dimensional embeddings of the train split and evaluate it on
the test split. Since Sauder & Sievers (2019) have already proven their methods are better than the
prior, here we only systematically compare with theirs. We report the results2 in Table 9, we can
see that all OcCo models achieve superior results compared to the randomly-initialized counterparts,
demonstrating that OcCo pre-training helps the generalisation both in-domain and cross-domain.

2In our implementation, we also provide an alternative to use grid search to find the optimal set of parameters
for SVM with a Radial Basis Function (RBF) kernel. In this setting, all the OcCo pre-trained models have
outperformed the random initialised and Jigsaw pre-trained ones by a large margin as well.
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Table 9: linear SVM on the output embeddings from random, Jigsaw and OcCo initialised encoders

Dataset PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

ShapeNet10 91.3 91.1 93.9 88.5 91.8 94.6 90.6 91.5 94.5
ModelNet40 70.6 87.5 88.7 60.9 73.1 88.0 66.0 84.9 89.2
ShapeNet Oc 79.1 86.1 91.1 72.0 87.9 90.5 78.3 87.8 91.6
ModelNet Oc 65.2 70.3 80.2 55.3 65.6 83.3 60.3 72.8 82.2

ScanNet10 64.8 64.1 67.7 62.3 66.3 75.5 61.2 69.4 71.2
ScanObjectNN 45.9 55.2 69.5 39.9 49.7 72.3 43.2 59.5 78.3

F RE-IMPLEMENTATION DETAILS OF ”JIGSAW” PRE-TRAINING METHODS

In this section, we describe how we reproduce the ’Jigsaw’ pre-training methods from (Sauder &
Sievers, 2019). Following their description, we first separate the objects/chopped indoor scenes into
33 = 27 small cubes and assign each point a label indicting which small cube it belongs to. We then
shuffle all the small cubes, and train a model to make a prediction for each point. We reformulate this
task as a 27-class semantic segmentation, for the details on the data generation and model training,
please refer to our released code.

G MORE COMPARISONS

In Table 10, we compare OcCo with prior point-cloud-specific pre-training methods (Alliegro et al.,
2020). Our method obtains the best results on all settings. These results confirm that the inductive
bias learned by reconstructing occluded point clouds is stronger than one based in reconstructing
permuted clouds (Alliegro et al., 2020; Sauder & Sievers, 2019). Specifically, we believe that because
OcCo does not rearrange object parts but instead creates point clouds that resemble real-world 3D
sensor occlusions, the initialization better encodes realistic object shape and context.

Table 10: Accuracy comparison between OcCo and prior pre-training baselines Alliegro et al. (2020)
on 3D object recognition benchmarks. ModelNet40-20% means only 20% of training data are used.

Baseline Dataset Rand Alliegro et al. (2020) OcCo

PointNet
ModelNet40 89.2 89.7 90.2

ModelNet40-20% 82.9 83.1 83.6
ScanObjectNN (OBJ BG) 73.7 71.3 80.2

H LABELLED SAMPLE EFFICIENCY

We investigate whether OcCo pre-training can improve the labelled sample efficiency of downstream
tasks. Specifically, we reduce the labelled samples to 1%, 5%, 10% and 20% of the original training
set for the ModelNet40 object classification task, and evaluate on the full test set. As shown in Table
11, OcCo-initialized models achieve superior results compared to the randomly-initialized models,
demonstrating that OcCo with in-domain pre-training improves labelled sample efficiency.

Table 11: Sample efficiency with randomly-initialized and OcCo-initialized models.

Baseline PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

1% 56.9 55.7 58.1 57.8 59.6 60.4 60.0 59.9 60.5
5% 73.9 74.3 74.9 73.2 75.8 76.7 79.4 79.2 79.7

10% 80.6 81.3 81.1 81.1 82.1 82.6 84.4 84.4 84.5
20% 83.6 84.2 84.2 83.6 84.2 84.4 86.5 86.7 87.2
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I NETWORKS AND TRAINING SETTINGS OF PCN ENCODER

We sketch the network structures of PCN encoder and output layers for downstream tasks in Figure 12.
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Figure 12: Encoder and Output Layers of PCN

J DETAILED RESULTS OF THE PART SEGMENTATION

Here in Table 12 we report the detailed scores on each individual shape category from ShapeNetPart,
we bold the best scores for each class respectively. We show that for all three encoders, OcCo-
initialisation has achieved better results over two thirds of these 15 object classes.

Table 12: Detailed Results on Part Segmentation Task on ShapeNetPart

Shapes PointNet PCN DGCNN
Rand* Jigsaw OcCo Rand Jigsaw OcCo Rand* Jigsaw* OcCo

mean (point) 83.7 83.8 84.4 82.8 82.8 83.7 85.1 85.3 85.5
Aero 83.4 83.0 82.9 81.5 82.1 82.4 84.2 84.1 84.4
Bag 78.7 79.5 77.2 72.3 74.2 79.4 83.7 84.0 77.5
Cap 82.5 82.4 81.7 85.5 67.8 86.3 84.4 85.8 83.4
Car 74.9 76.2 75.6 71.8 71.3 73.9 77.1 77.0 77.9

Chair 89.6 90.0 90.0 88.6 88.6 90.0 90.9 90.9 91.0
Earphone 73.0 69.7 74.8 69.2 69.1 68.8 78.5 80.0 75.2

Guitar 91.5 91.1 90.7 90.0 89.9 90.7 91.5 91.5 91.6
Knife 85.9 86.3 88.0 84.0 83.8 85.9 87.3 87.0 88.2
Lamp 80.8 80.7 81.3 78.5 78.8 80.4 82.9 83.2 83.5

Laptop 95.3 95.3 95.4 95.3 95.1 95.6 96.0 95.8 96.1
Motor 65.2 63.7 65.7 64.1 64.7 64.2 67.8 71.6 65.5
Mug 93.0 92.3 91.6 90.3 90.8 92.6 93.3 94.0 94.4
Pistol 81.2 80.8 81.0 81.0 81.5 81.5 82.6 82.6 79.6

Rocket 57.9 56.9 58.2 51.8 51.4 53.8 59.7 60.0 58.0
Skateboard 72.8 75.9 74.2 72.5 71.0 73.2 75.5 77.9 76.2

Table 80.6 80.8 81.8 81.4 81.2 81.2 82.0 81.8 82.8
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K ALGORITHMIC DESCRIPTION OF OCCO

Algorithm 1 Occlusion Completion (OcCo)

# P: an initial point cloud
# K: camera intrinsic matrix
# V: number of total view points
# loss: a loss function between point clouds
# c: encoder-decoder completion model
# p: downstream prediction model

while i < V:
# sample a random view-point
R_t = [random.rotation(), random.translation()]

# map point cloud to camera reference frame
P_cam = dot(K, dot(R_t, P))

# create occluded point cloud
P_cam_oc = occlude(P_cam, alg='z-buffering')

# point cloud back to world frame
K_inv = [inv(K), zeros(3,1); zeros(1,3), 1]
R_t_inv = transpose([R_t; zeros(3,1), 1])
P_oc = dot(R_t_inv, dot(K_inv, P_cam_oc))

# complete point cloud
P_c = c.decoder(c.encoder(P_oc))

# compute loss, update via gradient descent
l = loss(P_c, P)
l.backward()
update(c.params)
i += 1

# downstream tasks, use pre-trained encoders
p.initialize(c.encoder.params)
p.train()
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