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Abstract
Real-world data generation often involves certain
geometries (e.g., graphs) that induce instance-
level interdependence. This characteristic makes
the generalization of learning models more dif-
ficult due to the intricate interdependent pat-
terns that impact data-generative distributions
and can vary from training to testing. In this
work, we propose a geometric diffusion model
with learnable divergence fields for the chal-
lenging generalization problem with interdepen-
dent data. We generalize the diffusion equa-
tion with stochastic diffusivity at each time step,
which aims to capture the multi-faceted infor-
mation flows among interdependent data. Fur-
thermore, we derive a new learning objective
through causal inference, which can guide the
model to learn generalizable patterns of interde-
pendence that are insensitive across domains. Re-
garding practical implementation, we introduce
three model instantiations that can be consid-
ered as the generalized versions of GCN, GAT,
and Transformers, respectively, which possess ad-
vanced robustness against distribution shifts. We
demonstrate their promising efficacy for out-of-
distribution generalization on diverse real-world
datasets. Source codes are available at https:
//github.com/fannie1208/GLIND.

1. Introduction
Learning from data involving certain geometries is a fun-
damental challenge in machine learning (Tenenbaum et al.,
2000; Belkin & Niyogi, 2003; Belkin et al., 2006). One com-
mon scenario entails explicit graph structures, where the
observed edges create interdependence among data points;
another more challenging scenario involves implicit struc-
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Figure 1: The challenge of generalization with interdepen-
dent data involves distribution shifts regarding the underly-
ing manifolds that define the proximity among data samples.

tures, where interdependence also exists but is not directly
observable from data. In both scenarios, due to the inter-
dependence of data points, the commonly used i.i.d. as-
sumption for modeling becomes invalid. Moreover, given
the dynamic environment where the model interacts in the
open-world setting, the training and testing data are often
generated from different distributions, necessitating gen-
eralization under distribution shifts (Mansour et al., 2009;
Blanchard et al., 2011; Muandet et al., 2013; Gong et al.,
2016; Arjovsky et al., 2019).

However, unlike standard learning settings (e.g., for image
and text data) where each data sample can be treated as
independent (Koh et al., 2021; Ye et al., 2021), the inter-
dependence among data points (e.g., nodes in an observed
graph or other geometries with implicit structures) signifi-
cantly increases the difficulty of generalization (Ma et al.,
2021; Wu et al., 2022; Zhao et al., 2020; Stadler et al., 2021).
Particularly, as illustrated in Fig. 1, since the training and
testing data lie on different underlying manifolds that induce
proximity among data points, the model solely optimized
on training data with specific geometry may not generalize
well to testing data generated from a different manifold. In
contrast, an ideal model should be able to capture the gener-
alizable patterns of data interdependence that can transfer
across domains (or interchangeably, environment).

While generalization across potentially different environ-
ments is desirable in practice, the challenge lies in how
to model the generalizable patterns of the interdependence
among data points, which can be abstract and convoluted
in nature. Given the data interdependence, the label of
each instance depends on both the instance itself and other
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instances, and such input-label dependency, which is impor-
tant for prediction, would vary accordingly when distribu-
tion shifts exist (between training and testing data). Thereby,
for generalization, the model needs to learn causal predic-
tive relations from the inputs of interdependent data with
certain geometries to their labels, which stays insensitive to
distribution shifts.

In this paper, we commence with diffusion equations on
manifolds (Weickert et al., 1998; Romeny, 2013) as the
foundation for learning generalizable predictive relations
with interdependent data. We propose a geometric diffu-
sion model with learnable divergence fields as an effective
means to model the complex interdependent patterns among
data points. In particular, we generalize the diffusivity func-
tion, which measures the rate of information flows between
two points on the manifold, as random samples from a
variational distribution over a set of diffusivity hypothe-
ses, inducing stochastic evolutionary directions at each step.
In this way, the model can accommodate and capture the
multi-faceted information flows at each diffusion step.

To facilitate the generalization, we harness deconfounded
learning, a technique from causal inference, and derive a
step-wise re-weighting regularization approach for the in-
ferred latent diffusivity. This gives rise to a new optimiza-
tion objective that guides the model to learn the causal
relation induced by the diffusion dynamics trajectory, which
captures the generalizable relations from initial states (x) to
output states (y) that are insensitive to data distribution shifts.
In terms of practical implementation, we present three in-
stantiations based on our model formulation, which can be
treated as generalized versions of GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018), and DIFFormer (Wu
et al., 2023c), respectively, for out-of-distribution general-
ization in situations where the data geometries are observed
(e.g., as graphs) or unobserved.

We evaluate the practical efficacy of our models on diverse
experimental datasets. The results show that the proposed
models can effectively handle various distribution shifts.
The contributions are summarized below.

◦ We propose a geometric diffusion model with learnable
divergence fields that accommodates multi-faceted informa-
tion flows among data points. The diffusivity at each step is
estimated via a variational distribution conditioned on the
diffusion dynamics trajectories.

◦ We design a causal regularization approach for learning
the generalizable patterns of interdependence. Our scheme
serves as the first attempt to unlock the potential of diffusion
models for generalization with interdependent data.

◦ We introduce three practical versions of model implemen-
tation and demonstrate their superiority through extensive
experiments, particularly in handling various distribution

shifts with observed and unobserved data geometries.

2. Background
In this section, we review some technical background as
building blocks of our proposed model.

Diffusion on Manifolds. The diffusion process over some
abstract domain Ω composed of N points describes the evo-
lution of particular signal z(u, t), a scalar-valued function
on Ω × [0,∞), for each point u ∈ Ω at arbitrary time t.
In specific, the evolution of z(u, t) by a (heat) diffusion
process can be described via a partial differential equation
(PDE) with boundary conditions (Freidlin & Wentzell, 1993;
Medvedev, 2014; Romeny, 2013):

∂z(u, t)

∂t
= ∇∗ (D(u, t)⊙∇z(u, t)) , (1)

with initial conditions z(u, 0) = z0(u), t ≥ 0, u ∈ Ω. Here
∇,∇∗ and D(u, t) reflect some spatial characteristics and
are associated with the structure of Ω. Without loss of
generality, we assume Ω as a Riemannian manifold and
define Z(Ω) and Z(TΩ) as the scalar and (tangent) vec-
tor fields on Ω, respectively. Then the gradient operator
∇ : Z(Ω) → Z(TΩ) returns a vector field ∇z(u, t) that
provides the direction of the steepest change of z at the
point u. The divergence operator∇∗ : Z(TΩ)→ Z(Ω) is
a scalar field that reflects the flow of∇z(u, t) through an in-
finitesimal volume around u. The D(u, t) in Eqn. 1 is the dif-
fusivity that describes some thermal conductance properties
of Ω, i.e., the measure of the rate at which heat can spread
over the space (Rosenberg & Steven, 1997). For homoge-
neous system, the diffusivity D(u, t) remains a constant for
arbitrary u, while D(u, t) is position-dependent for inhomo-
geneous system. In the latter case, D(u, t) can be scalar-
valued (isotropic diffusion) or matrix-valued (anisotropic
diffusion) (Weickert et al., 1998).

Causal Deconfounded Learning. The principle of decon-
founded learning is originally rooted in the study of Causal-
ity (Pearl et al., 2016; Rubin, 2019), which pursuits the
causal (a.k.a. stable) mappings between input x (cause) and
output y (effect) and eliminates the influence from a latent
confounder c, i.e., the common cause of x and y. In ma-
chine learning tasks, the domain context in a dataset can be
a common confounder between input features x and labels
y. For example, in image classification, the background
often associates with both x and y, e.g., a horse often ap-
pears on the grass. The domain context would mislead the
model to learn non-stable correlation between inputs and
labels, e.g., a shortcut between the ‘green’ background and
the ‘horse’ (Beery et al., 2018; Geirhos et al., 2018). Such
correlation however does not hold on other datasets col-
lected with different contexts and may impair the model
generalization. Deconfounded learning aims to remove the
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confounding bias from domain context by intervention on x
and maximize p(y|do(x)) where the do-operation cuts off
the dependence from c and x. The probability with the do
operator can be computed by randomized controlled trial us-
ing data recollection or statistically estimated by leveraging
backdoor adjustment (Pearl et al., 2016; Christakopoulou
et al., 2020; Roberts et al., 2020; Yang et al., 2022a).

3. Model Formulation
We consider N data samples (a.k.a. instances) {xu, yu}Nu=1

that are partially labeled and the labeled portion is
{xu, yu}Mu=1 where M < N . There exist interconnect-
ing structures among the N data points, reflected by G =
{auv}N×N where auv = 1 indicates the connectivity be-
tween instance u and v and 0 for non-connectivity. In this
situation, each instance u can be considered as the node
in the graph G. Furthermore, without loss of generality,
the structures can also be unobserved, in which case we
can assume auv = 1 for ∀u, v suggesting that there can
exist potential interactions between every instance pair. We
introduce Z = [zu]

N
u=1 where zu ∈ Rd denotes the repre-

sentation (a.k.a. embedding) of instance u.

3.1. Geometric Diffusion Model

Diffusion Equation over Discrete Space. We first charac-
terize a neural message passing model induced by generic
diffusion process Eqn. 1 defined over a discrete space con-
sisting of N points as locations on the manifold. Through
treating the instance representations as signals of loca-
tions in the discrete space, we can define the gradient
and divergence operators according to the discretization
of the continuous notions. The gradient operator ∇ mea-
sures the difference between source and target locations,
i.e., (∇Z(t))uv = zu(t) − zv(t). The divergence op-
erator ∇∗ aggregates the information flows at a point,
i.e., (∇∗)u =

∑
v,auv=1 dv(Z(t), u, t) (∇Z(t))uv, where

d(Z(t), u, t) determines the diffusivity of the location u
at time t. We can then obtain the diffusion equation that
describes the evolution of instance representations over the
observed discrete structures among N data points:

∂zu(t)

∂t
=

∑
v,auv=1

dv(Z(t), u, t) (zv(t)− zu(t)) , (2)

with initial conditions Z(0) = [xu]
N
u=1 and t ≥ 0. The

above equation can be essentially considered as a contin-
uous version of neural message passing, commonly used
by graph neural networks (Chamberlain et al., 2021a) and
Transformers (Wu et al., 2023c), while the latter models
uses discrete layers as the approximation of time. On top of
this connection, recent works harness diffusion equations on
graphs as a principled perspective for justifying architectural
choices (Chamberlain et al., 2021b; Thorpe et al., 2022),

analyzing GNNs’ behaviors (Wu et al., 2023b) and guid-
ing model designs for difficult problems, e.g., geometric
knowledge distillation (Yang et al., 2022b).

Branching-Structured Divergence Fields. The above dif-
fusion system assumes that at each time step the information
flows between connected locations are determined by a de-
terministic diffusivity function d(Z(t), u, t). The diffusivity
essentially measures the rate of information flows between
any pair of locations on the manifold. Based on the anal-
ogy between diffusion on manifolds and message passing
among interconnected data, the diffusivity can be treated as
quantification of pairwise influence among data points. The
latter, however, could be driven by multiple criteria along
with uncertainty, instead of remaining to be deterministic. In
light of this observation, we extend Eqn. 2 to accommodate
the heterogeneity and stochasticity of the diffusivity, which
is assumed to be sampled from a generative distribution
p(d(t)|Z(t), u, t), over a set of hypothesis, dependent on
the current states Z(t), position u and time t:

∂zu(t)

∂t
=

∑
v,auv=1

d(t)uv · (zv(t)− zu(t)) , (3)

where [d
(t)
uv ]Nv=1 = d

(t)
u ∼ p(d(t)|Z(t), u, t). Through the

diffusion process defined by Eqn. 3, the change of instance
representation at infinitesimal time is equal to the divergence
at each point u induced by the current diffusivity d

(t)
u . The

evolutionary direction of instance representation at time
t is stochastic according to p(d(t)|Z(t), u, t) that yields
multiple branches of subsequent diffusion dynamics from
the current time (as illustrated in Fig. 2(d)). This formulation
further paves the way for generalization by enabling the
model to learn the stable diffusion dynamics as we will
discuss in later subsections.

Diffusion Trajectories with Stochastic Diffusivity. The
differential equation of Eqn. 3 can be solved through numer-
ical methods by using discrete time steps {l} to approximate
the continuous time t. In particular, with step size α, Eqn. 3
induces a trajectory of instance embeddings:

z(l+1)
u = z(l)u + α

∑
v,auv=1

d(l)uv ·
(
z(l)v − z(l)u

)
, (4)

where [d(t)uv ]Nv=1 = d
(l)
u ∼ p(d(l)|z(l)u ). The diffusion model

Eqn. 4 with L layers yields a trajectory of embeddings for
each instance u: xu = z

(0)
u → z

(1)
u → · · · → z

(L)
u = ŷu,

where ŷu denotes the predicted label for u.

3.2. Optimization with Causal Regularization

For generalization, we next discuss on how to guide the geo-
metric diffusion model to learn causal relations from inputs
to outputs that are insensitive to distribution shifts. Consider
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(a) Data generation (b) Model deconfounded learning 
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(c) Diffusion dynamics with inference for diffusivity  (d) Proposed model and learning objective  
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Figure 2: (a)∼ (c) Dependence among random variables of interest (here we omit G for brevity since everything can be
treated as conditioned on G). (a) Causal dependence for data generation where the diffusivity d is the common cause of x
and y. (b) Deconfounded learning pθ(y|do(x),G) which aims to cut off the dependence path from d to x in order to learn
causal (a.k.a. stable) relation between x and y for generalization. (c) Our diffusion model whose feed-forward dynamics
xu = z

(0)
u → z

(1)
u → · · · → z

(L)
u = ŷu is given by a predictive distribution pθ(z

(l+1)|z(l),d(l),G) and a variational
distribution qϕ(d

(l)|z(l)). (d) The geometric diffusion model that is optimized by a new learning objective (comprised of a
supervised term and a regularization term) which can achieve the goal of deconfounded learning pθ(y|do(x),G).

the instance embedding z
(l)
u of an arbitrary given layer as

a random variable, we define by pθ(z
(l+1)|z(l),d(l),G) the

(delta) predictive distribution induced by the l-th layer’s
updating of Eqn. 4, where the condition on G stems from
the message passing among instances. Then the generative
distribution at the l-th layer can be expressed as

pθ(z
(l+1)|z(l),G) = Ep(d(l)|z(l))[pθ(z

(l+1)|z(l),d(l),G)],

where the expectation marginalizes over all the possible re-
sults of d(l). The log-likelihood log pθ(y|x,G) for each data
sample can be computed by log

∏L−1
l=0 pθ(z

(l+1)|z(l),G) =
L−1∑
l=0

logEp(d(l)|z(l))[pθ(z
(l+1)|z(l),d(l),G)]. (5)

Inference for Diffusivity. Due to the intractable integration
over d(l) in the above objective, we turn to the evidence
lower bound of Eqn. 5 by introducing a variational distribu-
tion qϕ(d

(l)|z(l)) (where ϕ denotes its parameterization):

L−1∑
l=0

Eqϕ(d(l)|z(l))

[
log pθ(z

(l+1)|z(l),d(l),G) p(d
(l)|z(l))

qϕ(d(l)|z(l))

]
.

(6)
With some re-arranging, the evidence lower bound of the
log-likelihood log pθ(y|x,G) induces the following objec-
tive (see derivation in Appendix A.1)

Eqϕ(d(0)|z(0)),··· ,qϕ(d(L−1)|z(L−1))

[
log pθ(y|x,d(0), · · · ,

d(L−1),G)
]
−

L−1∑
l=0

KL(qϕ(d(l)|z(l)), p(d(l)|z(l))), (7)

where the first term corresponds to the supervised loss by
computing the difference between the ground-truth label yu

and the prediction ŷu, and the second term has a regular-
ization effect on the inferred latent diffusivity. Eqn. 7 is a
tractable objective that approximates the log-likelihood.

However, the generative distribution p(d(l)|z(l)) is a model-
based prior for diffusivity over a hypothesis space that ex-
presses how plausible the model thought the ideal diffusivity
were in light of the previous diffusion dynamics. Though
it incorporates the information of z(l) for estimating the
adaptive diffusivity at the current step, the model learning
would make the estimation of diffusivity biased towards
training data. In this way, the predictive relations from z(l)

(resp. x) to z(l+1) (resp. y) learned by the model would be
spuriously associated by the latent confounder, the diffusiv-
ity d(l) (resp. {d(l)}L−1

l=0 ), as illustrated by Fig. 2(a). The
confounding effect of the diffusivity, which corresponds to
the context information that differs across domains, would
hamper the generalization of the model when transferring
from the training distribution to a testing one where the data
lies on another manifold with disparate proximity context.

Step-wise Re-weighting Regularization To facilitate gen-
eralization, the ideal solution is to achieve deconfounded
learning, i.e., pθ(y|do(x),G) that cuts off the dependence
path from d to x (as illustrated in Fig. 2(b)), in which sit-
uation the model can learn the causal (a.k.a. stable) re-
lation between x and y that is generalizable across do-
mains. While the technical difficulty lies in how to com-
pute pθ(y|do(x),G) in a feasible manner, the next theorem
presents a tractable surrogate that approximates the target.

4



Learning Divergence Fields for Shift-Robust Graph Representations

Theorem 3.1. For any given diffusion model
pθ(z

(l+1)|z(l),d(l),G), we have a lower bound of
the deconfounded learning objective: log pθ(y|do(x),G) ≥
L−1∑
l=0

Eqϕ(d(l)|z(l))

[
log pθ(z

(l+1)|z(l),d(l),G) p0(d
(l))

qϕ(d(l)|z(l))

]
,

(8)
where p0(d

(l)) is a model-free prior distribution. In par-
ticular, the equality holds for Eqn. 8 iff qϕ(d(l)|z(l)) =

pθ(d
(l)|z(l), z(l+1),G) · p0(d

(l))
p(d(l)|z(l))

.

The proof is deferred to Appendix A.2. We can optimize
Eqn. 8 as a surrogate objective by joint learning of qϕ and
pθ that has the effect of optimizing the deconfounded learn-
ing objective. As another perspective for understanding the
effect of Eqn. 8, it can be seen as multiplying a re-weighting
term p0(d

(l))
p(d(l)|z(l))

with Eqn. 6, which can down-weight the fre-
quent diffusivity components and up-weight the infrequent
ones to eliminate the observation bias caused by limited
training data. This can facilitate learning the stable relation
from z(l) (resp. x) to z(l+1) (resp. y) that holds across
domains, instead of the non-stable correlation pertaining to
specific context in training data.

Based on Eqn. 8, we can obtain the final learning objective
(see derivation in Appendix A.3 which is similar to Eqn. 7):

Eqϕ(d(0)|z(0)),··· ,qϕ(d(L−1)|z(L−1))

[
log pθ(y|x,d(0), · · · ,

d(L−1),G)
]
−

L−1∑
l=0

KL(qϕ(d(l)|z(l)), p0(d(l))). (9)

Fig. 2(d) provides an illustration for the model. The compu-
tation of the regularization term depends on specific form
of qϕ(d(l)|z(l)), which we will discuss in the next section.

4. Model Instantiations
In this section, we delve into the model instantiations on the
basis of the formulation of our diffusion model in Sec. 3.
We call our model GLIND, short for diffusion-induced
Generalizable Learning with INterdependent Data. For
simplicity, we assume the inference distribution for diffusiv-
ity qϕ(d

(l)|z(l)) as a multinomial distribution: at each time
step l for arbitrary instance u, the diffusivity d

(l)
u is sampled

from a limited hypothesis set {d(l,k)
u }Kk=1 with probabilities

{π(l,k)
u }Kk=1 for each component, where

∑K
k=1 π

(l,k)
u = 1.

We can further assume α = 1, and then the diffusion trajec-
tory of Eqn. 4 induces a feed-forward propagation layer:

z(l+1)
u = z(l)u +

K∑
k=1

h
(l)
u,k

∑
v,auv=1

d(l,k)uv (z(l)v − z(l)u ),

where h
(l)
u ∼ M(π

(l)
u ) is a one-hot vector where the en-

try ‘1’ indicates the sampled result from the multinomial

distributionM(π
(l)
u ). Here π(l)

u and d
(l,k)
u determine the di-

vergence (the updating signals) at the current time step l and
control the evolutionary direction of the diffusion process,
and both of them can be parameterized.

Parameterization. We adopt a feed-forward layer with
Softmax to model the probability of K diffusivity compo-
nents and leverage the Gumbel trick (Jang et al., 2017) to
approximate the sampling process:

h
(l)
u,k =

exp
((

π
(l,k)
u + gk

)
/τ

)
∑

k′ exp((π
(l,k′)
u + gk′)/τ)

, gk ∼ Gumbel(0, 1),

where [π
(l,k)
u ]Kk=1 = π

(l)
u = Softmax(W(l)

L z
(l)
u ) and

W
(l)
L ∈ RK×d is a trainable weight matrix. The mes-

sage passing is driven by the diffusivity hypothesis set
{d(l,k)

u }Kk=1. We next introduce three model instantiations
that can be considered as the generalized implementations
of GCN, GAT and Transformers, respectively.

GLIND-GCN. We first consider a model version that uses
the aggregated embeddings of connected instances to up-
date the representation of the target instance. Inspired by
the anisotropic diffusion which is position- and direction-
dependent, we assume each branch k converts the embed-
dings for the target instance (resp. other connected in-
stances) through W

(l,k)
S ∈ Rd×d (resp. W

(l,k)
D ∈ Rd×d)

and the gradient of signals is scaled by the number of con-
nected instances d̃u =

∑
v auv:

z
(l+1)
u = z

(l)
u +

K∑
k=1

h
(l)
u,k

 ∑
v,auv=1

1

d̃u

W
(l,k)
D z

(l)
v + W

(l,k)
S z

(l)
u

 ,

where {W(l,k)
S }Kk=1 and {W(l,k)

D }Kk=1 are trainable weights
at the l-th layer. This model can be seen as a generalized
implementation of the GCN architecture (Kipf & Welling,
2017), where the approximate one-hot vector h(l)

u dynami-
cally selects the convolution filter in each layer.

GLIND-GAT. We can further harness an attention network
for each branch to model the intensity of the pairwise influ-
ence between connected nodes, by extending the spirit of
GAT (Velickovic et al., 2018):

z
(l+1)
u = z

(l)
u +

K∑
k=1

h
(l)
u,k

 ∑
v,auv=1

w
(l,k)
uv W

(l,k)
D z

(l)
v + W

(l,k)
S z

(l)
u

 ,

w
(l,k)
uv =

δ((c(l,k))⊤[W
(l,k)
A z(l)

u ∥W(l,k)
A z(l)

v ])∑
w,auw=1 δ(c(l,k))⊤[W

(l,k)
A z

(l)
u ∥W(l,k)

A z
(l)
w ])

,

where δ is instantiated as LeakyReLU and W
(l,k)
A ∈ Rd×d

and c(l,k) ∈ R2d are both trainable parameters. Here, h(l)
u

adaptively selects the path for attentive propagation.

GLIND-TRANS. The preceding two models resort to mes-
sage passing over observed structures. There also exist
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scenarios where the data geometries are partially observed
or unobserved. To accommodate the potential interactions
among arbitrary instance pairs, we extend the attention-
based propagation to a latent topology as is done by Trans-
former (Vaswani et al., 2017):

z(l+1)
u = z(l)u +

K∑
k=1

h
(l)
u,k

(
W

(l,k)
D b(l,k)

u +W
(l,k)
S z(l)u

)
,

b(l,k)
u =

∑
v

η(W
(l,k)
K z

(l)
v ,W

(l,k)
Q k

(l)
u )∑N

w=1 η(W
(l,k)
K z

(l)
w ,W

(l,k)
Q k

(l)
u )
· z(l)v ,

where W
(l,k)
K and W

(l,k)
Q are trainable weights at the l-th

layer, and η denotes a certain similarity function. How-
ever, due to the all-pair global attention, the above compu-
tation requires quadratic complexity w.r.t. N , which hin-
ders the scalability to large numbers of instances. We thus
turn to a linearly scalable and numerically stable version
of all-pair attention proposed by DIFFormer (Wu et al.,
2023c), which specifically instantiates η as η(a,b) =

1 + ( a
∥a∥2

)⊤ b
∥b∥2

. Then assuming k
(l)
u =

W
(l,k)
K z(l)

u

∥W(l,k)
K z

(l)
u ∥2

and

q
(l)
u =

W
(l,k)
Q z(l)

u

∥W(l,k)
Q z

(l)
u ∥2

, we can efficiently compute b
(l,k)
u,v by

b(l,k)
u =

∑N
v=1 z

(l)
v +

(∑N
v=1(k

(l)
v )(z

(l)
v )⊤

)
(q

(l)
u )

N + (q
(l)
u )⊤(

∑N
v=1 k

(l)
v )

.

The above computation for updating N instances’ embed-
dings in each layer can be achieved within O(N) complexity
since the three summation terms are shared by all instances
and only requires once computation in practice. Moreover,
if the observed structures are available, we can incorporate
the aggregated embeddings of connected instances to the
updating signals: b(l,k)

u ← 1
2 (b

(l,k)
u +

∑
v,auv=1

1
d̃u

z
(l)
v ).

Data-Driven Prior via Mixture of Posteriors. A proper
setting of the prior distribution p0(d

(l)) is important but
non-trivial. One simple solution is to assume the prior as
some pre-defined trivial forms (Dinh et al., 2015), which
however may potentially lead to over-regularization (Burda
et al., 2015). Alternatively, one can estimate the prior by the
average of the variational posterior (Hoffman & Johnson,
2016), i.e., p0(d(l)) ≈ 1/N

∑N
u=1 q(d

(l)|z(l) = z
(l)
u ). Nev-

ertheless, such an approach can be computationally expen-
sive (Tomczak & Welling, 2018) and would lead to biased
estimation given limited training data. In our case, inspired
by (Tomczak & Welling, 2018) using mixture of Gaussian
as a learnable prior, we propose to use a mixture of pseudo
variational posteriors as a flexible prior estimation:

p0(d
(l)) =

1

T

T∑
t=1

q(d(l)|z(l) = z̃
(l)
t ). (10)

where z̃
(l)
t is the embedding of instance t in the generated

pseudo dataset {x̃t, ỹt}Tt=1. The latter is constructed by
randomly sampling T instances from the N instances in the
observed dataset, and the structures of the pseudo dataset are
randomly generated with a pre-defined probability for each
potential edge. We set T ≪ N to reduce the computational
cost. In this way, the prior estimation by Eqn. (10) plays
as a general reflection of how the model recognizes each
diffusivity hypothesis given uninformative inputs and is
learned with the model in a fully data-driven manner.

5. Experiments
The goal of our experiments is to evaluate the generalization
ability of the model under distribution shifts with interde-
pendent data. We consider various real-world datasets that
involve observed and unobserved data geometries, and the
distribution shifts between training and testing sets are led
by distinct contexts. Following common practice, we use
the prediction accuracy on the out-of-distribution testing
data for measuring the generalization performance.

5.1. Experiment Setup

Datasets. We adopt five datasets Twitch, Arxiv, DPPIN,
STL and CIFAR for evaluation. Detailed information about
these datasets are deferred to Appendix B. Since the proper-
ties of these datasets vary case by case, we consider different
ways to split the observed data into multiple domains or con-
struct out-of-distribution data with new unseen domains
(where the data from different domains are considered as
samples from different distributions). We next describe the
evaluation protocol in terms of how we split the training and
testing sets with distribution shifts in each case.

◦ Twitch is a multi-graph dataset (Rozemberczki &
Sarkar, 2021) where nodes of graphs are instances whose
interconnectivity is reflected by observed structures. Each
subgraph is comprised of a social network of users from
a particular region, so one can use the nodes in different
subgraphs as samples from different domains, since these
subgraphs have obviously different topological features (Wu
et al., 2022). In particular, we use the nodes from three
subgraphs as training data (where we hold out 25% for val-
idation), and the nodes from the other three subgraphs as
testing data. The task is a binary classification for users’
genders, and the performance is measured by ROC-AUC.

◦ Arxiv is a temporal network (Hu et al., 2020b) which
evolves with time. Each node (i.e., a paper) as an instance
has a time label indicating its publication year. Since the
citation relationships among papers can significantly vary
with different time-sensitive contexts, the distribution shifts
naturally exist for the network data collected within dif-
ferent time windows. We thus use the papers published
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Table 1: Testing (mean±standard deviation) Accuracy (%) for Arxiv and ROC-AUC (%) for Twitch on different subsets
of out-of-distribution data (determined by publication times and subgraphs, respectively). The missing results of EERM on
Arxiv stem from the out-of-memory issue. We mark the first/second/third methods with the top performance.

Method Arxiv Twitch
2014-2016 2016-2018 2018-2020 ES FR EN

ERM-GCN 56.33 ± 0.17 53.53 ± 0.44 45.83 ± 0.47 66.07 ± 0.14 52.62 ± 0.01 63.15 ± 0.08
IRM-GCN 55.92 ± 0.24 53.25 ± 0.49 45.66 ± 0.83 66.95 ± 0.27 52.53 ± 0.02 62.91 ± 0.08
GroupDRO-GCN 56.52 ± 0.27 53.40 ± 0.29 45.76 ± 0.59 66.82 ± 0.26 52.69 ± 0.02 62.95 ± 0.11
DANN-GCN 56.35 ± 0.11 53.81 ± 0.33 45.89 ± 0.37 66.15 ± 0.13 52.66 ± 0.02 63.20 ± 0.06
Mixup-GCN 56.67 ± 0.46 54.02 ± 0.51 46.09 ± 0.58 65.76 ± 0.30 52.78 ± 0.04 63.15 ± 0.08
EERM-GCN - - - 67.50 ± 0.74 51.88 ± 0.07 62.56 ± 0.02
GLIND-GCN 59.42 ± 0.33 56.84 ± 0.54 57.06 ± 1.21 67.72 ± 0.10 53.16 ± 0.08 64.18 ± 0.03
ERM-GAT 57.15 ± 0.25 55.07 ± 0.58 46.22 ± 0.82 65.67 ± 0.02 52.00 ± 0.10 61.85 ± 0.05
IRM-GAT 56.55 ± 0.18 54.53 ± 0.32 46.01 ± 0.33 67.27 ± 0.19 52.85 ± 0.15 62.40 ± 0.24
GroupDRO-GAT 56.69 ± 0.27 54.51 ± 0.49 46.00 ± 0.59 67.41 ± 0.04 52.99 ± 0.08 62.29 ± 0.03
DANN-GAT 57.23 ± 0.18 55.13 ± 0.46 46.61 ± 0.57 66.59 ± 0.38 52.88 ± 0.12 62.47 ± 0.32
Mixup-GAT 57.17 ± 0.33 55.33 ± 0.37 47.17 ± 0.84 65.58 ± 0.13 52.04 ± 0.04 61.75 ± 0.13
EERM-GAT - - - 66.80 ± 0.46 52.39 ± 0.20 62.07 ± 0.68
GLIND-GAT 60.36 ± 0.36 58.98 ± 0.43 59.71 ± 0.53 67.82 ± 0.10 54.50 ± 0.12 64.32 ± 0.12

Table 2: Testing RMSE for DPPIN on different domains (determined by protein identification methods).

Method Hazbun Krogan (LCMS) Krogan (MALDI) Lambert Tarassov Uetz Yu
ERM-Trans 1.82 ± 0.17 1.63 ± 0.04 1.57 ± 0.03 1.49 ± 0.07 1.62 ± 0.03 1.52 ± 0.04 1.51 ± 0.04
IRM-Trans 1.66 ± 0.14 1.86 ± 0.04 1.84 ± 0.04 1.52 ± 0.07 1.76 ± 0.03 1.66 ± 0.05 1.66 ± 0.04
DANN-Trans 1.69 ± 0.11 1.66 ± 0.02 1.62 ± 0.03 1.39 ± 0.05 1.63 ± 0.01 1.49 ± 0.01 1.50 ± 0.01
GroupDRO-Trans 1.65 ± 0.13 1.68 ± 0.02 1.65 ± 0.02 1.48 ± 0.03 1.72 ± 0.01 1.53 ± 0.04 1.53 ± 0.01
Mixup-Trans 1.46 ± 0.13 1.79 ± 0.05 1.76 ± 0.04 1.50 ± 0.06 1.70 ± 0.05 1.56 ± 0.06 1.59 ± 0.06
EERM-Trans 1.68 ± 0.47 1.91 ± 0.23 1.92 ± 0.09 1.47 ± 0.05 1.79 ± 0.11 1.67 ± 0.07 1.65 ± 0.08
GLIND-TRANS 1.02 ± 0.07 1.38 ± 0.07 1.33 ± 0.05 1.08 ± 0.04 1.40 ± 0.04 1.20 ± 0.04 1.20 ± 0.04

before 2014 as training data (where we hold out 25% for
validation), and the papers published after 2014 as testing
data. The task is to predict the subareas of papers, and the
performance is measured by Accuracy.

◦ DPPIN consists of multiple datasets of biological protein
interactions (Fu & He, 2022). Each dataset is comprised of
protein instances corresponding to a particular protein iden-
tification method (that can be treated as the domain). Each
protein has a time-evolving scalar representing the gene
expression value and the proteins within each domain have
certain interactions exposed by the co-expressed activities.
The interaction networks at one time, reflecting the partially
observed data geometries, can be noisy and incomplete
given the dynamical evolution of the co-expression levels.
We use the proteins of four datasets for training, one dataset
for validation and the other seven datasets for testing. We
consider the regression task for protein’s gene expression
values, and the performance is measured by RMSE.

◦ STL-10 is an image dataset where each instance is an
image. Since there are no observed structures interconnect-
ing the instances, we create the inter-instance relations via
k-nearest-neighbor (kNN) with the Euclidean distance be-
tween two instances’ input features. We consider using dif-

ferent k’s for constructing the data from different domains.
To be specific, the value of k is set as {2, 3, 4, 8, 9, 10}
which results in six domains where each domain corre-
sponds to a particular kNN graph interconnecting the fix set
of instances. We split all the image instances into training
and testing sets with the ratio 1:1. Then we use the training
instances with the structures of the first three domains as
training data (where we hold out 25% for validation), and
the testing instances with the structures of the other three
domains as testing data. In this way, the training and test-
ing data can be seen as samples with disparate underlying
geometries. The task is to predict the image labels, and the
performance is measured by Accuracy.

◦ CIFAR-10 is another image dataset. Similarly, we use
kNN to construct the inter-instance relations. Differently,
we fix k = 5 and consider cosine similarity as the distance
function. To introduce distribution shifts, we add angle
bias to the cosine similarity to construct data from differ-
ent domains. To be specific, we denote by si the distance
function used for kNN in the i-th domain, and particularly
we consider si(x1,x2) = 1 − cos(∠(x1,x2) + θi) where
∠ denotes the angle of input feature vectors x1 and x2. We
set θi ∈ {0o, 30o, 90o, 150o, 160o, 170o} , resulting in six
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domains. We adopt the same way for data splitting as STL,
resulting in training data from three domains and testing
data from the other three domains. The angle bias causes
the interconnecting structures of training and testing data to
have different proximity patterns.

Competitors. We compare with a set of learning algo-
rithms including empirical risk minimization (ERM), which
is the most commonly used supervised learning objective,
and state-of-the-art approaches for improving generaliza-
tion such as the adversarial learning approach DANN (Liu
et al., 2020), the distributionally robust optimization Group-
DRO (Sagawa et al., 2019), the data augmentation approach
Mixup (Zhang et al., 2017), and invariant risk minimization
approaches IRM (Arjovsky et al., 2019) and EERM (Wu
et al., 2022). These models are agnostic to encoder architec-
tures. For fair comparison, we use GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018) and DIFFormer (Wu
et al., 2023c) as their encoder backbones to compare with
our models GLIND-GCN, GLIND-GAT and GLIND-TRANS,
respectively. Due to space limit, we defer implementation
details and hyper-parameter searching space to Appendix C.

5.2. Comparative Results

Generalization with Observed Geometries. We first test
the models on data with observed structures where we com-
pare GLIND-GCN and GLIND-GAT with the competitors
using GCN and GAT as the encoder backbones, respec-
tively. Table 1 reports the performance on testing data of
Arxiv and Twitch. In particular, for Arxiv, we fur-
ther divide the testing data into three subsets according to
the publication years of the papers to closely check the
generalization performance on testing data with different
levels of distribution shifts. As we can see, the accuracy
produced by all methods exhibits an overall decrease as the
time gap (between training and testing data) enlarges, while
GLIND-GCN and GLIND-GAT significantly alleviate the per-
formance drop. Notably, for testing data within 2018-2020,
GLIND-GCN and GLIND-GAT achieve 23.8% and 26.6%
improvement of the accuracy over the runner-ups, respec-
tively. Furthermore, for Twitch, we separately report the
ROC-AUC on three testing subgraphs to compare the gener-
alization performance on specific cases. The results show
that GLIND-GCN and GLIND-GAT achieve overall superior
ROC-AUCs over these strong competitors, respectively.

Generalization with Partially Observed Geometries. We
next consider the case where the data geometries are par-
tially observed. This situation can be commonly encoun-
tered in practice, as the observed relational structures can
be noisy and incomplete. To accommodate the potential
interactions, we use our model GLIND-TRANS and compare
it with the competitors using DIFFormer as the encoder. Ta-
ble 2 reports the performance on testing data of DPPIN. We

found that our model GLIND-TRANS consistently achieves
the first-ranking results (the lowest RMSE) in seven testing
domains, with an averaged reduction of 21.6% on RMSE
over the runner-up. This demonstrates the practical effi-
cacy of the proposed model for handling generalization with
partially observed data geometries.

Generalization with Unobserved Geometries. The last
scenario we study involves data geometries that are unob-
served. We use the image datasets for demonstration where
the inter-instance structures are synthetically constructed
through the k-nearest-neighbor. We adopt the three model
versions for comparison, where GLIND-GCN and GLIND-
GAT purely rely on the input structures and GLIND-TRANS
estimates the potential interactions among arbitrary instance
pairs. Table 3 reports the performance on testing data of
CIFAR and STL. In contrast with the competitors, our
model yields the highest averaged accuracy on two datasets,
demonstrating the superiority of the proposed model. Com-
paring the models using different backbones, we found that
the Transformer-style architecture contributes to more stable
performance (with lower variance across different testing
sets). This is probably because the Transformer-style ar-
chitecture can capture the latent interactions that are more
insensitive to distribution shifts of structures than the GNNs
that purely rely on observed structures.

5.3. Further Discussions
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Figure 3: (a) Ablation studies for GLIND on STL. (b) Per-
formance of GLIND on Arxiv with different K’s.

Ablation Studies. To further verify the effectiveness of
GLIND, we next dissect the efficacy of the specific proposed
components in our model. We conduct ablation studies w.r.t.
model architectures and learning objectives, respectively,
and report the comparison results on STL in Fig. 5(a) (more
results are deferred to Appendix D). For the model architec-
ture, we compare with three variants: 1) w/o Res removes
the residual link (z(l)u added to each layer); 2) w/o Feat re-
moves the self-loop feature aggregation (W(l,k)

S z
(l)
u ); 3) w/o

Multi sets K = 1 that removes the multiple branches at each
layer. We found that all of these components contribute to
consistent performance improvements in the three testing
domains, which verifies the efficacy of these designs and
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Table 3: Testing Accuracy (%) for CIFAR and STL on out-of-distribution data with different domains. We use the k-nearest-
neighbor to construct the inter-instance relations in each domain. For STL (resp. CIFAR), different k’s (resp. angle bias for
computing the cosine similarity) are used for creating distinct domains.

Method CIFAR STL
150o 160o 170o k = 8 k = 9 k = 10

ERM-GCN 72.30 ± 0.22 73.16 ± 0.05 72.55 ± 0.30 72.89 ± 0.34 73.27 ± 0.40 74.18 ± 0.23
IRM-GCN 72.96 ± 0.32 73.97 ± 0.44 73.33 ± 0.08 72.96 ± 0.38 73.67 ± 0.22 74.28 ± 0.40

GroupDRO-GCN 72.73 ± 0.45 73.40 ± 0.37 72.85 ± 0.24 72.79 ± 0.39 73.31 ± 0.19 74.44 ± 0.67
DANN-GCN 72.19 ± 0.34 73.12 ± 0.19 72.34 ± 0.37 72.77 ± 0.22 73.48 ± 0.56 74.38 ± 0.73
Mixup-GCN 72.66 ± 0.51 73.49 ± 0.38 72.60 ± 0.49 73.04 ± 0.09 73.99 ± 0.19 74.68 ± 0.57
EERM-GCN 71.01 ± 0.95 72.29 ± 1.35 71.16 ± 1.36 72.14 ± 1.30 72.11 ± 1.73 72.07 ± 1.41
GLIND-GCN 79.24 ± 0.53 80.26 ± 0.60 79.39 ± 0.89 78.00 ± 0.34 78.63 ± 0.29 78.17 ± 0.29
ERM-GAT 72.92 ± 0.22 74.39 ± 0.18 73.22 ± 0.14 73.29 ± 0.36 73.38 ± 0.58 74.15 ± 0.74
IRM-GAT 72.96 ± 0.17 73.97 ± 0.38 73.33 ± 0.10 72.30 ± 1.42 73.16 ± 0.63 74.22 ± 1.24

GroupDRO-GAT 72.87 ± 0.18 74.07 ± 0.09 73.21 ± 0.11 73.38 ± 0.19 73.70± 0.12 74.61 ± 0.51
DANN-GAT 72.81 ± 0.38 74.16 ± 0.15 73.23 ± 0.45 73.45 ± 0.40 73.70 ± 0.19 74.90 ± 0.54
Mixup-GAT 72.98 ± 0.17 74.41 ± 0.19 73.65 ± 0.13 73.36 ± 0.21 74.28 ± 0.17 74.75 ± 0.01
EERM-GAT 71.03 ± 1.69 72.82 ± 1.87 71.84 ± 1.14 71.31 ± 1.01 72.65 ± 1.89 71.96 ± 1.55
GLIND-GAT 78.23 ± 0.80 79.01 ± 0.63 77.98 ± 0.88 77.91 ± 0.84 79.17 ± 0.23 78.81 ± 0.66
ERM-Trans 76.88 ± 0.11 77.51 ± 0.25 76.35 ± 0.28 76.53 ± 0.25 77.10 ± 0.65 77.90 ± 0.22
IRM-Trans 76.53 ± 0.03 77.11 ± 0.05 76.42 ± 0.31 76.95 ± 0.14 77.49 ± 0.25 78.02 ± 0.35

GroupDRO-Trans 76.94 ± 0.65 76.99 ± 0.31 76.37 ± 0.53 77.81 ± 0.59 78.01 ± 0.54 78.10 ± 0.27
DANN-Trans 76.91 ± 0.17 77.13 ± 0.37 76.61 ± 0.30 77.64 ±0.13 78.29 ± 0.54 78.19 ± 0.35
Mixup-Trans 77.49 ± 0.39 77.91 ± 0.14 77.45 ± 0.34 77.76 ± 0.30 78.32 ± 0.57 78.73 ± 0.76
EERM-Trans 79.68 ± 0.51 79.89 ± 0.32 78.82 ± 0.54 77.92 ± 0.93 78.58 ± 0.20 78.18 ± 0.38

GLIND-TRANS 80.72 ± 0.39 81.06 ± 0.32 80.24 ± 0.38 78.06 ± 0.46 79.39 ± 0.28 78.41 ± 0.57

our model architecture induced by the principled diffusion
framework. For the learning objective, we compare with
two variants: 1) w/o Reg removes the regularization term
(the KL loss in Eqn. 9); 2) w/o Mix replaces the prior distri-
bution in Eqn. 10 with the average of variational posterior
p0(d

(l)) ≈ 1/N
∑N

u=1 q(d
(l)|z(l) = z

(l)
u ). We found that

these two variants lead to some performance drops, which
verifies the effectiveness of our learning objective.

Impact of Numbers of Diffusivity Hypothesis. We pro-
ceed to study the impact of the hyper-parameter K, i.e., the
number of diffusivity hypothesis at each message passing
layer, on the model performance. Fig. 5(b) presents the
testing accuracy of GLIND-GCN on Arxiv with K ranging
from 2 to 10 (more results are deferred to Appendix D). We
found that setting K as a moderate value can bring up over-
all the optimal performance. If K is too small, the model
would have insufficient capacity for learning multi-faceted
data interactions from complex underlying generative mech-
anisms; if K is too large, the model would become overly
complicated which might impair generalization.

6. Conclusion
This paper has explored a geometric diffusion framework
for generalization with interdependent data. The model is
generalized from the diffusion process on manifolds with

stochastic diffusivity function generated from a variational
distribution, conditioned on the diffusion dynamics trajec-
tories. We further develop a re-weighting regularization
approach to guide the diffusion model to learn causal rela-
tions from inputs to outputs throughout the diffusion process
that facilitates generalization. Experiments on diverse real-
world datasets with different kinds of distribution shifts
verify the effectiveness of the proposed models.

Future Work. There can be several promising directions
for future investigation. For example, apart from the ex-
perimental scenarios and datasets considered in this paper,
the proposed methodology and general ideas can be po-
tentially applied and extended to other tasks where out-of-
distribution generalization matters, e.g., molecule represen-
tations (Yang et al., 2022c). Another problem closely related
to out-of-distribution generalization is out-of-distribution
detection (Wu et al., 2023a; Li et al., 2022), whose goal is
to enable the model to identify testing data from different
distributions than training. It also remains under-explored
how the diffusion framework explored in this paper can be
used for guiding the methodology in the context of out-of-
distribution detection with interdependent data.
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Impact Statement
This work presents an attempt to improve the generalization
for handling interdependent data. Researching the gener-
alization of machine learning models holds profound im-
plications for advancing the reliability and applicability of
artificial intelligence systems. Understanding and enhanc-
ing the generalization capabilities of models is paramount
for deploying them across diverse real-world scenarios. Im-
proved generalization not only enhances model performance
on unseen data but also addresses ethical concerns related to
bias and fairness. Furthermore, research in this domain con-
tributes to the creation of models that are transferable across
different domains, fostering broader adoption of machine
learning solutions. As the impact of AI continues to grow
across various sectors, unraveling the intricacies of gener-
alization becomes instrumental in ensuring the responsible
and equitable deployment of machine learning technologies.
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Appendix

A. Derivation and Proof
A.1. Derivation for Eqn. 7

The log-likelihood for observed data log pθ(y|x,G) can be computed by

log pθ(y|x,G) = log
∑

z(1),··· ,z(L−1)

L−1∏
l=0

pθ(z
(l+1)|z(l),G)

=

L−2∑
l=0

log
∑
z(l+1)

pθ(z
(l+1)|z(l),G) + log pθ(z

(L)|z(L−1),G)

=

L−2∑
l=0

log
∑
z(l+1)

Ep(d(l)|z(l))[pθ(z
(l+1)|z(l),d(l),G)]

+ logEp(d(L−1)|z(L−1))[pθ(z
(L)|z(L−1),d(L−1),G)],

(11)

where the marginalization over z(1), · · · , z(L−1) (which is omitted in Eqn. 5 for brevity) is through the delta predictive
distributions pθ(z(l+1)|z(l),d(l),G). Due to the intractable integration over d(l), we consider the evidence lower bound of
Eqn. 11 by introducing qϕ(d

(l)|z(l)):

L−2∑
l=0

Eqϕ(d(l)|z(l))

[
log

∑
z(l+1)

pθ(z
(l+1)|z(l),d(l),G) p(d

(l)|z(l))
qϕ(d(l)|z(l))

]

+Eqϕ(d(L−1)|z(L−1))

[
log pθ(z

(L)|z(L−1),d(L−1),G) p(d
(L−1)|z(L−1))

qϕ(d(L−1)|z(L−1))

]
=

L−2∑
l=0

Eqϕ(d(0)|z(0)),··· ,qϕ(d(L−2)|z(L−2))[log
∑
z(l+1)

pθ(z
(l+1)|z(l),d(l),G)]

+Eqϕ(d(L−1)|z(L−1))[log pθ(z
(L)|z(L−1),d(L−1),G)] +

L−1∑
l=0

Eqϕ(d(l)|z(l))

[
log

p(d(l)|z(l))
qϕ(d(l)|z(l))

]
=Eqϕ(d(0)|z(0)),··· ,qϕ(d(L−1)|z(L−1))[log pθ(z

(L)|z(0),d(0), · · · ,d(L−1),G)]

−
L−1∑
l=0

KL(qϕ(d(l)|z(l)), p(d(l)|z(l))).

(12)

This gives rise to the objective of Eqn. 7.

A.2. Proof for Theorem 3.1

Before the proof, we first introduce two fundamental rules of do-calculus (Pearl et al., 2016) which will be used as the
building blocks later. Consider a causal directed acyclic graph A with three nodes: B, D and E. We denote AB as the
intervened causal graph by cutting off all arrows coming into B, and AB as the graph by cutting off all arrows going out
from B. For any interventional distribution compatible with A, the do-calculus induces the following two fundamental rules.

i) Action/observation exchange:

P (d|do(b), do(e)) = P (d|do(b), e), if (D ⊥⊥ E|B)ABE
.

ii) Insertion/deletion of actions:

P (d|do(b), do(e)) = P (d|do(b)), if (D ⊥⊥ E|B)ABE
.
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Back to our case where we study the causal graph comprised of x, y and d. We have

pθ(y|do(x),G) =
∑
d

pθ(y|do(x),d,G)p(d|do(x))

=
∑
d

pθ(y|x,d,G)p(d|do(x))

=
∑
d

pθ(y|x,d,G)p0(d),

(13)

where the first step is given by the law of total probability, the second step is according to the first rule (since y ⊥⊥ x|d
in Ax), and the third step is due to the second rule (since we have d ⊥⊥ x in Ax). The above derivation shows that
pθ(y|do(x),G) = Ep0(d)[pθ(y|x,d,G)] where p0 is the prior distribution of the diffusivity.

Now consider the diffusion model that induces a trajectory x = z(0) → z(1) → · · · → z(L) = y. By treating {d(l)}L−1
l=0 as

a whole random variable, we can extend the result of Eqn. 13 and obtain

pθ(y|do(x),G) =
∑

d(0),··· ,d(L−1)

pθ(y|x,d(0), · · · ,d(L−1),G)p0(d(0), · · · ,d(L−1)). (14)

Notice that p0(d(0), · · · ,d(L−1)) =
∏L−1

l=0 p0(d
(l)). By inserting the delta predictive distribution pθ(z

(l+1)|z(l),d(l),G)
induced by the diffusion model, we can derive the log-likelihood:

log pθ(y|do(x),G)

= log
∑

z(1),··· ,z(L−1)

∑
d(0),··· ,d(L−1)

L−1∏
l=0

pθ(z
(l+1)|z(l),d(l),G)p0(d(l))

=

L−2∑
l=0

log
∑
z(l+1)

∑
d(l)

pθ(z
(l+1)|z(l),d(l),G)p0(d(l)) + log

∑
d(L−1)

pθ(z
(L)|z(L−1),d(L−1),G)p0(d(L−1))

=

L−2∑
l=0

log
∑
z(l+1)

∑
d(l)

pθ(z
(l+1)|z(l),d(l),G)p0(d(l)) + log

∑
d(L−1)

pθ(z
(L)|z(L−1),d(L−1),G)p0(d(L−1))

(15)

We next separately consider the derivation for the two terms in the above equation. For the first term in Eqn. 15, using
Jensen Inequality we have

L−2∑
l=0

log
∑
z(l+1)

∑
d(l)

pθ(z
(l+1)|z(l),d(l),G)p0(d(l))

=

L−2∑
l=0

log
∑
z(l+1)

∑
d(l)

pθ(z
(l+1)|z(l),d(l),G)p0(d(l))

qϕ(d
(l)|z(l))

qϕ(d(l)|z(l))

≥
L−2∑
l=0

∑
d(l)

qϕ(d
(l)|z(l)) ·

[
log

∑
z(l+1)

pθ(z
(l+1)|z(l),d(l),G) p0(d

(l))

qϕ(d(l)|z(l))

]
.

(16)

For the second term in Eqn. 15, similarly we have

log
∑

d(L−1)

pθ(z
(L)|z(L−1),d(L−1),G)p0(d(L−1))

≥
∑

d(L−1)

qϕ(d
(L−1)|z(L−1)) ·

[
log pθ(z

(L)|z(L−1),d(L−1),G) p0(d
(L−1))

qϕ(d(L−1)|z(L−1))

]
.

(17)
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By combing the results of Eqn. 16 and Eqn. 17 with Eqn. 15, we have the variational lower bound of log pθ(y|do(x),G):
L−2∑
l=0

Eqϕ(d(l)|z(l))

[
log

∑
z(l+1)

pθ(z
(l+1)|z(l),d(l),G) p0(d

(l))

qϕ(d(l)|z(l))

]

+Eqϕ(d(L−1)|z(L−1))

[
log pθ(z

(L)|z(L−1),d(L−1),G) p0(d
(L−1))

qϕ(d(L−1)|z(L−1))

]
,

(18)

where the marginalization over z(1), · · · , z(L−1) (which is omitted in Eqn. 8 for brevity) is through the delta predictive
distribution pθ(z

(l+1)|z(l),d(l),G).

Furthermore, in Eqn. 16 the equality holds if and only if qϕ(d(l)|z(l)) = p(d(l)|z(l+1), z(l),G) · p0(d
(l))

p(d(l)|z(l))
in which case

the function inside the expectation stays as a constant w.r.t. d(l). Similarly, for Eqn. 17, the equality holds if and only if
qϕ(d

(L−1)|z(L−1)) = p(d(L−1)|z(L), z(L−1),G) · p0(d
(L−1))

p(d(L−1)|z(L−1))
.

A.3. Derivation for Eqn. 9

The objective Eqn. 9 can be derived in a similar way as Eqn. 12 on the basis of Eqn. 18. In specific, we leverage the
model-free prior p0(d(l)) to replace p(d(l)|z(l)) in the first line of Eqn. 12:

L−2∑
l=0

Eqϕ(d(l)|z(l))

[
log

∑
z(l+1)

pθ(z
(l+1)|z(l),d(l),G) p0(d

(l))

qϕ(d(l)|z(l))

]

+Eqϕ(d(L−1)|z(L−1))

[
log pθ(z

(L)|z(L−1),d(L−1),G) p0(d
(L−1))

qϕ(d(L−1)|z(L−1))

]
=Eqϕ(d(0)|z(0)),··· ,qϕ(d(L−1)|z(L−1))[log pθ(z

(L)|z(0),d(0), · · · ,d(L−1),G)]

−
L−1∑
l=0

KL(qϕ(d(l)|z(l)), p0(d(l))).

(19)

B. Dataset Introduction
Twitch (Rozemberczki & Sarkar, 2021) is a social network dataset which comprises multiple disconnected subgraphs.
Each subgraph is a social network from a particular region and contains thousands of node instances that are interconnected.
Each node is a use on Twitch and the node label is the gender of the user. Edges denote the friendship among users. Since
in this dataset, nodes from different subgraphs can be seen as samples from distinct distributions (Table 4 shows different
statistics of these subgraphs), we split the training and testing data according to subgraphs. Specifically, we use the nodes
from subgraphs DE, PT and RU as training data, and the nodes from subgraphs ES, FR and EN as testing data.

Arxiv is a citation network dataset provided by (Hu et al., 2020a). It records the citation relationship between papers and
the goal is to predict the paper’s subarea based on the word embeddings of paper keywords as the node features. The dataset
also provides the time information about when the paper is published, and we use the publication year to split the training
and testing sets. Since the research subareas and citation relationships of papers are sensitive to time, there natural exist
distribution shifts between papers published in different time windows. In our experiments, we use papers published before
2014 for training, and papers published after 2014 for testing. We further divide the testing data into three subsets comprised
of the papers published within 2014-2016, 2016-2018 and 2018-2020, respectively. As verification for the distribution shifts,
Table 4 visualizes the different distributions of training and testing instances.

CIFAR-10 and STL-10 are two image datasets where each image is an instance and there are no observed structures
interconnecting the instances. Following the recent work (Wu et al., 2023c), we use all the 13000 images, each of which
belongs to one of ten classes, for STL-10, and choose 1500 images from each of 10 classes for CIFAR-10. The input
features of image instances are pre-computed by using the self-supervised approach SimCLR (Chen et al., 2020) (that does
not use labels for training) and training a ResNet-18 that extracts the feature map as the input features of each instance. We
use the k-nearest-neighbor to construct the inter-instance relational structures for these datasets, and consider different k’s
and distance functions to introduce the distribution shifts. More details about how we choose the values of k and distance
functions are presented in Sec. 5.1.
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Table 4: Statistics for different subgraphs of Twitch.

Datasets DE PT RU ES FR EN

# Instances 9498 1912 4385 4648 6549 7126
Density 0.0033 0.0171 0.0038 0.0054 0.0052 0.0013

Max Node Degree 3475 455 575 809 1517 465
Mean Node Degree 16 16 8 12 17 4

DPPIN (Fu & He, 2022) is comprised of 12 individual dynamic network datasets at different scales, and each network
records the protein-protein interactions. Each dynamic network is obtained by one protein identification method, which
can be seen as one domain, and consists of 36 snapshots. Each protein has a sequence of continuous scalar features
with 36 time stamps, which records the evolution of gene expression values within metabolic cycles of yeast cells. The
interconnecting structures among protein instances are determined by co-expressed protein pairs at one time, and can change
as the co-expression activities evolve with time. We consider the regression task for the gene expression value of each
protein instance within one snapshot, and ignore the temporal dependence between different snapshots. In specific, the
model input contains the proteins’ gene expression value in the previous ten snapshot (as input features) and the interaction
structures at the current snapshot, based on which the prediction target is the gene expression value of proteins at the current
snapshot. As observed by (Fu & He, 2022), the protein instances from different datasets have distinct topological patterns
(e.g., the distributions of cliques), so we split the training and testing data based on different datasets.

(a) 2014-2016 test instances (b) 2016-2018 test instances (c) 2018-2020 test instances

Figure 4: T-SNE visualization of input features for training instances (blue) and testing instances (red) on Arxiv.

C. Implementation Details
Our implementation is based on PyTorch 1.9.0 and PyTorch Geometric 2.0.3. All of our experiments are run on a Tesla
V100 with 16 GB memory. We adopt Adam with weight decay for training. We set a fixed training budget with 1000 epochs
for DPPIN and 500 epochs for other datasets. The testing performance achieved by the epoch where the model gives the
best performance on validation data is reported.

The detailed architecture of GLIND is described as follows. The model architecture consists of the following modules in
sequential order:

• A fully-connected layer with hidden size D × d (transforming D-dim input raw features into d-dim embeddings).

• L-layer message passing network with hidden size d (each layer contains K branches that have independent parameteri-
zation), based on the three instantiations in Sec. 4.

• A fully-connected layer with hidden size d× C (mapping d-dim embeddings to C classes).

In each layer, we use ReLU activation, dropout and the residual link where the weight α is set as 0.5 across all datasets.

The probability estimation for each branch is modeled by a feed-forward layer with hidden size d ×K in each layer as
introduced in Sec. 4. The sampling process for the selected branch is approximated by Gumbel Softmax. For computing the
prior distribution in the objective, we introduce a pseudo dataset of size T as described in Eqn. 10. We set T = int(0.01∗N),
where N denotes the number of instances in the dataset, for all the datasets.

For other hyper-parameters, we search them for each dataset with grid search on the validation set. The searching spaces for
all the hyper-parameters are as follows.

16



Learning Divergence Fields for Shift-Robust Graph Representations

• Number of message passing layers L: [2, 3, 4, 5].

• Hidden dimension d: [32, 64, 128].

• Dropout ratio: [0.0, 0.1, 0.2, 0.5].

• Learning rate: [0.001, 0.005, 0.01, 0.02].

• Weight decay: [0, 5e-5, 5e-4, 1e-3].

• Number of diffusivity hypothesis K: [3, 4, 5, 10].

• Gumbel Softmax temperature τ : [1, 2, 3, 5].

D. Additional Experiment Results
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Figure 5: (a) Ablation studies for GLIND on CIFAR. (b) Performance of GLIND on three testing sets of Twitch with
different numbers of diffusivity K’s.
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