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Abstract

3D reconstruction from in-the-wild images remains a challenging task due to incon-
sistent lighting conditions and transient distractors. Existing methods typically rely
on heuristic strategies to handle the low-quality training data, which often struggle
to produce stable and consistent reconstructions, frequently resulting in visual
artifacts. In this work, we propose AsymGS, a novel framework that leverages
the stochastic nature of these artifacts: they tend to vary across different training
runs due to minor randomness. Specifically, our method trains two 3D Gaussian
Splatting (3DGS) models in parallel, enforcing a consistency constraint that en-
courages convergence on reliable scene geometry while suppressing inconsistent
artifacts. To prevent the two models from collapsing into similar failure modes due
to confirmation bias, we introduce a divergent masking strategy that applies two
complementary masks: a multi-cue adaptive mask and a self-supervised soft mask,
which leads to an asymmetric training process of the two models, reducing shared
error modes. In addition, to improve the efficiency of model training, we introduce
a lightweight variant called Dynamic EMA Proxy, which replaces one of the two
models with a dynamically updated Exponential Moving Average (EMA) proxy,
and employs an alternating masking strategy to preserve divergence. Extensive
experiments on challenging real-world datasets demonstrate that our method con-
sistently outperforms existing approaches while achieving high efficiency. See the
project website at https://steveli88.github.io/AsymGS.

1 Introduction

3D scene reconstruction from multiple views is a fundamental problem in computer vision. Recent
advances such as Neural Radiance Fields (NeRF) [15] and 3D Gaussian Splatting (3DGS) [8] have
achieved impressive rendering quality by learning volumetric or point-based scene representations
from posed images. However, these methods typically assume that training images exhibit consistent
illumination and minimal occlusion, which are rarely satisfied in real-world settings.

In-the-wild images are often captured under varying lighting conditions and contain transient dis-
tractors such as pedestrians or vehicles; these factors introduce substantial noise into the supervision
signal, leading to degraded reconstruction quality and visual artifacts. While several recent works
have attempted to address these challenges [14, 19, 18, 26, 10, 20, 2, 13], they largely rely on heuristic
strategies to suppress the effects of corrupted supervision from low-quality training data, such as
per-image appearance embeddings that are only weakly or indirectly supervised through photometric
losses [14, 26], or hand-crafted rules to filter outlier training signals [19]. As a result, such approaches
often lack stability and generalizability, which leads to artifact-prone reconstructions.

To bridge this gap, we propose a new framework, called AsymGS, which is motivated by a key
empirical observation: artifacts arising from low-quality in-the-wild training data are typically
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Figure 1: Left: The key insight of this work is that artifacts arising from low-quality in-the-wild
inputs are typically stochastic across different runs of the same model (Baseline: Run 1 vs. Run 2).
This motivates the design of the Asymmetric Dual 3DGS framework, which enhances true scene
structure while suppressing errors through cross-model consistency (w/ consistency). Right: Our
method compares favorably against the state-of-the-art approaches in terms of reconstruction quality
while maintaining high training efficiency. Results are on the NeRF On-the-go dataset [18].

stochastic. In other words, the artifacts vary randomly across different runs of the same model with
only minor training perturbations, such as data order shuffling (see Figure 1-Left). This suggests that
enforcing consistency between independently trained 3DGS can help suppress unreliable or spurious
signals in the in-the-wild training images. To this end, we introduce a dual-model architecture where
two 3DGS models are trained concurrently with a consistency constraint, following the intuition
that true scene structure should be consistently reconstructed across different model runs, while the
artifacts induced by low-quality data tend to diverge.

Nevertheless, naively training two models in parallel can lead to confirmation bias, where both models
reinforce the same errors. To encourage more divergent error modes and mitigate confirmation bias,
we introduce a divergent masking strategy: applying distinct masks to each model that emphasize
complementary factors for filtering out transient or distracting content. One mask is learned in a
self-supervised manner based on feature-level similarity between predicted and ground truth images,
while the other, called multi-cue adaptive mask, uses stereo-based correspondence to identify likely
distracting regions. These complementary filtering schemes encourage the two 3DGS models to focus
on different static aspects of the scene. Consequently, this asymmetric strategy leads to divergent and
complementary optimization paths and reduces shared error modes. The final reconstruction is then
guided by the agreement between the two models, which reliably captures consistent and accurate
scene structures while suppressing artifacts.

While the dual-model framework effectively improves the reconstruction quality, it introduces notable
computational overhead in the training process. To mitigate this, we introduce a lightweight variant,
called Dynamic EMA Proxy, which replaces the second 3DGS model with a dynamic, training-free
Exponential Moving Average (EMA) copy of the primary model. Unlike standard EMA [4], our
Dynamic EMA proxy is specifically designed to track the evolving nature of 3DGS representations,
accounting for Gaussian densification and pruning. Since only one model is actively trained in
this setup, which no longer allows independent masks for two models, we additionally design an
alternating masking strategy that alternates between the two masks, maintaining divergent training
signals and mitigating confirmation bias.

Our contributions are as follows: 1) We propose a AsymGS framework for in-the-wild 3D scene
reconstruction. By enforcing consistency constraints between two 3DGS models with complementary
masks, our framework significantly improves the robustness and accuracy of scene representations.
2) We develop a divergent masking strategy by introducing different masking mechanisms for each
3DGS model, which handle various types of distractors and promote divergent optimization paths to
mitigate confirmation bias. 3) To address the computational overhead of the dual-model framework,
we introduce a Dynamic EMA Proxy, coupled with an alternating masking strategy, which effectively
improves training efficiency. 4) We conduct extensive evaluations across a diverse set of in-the-wild
3D scene reconstruction datasets, demonstrating that our method consistently achieves state-of-the-art
performance and efficiency, highlighting its robustness and generality.

2 Related work

3D Scene Reconstruction. Neural Radiance Fields (NeRF) [15] revolutionizes photorealistic novel
view synthesis by modeling scenes as continuous functions that map 3D coordinates to color and
density. More recently, 3D Gaussian Splatting (3DGS) [8, 25] has gained attention as a real-time
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Figure 2: Overview of the AsymGS framework. Two 3DGS models G1 and G2 are concurrently
optimized with the reconstruction loss LMh

r1 and LMs
r2 (Eq. 4), along with the mutual consistency

loss Lm1 and Lm2 (Eq. 6). In addition, we apply a mask loss (Eq. 7) for learning soft mask in a
self-supervised manner. For improved efficiency, we also propose an EMA version of our framework
by replacing G2 with a dynamic EMA proxy. Both the mask loss and the EMA proxy have been
omitted here for clarity. Note that the color transform in this figure is for illustration purpose, which
undergoes a rasterization process in practice as introduced in Section 3.1.

alternative, representing scenes with optimizable Gaussian primitives. While effective, both methods
assume static scenes to enforce multi-view consistency, an assumption often violated in in-the-wild
settings due to varying illumination and transient objects, limiting their practical applicability.

3D Scene Reconstruction in the Wild. NeRF-W [14] first addressed 3D scene reconstruction in the
wild with a modular architecture combining a learnable appearance embedding and an uncertainty
map to suppress distractors—an approach that has since become standard. NeRF On-the-go [18]
builds on this by using DINOv2 feature [16] residuals to construct uncertainty maps. Robust-
NeRF [19] tackles noisy training images through a robust loss function. GS-W [26], Wild-GS
[24] and WildGaussian [11] extend learnable embeddings with both global and per-Gaussian local
embeddings for fine-grained appearance modeling. SpotlessSplats [20] introduces a learnable mask
based on thresholded and dilated residuals, while SWAG [2] adds a view-dependent opacity term
per Gaussian to identify transient distractors. HybridGS [13] employs a dual-model setup (3DGS
for static content and 2DGS [5] for dynamic distractors) to learn an accurate uncertainty map iter-
atively. Despite their contributions, these methods largely rely on heuristic strategies to suppress
corrupted supervision signals from low-quality training data. For instance, the per-image appearance
embeddings are only weakly or indirectly supervised through photometric losses [14, 26], and outlier
filtering is often governed by hand-crafted rules [19]. As a result, these approaches frequently suffer
from instability and produce reconstructions with noticeable artifacts. In this work, we propose a
principled framework, AsymGS, to reduce such artifacts and improve reconstruction stability, based
on the key observation that many artifacts exhibit stochastic behavior and are not consistent across
different training runs. Our method explicitly exploits this property to enhance robustness and achieve
high-fidelity reconstructions.

3 Method

An overview of the proposed algorithm is shown in Figure 2. Please refer to the caption for details.

3.1 Preliminaries

3D Gaussian Splatting (3DGS) [8] represents a 3D scene as a set of N 3D anisotropic Gaussians
G = {Gi}Ni=1. Each Gaussian Gi is parameterized by a centroid Xi, a covariance matrix Σi, an opacity
αi, and a set of spherical harmonic (SH) coefficients θi for view-dependent color representation. For
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rendering with a viewing camera Vj , we project both centroids of Gaussians and the covariance
matrix onto the 2D image plane as xij and Σij , respectively. The projected opacity αij , which is a
function of 2D image plane coordinate y, can then be defined as below:

αij(y) = αi · exp
[
−1

2
(y − xij)

TΣij
−1(y − xij)

]
(1)

The color C of a pixel located at y for camera Vj is computed using the α-blending with the
following formula:

C(y,Vj ,G) =
N∑
i=1

cijαij(y)
i−1∏
k=1

(1− αkj(y)) , cij = SH (rij , θi) (2)

where rij is the ray direction from the j-th camera center to the i-th Gaussian centroid, and cij is
the corresponding color of the observed Gaussian primitive obtained using spherical harmonic (SH)
function. Performing Eq. 2 for every pixel on the image plane constitutes the rasterization process,
which results in the rendered image ÎGj = Rasterize(G,Vj).

View-dependent appearance modeling. To address appearance variations in in-the-wild data, we
follow the approach of WildGaussian [11] to adaptively adjust the observed color of the Gaussian
primitives to account for the view-dependent factors, such as the varying illumination across images
captured at different times of day.

This adjustment is conditioned on both the per-Gaussian appearance embedding pi and the per-view
appearance embedding qj . Specifically, pi, qj , and cij are sent into an MLP f to predict affine
transformation parameters:

(a, b) = f(pi,qj , cij), c̃ij = a · cij + b, (3)

where a and b are three-dimensional outputs corresponding to RGB channels. The transformed
color c̃ij is then used to replace cij in the blending process described by Eq. 2, and the resulting
view-dependent image is denoted as ĨGj = Rasterizedep(G,Vj). During training, pi, qj , f , and
3DGS parameters are jointly optimized.

3.2 Dual 3DGS

A central insight of this work is that artifacts arising from in-the-wild training data are typically
stochastic in nature. When two 3DGS models are trained on the same scene but with different view
sampling orders, their static scene representations remain consistent, whereas their renderings could
diverge in regions affected by outliers. An example is shown in Figure 1-Left.

Motivated by this observation, we introduce a framework with two 3DGS, where each model is trained
with a different sampling order, and a consistency constraint is enforced between their renderings.
Specifically, we maintain two sets of Gaussians, G1 and G2, to represent the same scene. In each
training iteration, we independently sample two views from separate training view lists, yielding two
viewing cameras V1 and V2, along with their corresponding ground-truth images, I1 and I2.

Similar to 3DGS [8], we train G1 and G2 with reconstruction objectives defined as:

LM
r1 = Lrecon(Ĩ

G1
1 , I1,M), LM

r2 = Lrecon(Ĩ
G2
2 , I2,M), (4)

Lrecon(Ĩ, I,M) = λ ·DSSIM(M⊙ Ĩ,M⊙ I) + (1− λ) · ∥M⊙ Ĩ−M⊙ I∥1, (5)

where ĨGn
j = Rasterizedep(Gn,Vj) is the rendered image for the n-th 3DGS model from viewpoint

Vj using Eq. 2 and 3. M is a spatial mask to filter out transient distracting regions, such as pedestrians
or moving vehicles, which will be detailed in Section 3.3. ⊙ denotes element-wise multiplication.
DSSIM represents the structural dissimilarity index measure [23]. λ is a hyperparameter to balance
the DSSIM and the L1 terms.

Mutual consistency. Since G1 and G2 represent the same underlying scene, their renderings from
the same camera viewpoint should stay close. This motivates us to define a mutual consistency
regularization as:

Lm1 = ∥ÎG2
1 − ÎG1

1 ∥1, Lm2 = ∥ÎG1
2 − ÎG2

2 ∥1 (6)
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where ÎGn
j = Rasterize(Gn,Vj) is the view-dependent rendering obtained via Eq. 2. We emphasize

that this consistency constraint is performed over ÎGn
j instead of ĨGn

j , because ÎGn
j captures the

intrinsic appearance of the 3D scene, whereas ĨGn
j is affected by dynamic lighting. This strategy

provides a principled way to preserve static structures while suppressing spurious signals, which
enables more robust and reliable reconstruction.

Note that we only use the L1 loss for consistency regularization in Eq. 6 as incorporating the
DSSIM loss adversely affects performance in our experiments. Furthermore, we empirically find that
incorporating consistency regularization too early in training can hinder convergence, as both models
may still be dominated by noise and unstable geometry. To address this, we adopt a progressive
strategy: we first allow the two models to be trained independently for a number of warm-up iterations,
during which they develop their own estimates of the static scene. Once their reconstructions become
sufficiently stable, we introduce the consistency loss to encourage convergence on shared, reliable
structures.

3.3 Asymmetric Dual 3DGS

While the above framework offers improved consistency through mutual supervision, its symmetric
design, where both 3DGS models are trained in the same manner using the reconstruction loss in
Eq. 5, poses a risk of confirmation bias: both models may converge toward the same reconstruction
errors due to their similar optimization signals.

To address this issue, we propose an Asymmetric Dual 3DGS variant, where each model is trained
with a distinct masking strategy that emphasizes complementary criteria for filtering out transient
or distracting content. This encourages divergent error patterns, enhances robustness, and mitigates
confirmation bias. Specifically, we use a Multi-Cue Adaptive Mask and a Self-Supervised Soft Mask.

Multi-Cue Adaptive Mask (Mh). As illustrated in Figure 3, Mh is a hard binary mask (1 indicates
static regions and 0 indicates distractors) that identifies transient and distracting regions by integrating
multiple cues, including semantic segmentation, stereo correspondence, pixel-level residuals, and
feature-level residuals.

We begin by applying the Segment Anything (SAM) model [9, 12] to partition each image into
semantically coherent regions. To detect static content, we perform multi-view stereo matching across
the training images with COLMAP [21]. Semantic regions are considered static if they contain a
sufficient number of valid correspondences (we empirically choose a threshold of 3 matches). Among
the remaining regions, we identify transient distractors by analyzing reconstruction residuals. For
each region, we compute pixel-level residuals, i.e., the L1 error between the rendered and ground-
truth images, and feature-level residuals, i.e., the cosine distance between DINOv2-encoded feature
maps [16] of the rendered and ground-truth images. Regions with above-average residuals in both
metrics are classified as distractors and masked out during training. This multi-cue approach offers
higher robustness than prior methods that rely on single cues [19, 18, 14, 17], which generalizes more
effectively across diverse in-the-wild scenes. See Algorithm 1 in the supplementary material for full
details of the Multi-Cue Adaptive Mask.

Self-Supervised Soft Mask (Ms). To complement the rule-based hard mask Mh, we introduce
a learnable soft mask Ms, whose values range between 0 and 1. Unlike the static Mh, this soft
mask is optimized jointly with the model and adapts throughout training. The objective for Ms is
derived from the cosine similarity between DINOv2 feature maps of the ground-truth image F and
the rendered image F̃:

Lmask = ∥Ms − finterp(CosineSimilarity(F, F̃))∥1, (7)

where finterp denotes spatial interpolation to match the training image resolution. This formulation is
self-supervised, requiring no ground-truth masks. We initialize Ms as an all-one tensor, allowing the
model to gradually refine the mask as training progresses (Figure 3).

As shown in Figure 3, the hard mask Mh is more definitive with clearer boundaries but can be over-
confident, potentially missing certain transient objects. In contrast, the soft mask Ms is often more
sensitive to subtle distractors and better captures ambiguous regions, thus providing complementary
information to Mh.
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Input Mh Ms (Early) Ms (Final)

Figure 3: Comparisons of hard and soft masks. Distractors are highlighted in red boxes in the input.
The right four columns show the evolving of the self-supervised soft mask across different epochs.

By combining the loss terms in Eq. 5, 6, 7, the overall objective for our AsymGS can be written as:

L = LMh
r1 + LMs

r2 + λm(Lm1 + Lm2) + λmaskLmask, (8)

where λm and λmask are hyperparameters for balancing loss terms. Since Ms dynamically evolves
during training and intrinsically differs from the fixed Mh, training one model with LMh

r1 and the other
with LMs

r2 in our AsymGS framework introduces complementary inductive biases. This asymmetry
promotes diverse learning dynamics, making it less likely for the two models to converge on the same
reconstruction error, thereby reducing confirmation bias and enhancing overall robustness.

3.4 Dynamic EMA proxy

While the AsymGS framework significantly improves robustness and reconstruction quality, it
requires simultaneous training of two 3DGS models, which introduces considerable computational
overhead and undermines the fast training advantage of 3DGS. To address this issue, we propose a
more efficient alternative by replacing one of the two models with a dynamic EMA proxy. Moreover,
an alternating masking strategy is introduced to counteract confirmation bias. This design retains the
benefits of dual-model regularization while significantly reducing computation cost.

Let G1 denote the set of Gaussians actively optimized during training, and GEMA its EMA counterpart,
updated at each training step by:

Gt
EMA = β ·Gt−1

EMA + (1− β) ·Gt
1, G0

EMA = G0
1, (9)

where t and t− 1 denote the current and previous training iterations, respectively. Here, we slightly
abuse set notation for simplicity: the weighted summation between G1 and GEMA is performed
element-wise over corresponding Gaussian attributes, such as the centroids, opacities, and SH
coefficients. We then rewrite the consistency regularization in Eq. 6 with the EMA proxy as follows:

Lme = ∥ÎGEMA
1 − ÎG1

1 ∥1, (10)

where ÎGEMA
1 = Rasterize(GEMA,V1) is the rendering of the EMA Gaussians from view V1. Since

only one 3DGS model requires gradient updates, and the EMA update is a simple weighted average,
this approach greatly improves training efficiency while preserving the benefits of dual-model
consistency.

Dynamic update. Standard EMA is primarily designed for neural networks, where the number of
parameters is typically fixed throughout training [22, 4]. However, applying it to 3DGS presents
unique challenges, as the number of Gaussians dynamically changes during training due to operations
such as cloning, splitting, and pruning [8].

To support this dynamic data structure, we develop a dynamic EMA mechanism by introducing
the following rules: 1) Cloning: When a Gaussian is cloned, its EMA attributes are also cloned.
2) Pruning: When a Gaussian is pruned, its EMA counterpart is removed as well. 3) Splitting:
When a Gaussian splits into two, attributes that undergo discontinuous changes, i.e., the centroids
and variances, are reinitialized in the EMA according to the values of the split Gaussians. The
remaining attributes (e.g., opacities and SH coefficients) are directly inherited from the original EMA
representation.

Alternating masking strategy. Since only one model is trainable in our EMA framework, the
original asymmetric training strategy used in Eq. 8 (i.e., Mh and Ms) is not directly applicable.

6



Table 1: Quantitative results on the NeRF On-the-go dataset [18]. Efficiency is reported in terms
of average training hours per scene. The best and second-best results are highlighted in bold and
underline, respectively.

Scene High Occlusion Medium Occlusion Low Occlusion

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Hrs.

RobustNeRF [19] 20.60 0.602 0.379 21.72 0.741 0.248 16.60 0.407 0.480 -
NeRF On-the-go [18] 22.37 0.753 0.212 22.50 0.780 0.205 20.13 0.627 0.287 43
3DGS [8] 19.03 0.649 0.340 19.19 0.709 0.220 19.68 0.649 0.199 0.35
Mip-Splatting [25] 19.25 0.664 0.333 19.73 0.684 0.279 20.03 0.661 0.195 0.16
GS-W [26] 18.52 0.645 0.335 21.04 0.737 0.208 19.75 0.660 0.287 0.55
WildGaussian [11] 23.03 0.771 0.172 22.80 0.811 0.092 20.62 0.658 0.235 0.50
SLS-mlp [20] 21.92 0.710 0.222 22.79 0.817 0.162 20.02 0.596 0.276 -
HybridGS [13] 23.05 0.768 0.204 23.51 0.830 0.160 21.42 0.684 0.268 0.18

Ours (GS-GS) 24.34 0.825 0.150 24.56 0.872 0.090 21.91 0.728 0.189 0.28
Ours (EMA-GS) 24.12 0.818 0.154 24.32 0.864 0.090 21.77 0.722 0.162 0.18

Mip-Splatting [25] HybridGS [13] Our (EMA-GS) Ours (GS-GS) Ground Truth
Figure 4: Qualitative results on the NeRF On-the-go [18] (top) and the RobustNeRF [19] (bottom)
datasets.

Instead, we propose an alternating masking strategy by switching between the hard mask Mh and
the soft mask Ms for training G1, which retains the complementary advantages from both decisive,
rule-based filtering and adaptive, learned filtering. The final loss for our dynamic EMA framework
can be written as:

L = LMh/s

r1 + λmLme + λmaskLmask, (11)

where Mh/s indicates alternating between masks. This strategy essentially injects randomness into
the EMA update process, promoting diversity in optimization and reducing overfitting to erroneous
supervision signals. Note that we also explored other forms of randomness, including randomly
mixing up EMA renderings with ground truth and applying random dropout of Gaussian primitives.
Nevertheless, we empirically find that alternating masking remains the most effective approach.

Discussion. Our approach is related to prior works that also leverage EMA, such as [22] and
[4], which apply EMA to neural networks for tasks like semi-supervised or unsupervised image
classification. However, our method diverges in key aspects: unlike these methods that operate in the
context of neural networks, we apply EMA to 3DGS, a dynamic representation where the number of
Gaussians evolves throughout training. This necessitates our proposed dynamic EMA mechanism,
which adapts EMA updates to structural changes in the learned scene representation. Additionally,
we introduce an alternating masking strategy to preserve the benefits of asymmetric training even
with a single learnable model. These innovations mark significant departures from conventional EMA
usage and highlight the contributions of this work.

4 Experiments

We evaluate our method on three in-the-wild datasets: the NeRF On-the-go dataset [18], the Robust-
NeRF dataset [19], and the PhotoTourism dataset [6]. NeRF On-the-go and RobustNeRF mainly
suffer from transient distractors. PhotoTourism contains both distractors and dynamic lighting. We
denote our full dual-model approach as GS-GS, and the efficient variant with the EMA proxy as
EMA-GS. Implementation details can be found in Section E of the supplementary material.
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Table 2: Quantitative results on the RobustNeRF dataset [19]. Efficiency is reported in terms of
average training hours per scene. The best and second-best results are highlighted in bold and
underline, respectively.

Scene Statue Android Yoda Crab

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Hrs.

RobustNeRF [19] 20.60 0.760 0.150 23.28 0.750 0.130 29.78 0.820 0.150 - - - -
NeRF On-the-go [18] 21.58 0.770 0.240 23.50 0.750 0.210 29.96 0.830 0.240 - - - -
3DGS [8] 21.02 0.810 0.160 23.11 0.810 0.130 26.33 0.910 0.140 29.74 - - -
Mip-Splatting [25] 22.08 0.860 0.135 23.45 0.801 0.106 27.96 0.933 0.136 29.18 0.929 0.129 0.14
GS-W [25] 21.99 0.862 0.102 24.23 0.824 0.090 32.74 0.957 0.084 33.22 0.952 0.088 0.37
WildGaussian [11] 23.25 0.886 0.105 24.57 0.827 0.085 32.84 0.956 0.091 32.81 0.952 0.092 0.82
SLS-mlp [20] 22.54 0.840 0.130 25.05 0.850 0.090 33.66 0.960 0.100 34.43 - - -
HybridGS [13] 22.93 0.870 0.100 25.15 0.850 0.070 35.32 0.960 0.070 35.17 0.960 0.080 -

Ours (GS-GS) 23.47 0.894 0.097 25.61 0.857 0.071 37.18 0.969 0.074 36.18 0.964 0.078 0.31
Ours (EMA-GS) 23.49 0.890 0.096 25.47 0.849 0.068 36.50 0.967 0.077 35.60 0.961 0.080 0.21

Mip-Splatting [25] WildGaussian [11] Our (EMA-GS) Ours (GS-GS) Ground Truth

Figure 5: Qualitative results on the PhotoTourism dataset [6].

4.1 Comparison with SOTA

As shown in Tables 1-3, the proposed AsymGS framework, in both the GS-GS and EMA-GS
setups, consistently outperforms all baselines by a significant margin across all evaluation datasets,
highlighting the robustness and generality of our approach. Visual comparisons are provided in
Figure 4.

In terms of training efficiency, our GS-GS model trains in an average of 30 minutes per scene on
the NeRF On-the-go and RobustNeRF datasets, while the EMA proxy further reduces training time
by one-third. For the PhotoTourism dataset, which features high-resolution imagery and dynamic
lighting, EMA-GS cuts training time from 7.2 hours to 2.9 hours compared to the previous SOTA [11]
while achieving better reconstruction quality.

4.2 Ablation study

Dual 3DGS framework. As shown in Table 4, the dual 3DGS framework, whether implemented
directly or via an EMA proxy, consistently outperforms the single-model baseline across three datasets
(L1 vs. L5 & L12 in Table 4). Importantly, the mutual consistency loss is a crucial component.
Removing it reduces the framework to a simple ensemble, which is shown to be ineffective, leading
to an average drop of 0.5 dB in PSNR and consistent degradation in SSIM and LPIPS (L5 vs. L9,
L12 vs. L16).

Additionally, the GS-GS setup achieves better performance than its EMA proxy counterpart (L5 vs.
L12). We attribute this to two main factors: first, the GS-GS setup enables both models to be actively
updated, effectively doubling the training iterations; second, the EMA proxy introduces confirmation
bias due to its model accumulation nature, which limits its ability to correct erroneous predictions.

Distractor modeling. The results in Table 4 further show that applying masks significantly improves
reconstruction performance especially when distractors occupy a large portion of the input image.
(L5 vs. L6, L12 vs. L13).

Either Mh or Ms independently improves performance over the base model (for Mh, L2 vs. L3,
L6 vs. L7, L13 vs. L14; for Ms, L2 vs. L4, L6 vs. L8, L13 vs. L15), indicating that both masks
are effective, although they have different characteristics. This observation is further supported by
the visual results in Figure 3, where the hard-selected mask performs well in simpler scenes with
clearly defined regions (Figure 3-Top), while the self-supervised mask excels in more complex scenes
containing multiple or ambiguous distractors (Figure 3-Bottom). Moreover, combining both masks
leads to additional gains, confirming their complementary roles (L5 vs. L7 & L8, L12 vs. L14 &
L15).
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Table 3: Quantitative results on the PhotoTourism dataset [6]. Efficiency is reported in terms of
average training hours per scene. The best and second-best results are highlighted in bold and
underline, respectively. We did not compare with HybridGS [13] on PhotoTourism, as it does not
consider varying illumination, and cannot be customized or retrained due the absence of training
code.

Scene Brandenburg Gate Sacre Coeur Trevi Fountain

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Hrs.

NeRF [15] 18.90 0.882 0.138 15.60 0.846 0.163 16.14 0.696 0.282 -
3DGS [8] 19.37 0.880 0.141 17.44 0.835 0.204 17.58 0.709 0.266 2.2
Mip-Splatting [25] 20.01 0.877 0.166 17.54 0.831 0.203 17.36 0.684 0.319 2.3
NeRF-W [14] 24.17 0.891 0.152 19.20 0.803 0.192 18.97 0.698 0.265 164
Ha-NeRF [1] 24.04 0.887 0.139 20.02 0.801 0.171 20.18 0.691 0.223 452
K-Planes [3] 25.49 0.879 0.224 20.61 0.774 0.265 22.67 0.714 0.317 0.6
RefinedFields [7] 26.64 0.886 - 22.26 0.817 - 23.42 0.737 - 150
GS-W [26] 23.51 0.897 0.166 19.39 0.825 0.211 20.06 0.723 0.274 1.2
SWAG [2] 26.33 0.929 0.139 21.16 0.860 0.185 23.10 0.815 0.208 0.8
WildGaussian [11] 27.77 0.927 0.133 22.56 0.859 0.177 23.63 0.766 0.228 7.2

Ours (GS-GS) 28.56 0.938 0.109 23.78 0.887 0.139 24.52 0.790 0.202 5.3
Ours (EMA-GS) 28.50 0.937 0.115 23.37 0.882 0.150 23.85 0.775 0.242 2.9

Table 4: Effectiveness of different modules. The first block presents results from a single base model
using different mask strategies. The second and third blocks evaluate the EMA-GS and GS-GS setups,
respectively. “w/ Mh/s” indicates alternating between Mh and Ms at each training iteration. “w/o
M” denotes that no mask is applied. The results are averaged across scenes within each dataset.

Dataset PhotoTourism NeRF On-the-go RobustNeRF

Line Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
1 Single w/ Mh/s 24.76 0.864 0.167 22.97 0.798 0.133 29.62 0.914 0.083
2 Single w/o M 24.68 0.859 0.174 19.67 0.669 0.269 25.67 0.881 0.126
3 Single w/o Ms 24.82 0.862 0.172 22.97 0.802 0.125 28.97 0.908 0.088
4 Single w/o Mh 24.83 0.862 0.171 22.24 0.783 0.153 29.38 0.912 0.086

5 EMA-GS 25.24 0.864 0.169 23.40 0.801 0.135 30.27 0.917 0.080
6 EMA-GS w/o M 24.70 0.862 0.170 21.68 0.766 0.172 28.42 0.905 0.092
7 EMA-GS w/o Ms 24.76 0.864 0.166 22.94 0.802 0.126 29.08 0.909 0.089
8 EMA-GS w/o Mh 24.84 0.863 0.169 22.15 0.780 0.159 29.29 0.911 0.087
9 EMA-GS w/o Lm 24.73 0.861 0.174 23.10 0.801 0.132 29.72 0.915 0.081
10 EMA-GS w/ Mixup 25.13 0.866 0.162 23.39 0.802 0.132 30.18 0.915 0.081
11 EMA-GS w/ Dropout 25.11 0.863 0.171 23.39 0.804 0.130 30.19 0.913 0.082

12 GS-GS 25.62 0.872 0.150 23.61 0.809 0.143 30.61 0.921 0.080
13 GS-GS w/o M 25.09 0.867 0.160 22.39 0.785 0.164 29.45 0.914 0.087
14 GS-GS w/o Ms 25.24 0.867 0.159 23.32 0.812 0.132 30.38 0.920 0.079
15 GS-GS w/o Mh 25.11 0.867 0.161 22.76 0.794 0.157 30.17 0.919 0.082
16 GS-GS w/o Lm 25.08 0.869 0.155 23.13 0.808 0.135 29.92 0.918 0.082

EMA proxy. The effectiveness of the EMA-GS setup heavily depends on the masking strategy (L5
vs. L7 & L8). Using only a single type of mask often leads to performance similar to or even worse
than the single-model baseline (L3 vs. L7, L4 vs. L8), indicating that confirmation bias can undermine
robustness. This highlights the need for diverse masking signals to fully exploit the benefits of the
EMA proxy. Moreover, as introduced in the Alternating Masking Strategy part of Section 3.4, we
have also tried other forms of regularization to improve the performance of our EMA model, such as
random mixup or dropout. However, as shown in L10 and L11 of Table 4, these methods do work as
good as our original approach of alternating between the two masking strategies.

5 Conclusion

In this work, we present AsymGS, a robust and efficient framework for 3D scene reconstruction
in unconstrained, in-the-wild environments. Our method employs two 3DGS models guided by
distinct masking strategies to enforce cross-model consistency, effectively mitigating artifacts caused
by low-quality observations. To further improve training efficiency, we introduce a dynamic EMA
proxy that significantly reduces computational cost with minimal impact on performance. Extensive
experiments on three challenging real-world datasets validate the effectiveness and generality of our
approach.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s focus on novel view
synthesis with in-the-wild image collections. The key contributions (including the asym-
metric dual-model framework, mutual consistency regularization, and the integration of
complementary masking strategies) are explicitly outlined in the methodology and validated
through extensive experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly State the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our approach are discussed in the supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper presents a learning-based method and does not include theoretical
results or formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly Stated or referenced in the Statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details of the proposed method, along with
descriptions of the experimental setup, including datasets, training procedures, hyperpa-
rameters, and evaluation metrics, ensuring the main results can be reliably reproduced and
validated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used are publicly available, and the code will be released upon
publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should State which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all necessary training and testing details, with method-
specific settings described in the main paper and 3DGS-related heuristics detailed in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported, as repeated runs showed no significant variation
under identical settings.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly Stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should State it. The authors should prefer-

ably report a 2-sigma error bar than State that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies the computational resources used for each experimental
setting. Experiments were performed on an RTX 4090. This information, along with training
times, is provided in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: By improving robustness under in-the-wild data, we aim to advance 3DGS
models toward practical real-world applications. Potential risks, such as misuse in privacy-
sensitive environments, are acknowledged in the broader context of scene reconstruction
technologies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of high-risk models or sensitive datasets.
It uses publicly available 3D scene datasets and does not introduce models or data with
significant potential for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets, including datasets and baseline models, are properly
credited in the paper.
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Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should State which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets that are clearly documented. Details of our
method, datasets, and implementation are provided in the main paper, and any additional
information is included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects,
and therefore no participant instructions, screenshots, or compensation details are applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly State this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work focuses on computer vision, and LLMs are not used in our method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 6: Randomness of artifacts across training runs. Row 1 shows the target view (with the
presence of distractors); Rows 2 and 3 present results from two independent runs of Mip-Splatting;
Row 4 shows the result of our method with the mutual consistency regularization.

A Random nature of artifacts

As shown in Figure 1 and 6, different runs of 3DGS on the same scene (with only the view order
randomized) result in different artifacts, particularly in uncertain regions. The mutual consistency
loss helps suppress these artifacts in both models. On one hand, the shared static regions remain
consistent and act as a strong regularizer. On the other hand, the differing artifacts in uncertain areas
provide complementary supervision signals, allowing regions affected by artifacts in one model to be
recovered by the other.

For the effect of distinct masking strategies, Table 4 in the main paper presents a quantitative
comparison. The performance degrades when both models use the same mask, for both GS-GS and
EMA-GS settings. This supports our claim that using separate masks helps prevent convergence to
the same erroneous reconstruction patterns.

B Comparison with HybridGS

Our Asymmetric Dual 3DGS framework differs fundamentally from HybridGS [13] in both design
and training. HybridGS separates static and dynamic content using two models (3DGS for static,
2DGS for dynamic) and requires a staged training process with a learnable blending mask. In contrast,
our method uses a dual 3DGS setup with mutual supervision to improve robustness against dynamic
noise, all within the standard 3DGS training pipeline. While both methods use masking, HybridGS
blends outputs based on 2DGS-derived uncertainty, whereas we apply two distinct masking strategies
to reduce confirmation bias from a single, potentially inaccurate mask.

C Multi-cue adaptive mask

Some prior works [19, 18] use residuals between ground-truth and rendered images to detect distrac-
tors, assuming static regions are learned first. However, this can misclassify object boundaries and
miss distractors resembling the background. Others [14, 17] use pretrained semantic segmentation to
mask known distractors, such as people or sky, but these methods rely on task-specific priors and lack
generality across diverse scenes. We propose Multi-Cue Adaptive Masking to combine the strengths
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of residual-based and segmentation-based methods, while also providing a complementary hard mask
that captures distinct error patterns compared to the self-supervised soft mask.

Algorithm 1 Multi-Cue Adaptive Masking

Require: Rendered image Ĩ, ground-truth image I, semantic masks {Mk} from SAM, stereo
correspondence map S≥3 from COLMAP

1: Epix = ∥Ĩ− I∥1 ▷ Pixel-level residual
2: F = DINOv2(I); F̃ = DINOv2(Ĩ) ▷ DINOv2 features
3: Efeat = 1− CosineSimilarity(F̃,F) ▷ Feature-level residual
4: ēpix =

∑
Epix/Area(I) ▷ Average residuals over I

5: ēfeat =
∑

Efeat/Area(I)
6: s̄ =

∑
S≥3/Area(I) ▷ Stereo correspondence density over I

7: for each mask Mk do
8: epix,k =

∑
Mk ⊙Epix/

∑
Mk ▷ Average residuals over Mk

9: efeat,k =
∑

Mk ⊙Efeat/
∑

Mk

10: s =
∑

Mk ⊙ S≥3/
∑

Mk ▷ Stereo correspondence density over Mk

11: if epix,k > ēpix and efeat,k > ēfeat and s < 0.1 · s̄ then
12: Mark Mk as a distractor mask
13: end if
14: end for
15: return Mh = 1−

⋃
{Mk}selected ▷ 0 for distractor

Here, the stereo-based correspondence records the number of matches each pixel in the given image
has, based on SIFT feature correspondences proposed in COLMAP [21]. A pixel is considered a
valid correspondence (with the stereo correspondence map value set to true at the pixel location)
if its match count exceeds a threshold, indicating it likely belongs to a static region. In contrast,
distractors typically yield fewer matches due to their limited presence across images. In Algorithm 1,
S≥3 denotes the stereo correspondence map, where a pixel is considered a valid correspondence if it
has more than three matches.

D Datasets and metrics

We evaluate our method on three in-the-wild datasets with varying challenges, as shown in Table
5. NeRF On-the-go dataset [18] features indoor and outdoor sequences with consistent appearance
but varying distractor ratios (5%–30%). RobustNeRF dataset [19] provides indoor scenes with
static geometry and controlled distractor placement (from single-type to 150 varied distractors),
where training is done on cluttered views and testing on clean, unseen ones. We use the undistorted
versions of these datasets, following the protocols of WildGaussian [11] and HybridGS [13]. The
PhotoTourism dataset [6] includes landmark scenes (Brandenburg Gate, Sacre Coeur, Trevi Fountain)
captured under diverse lighting, weather, and viewpoints, with both significant appearance variation
and real-world distractors. We report PSNR, SSIM, and LPIPS [27] to assess reconstruction accuracy
and perceptual quality.

E Implementation details

Our base model is built on Mip-Splatting [25]. Following its default settings, we recompute the
sampling rate of each Gaussian every 100 iterations, with a 2D Mip filter variance of 0.1 and a 3D
smoothing filter variance of 0.2. We train for 30,000 iterations on NeRF On-the-go and RobustNeRF,
with densification and pruning every 1,000 steps until iteration 15,000; and for 100,000 iterations on
PhotoTourism, with densification and pruning every 1,000 steps until iteration 50,000. We omit the
opacity reset and apply a 1,000-step warm-up before the mutual consistency regularization begins.
The consistency regularization weight is set to 0.1. The learnable mask is optimized by a loss
weighted λmask = 1.0 with a learning rate of 0.1. For EMA, we use a smoothing factor of β = 0.8.
Semantic regions for the multi-cue adaptive mask are generated using Semantic SAM [12] to create
instance-level segmentations and apply Algorithm 1 to select distractor regions as masks.
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Table 5: In-the-wild 3D reconstruction datasets.

Dataset Scene # Train # Test Distractor Appear. change

NeRF On-the-go [18]

Patio-high 222 45 ∼30% No
Spot 168 10 ∼30% No
Patio 98 26 15%∼20% No
Corner 101 20 15%∼20% No
Fountain 168 17 5%∼10% No
Mountain 119 12 5%∼10% No

RobustNeRF [19]

Statue 255 19 1 type No
Android 122 19 1 type No
Yoda 109 202 100 types No
Crab 109 194 150 types No

PhotoTourism [6]
Brandenburg Gate 763 10 ∼3.5% Yes
Sacre Coeur 830 21 ∼3.5% Yes
Trevi Fountain 1689 19 ∼3.5% Yes

Additionally, we use a 32-dimensional per-view appearance embedding and a 24-dimensional per-
Gaussian embedding. Color transformation is performed using a three-layer MLP with hidden size
128, outputting a scale and bias for each RGB channel. The learning rates are set to 0.001 for the
per-view embedding, 0.005 for the per-Gaussian embedding, and 0.0005 for the MLP. The other
3DGS-related hyperparameters follow the setup from origin work shown in Table 6.

Table 6: The other 3DGS-related hyperparameters.

Parameter Value

position_lr_init 0.00016
position_lr_final 0.0000016
position_lr_delay_mult 0.01
feature_lr 0.0025
opacity_lr 0.1
scaling_lr 0.005
rotation_lr 0.001
percent_dense 0.01
lambda_dssim 0.2
densification_interval 1000
opacity_reset_interval No opacity reset
densify_from_iter 500
densify_grad_threshold 0.0002

Table 7: The code repo and licenses.

Method Link License

3DGS [8] https://github.com/graphdeco-inria/gaussian-splatting Custom
Mip-Splatting [25] https://github.com/autonomousvision/mip-splatting Custom
WildGaussians [11] https://github.com/jkulhanek/wild-gaussians/ MIT License
NerfBaselines [10] https://github.com/nerfbaselines/nerfbaselines MIT License
COLMAP [21] https://github.com/colmap/colmap BSD License
Semantic-SAM [12] https://github.com/UX-Decoder/Semantic-SAM Apache 2.0 License
NeRF On-the-go dataset [18] https://github.com/cvg/nerf-on-the-go Apache 2.0 License
RobustNeRF dataset [19] https://robustnerf.github.io/ Custom
PhotoTourism dataset [6] https://github.com/ubc-vision/image-matching-benchmark Apache 2.0 License
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Table 8: Quantitative results on the NeRF On-the-go dataset [18]. The best and second-best results
are highlighted in bold and underline, respectively.

Scene Mountain Fountain Corner Patio Spot Patio-High

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
RobustNeRF [19] 17.54 0.496 0.383 15.65 0.318 0.576 23.04 0.764 0.244 20.39 0.718 0.251 20.65 0.625 0.391 20.54 0.578 0.366
NeRF On-the-go [18] 20.15 0.644 0.259 20.11 0.609 0.314 24.22 0.806 0.190 20.78 0.754 0.219 23.33 0.787 0.189 21.41 0.718 0.235
3DGS [8] 19.40 0.638 0.213 19.96 0.659 0.185 20.90 0.713 0.241 17.48 0.704 0.199 20.77 0.693 0.316 17.29 0.604 0.363
Mip-Splatting [25] 19.86 0.649 0.200 20.19 0.672 0.189 21.15 0.728 0.230 18.31 0.639 0.328 20.18 0.689 0.338 18.31 0.639 0.328
WildGaussian [11] 20.43 0.653 0.255 20.81 0.662 0.215 24.16 0.822 0.045 21.44 0.800 0.138 23.82 0.816 0.138 22.23 0.725 0.206
SLS-mlp [20] 19.84 0.580 0.294 20.19 0.612 0.258 24.03 0.795 0.258 21.55 0.838 0.065 23.52 0.756 0.185 20.31 0.664 0.259
HybridGS [13] 21.73 0.693 0.284 21.11 0.674 0.252 25.03 0.847 0.151 21.98 0.812 0.169 24.33 0.794 0.196 21.77 0.741 0.211

Ours (GS-GS) 22.00 0.740 0.199 21.83 0.717 0.180 26.15 0.885 0.085 22.97 0.860 0.096 25.52 0.854 0.135 23.17 0.796 0.164
Ours (EMA-GS) 21.93 0.735 0.162 21.61 0.709 0.162 25.77 0.876 0.089 22.87 0.853 0.091 25.09 0.839 0.152 23.14 0.797 0.156

F More results

F.1 NeRF On-the-go and RobustNeRF

In Table 1 and Table 8, our method (GS-GS) outperforms all baseline methods by more than 1 dB in
scenes with medium to high occlusion ratios. The margin is smaller in low-occlusion scenes, where
3DGS-based methods already perform well due to strong geometric priors from the initial point
cloud. A similar trend is observed in Table 2: while the proposed method surpasses the SOTA by
approximately 0.4 dB in simpler scenes containing a single distractor type (e.g., Statue and Android),
it outperforms others by more than 1 dB in complex scenes with a large number of diverse distractors
(e.g., Yoda and Crab). The rendering results in Figure 7 and 8 further demonstrate the superiority of
our method, as competing approaches exhibit distractor remains and missing details.

F.2 PhotoTourism

The Asymmetric Dual 3DGS achieves an average improvement of 0.8 dB on the PhotoTourism dataset
(Table 3), demonstrating its effectiveness under challenging appearance variations. Furthermore,
proper appearance modeling is essential for handling in-the-wild data with diverse visual conditions.
This is supported by a significant performance gap of more than 4 dB between methods with and
without appearance modeling, as shown in Table 3, and further illustrated by the visual differences in
Figure 9. Therefore, we apply appearance modeling for the PhotoTourism dataset by default. As the
importance of appearance modeling is addressed here, we omit further discussion in the following
ablation section and apply appearance modeling by default for the PhotoTourism dataset.

F.3 Statistical significance of the main result

Table 9: Quantitative results on the NeRF On-the-go dataset. Each experiment is repeated five times,
and we report the mean and standard deviation.

Setting GS-GS EMA-GS

Scene PSNR SSIM LPIPS PSNR SSIM LPIPS

High Occlusion 24.36± 0.02 0.823± 0.001 0.151± 0.001 24.11± 0.05 0.819± 0.002 0.152± 0.004
Medium Occlusion 24.52± 0.06 0.871± 0.001 0.090± 0.001 24.26± 0.08 0.864± 0.001 0.092± 0.002
Low Occlusion 21.99± 0.04 0.730± 0.001 0.184± 0.004 21.81± 0.09 0.723± 0.002 0.166± 0.007

Table 10: Quantitative results on the RobustNeRF dataset. Each experiment is repeated five times,
and we report the mean and standard deviation.

Setting GS-GS EMA-GS

Scene PSNR SSIM LPIPS PSNR SSIM LPIPS

Statue 23.44± 0.05 0.893± 0.001 0.098± 0.001 23.46± 0.06 0.890± 0.001 0.097± 0.001
Android 25.58± 0.05 0.856± 0.001 0.070± 0.003 25.47± 0.06 0.849± 0.002 0.070± 0.002
Yoda 37.12± 0.09 0.969± 0.001 0.074± 0.001 36.46± 0.06 0.967± 0.001 0.078± 0.001
Crab 36.11± 0.07 0.963± 0.001 0.079± 0.001 35.52± 0.07 0.961± 0.001 0.080± 0.001

We repeated the experiment five times. Based on the results in Table 9 and 10, our method shows
statistically significant improvements.
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F.4 Hyperparameters

We perform hyperparameter tuning on the NeRF On-the-go dataset [18] to optimize the performance
of our method (GS-GS and EMA-GS). As shown in Table 11, we tune the EMA smoothing factor β
and find that β = 0.8 yields the highest PSNR and SSIM with the lowest LPIPS. In Table 12, we
evaluate different densification intervals and observe that an interval of 1000 offers the best overall
performance. Similarly, Table 13 presents the results of tuning the warm-up interval, where 1000
again emerges as the optimal choice, outperforming both shorter and longer intervals. Lastly, Table 14
shows that removing opacity reset improves reconstruction quality, suggesting that preserving learned
opacity leads to more stable and effective training.

Table 11: Tuning the EMA smoothing factor according to the average performance on the NeRF
On-the-go dataset [18].

β PSNR↑ SSIM↑ LPIPS↓
0.5 22.80 0.797 0.136
0.6 22.93 0.797 0.137
0.7 23.12 0.799 0.136
0.8 23.40 0.801 0.135
0.9 23.05 0.798 0.136

Table 12: Tuning the densification interval according to the average performance on the NeRF
On-the-go dataset [18].

Setting GS-GS EMA-GS

Densification Interval PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
500 23.60 0.810 0.129 23.00 0.797 0.134
1000 23.61 0.810 0.135 23.40 0.801 0.135
1500 23.58 0.807 0.146 23.15 0.796 0.143
2000 23.56 0.806 0.152 22.96 0.797 0.145

Table 13: Tuning the warm-up interval according to the average performance on the NeRF On-the-go
dataset [18].

Setting GS-GS EMA-GS

Warm-up Interval PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
0 23.55 0.808 0.137 22.96 0.798 0.135
500 23.55 0.809 0.137 23.08 0.799 0.134
1000 23.61 0.810 0.135 23.40 0.801 0.135
1500 23.58 0.809 0.137 23.10 0.799 0.135
2000 23.60 0.810 0.135 22.88 0.798 0.136

In Table 15 and 16, although the best performance is generally achieved at our default setting
(λm = 1.0 and λmask = 1.0 for GS-GS; λm = 0.1 and λmask = 1.0 for EMA-GS), the differences
across settings are minimal (less than 0.1 dB). This indicates that the performance is not highly
sensitive to the values of λm and λmask.

G Limitations

We adopt the appearance modeling approach from WildGaussian [11], using a per-view appearance
embedding to control global appearance and a per-Gaussian embedding to model the appearance of
individual Gaussian primitives. However, this model struggles to capture fine-grained effects such as
object highlights. A likely reason is the limited diversity in training data. To address this, we plan to
introduce data augmentation with randomized illumination variations.

23



Table 14: Impact of opacity reset on reconstruction quality, evaluated on the NeRF On-the-go
dataset [18].

Setting GS-GS EMA-GS

Opacity Reset PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
w/o 23.61 0.810 0.135 23.40 0.801 0.135
w/ 22.87 0.790 0.176 22.43 0.786 0.158

Table 15: Performance under varying weights of the mutual consistency loss, evaluated on the NeRF
On-the-go dataset [18].

GS-GS EMA-GS

λm PSNR SSIM LPIPS λm PSNR SSIM LPIPS

0.0 23.13 0.808 0.135 0.0 23.10 0.801 0.132
0.5 23.66 0.810 0.130 0.05 23.39 0.803 0.136
1.0 23.61 0.810 0.135 0.1 23.40 0.801 0.135
1.5 23.54 0.807 0.142 0.2 23.43 0.805 0.133
2.0 23.44 0.803 0.149 0.3 23.47 0.805 0.134

Table 16: Performance under varying weights of the learnable mask loss, evaluated on the NeRF
On-the-go dataset [18].

Setting GS-GS EMA-GS

λmask PSNR SSIM LPIPS PSNR SSIM LPIPS

0.5 23.62 0.809 0.136 23.33 0.802 0.134
1.0 23.61 0.810 0.135 23.40 0.801 0.135
1.5 23.59 0.809 0.137 23.41 0.804 0.135
2.0 23.63 0.811 0.135 23.32 0.802 0.134

H Social impact

Notre-Dame de Paris suffered a devastating fire in 2019. Although the building was severely damaged,
restoration was aided by a 3D model originally created for a video game, highlighting the importance
of preserving 3D models of cultural landmarks. However, such sites are often crowded with people,
and photos taken at different times may exhibit varying lighting conditions. This highlights the
broader societal benefit of accessible and robust 3D scene reconstruction technologies. Our method
contributes positively by enabling the creation of high-quality 3D models from in-the-wild images,
which are often affected by distractors and lighting variations. By making it feasible to reconstruct
cultural landmarks from everyday photos, our approach supports digital preservation, education, and
historical restoration efforts.

There are potential negative impacts, such as misuse in surveillance or privacy-invading applications.
In particular, in-the-wild image collections often contain individuals who are unintentionally captured.
To mitigate this risk, we recommend removing or anonymizing identifiable information, such as faces
or bodies, from the reconstructed scenes. This can be achieved through automated segmentation or
masking techniques applied before or during training.
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Mip-Splatting [25] HybridGS [13] Our (EMA-GS) Ours (GS-GS) Ground Truth
Figure 7: Qualitative results on the NeRF On-the-go dataset [18]. The scenes shown are, from top
to bottom: Patio-high (high occlusion), Spot (high occlusion), Patio (medium occlusion), Corner
(medium occlusion), Mountain (low occlusion), and Fountain (low occlusion).

Mip-Splatting [25] HybridGS [13] Our (EMA-GS) Ours (GS-GS) Ground Truth
Figure 8: Qualitative results on the RobustNeRF dataset [19]. The scenes shown are, from top to
bottom: Statue, Android, Yoda, and Crab.
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Mip-Splatting [25] WildGaussian [11] Our (EMA-GS) Ours (GS-GS) Ground Truth

Figure 9: Qualitative results on the PhotoTourism dataset [6]. The scenes shown are, from top to
bottom: Sacre Coeur, Brandenburg Gate, and Trevi Fountain.
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