
Off-Dynamics Reinforcement Learning:
Training for Transfer with Domain Classifiers

Benjamin Eysenbach * 1 2 Swapnil Asawa * 3 Shreyas Chaudhari * 2 Ruslan Salakhutinov 2 Sergey Levine 1 4

Abstract
We propose a simple, practical, and intuitive ap-
proach for domain adaptation in reinforcement
learning. Our approach stems from the idea
that the agent’s experience in the source domain
should look similar to its experience in the target
domain. Building off of a probabilistic view of
RL, we formally show that we can achieve this
goal by compensating for the difference in dynam-
ics by modifying the reward function. This modi-
fied reward function is simple to estimate by learn-
ing auxiliary classifiers that distinguish source-
domain transitions from target-domain transitions.
Intuitively, the modified reward function penal-
izes the agent for visiting states and taking actions
in the source domain which are not possible in the
target domain. Our approach is applicable to do-
mains with continuous states and actions and does
not require learning a model of the dynamics.

1. Introduction
Reinforcement learning (RL) is often touted as a promising
approach for costly and risk-sensitive applications, yet learn-
ing to act in those domains directly is costly and risky. How
can an intelligent agent learn to solve tasks in environments
in which it cannot practice? In this paper we study the prob-
lem of domain adaptation in reinforcement learning (RL). In
the context of RL, domains refer to different environments
(MDPs) that have different dynamics (transition functions).
Our aim is to learn a policy in the source domain that will
achieve high reward in a different target domain, using a
limited amount of experience from the target domain.

RL algorithms today require a large amount of experience in
the target domain. Experience in the target domain is expen-
sive to collect: it costs time (e.g., when the target domain

*Equal contribution 1Google Brain 2Carnegie Mellon Univer-
sity 3University of Pittsburgh 4UC Berkeley. Correspondence to:
Benjamin Eysenbach <beysenba@cs.cmu.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Figure 1. We will learn a policy for a target domain (Left) using
experience from a source domain with different dynamics (Center).
(Right) Our method modifies the reward function to force the
agent to learn behaviors that will be feasible in the target domain.

is the real world, we cannot progress faster than real-time);
it costs money (e.g., a robot might break itself); it could
even be dangerous to humans (Matsakis, 2018). For many
tasks, such as assistive robotics and self-driving cars, we
may have access to a different but structurally similar source
domain. While the source domain has different dynamics
than the target domain, experience in the source domain is
much cheaper to collect. For example, a computer simula-
tion of the real world can run much faster than real time,
collecting (say) a year of experience in an hour; it is much
cheaper to simulate 1000 robot manipulators in parallel than
to maintain 1000 robot manipulators. The source domain
need not be a simulator, but rather could be any “practice”
facility, such as a “farm” of robot arms (Levine et al., 2018),
a “playpen” for learning to walk (Raibert, 2019), or a testing
facility for self-driving vehicles (Madrigal, 2018).

Domain adaptation in RL is challenging because strategies
which are effective in the source domain may not be effec-
tive in the target domain. For example, a good approach
to driving a car around a dry racetrack (the source domain)
may entail aggressive acceleration and cutting corners. If
the target domain is an icy, public road, this approach may
cause the car to skid off the road or hit oncoming traffic.
While prior work has thoroughly studied the domain adapta-
tion of observations in RL (Bousmalis et al., 2018; Ganin
et al., 2016; Higgins et al., 2017), it ignores the domain
adaptation of the dynamics. For space constraints, we defer
the discussion of related work to Appendix A.

This paper presents a simple and practical approach for
domain adaptation in RL, illustrated in Fig. 1. Our ap-

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

proach stems from the idea that the agent’s experience in
the source domain should look similar to its experience in
the target domain. Building off of a probabilistic view of
RL, we formally show that we can achieve this goal by com-
pensating for the difference in dynamics by modifying the
reward function. This modified reward function is simple
to estimate by learning auxiliary classifiers that distinguish
source-domain transitions from target-domain transitions.
Because our method learns a classifier, rather than a dynam-
ics model, we expect it to handle high-dimensional tasks
better than model-based methods, a conjecture supported by
experiments on the 111-dimensional Ant task. Intuitively,
the modified reward function penalizes the agent for visiting
states and taking actions where the source domain and target
domain differ. The agent is penalized for taking transitions
which would indicate whether the agent is interacting with
the source or target domain. On a range of discrete and
continuous control tasks, we both illustrate the mechanics
of our approach and demonstrate its scalability to higher-
dimensional tasks. broadly-applicable approach for learning
from inaccurate models.

2. Preliminaries
Our problem setting will consider two MDPs:Msource rep-
resents the source domain (e.g., a practice facility, simulator,
or learned approximate model of the target domain) while
Mtarget represents a the target domain. We assume that the
two domains have the same state space S, action space A,
reward function r, and initially state distribution p1(s1);
the only difference between the domains is the dynamics,
psource(st+1 | st, at) and ptarget(st+1 | st, at). We will learn
a Markovian policy πθ(a | s), parametrized by θ. Our objec-
tive is to learn a policy π that maximizes rewards onMtarget,
Eπ,Mtarget [

∑
t γ

tr(st, at)]. We now define our problem set-
ting:
Definition 1. Domain Adaptation for RL is the problem of
using interactions in the source MDPMsource together with
a small number of interactions in the target MDPMtarget

to acquire a policy that achieves high reward in the target
MDP,Mtarget.

We will assume every transition with non-zero probability
in the target domain will have non-zero probability in the
source domain:

ptarget(st+1 | st, at) > 0 =⇒ psource(st+1 | st, at) > 0

for all states st, st+1 ∈ S and actions at ∈ A. This as-
sumption is very weak, and common in work on importance
sampling (Koller & Friedman, 2009, §12.2.2).

3. A Variational Perspective on Domain
Adaptation in RL

The probabilistic inference interpretation of RL (Kappen,
2005; Todorov, 2007; Toussaint, 2009; Ziebart, 2010; Raw-

lik et al., 2013; Levine, 2018) treats the reward function as
defining a desired distribution over trajectories. The agent’s
task is to sample from this distribution by picking trajec-
tories with probability proportional to their exponentiated
reward. This section will reinterpret this model in the con-
text of domain transfer, showing that domain adaptation of
dynamics can be done by modifying the rewards.

To apply this model to domain adaptation, define p(τ) as the
desired distribution over trajectories in the target domain,

p(τ) ∝ p1(s1)

(∏
t

ptarget(st+1 | st, at)
)

exp

(∑
t

r(st, at)

)
,

and q(τ) as our agent’s distribution over trajectories in the
source domain,

q(τ) = p1(s1)
∏
t

psource(st+1 | st, at)πθ(at | st).

As noted in Section 2, we assume both trajectory distribu-
tions have the same initial state distribution. Our aim is to
learn a policy whose behavior in the source domain both re-
ceives high reward and has high likelihood under the target
domain dynamics. We codify this objective by minimizing
the reverse KL divergence between these two distributions:

min
π(a|s),q(s′|s,a)

DKL(q ‖ p) =

− Eq
[∑

t

r(st, at) +Hπ[at | st] + ∆r(st+1, st, at)

]
+ c,

where

∆r(st+1, st, at) , log p(st+1 | st, at)−log q(st+1 | st, at).

The constant c is the partition function of p(τ), which is
independent of the policy and source dynamics. While ∆r
is defined as the difference of transition probabilities, in
Sec. 4.1 we show how to estimate ∆r without learning tran-
sition probabilities directly. In the special case where the
source and target dynamics are equal, the correction term
∆r is zero and we recover maximum entropy RL (Ziebart,
2010; Todorov, 2007). We emphasize that our reward cor-
rection is different from prior work that adds log β(a | s)
to the reward to regularize the policy to be close to the be-
havior policy β (Schulman et al., 2015; Jaques et al., 2017;
Schroecker & Isbell, 2020; Abdolmaleki et al., 2018; Jaques
et al., 2019; Thananjeyan et al., 2020).

In the case where the source dynamics are not equal to
the true dynamics, this objective is not the same as maxi-
mum entropy RL on trajectories sampled from the source
domain. Instead, this objective suggests a corrective term
∆r that should be added to the reward function to account
for the discrepancy between the source and target dynamics.
The correction term, ∆r, is quite intuitive. If a transition
(st, at, st+1) has equal probability in the source and target
domains, then ∆r(st, at) = 0 so no correction is applied.
For transitions that are likely in the source but are unlikely

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

Algorithm 1 Domain Adaptation with Rewards from
Classifiers [DARC]
1: for t = 1, · · · , num iterations do
2: Dsource ← Dsource ∪ ROLLOUT(π,Msource)
3: if t mod r = 0 then
4: Dtarget ← Dtarget ∪ ROLLOUT(π,Mtarget)

5: θ ← θ − η∇θ`(θ)
6: r̃(st, at, st+1)← r(st, at) + ∆r(st, at, st+1)
7: π ← MAXENT RL(π,Dsource, r̃)

8: return π

in the target domain, ∆r < 0, so the agent is penalized
for “exploiting” inaccuracies or discrepancies in the source
domain by taking these transitions. For the example envi-
ronment in Figure 1, transitions through the center of the
environment are blocked in the target domain but not in the
source domain. For these transitions, ∆r would serve as
a large penalty, discouraging the agent from taking these
transitions and instead learning to navigate around the wall.
Appendix C presents additional interpretations of ∆r in
terms of coding theory, mutual information, and a constraint
on the discrepancy between the source and target dynamics.
Appendix B shows how prior work that adapts observation
is a special case of our approach.

4. Domain Adaptation with Learned Rewards
The variational perspective on model-based RL in the previ-
ous section suggests that we should modify the reward in the
source domain by adding ∆r. While ∆r is defined above in
terms of transition probabilities, we will show below how it
can be estimated via binary classification, without learning
an explicit dynamics model. We then use this observation
to develop a practical algorithm for off-dynamics RL.

4.1. Estimating the Reward Correction with Classifiers
The transition probabilities in the modified reward func-
tion are rarely known and are hard to estimate. Instead,
we show that we can estimate this log ratio using a pair of
(learned) binary classifiers, which will infer whether tran-
sitions came from the source or target domain by rewriting
∆r(st, at, st+1) as

log p(target | st, at, st+1). − log p(target | st, at)

− log p(source | st, at, st+1). + log p(source | st, at)

Theorange terms are the difference in logits from the classi-
fier conditioned on st, at, st+1, while the blue terms are the
difference in logits from the classifier conditioned on just
st, at. Intuitively, ∆r answers the following question: for
the task of predicting whether a transition came from the
source or target domain, how much better can you perform
after observing st+1?

4.2. Algorithm Summary
Our algorithm, Domain Adaptation with Rewards from Clas-
sifiers (DARC), is presented in Alg. 1. The algorithm

Start

Goal

Obstacle: Not modelled in simulator

RL on Source Domain DARC (Ours)

R
ew

ar
d

(S
ou

rc
e

D
om

ai
n)

RL on Source
Domain

DARC (ours)

Figure 2. Tabular example of off-dynamics RL

modifies an existing MaxEnt RL algorithm to addition-
ally learn two classifiers, qθSAS(target | st, at, st+1) and
qθSAS(target | st, at). We use the classifiers to modify the
rewards from the source domain, and apply MaxEnt RL to
this experience. We use SAC (Haarnoja et al., 2018) as our
MaxEnt RL algorithm, but emphasize that DARC is applica-
ble to any MaxEnt RL algorithm (e.g., on-policy, off-policy,
and model-based). Code has been released.1

5. Experiments
We start with a didactic experiment to build intuition for the
mechanics of our method, and then evaluate on more com-
plex tasks. Appendix D.3 includes additional experiments.

Illustrative example. We start with a simple gridworld
example, shown on the right, where we can apply our
method without function approximation. The goal is to
navigate from the top left to the bottom left. The real en-
vironment contains an obstacle (shown in red), which is
not present in the source domain. If we simply apply RL
on the source domain, we obtain a policy that navigates
directly to the goal (blue arrows), and will fail when used in
the target domain. We then apply our method: we collect
trajectories from the source domain and real world to fit the
two tabular classifiers. These classifiers give us a modified
reward, which we use to learn a policy in the source domain.
The modified reward causes our learned policy to navigate
around the obstacle.

Figure 3. Environments: (L to R) broken reacher, broken half
cheetah, broken ant, and half cheetah obstacle.

Scaling to more complex tasks. We now apply DARC to
the more complex tasks shown in Fig. 3. We define three
tasks by crippling one of the joints of each robot in the target
domain, but using the fully-functional robot in the source
domain. We use three simulated robots taken from OpenAI
Gym (Brockman et al., 2016): 7 DOF reacher, half cheetah,
and ant. The broken reacher is based on the task described
by Vemula et al. (2020). We also include a task where the
shift in dynamics is external to the robot, by modifying the

1https://github.com/google-research/
google-research/tree/master/darc

https://github.com/google-research/google-research/tree/master/darc
https://github.com/google-research/google-research/tree/master/darc

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

Figure 4. DARC compensates for crippled robots and obstacles: We apply DARC to four continuous control tasks: three tasks (broken
reacher, half cheetah, and ant) which are crippled in the target domain but not the source domain, and one task (half cheetah obstacle)
where the source domain omits the obstacle from the target domain. Note that naïvely ignoring the shift in dynamics (green dashed line)
performs quite poorly, while directly learning on the crippled robot requires an order of magnitude more experience than our method.

cheetah task to reward the agent for running both forward
and backwards. It is easier to learn to run backwards, but the
target domain contains an obstacle that prevents the agent
from running backwards.

We compare our method to seven baselines. RL on Source
and RL on Target directly perform RL on the source and
target domains, respectively. The Finetuning baseline takes
the result of running RL on the source domain, and further
finetunes the agent on the target domain. The Importance
Weighting baseline performs RL on importance-weighted
samples from the source domain; the importance weights are
exp(∆r). To account for the fact that our method performs
more gradient updates per environment step in the source
domain, we trained a version of the RL on source baseline
likewise does 10 gradient updates per source domain step.
Finally, we compared against two model-based RL methods:
MBPO (Janner et al., 2019) and PETS (Chua et al., 2018).

We show the results of this experiment in Fig. 4, plotting
the reward on the target domain as a function of the number
of transitions in the target domain. On all tasks, the RL on
source baseline (shown as a dashed line because it observes
no target transitions) performs considerably worse than the
optimal policy from RL on the target domain, suggesting
that good policies for the source domain are suboptimal
for the target domain. Nonetheless, on three of the four
tasks our method matches (or even surpasses) the asymptotic
performance of doing RL on the target domain, despite never
doing RL on experience from the target domain, and despite
observing 5 - 10x less experience from the target domain.
On the broken reacher and broken half cheetah tasks, we
observe that finetuning on the target domain performs on
par with our method. On the simpler broken reacher task,
just doing RL on the target domain with a large number
of gradient steps works quite well (we did not tune this
parameter for our method). However, as we scale to the
more complex broken ant and half cheetah obstacle tasks,
we observe that all baselines perform poorly.

To gain more intuition for our method, we recorded the
reward correction ∆r throughout training on the broken

Figure 5. Without the reward correction, the agent takes transitions
where the source domain and target domains are dissimilar; after
adding the reward correction, the agent’s transitions in the source
domain are increasingly plausible under the target domain.

reacher environment. In this experiment, we ran RL on
the source domain for 100k steps before switching to our
method. Said another way, we ignored ∆r for the first 100k
steps of training. As shown in Fig. 5, ∆r steadily decreases
during these first 100k steps, suggesting that the agent is
learning a strategy that takes transitions where the source
domain and target domain have different dynamics: the
agent is making use of its broken joint. After 100k steps,
when we maximize the combination of task reward and
reward correction ∆r, we observe that ∆r increases, so the
agent’s transitions in the source domain are increasingly
consistent with target domain dynamics. After around 1e6
training steps ∆r is zero: the agent has learned a strategy
that uses transitions that are indistinguishable between the
source and target domains.

6. Discussion
In this paper, we proposed a simple, practical, and intuitive
approach for domain adaptation to changing dynamics in RL.
We formally motivate this method from a novel variational
perspective on domain adaptation in RL, which suggests
that we can compensate for differences in dynamics via the
reward function. Experiments on a range of tasks show that
our method can leverage the source domain to learn policies
that work well in the target domain, despite observing only
a handful of transitions from the target domain.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess,

N., and Riedmiller, M. Maximum a posteriori policy optimisa-
tion. arXiv preprint arXiv:1806.06920, 2018.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 22–31. JMLR.
org, 2017.

Attias, H. Planning by probabilistic inference. In AISTATS. Cite-
seer, 2003.

Baktashmotlagh, M., Harandi, M. T., Lovell, B. C., and Salzmann,
M. Domain adaptation on the statistical manifold. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pp. 2481–2488, 2014.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A. Safe
model-based reinforcement learning with stability guarantees.
In Advances in neural information processing systems, pp. 908–
918, 2017.

Bickel, S., Brückner, M., and Scheffer, T. Discriminative learning
for differing training and test distributions. In Proceedings
of the 24th international conference on Machine learning, pp.
81–88, 2007.

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakr-
ishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., et al.
Using simulation and domain adaptation to improve efficiency
of deep robotic grasping. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 4243–4250.
IEEE, 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., and Zaremba, W. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J.,
Ratliff, N., and Fox, D. Closing the sim-to-real loop: Adapting
simulation randomization with real world experience. In 2019
International Conference on Robotics and Automation (ICRA),
pp. 8973–8979. IEEE, 2019.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep re-
inforcement learning in a handful of trials using probabilistic
dynamics models. In Advances in Neural Information Process-
ing Systems, pp. 4754–4765, 2018.

Clavera, I., Nagabandi, A., Fearing, R. S., Abbeel, P., Levine, S.,
and Finn, C. Learning to adapt: Meta-learning for model-based
control. arXiv preprint arXiv:1803.11347, 3, 2018.

Cortes, C. and Mohri, M. Domain adaptation and sample bias
correction theory and algorithm for regression. Theoretical
Computer Science, 519:103–126, 2014.

Cutler, M., Walsh, T. J., and How, J. P. Reinforcement learning
with multi-fidelity simulators. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3888–
3895. IEEE, 2014.

Dann, C., Neumann, G., Peters, J., et al. Policy evaluation with
temporal differences: A survey and comparison. Journal of
Machine Learning Research, 15:809–883, 2014.

Dayan, P. and Hinton, G. E. Using expectation-maximization for
reinforcement learning. Neural Computation, 9(2):271–278,
1997.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-based and
data-efficient approach to policy search. In Proceedings of the
28th International Conference on machine learning (ICML-11),
pp. 465–472, 2011.

Dudík, M., Langford, J., and Li, L. Doubly robust policy evaluation
and learning. arXiv preprint arXiv:1103.4601, 2011.

Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. Leave no trace:
Learning to reset for safe and autonomous reinforcement learn-
ing. arXiv preprint arXiv:1711.06782, 2017.

Farchy, A., Barrett, S., MacAlpine, P., and Stone, P. Humanoid
robots learning to walk faster: From the real world to simulation
and back. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, pp. 39–46,
2013.

Feldbaum, A. Dual control theory. i. Avtomatika i Telemekhanika,
21(9):1240–1249, 1960.

Fernando, B., Habrard, A., Sebban, M., and Tuytelaars, T. Unsu-
pervised visual domain adaptation using subspace alignment. In
Proceedings of the IEEE international conference on computer
vision, pp. 2960–2967, 2013.

Finn, C. and Levine, S. Deep visual foresight for planning robot
motion. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-
inforcement learning without exploration. arXiv preprint
arXiv:1812.02900, 2018.

Gamrian, S. and Goldberg, Y. Transfer learning for related rein-
forcement learning tasks via image-to-image translation. arXiv
preprint arXiv:1806.07377, 2018.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V. Domain-
adversarial training of neural networks. The Journal of Machine
Learning Research, 17(1):2096–2030, 2016.

Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly,
E., Fishman, S., Wang, K., Gonina, E., Harris, C., Vanhoucke,
V., et al. Tf-agents: A library for reinforcement learning in
tensorflow, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H.,
and Davidson, J. Learning latent dynamics for planning from
pixels. arXiv preprint arXiv:1811.04551, 2018.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A.,
Botvinick, M., Blundell, C., and Lerchner, A. Darla: Improving
zero-shot transfer in reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume
70, pp. 1480–1490. JMLR. org, 2017.

Hoffman, J., Wang, D., Yu, F., and Darrell, T. Fcns in the wild:
Pixel-level adversarial and constraint-based adaptation. arXiv
preprint arXiv:1612.02649, 2016.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

Huszár, F. Variational inference using implicit distributions. arXiv
preprint arXiv:1702.08235, 2017.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. In Advances
in Neural Information Processing Systems, pp. 12498–12509,
2019.

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M., Turner,
R. E., and Eck, D. Sequence tutor: Conservative fine-tuning of
sequence generation models with kl-control. In Proceedings of
the 34th International Conference on Machine Learning-Volume
70, pp. 1645–1654. JMLR. org, 2017.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C.,
Lapedriza, A., Jones, N., Gu, S., and Picard, R. Way off-
policy batch deep reinforcement learning of implicit human
preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Kanamori, T., Hido, S., and Sugiyama, M. A least-squares ap-
proach to direct importance estimation. Journal of Machine
Learning Research, 10(Jul):1391–1445, 2009.

Kappen, H. J. Path integrals and symmetry breaking for optimal
control theory. Journal of statistical mechanics: theory and
experiment, 2005(11):P11011, 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

Koller, D. and Friedman, N. Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

Kouw, W. M. and Loog, M. A review of domain adaptation
without target labels. IEEE transactions on pattern analysis
and machine intelligence, 2019.

Levine, S. Reinforcement learning and control as probabilistic in-
ference: Tutorial and review. arXiv preprint arXiv:1805.00909,
2018.

Levine, S. and Koltun, V. Variational policy search via trajectory
optimization. In Advances in neural information processing
systems, pp. 207–215, 2013.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D.
Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection. The International Jour-
nal of Robotics Research, 37(4-5):421–436, 2018.

Lipton, Z. C., Wang, Y.-X., and Smola, A. Detecting and correct-
ing for label shift with black box predictors. arXiv preprint
arXiv:1802.03916, 2018.

Ljung, L. System identification. Wiley encyclopedia of electrical
and electronics engineering, pp. 1–19, 1999.

Madrigal, A. C. Waymo built a secret world for self-driving
cars, Dec 2018. URL https://www.theatlantic.
com/technology/archive/2017/08/
inside-waymos-secret-testing-and-simulation-facilities/
537648/.

Matsakis, L. Amazon has a history of bear repellent accidents,
Dec 2018. URL https://www.wired.com/story/
amazon-first-bear-repellent-accident/.

Mihatsch, O. and Neuneier, R. Risk-sensitive reinforcement learn-
ing. Machine learning, 49(2-3):267–290, 2002.

Mohamed, S. and Lakshminarayanan, B. Learning in implicit
generative models. arXiv preprint arXiv:1610.03483, 2016.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. Safe
and efficient off-policy reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 1054–1062, 2016.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P.
Sim-to-real transfer of robotic control with dynamics random-
ization. In 2018 IEEE international conference on robotics and
automation (ICRA), pp. 1–8. IEEE, 2018.

Polydoros, A. S. and Nalpantidis, L. Survey of model-based
reinforcement learning: Applications on robotics. Journal of
Intelligent & Robotic Systems, 86(2):153–173, 2017.

Raibert, M. The best robots on four legs with marc raibert
(boston dynamics), Apr 2019. URL https://youtu.be/
tAhxi8WldCU?t=485.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S. Epopt:
Learning robust neural network policies using model ensembles.
arXiv preprint arXiv:1610.01283, 2016.

Rawlik, K., Toussaint, M., and Vijayakumar, S. On stochastic
optimal control and reinforcement learning by approximate
inference. In Twenty-Third International Joint Conference on
Artificial Intelligence, 2013.

Ross, S. and Bagnell, J. A. Agnostic system identification
for model-based reinforcement learning. arXiv preprint
arXiv:1203.1007, 2012.

Sadeghi, F. and Levine, S. Cad2rl: Real single-image flight without
a single real image. arXiv preprint arXiv:1611.04201, 2016.

Sastry, S. S. and Isidori, A. Adaptive control of linearizable sys-
tems. IEEE Transactions on Automatic Control, 34(11):1123–
1131, 1989.

Schroecker, Y. and Isbell, C. Universal value density estimation for
imitation learning and goal-conditioned reinforcement learning.
arXiv preprint arXiv:2002.06473, 2020.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P.
Trust region policy optimization. In International conference
on machine learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,
O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and Huszár,
F. Amortised map inference for image super-resolution. arXiv
preprint arXiv:1610.04490, 2016.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A.,
Soyer, H., Rae, J. W., Noury, S., Ahuja, A., Liu, S., Tirumala,
D., et al. V-mpo: On-policy maximum a posteriori policy
optimization for discrete and continuous control. arXiv preprint
arXiv:1909.12238, 2019.

Sugiyama, M. and Müller, K.-R. Input-dependent estimation of
generalization error under covariate shift. Statistics & Decisions,
23(4/2005):249–279, 2005a.

Sugiyama, M. and Müller, K.-R. Model selection under covariate
shift. In International Conference on Artificial Neural Networks,
pp. 235–240. Springer, 2005b.

https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.wired.com/story/amazon-first-bear-repellent-accident/
https://www.wired.com/story/amazon-first-bear-repellent-accident/
https://youtu.be/tAhxi8WldCU?t=485
https://youtu.be/tAhxi8WldCU?t=485

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

Sugiyama, M., Krauledat, M., and MÃžller, K.-R. Covariate shift
adaptation by importance weighted cross validation. Journal of
Machine Learning Research, 8(May):985–1005, 2007.

Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., and
Kawanabe, M. Direct importance estimation with model selec-
tion and its application to covariate shift adaptation. In Advances
in neural information processing systems, pp. 1433–1440, 2008.

Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T., Hachiya,
H., and Okanohara, D. Conditional density estimation via
least-squares density ratio estimation. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence
and Statistics, pp. 781–788, 2010.

Sutton, R. S. Dyna, an integrated architecture for learning, plan-
ning, and reacting. ACM Sigart Bulletin, 2(4):160–163, 1991.

Tamar, A., Xu, H., and Mannor, S. Scaling up robust mdps by
reinforcement learning. arXiv preprint arXiv:1306.6189, 2013.

Tan, J., Xie, Z., Boots, B., and Liu, C. K. Simulation-based
design of dynamic controllers for humanoid balancing. In 2016
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2729–2736. IEEE, 2016.

Tanaskovic, M., Fagiano, L., Smith, R., Goulart, P., and Morari,
M. Adaptive model predictive control for constrained linear
systems. In 2013 European Control Conference (ECC), pp.
382–387. IEEE, 2013.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAllis-
ter, R., Gonzalez, J. E., Levine, S., Borrelli, F., and Goldberg,
K. Safety augmented value estimation from demonstrations
(saved): Safe deep model-based rl for sparse cost robotic tasks.
IEEE Robotics and Automation Letters, 5(2):3612–3619, 2020.

Theodorou, E., Buchli, J., and Schaal, S. A generalized path
integral control approach to reinforcement learning. journal of
machine learning research, 11(Nov):3137–3181, 2010.

Tiao, L. C., Bonilla, E. V., and Ramos, F. Cycle-consistent ad-
versarial learning as approximate bayesian inference. arXiv
preprint arXiv:1806.01771, 2018.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and
Abbeel, P. Domain randomization for transferring deep neu-
ral networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and
systems (IROS), pp. 23–30. IEEE, 2017.

Todorov, E. Linearly-solvable markov decision problems. In
Advances in neural information processing systems, pp. 1369–
1376, 2007.

Toussaint, M. Robot trajectory optimization using approximate
inference. In Proceedings of the 26th annual international
conference on machine learning, pp. 1049–1056, 2009.

Uehara, M., Sato, I., Suzuki, M., Nakayama, K., and Matsuo,
Y. Generative adversarial nets from a density ratio estimation
perspective. arXiv preprint arXiv:1610.02920, 2016.

Vemula, A., Oza, Y., Bagnell, J. A., and Likhachev, M. Planning
and execution using inaccurate models with provable guarantees.
arXiv preprint arXiv:2003.04394, 2020.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois,
E., Zhang, S., Zhang, G., Abbeel, P., and Ba, J. Bench-
marking model-based reinforcement learning. arXiv preprint
arXiv:1907.02057, 2019.

Werbos, P. J. Neural networks for control and system identification.
In Proceedings of the 28th IEEE Conference on Decision and
Control,, pp. 260–265. IEEE, 1989.

White, M. Unifying task specification in reinforcement learning. In
Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 3742–3750. JMLR. org, 2017.

Williams, G., Aldrich, A., and Theodorou, E. Model predictive
path integral control using covariance variable importance sam-
pling. arXiv preprint arXiv:1509.01149, 2015.

Wittenmark, B. Adaptive dual control methods: An overview. In
Adaptive Systems in Control and Signal Processing 1995, pp.
67–72. Elsevier, 1995.

Wulfmeier, M., Bewley, A., and Posner, I. Addressing appearance
change in outdoor robotics with adversarial domain adapta-
tion. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1551–1558. IEEE, 2017.

Yu, W., Tan, J., Liu, C. K., and Turk, G. Preparing for the unknown:
Learning a universal policy with online system identification.
arXiv preprint arXiv:1702.02453, 2017.

Yu, Y. and Szepesvári, C. Analysis of kernel mean matching under
covariate shift. arXiv preprint arXiv:1206.4650, 2012.

Zadrozny, B. Learning and evaluating classifiers under sample
selection bias. In Proceedings of the twenty-first international
conference on Machine learning, pp. 114, 2004.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-
image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE international conference on com-
puter vision, pp. 2223–2232, 2017a.

Zhu, S., Kimmel, A., Bekris, K. E., and Boularias, A. Fast model
identification via physics engines for data-efficient policy search.
arXiv preprint arXiv:1710.08893, 2017b.

Ziebart, B. D. Modeling Purposeful Adaptive Behavior with the
Principle of Maximum Causal Entropy. PhD thesis, Carnegie
Mellon University, 2010.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

A. Related Work
While our work will focus on domain adaptation applied to RL, we start by reviewing more general ideas in domain
adaptation, and defer to Kouw & Loog (2019) for a recent review of the field. Two common approaches to domain adaptation
are importance weighting and domain-agnostic features. Importance-weighting methods (e.g., (Zadrozny, 2004; Cortes &
Mohri, 2014; Lipton et al., 2018)) estimate the likelihood ratio of examples under the target domain versus the source domain,
and use this ratio to re-weight examples sampled from the source domain. To estimate the likelihood ratio, some methods
directly estimate two density models and then take the difference (e.g., (Sugiyama & Müller, 2005a; Yu & Szepesvári,
2012; Baktashmotlagh et al., 2014)), other methods directly estimate the ratio (Sugiyama & Müller, 2005b; Sugiyama et al.,
2007; 2008; Mohamed & Lakshminarayanan, 2016; Kanamori et al., 2009; Uehara et al., 2016). A number of these direct
estimation methods operate by learning a classifier to distinguish examples from the source domain versus examples from
the target domain (Bickel et al., 2007; Sønderby et al., 2016; Mohamed & Lakshminarayanan, 2016; Uehara et al., 2016).
We refer to Huszár (2017) for a recent review of direct estimation methods. Methods based on domain-agnostic features
aim to map examples from the source and target domain into a common feature space (Fernando et al., 2013; Hoffman
et al., 2016; Wulfmeier et al., 2017). Our method is similar to classifier-based density-ratio estimation, with two important
distinctions. First, we will need to estimate the density ratio of conditional distributions (transition probabilities), which is
different from modeling conditional distributions as a density ratio (Sugiyama et al., 2010). To do this, we will learn not one
but two classifiers. Second, we will use the logarithm of the density ratio to modify the reward function instead of weighting
samples by the density ratio, which is often numerically unstable (see, e.g., Schulman et al. (2017, §3)).

Prior methods for applying domain adaptation to RL include approaches based on system identification, domain randomiza-
tion, and observation adaptation. Perhaps the most established approach, system identification (Ljung, 1999), uses observed
data to tune the parameters of a simulator (Feldbaum, 1960; Werbos, 1989; Wittenmark, 1995; Ross & Bagnell, 2012;
Tan et al., 2016; Zhu et al., 2017b; Farchy et al., 2013) More recent work has successfully used this strategy to bridge
the sim2real gap (Chebotar et al., 2019; Rajeswaran et al., 2016). Closely related is work on online system identification
and meta-learning, which directly uses the inferred system parameters to update the policy (Yu et al., 2017; Clavera et al.,
2018; Tanaskovic et al., 2013; Sastry & Isidori, 1989). However, these approaches typically require either a model of the
environment or a manually-specified distribution over potential test-time dynamics, requirements that our method will lift.
Another approach, domain randomization, randomly samples the parameters of the source domain and then finds the best
policy for this randomized environment (Sadeghi & Levine, 2016; Tobin et al., 2017; Peng et al., 2018; Cutler et al., 2014).
While often effective, this method is sensitive to the choice of which parameters are randomized, and the distributions from
which these simulator parameters are sampled. A third approach, observation adaptation, modifies the observations of the
source domain to appear similar to those in the target domain. While this approach has been successfully applied to video
games (Gamrian & Goldberg, 2018) and robot manipulation (Bousmalis et al., 2018), it ignores the fact that the source and
target domains may have differing dynamics.

The theoretical derivation of our method is heavily inspired by prior work which formulates control as a problem of
probabilistic inference (Dayan & Hinton, 1997; Attias, 2003; Kappen, 2005; Todorov, 2007; Toussaint, 2009; Ziebart, 2010;
Theodorou et al., 2010; Rawlik et al., 2013; Levine & Koltun, 2013; Levine, 2018; Abdolmaleki et al., 2018). These methods
aim to make an agent’s experience in the target domain look like the expert’s experience in the target domain, whereas our
method aims to make an agent’s experience in the source domain look like the expert’s experience in the target domain. We
emphasize that the domain shift we consider is caused by domains having different dynamics, not by actions being sampled
from different policies. Algorithms for model-based RL (e.g., (Polydoros & Nalpantidis, 2017; Sutton, 1991; Janner et al.,
2019; Deisenroth & Rasmussen, 2011; Wang et al., 2019; Williams et al., 2015; Hafner et al., 2018; Chua et al., 2018; Finn
& Levine, 2017) and off-policy RL (e.g., (Munos et al., 2016; Fujimoto et al., 2018; Dann et al., 2014; Dudík et al., 2011)
similarly aim to improve the sample efficiency of RL, but do use the source domain to accelerate learning. Our method is
applicable to any maximum entropy RL algorithm, including on-policy (Song et al., 2019), off-policy (Abdolmaleki et al.,
2018; Haarnoja et al., 2018), and model-based (Janner et al., 2019; Williams et al., 2015) algorithms. We will use the soft
actor critic algorithm (Haarnoja et al., 2018) in our experiments. Recently, Vemula et al. (2020) proposed a method for
planning with an inaccurate model by assigning a high, fixed, cost to transitions where the model was inaccurate. Our
method similarly accounts for discrepancies in dynamics via rewards, but does so with a learned classifier, allowing our
method to be applied in stochastic environments with continuous states and actions.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

B. The Special Case of an Observation Model
To highlight the relationship between domain adaptation of dynamics versus observations, we now consider a special case.
In this subsection, we will assume that the state st , (zt, ot) is a combination of the system latent state zt (e.g., the poses of
all objects in a scene) and an observation ot (e.g., a camera observation). We will define q(ot | zt) and p(ot | zt) as the
observation models for the source and target domains. In this special case, we can decompose the KL objective into three
terms:

DKL(q ‖ p) = −Eq
[∑

t

r(st, at) +Hπ[at | st]︸ ︷︷ ︸
MaxEnt RL objective

+ log ptarget(ot | zt)− log psource(ot | zt)︸ ︷︷ ︸
Observation Adaptation

log ptarget(zt+1 | zt, at)− log psource(zt+1 | zt, at)︸ ︷︷ ︸
Dynamics Adaptation

]
.

Prior methods that perform observation adaptation (Bousmalis et al., 2018; Gamrian & Goldberg, 2018) effectively minimize
the observation adaptation term,2 but ignore the effect of dynamics. In contrast, the ∆r reward correction in our method
provides one method to address both dynamics and observations. These approaches could be combined; we leave this as
future work.

C. Additional Interpretations of the Reward Correction
This section presents four additional interpretations of the reward correction, ∆r.

C.1. Coding Theory

The reward correction ∆r can also be understood from the perspective of coding theory. Suppose that we use a data-efficient
replay buffer that exploits that fact that the next state st+1 is highly redundant with the current state and action, st, at. If we
assume that the replay buffer compression has been optimized to store transitions from the target environment, (negative)
∆r is the number of additional bits (per transition) needed for our source replay buffer, as compared with our target replay
buffer. Thus, an agent which maximizes ∆r will seek those transitions that can be encoded most efficiently, minimizing the
size of the source replay buffer.

C.2. Mutual Information

We can gain more intuition in the modified reward by writing the expected value of ∆r in terms of mutual information:

E[∆r(st, at, st+1)] = I(st+1; target | st, at)− I(st+1; source | st, at).

The mutual information I(st+1; target | st, at) reflects how much better you can predict the next state if you know that you
are interacting with the target domain, instead of the source domain. Our approach does exactly this, rewarding the agent for
taking transitions that provide information about the target domain while penalizing transitions that hint to the agent that it
is interacting with a source domain rather than the target domain.

2Tiao et al. (2018) show that observation adaptation using CycleGan (Zhu et al., 2017a) minimizes a Jensen-Shannon divergence.
Assuming sufficiently expressive models, the Jensen-Shannon divergence and the reverse KL divergence above have the same optimum.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

C.3. Lower bound on the risk-sensitive reward objective.

While we derived DARC by minimizing a reverse KL divergence, we can also show that DARC maximizes a lower bound
on a risk-sensitive reward objective (Mihatsch & Neuneier, 2002):

logEs′∼ptarget(s
′|s,a),

a∼π(a|s)

[
exp

(∑
t

r(st, at)

)]

= logEs′∼psource(s
′|s,a),

a∼π(a|s)

[(∏
t

ptarget(st+1 | st, at)
psource(st+1 | st, at)

)
exp

(∑
t

r(st, at)

)]

= logEs′∼psource(s
′|s,a),

a∼π(a|s)

exp

∑
t

r(st, at) + log ptarget(st+1 | st, at)− log psource(st+1 | st, at)︸ ︷︷ ︸
∆r(st,at,st+1)

 (1)

≥ Es′∼psource(s
′|s,a),

a∼π(a|s)

[∑
t

r(st, at) + ∆r(st, at, st+1)

]
. (2)

The inequality on the last line is an application of Jensen’s inequality. One interesting question is when it would be preferable
to maximize Eq. 1 rather than Eq. 2. While Eq. 2 provides a loser bound on the risk sensitive objective, empirically it may
avoid the risk-seeking behavior that can be induced by risk-sensitive objectives. We leave the investigation of this trade-off
as future work.

C.4. A Constraint on Dynamics Discrepancy

Our method regularizes the policy to visit states where the transition dynamics are similar between the source domain and
target domain:

max
π

E a∼π(a|s)
s′∼p(s′|s,a)

∑
t

r(st, at) + log ptarget(st+1 | st, at)− log psource(st+1 | st, at)︸ ︷︷ ︸
−DKL(psource ‖ ptarget)

+Hπ[at | st]

 .
This objective can equivalently be expressed as applying MaxEnt RL to only those policies which avoid exploiting the
dynamics discrepancy. More precisely, the KKT conditions guarantee that there exists a positive constant ε > 0 such that
our objective is equivalent to the following constrained objective:

max
π∈ΠDARC

E a∼π(a|s)
s′∼p(s′|s,a)

[∑
t

r(st, at) +Hπ[at | st]

]
,

where ΠDARC denotes the set of policies that do not exploit the dynamics discrepancy:

ΠDARC ,

{
π
∣∣∣E a∼π(a|s)
s′∼p(s′|s,a)

[∑
t

DKL(psource(st+1 | st, at) ‖ ptarget(st+1 | st, at))

]
≤ ε

}
.

One potential benefit of considering our method as the unconstrained objective is that it provides a principled method for
increasing or decreasing the weight on the ∆r term, depending on how much the policy is currently exploiting the dynamics
discrepancy. We leave this investigation as future work.

D. Additional Experiments
D.1. Visualizing the reward modification in stochastic domains.

In this experiment, we use an “archery” task to visualize how the modified reward accounts for differences in dynamics. The
task, shown in Fig. 6, requires choosing an angle at which to shoot an arrow. The practice range (i.e., the source domain) is
outdoors, with wind that usually blows from left to right. The competition range (i.e., the target domain) is indoors with no
wind. The reward is the negative distance to the target. We plot the reward as a function of the angle in both domains in
Fig. 6. The optimal strategy for the outdoor range is to compensate for the wind by shooting slightly to the left (θ = −0.8),

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

Figure 6. Visualizing the modified reward

while the optimal strategy for the indoor range is to shoot straight ahead (θ = 0). We estimate the modified reward function
with DARC, and plot the modified reward in the windy outdoor range and indoor range. We aggregate across episodes using
J(θ) = logEp(s′|θ)[exp(r(s′))]; see Appendix E.4 for details. We observe that maximizing the modified reward in the
windy range does not yield high reward in the windy range, but does yield a policy that performs well in the indoor range.

Figure 7. Our method accounts for domain shift in the termination condition, causing the agent to avoid transitions that cause termination
in the target domain.

D.2. Safety emerges from domain adaptation to the termination condition.

The termination condition is part of the dynamics (White, 2017), and our next experiment studies how our method copes
with domain shift in the termination condition. We use the humanoid shown in Fig. 7 for this experiment and set the task
reward to 0. In the source domain episodes have a fixed length of 300 steps; in the target domain the episode terminates
when the robot falls. The scenario mimics the real-world setting where robots have freedom to practice in a safe, cushioned,
practice facility, but are preemptively stopped when they try to take unsafe actions in the real world. Our aim is for the agent
to learn to avoid unsafe transitions in the source domain that would result in episode termination in the target domain. As
shown in Fig. 7, our method learns to remain standing for nearly the entire episode. As expected, baselines that maximize
the zero reward on the source and target domains fall immediately. While DARC was not designed as a method for safe
RL (Tamar et al., 2013; Achiam et al., 2017; Eysenbach et al., 2017; Berkenkamp et al., 2017), this experiment suggests that
safety may emerge automatically from DARC, without any manual reward function design.

D.3. Ablation Experiments

Our final experiment examines the importance of using two classifiers to estimate ∆r. We compared our method to an
ablation that does not learn the SA classifier, effectively ignoring the blue terms in ∆r. As shown in Fig. 8, this ablation
performs considerably worse than our method. Intuitively, this makes sense: we might predict that a transition came from
the source domain not because the next state had higher likelihood under the source dynamics, but rather because the state
or action was visited more frequently in the source domain. The second classifier used in our method corrects for this
distribution shift.

Finally, we examine the importance of input noise regularization in classifiers. As we observe only a handful of transitions
from the target domain, we hypothesized that regularization would be important to prevent overfitting. We test this hypothesis
in Fig. 9 by training our method on the broken reacher environment with varying amounts of input noise. With no noise

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

or little noise our method performs poorly (likely due to overfitting); too much noise also performs poorly (likely due to
underfitting). We used a value of 1 in all our experiments, and did not tune this value. See Appendix D.3 for more plots of
both ablation experiments.

Figure 8. Importance of using two classifiers: DARC performs worse when only one classifier is used.

Figure 9. Importance of regularizing the classifiers: Using input noise to regularize the classifiers boosts performance.

E. Experiment Details and Hyperparameters
Our implementation of DARC is built on top of the implementation of SAC from Guadarrama et al. (2018). Unless
otherwise specified, all hyperparameters are taken from Guadarrama et al. (2018). All neural networks (actor, critics, and
classifiers) have two hidden layers with 256-units each and ReLU activations. Since we ultimately will use the difference
in the predictions of the two classifiers, we use a residual parametrization for the SAS classifier q(target | st, at, st+1).
Using fSAS(st, at, st+1), fSA(st, at) ∈ R2 to denote the outputs of the two classifier networks, we compute the classifier
predictions as follows:

qθSA(· | st, at) = SOFTMAX(fSA(st, at))

qθSAS(· | st, at, st+1) = SOFTMAX(fSAS(st, at, st+1) + fSA(st, at))

For the SAS classifier we propagate gradients back through both networks parameters, θSAS and θSA. Both classifiers use
Gaussian input noise with σ = 1. Optimization of all networks is done with Adam (Kingma & Ba, 2014) with a learning
rate of 3e-4 and batch size of 128. Most experiments with DARC collected 1 step in the target domain every 10 steps in the
source domain (i.e., r = 10). The one exception is the half cheetah obstacle domain, where we tried increasing r beyond 10
to 30, 100, 300, and 1000. We found a large benefit from increasing r to 30 and 100, but did not run the other experiments
long enough to draw any conclusions. Fig. 4 uses r = 30 for half cheetah obstacle. We did not tune this parameter, and
expect that tuning it would result in significant improvements in sample efficiency.

We found that DARC was slightly more stable if we warm-started the method by applying RL on the source task without ∆r
for the first twarmup iterations. We used twarmup = 1e5 for all tasks except the broken reacher, where we used twarmup = 2e5.
This discrepancy was caused by a typo in an experiment, and subsequent experiments found that DARC is relatively robust
to different values of twarmup; we did not tune this parameter.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

E.1. Baselines

The RL on Source and RL on Target baselines are implemented identically to our method, with the exception that ∆r is
not added to the reward function. The RL on Target (10x) is identical to RL on Target, with the exception that we take 10
gradient steps per environment interaction (instead of 1). The Importance Weighting baseline estimates the importance
weights as ptarget(st+1 | st, at)/psource(st+1 | st, at) ≈ exp(∆r). The importance weight is used to weight transitions in the
SAC actor and critic losses.

PETS (Chua et al., 2018) : The PETS baseline is implemented using the default configurations used by (Chua et al.,
2018) for the environments evaluated. That is, the broken-half-cheetah environment uses the hyperparameters as
used by the half-cheetah environment in (Chua et al., 2018).

MBPO (Janner et al., 2019)

E.2. Environments

Broken Reacher This environment uses the 7DOF robot arm from the Pusher environment in OpenAI Gym. The
observation space is the position and velocities of all joints and the goal. The reward function is

r(s, a) = −1

2
‖send effector − sgoal‖2 −

1

10
‖a‖22,

and episodes are 100 steps long. In the target domain the 2nd joint (0-indexed) is broken: zero torque is applied to this joint,
regardless of the commanded torque.

Broken Half Cheetah This environment is based on the HalfCheetah environment in OpenAI Gym. Episodes are 1000
steps long. In the target domain the 0th joint (0-indexed) is broken: zero torque is applied to this joint, regardless of the
commanded torque.

Broken Ant This environment is based on the Ant environment in OpenAI Gym. We use the standard termination
condition and cap the maximum episode length at 1000 steps. In the target domain the 3rd joint (0-indexed) is broken: zero
torque is applied to this joint, regardless of the commanded torque.

In all the broken joint environments, we choose which joint to break to computing which joint caused the “RL on Source”
baseline to perform worst on the target domain, as compared with the “RL on Target” baseline.

Half Cheetah Obstacle This environment is based on the HalfCheetah environment in OpenAI Gym. Episodes are
1000 steps long. We modified the standard reward function to use the absolute value in place of the velocity, resulting the
following reward function:

r(s, a) = sx vel ·∆t− ‖a‖22,

where sx vel is the velocity of the agent along the forward-aft axis and ∆t = 0.01 is the time step of the simulator. In the
target domain, we added a wall at x = −3m, roughly 3 meters behind the agent.

Humanoid Used for the experiment in Fig. 7, we used a modified version of Humanoid from OpenAI Gym. The source
domain modified this environment to ignore the default termination condition and instead terminate after exactly 300 time
steps. The target domain uses the unmodified environment, which terminates when the agent falls.

E.3. Figures

Unless otherwise noted, all experiments were run with three random seeds. Figures showing learning curves (Figures 4, 5, 8,
and 9) plot the mean over the three random seeds, and also plot the results for each individual random seed with semi-
transparent lines.

Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers

E.4. Archery Experiment

We used a simple physics model for the archery experiment. The target was located 70m North of the agent, and wind was
applied along the East-West axis. The system dynamics:

st+1 = 70 sin(θ) + f/ cos(θ)2

{
f ∼ N (µ = 1, σ = 1) in the target domain
f ∼ N (µ = 0, σ = 0.3) in the source domain

We trained the classifier by sampling θ ∼ U [−2, 2] (measured in degrees) for 10k episodes in the source domain and 10k
episodes in the target domain. The classifier was a neural network with 1 hidden layer with 32 hidden units and ReLU
activation. We optimized the classifier using the Adam optimizer with a learning rate of 3e-3 and a batch size of 1024. We
trained until the validation loss increased for 3 consecutive epochs, which took 16 epochs in our experiment. We generated
Fig. 6 by sampling 10k episodes for each value of θ and aggregating the rewards using J(θ) = logEp(s′|θ)[exp(r(s′))]. We
found that aggregating rewards by taking the mean did not yield meaningful results, perhaps because the mean corresponds
to a (possibly loose) lower bound on J (see Appendix C.3).

