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Abstract

With the rapid advancement of generative models, highly001
realistic image synthesis has posed new challenges to digi-002
tal security and media credibility. Although AI-generated003
image detection methods have partially addressed these004
concerns, a substantial research gap remains in evaluat-005
ing their performance under complex real-world condi-006
tions. This paper introduces the Real-World Robustness007
Dataset (RRDataset) for comprehensive evaluation of de-008
tection models across three dimensions: 1) Scenario Gen-009
eralization – RRDataset encompasses high-quality images010
from seven major scenarios (War & Conflict, Disasters &011
Accidents, Political & Social Events, Medical & Public012
Health, Culture & Religion, Labor & Production, and ev-013
eryday life), addressing existing dataset gaps from a con-014
tent perspective. 2) Internet Transmission Robustness –015
examining detector performance on images that have un-016
dergone multiple rounds of sharing across various social017
media platforms. 3) Re-digitization Robustness – assessing018
model effectiveness on images altered through four distinct019
re-digitization methods.020

We benchmarked 17 detectors and 10 vision-language021
models (VLMs) on RRDataset and conducted a large-022
scale human study involving 192 participants to investi-023
gate human few-shot learning capabilities in detecting AI-024
generated images. The benchmarking results reveal the lim-025
itations of current AI detection methods under real-world026
conditions and underscore the importance of drawing on027
human adaptability to develop more robust detection algo-028
rithms. Our dataset is publicly available under an anony-029
mous link for review purposes: https://zenodo.030
org/records/14963880.031

1. Introduction032

With the emergence of powerful generative models [24,033
40, 44, 45], AI-generated images are increasingly diffi-034
cult to distinguish from real ones. Such indistinguishable035

AI-generated images pose risks to society, including the 036
spread of misinformation and misleading visual cues. Con- 037
sequently, the identification of AI-generated images has be- 038
come a critical task with profound real-world implications. 039

An increasing number of studies explore various detec- 040
tion methods based on different features, including image 041
texture [33], gradients [48], patch-level features [6, 9, 35], 042
frequency-domain characteristics [12, 13, 15, 59], fine- 043
grained image details [20, 46], and reconstruction loss 044
[43, 54]. Large multimodal models (VLMs) have also been 045
adapted for detection tasks [25, 26, 38, 47]. Although 046
conventional benchmarks such as GenImage [62], Fake2M 047
[34], WildFake [18], and Chameleon [56] offer sizeable 048
collections of generative images, they share two signifi- 049
cant limitations. First, they primarily consist of everyday- 050
life images, making it hard to assess whether the detection 051
methods can effectively generalize to other scenarios. Sec- 052
ond, they fail to account for the influence of internet so- 053
cial media transmissions or re-digitization processes, thus 054
inflating detection performance relative to the complexities 055
of real-world conditions. 056

To address these gaps, we introduce RRDataset, the 057
first benchmark designed explicitly to evaluate detec- 058
tors’ robustness in practical contexts. RRDataset encom- 059
passes images from seven diverse and challenging scenar- 060
ios—including War & Conflict, Disasters & Accidents, Po- 061
litical & Social Events, Medical & Public Health, Culture 062
& Religion, and Labor & Production—thereby filling cru- 063
cial content gaps in existing benchmarks. Moreover, it sys- 064
tematically includes internet transmission and four distinct 065
re-digitization processes, enabling a deeper assessment of 066
how these factors degrade detector performance in realis- 067
tic use cases. We benchmark 17 detection methods and 068
10 vision-language models (VLMs) on RRDataset, find- 069
ing substantial performance declines under both transmis- 070
sion and re-digitization conditions—shortcomings that have 071
largely been overlooked in previous evaluations. We fur- 072
ther establish a large-scale human benchmark, involving 073
192 participants and 240 test images, to investigate how hu- 074
man observers adapt in similar conditions. Although hu- 075
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Figure 1. Real-Robust Bench overview, featuring a wide range of scenarios and real-world robustness incorporating four re-digitization
methods and internet transmission processes. Additionally, we introduce the largest human benchmark to date, with 192 participants from
diverse backgrounds and 240 test images.

man accuracy also decreases when confronted with altered076
images, it improves significantly after a few-shot learning077
phase, highlighting a capacity for rapid adaptation that may078
inspire future detection algorithm design.079

The main contributions are summarized as follows:080

• We propose RRDataset, the first dataset incorporating six081
critical high-risk scenarios and aspects of daily life. To082
enhance its realism and applicability, the images within083
this dataset have been transmitted over the internet and084
re-digitized, thereby simulating real-world image degra-085
dation as shown in Fig. 1.086

• We conduct RRBench, a comprehensive benchmark eval-087
uating 17 detection methods and 10 VLMs, revealing that088
current detection strategies suffer notable performance089
drops under transmission and re-digitization.090

• Our RRBench also constructs the largest human AI-091
Generated image benchmark to date, involving 192 par-092
ticipants and 240 test images. Our analysis uncovers the093
remarkable few-shot adaptation capabilities of human ob-094
servers.095

2. Related work096

AI-Generated Image Datasets: With the rapid evolu-097
tion of generative models, AI-generated image detection098
datasets have undergone substantial changes. Early ef-099
forts, such as CNNSpot [53], primarily employed Pro-100
GAN [22]-produced images to evaluate detection perfor-101
mance. More recent works—including CiFAKE [4] and102
DE-FAKE [47]—have shifted toward diffusion-based ap-103
proaches, yielding more realistic synthetic images.104

Large-scale datasets such as GenImage [62], WildFake105
[18], Fake2M [34], Chameleon [56], and PatchCraft [61]106
have pushed the boundaries of size and diversity, reaching107
millions of synthetic samples from multiple model archi-108
tectures. Some datasets like Chameleon [56], emphasize109
high-quality human-curated images to expose blind spots in110

current detectors. However, most of these datasets concen- 111
trate on everyday scenarios drawn from sources like Ima- 112
geNet [11] or COCO [31], neglecting critical contexts such 113
as war, disasters, or public health, where misinformation 114
can be particularly damaging. 115

Several recent works also explore robustness under data 116
augmentation or online transmission. SEMI-TRUTHS [39] 117
investigates how different augmentations affect detection 118
performance, whereas WildRF [5] and FOSID [21] collect a 119
limited amount of web-transmitted data to examine detector 120
robustness. However, their choice of platforms and overall 121
scale remains narrow, rendering the results less representa- 122
tive of the broader impact of social media transmission. 123

RRDataset addresses these gaps by covering diverse 124
high-impact scenarios while also modeling multiple rounds 125
of online transmission and various re-digitization processes. 126
This approach enables a more faithful assessment of de- 127
tection performance in scenarios that closely mirror actual 128
practices and challenges. 129

Human Benchmark for AI Image Detection: HPBench 130
[34] is the first to collect data from 50 participants on 100 131
test images, along with insights into why participants iden- 132
tified certain images as AI-generated. However, this study 133
used images exclusively generated by Midjourney, which 134
may introduce bias due to reliance on a single generator, 135
and its limited sample size and question set constrain the 136
scope of its findings. While FakeBench [30] uses images 137
from multiple generators, it does not account for the ef- 138
fects of image transmission or re-digitization and includes 139
only 34 participants. This paper establish the largest human 140
benchmark to date, addressing these limitations by incor- 141
porating 192 participants and 240 test images, encompass- 142
ing original, transmitted, and re-digitized images. We con- 143
ducted a detailed analysis of how AIGC and photography 144
backgrounds impact detection accuracy. Additionally, we 145
explored human few-shot learning capabilities in detecting 146
AI-generated images. 147
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Figure 2. Special-scenario image generation pipeline, illustrating scenario definition, theme expansion, prompt refinement, and final image
filtering.

AI-Generated Image Detectors: With the continuous de-148
velopment of generative models, numerous detection meth-149
ods [6, 8–10, 20, 27, 29, 33, 35, 38, 43, 46, 49, 51, 54, 56]150
have emerged. While these methods achieve impressive151
accuracy on their respective test sets, robust evaluation re-152
mains largely unaddressed. Existing methods typically limit153
robustness evaluation to resizing, JPEG compression and154
Gaussian blur, with some studies using only JPEG compres-155
sion at a quality level of 90, which does not closely simulate156
real-world conditions. Therefore, it is essential to evaluate157
these detectors’ performance in realistic scenarios. A more158
comprehensive overview of AI-generated image detection159
methods can be found in Appendix A.160

3. Dataset Construction161

3.1. Dataset Rationale162

The primary goal of RRDataset is to comprehensively163
benchmark AI-generated image detectors under real-world164
conditions, focusing on three critical dimensions: 1) Multi-165
scenario detection capability: We incorporate a broad166
range of image contexts, including rarely encountered or167
sensitive scenarios, to ensure that detection models are eval-168
uated on content closely mirroring real-world usage. 2)169
Internet transmission robustness: Images routinely un-170
dergo repeated sharing and compression on various social171
media platforms. We expect a reliable detector to main-172
tain accuracy despite these transmission-induced degrada-173
tions. 3) Re-digitization robustness: Re-digitization—via174
scanning, re-photographing, or similar methods—is a piv-175
otal yet underexplored challenge. Many practical scenarios176
lack direct digital files (e.g., PNG, JPG), such as verifying177
images in newspapers, presentation slides, or street adver-178
tisements. In RRDataset, an image’s label (Real vs. AI) is179
determined solely by its original source, underscoring the180
need for detectors to withstand transformations introduced181

by re-digitization. 182
By encompassing these three dimensions, RRDataset 183

aims to provide a comprehensive and realistic evaluation 184
framework that addresses the often-overlooked factors lim- 185
iting current detection methods in existing assessments. 186

3.2. Data Collection 187

3.2.1. Special-Scenario Image Collection 188

To capture diverse and critical contexts, RRDataset includes 189
six specialized scenarios: War & Conflict, Disasters & 190
Accidents, Political & Social Events, Medical & Public 191
Health, Culture & Religion, and Labor & Production. First, 192
each scenario is expanded into 10 manually defined theme 193
(e.g., traffic accidents, floods, earthquakes, wildfires, and 194
plane crashes under Disasters & Accidents). Next, we use 195
Qwen2.57b-instruct [57] to further enrich these sub-topics 196
into prompts, adding location details and additional descrip- 197
tive elements. This process yields 24,000 prompts, which 198
are then used by SD 3.5 Large [44] and Flux.1 [28] to gener- 199
ate 48,000 images at various resolutions. We filter the gen- 200
erated images using CLIP-score [41] (removing those be- 201
low 0.27) and an NSFW safety checker, discarding any that 202
exhibit low text-image alignment or contain unsafe content. 203
After filtering, we retain 6,000 high-quality AI-generated 204
images (1,000 per scenario), the complete image genera- 205
tion workflow is illustrated in Fig. 2 .For real images, we 206
collect an additional 6,000 samples from openly licensed 207
news photography websites, including Reuters Pictures, As- 208
sociated Press Images, BBC News In Pictures, UN Photo, 209
and the International Committee of the Red Cross, ensuring 210
consistent coverage of the same six domains. 211

3.2.2. Everyday Life-Scenario Image Collection 212

We then gather 4,000 real-life images from COCO [31], 213
CC3M-val [7], and the publicly licensed photography plat- 214
form Unsplash. To generate AI counterparts, we use cap- 215
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tions from COCO [31] and CC3M-val [7] as prompts for216
various generative models (SD 3.5 Large [44], Flux.1 [28],217
DALL-E3 [42], SDv1.4, SDv1.5 [44], and Midjourney218
[36]).219

Since real-world images include both high-resolution220
and low-resolution examples [14], we also incorporate a221
portion of lower-resolution images generated by StyleGAN222
[23] and ProGAN [22] into RRDataset to better capture this223
characteristic. This step ensures that RRDataset more ac-224
curately reflects the real-world variations in image quality.225
Ultimately, we obtained a dataset of 4,000 images repre-226
senting everyday scenes.227

3.3. Data transformation228

In this section, we describe how internet transmission and229
re-digitization are applied to our dataset. We also provide a230
detailed discussion in App. B on why these transformations231
are critical for AI-generated image detection and how they232
manifest in real-world scenarios.233

3.3.1. Internet Transmission234

Social media platforms typically compress images, causing235
reductions in resolution, compression artifacts, and detail236
loss. To evaluate detector robustness under realistic trans-237
mission conditions, we subjected all 10,000 real images and238
10,000 AI-generated images from RRDataset to multiple239
rounds of sending through popular messaging and social240
platforms—Telegram, WeChat, Facebook, QQ, WhatsApp,241
X, Instagram, and Tinder. As summarized in Tab. 1, each242
image underwent 2 to 6 transmission cycles, covering both243
cross-platform and single-platform settings. The resulting244
images were then added to the RRDataset test set, enabling245
a more faithful assessment of detector performance in real-246
world scenarios.247

Trans-Times Percentage Platforms Self-Trans-Limit

2 10% 1–2 2
3 25% 2–3 2
4 25% 2–4 3
5 25% 3–5 3
6 15% 4–6 3

Table 1. Cross-platform multi-transmission workflow, simulat-
ing three levels of information sharing: direct private messag-
ing, limited-scale forwarding, and repeated forwarding of trending
news.

3.3.2. Re-digitization248

Re-digitization refers to the process of converting a digital249
image into a physical format—such as printing or display-250
ing it on a screen—and then converting it back into digital251
form, for instance, via scanning or photography. This pro-252
cess inevitably affects image quality, particularly in reso-253

lution and color fidelity, and may also introduce geometric 254
distortions, adding another layer of complexity for detec- 255
tion. We employ four common re-digitization methods: 256
• Scanning a color printout. 257
• Photographing a color printout. 258
• Photographing an image displayed on a screen using var- 259

ious camera devices. 260
• Photographing a projected digital image with different 261

camera devices. 262
Each method is applied with equal probability to 10,000 real 263
images and 10,000 AI-generated images. The resulting re- 264
digitized images—both real and AI-generated—are then in- 265
corporated into RRDataset. 266

4. RRBench: Benchmarking Model Perfor- 267

mance under Real-World Scenarios 268

4.1. Benchmark Setting 269

Detector Setup: We evaluated 17 detection methods, in- 270
cluding the latest state-of-the-art (SOTA) algorithms intro- 271
duced at KDD 2025, AAAI 2025, and ICLR 2025. Specif- 272
ically, our benchmarks incorporate CNNSpot [53], F3Net 273
[55], GramNet [33], DIRE [54], UnivFD [38], LNP [32], 274
LGard [48], AIDE [56], SSP [9], Fusing [20], Fredect [15], 275
DNF [60], NPR [51], Freq-Net [50], SAFE [29], DRCT [8], 276
and C2P-clip [49]. 277
VLM Setup: To further assess detection capabilities, we 278
tested 10 contemporary vision-language models— gpt-4o- 279
latest [1], Claude-3-7-sonnet [2], Gemini-1-5 pro [52] , 280
Gemini-2 flash [52] , GLM-4v-plus [16], Grok-2-vision 281
[17], Qwen2.5-VL-72B [3] , YI-vision [58], Moonshot- 282
preview-vision-128k[37], and Hunyuan-vision [19], using 283
the following prompt: 284

Prompt for Vision-Language Models
Act as an expert in computational photography and generative AI. An-
alyze the visual characteristics to classify its origin as either real-world
captured or AI-generated.
Your analysis should:
- Examine technical artifacts (unnatural textures, perfect symmetry,
atypical shadow patterns)
- Check for common GAN/diffusion model fingerprints
- Evaluate biological plausibility (eyes, hair, skin textures)
- Identify hyperrealistic elements vs. physical-world imperfections
Format response as JSON: {“classification”: “AI-generated/Real” }

285

Each model was prompted to provide a JSON-based 286
prediction—“AI-generated” or “Real”—based on its visual 287
analysis. By including these vision-language systems, we 288
aim to capture cutting-edge approaches to AI-generated im- 289
age detection, enabling a broader comparison of perfor- 290
mance across multiple methodological paradigms. 291
Metric Setup: We use accuracy on real images and accu- 292
racy on AI-generated images as our primary evaluation met- 293
rics. Since the dataset is balanced across classes, recall and 294
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precision are straightforward to compute.295

Training Setup: Following the setup outlined in296
Chameleon [56] and GenImage [62], we pretrain the297
detectors on GenImage-sd14 and fine-tune them using298
RRDataset-subset. Training details are provided in App. C,299
while results for models without fine-tuning are presented300
in App. D.301

4.2. Results and Analysis302

As shown in Tab. 2, none of the 17 detection meth-303
ods achieve saturated performance on RRDataset, with the304
best accuracy reaching only 89.59%. This highlights both305
the ongoing complexity of AI-generated image detection306
and the crucial role of RRDataset in examining real-world307
challenges. Network transmission and re-digitization sig-308
nificantly degrade detection performance, underlining the309
dataset’s ability to reveal limitations overlooked by conven-310
tional evaluations.311

Impact of Internet Transmission: For internet-312
transmitted images, 14 detectors exhibit reduced fake ac-313
curacy, suggesting that compression artifacts, lower res-314
olution, and color distortion lead to misclassification of315
AI-generated images as real. In particular, Freq-Net [50],316
Fusing [20], and SAFE [29] experience accuracy drops317
of 71.61%, 79.86%, and 97.41%, respectively, underscor-318
ing their lack of robustness. By contrast, DNF [60]and319
DIRE [54], which rely on diffusion-based denoising fea-320
tures, show only minor performance fluctuations under the321
same conditions. DRCT-ConvB [8], which employs diffu-322
sion for image redrawing, similarly demonstrates strong re-323
sistance to transmission artifacts. Methods such as Gram-324
Net [33] and AIDE [56], which focus on visual artifacts and325
noise patterns, also maintain relatively stable results when326
confronted with network-induced degradation.327

Impact of Re-digitization: Re-digitization proves even328
more challenging: 16 of the 17 detection methods suffer329
decreases in fake accuracy. Notably, the diffusion-based330
DIRE [54] and DNF [60] drop by 88.30% and 90.57%, re-331
spectively. In contrast, AIDE [56] exhibits remarkable ro-332
bustness, with only 1.89% reduction in fake accuracy and333
a 4.19% increase in real accuracy—likely owing to its re-334
liance on CLIP-extracted semantic and contextual informa-335
tion, which remains largely intact after re-digitization. C2P-336
clip [49] further corroborates this advantage, showing con-337
sistent resilience under similar transformations.338

Vision-Language Models Performance: Vision-language339
models demonstrate strong zero-shot classification capabil-340
ities, with GPT-4o [1] even surpassing 16 specialized de-341
tectors on the original data. However, their performance342
declines substantially under network transmission and re-343
digitization, indicating that reliance on internal model344
knowledge becomes a liability when images degrade in345
quality or exhibit color distortion.346

Based on our findings, we can draw the following conclu- 347
sions: 348

• DRCT-ConvB [8] achieves the highest overall perfor- 349
mance on RRBench, with diffusion inpainting enhancing 350
its transmission robustness, while the contrastive training 351
strategy ensures its re-digitization resilience. 352

• AIDE [56] demonstrates outstanding resilience on 353
RRBench, thanks to its dual reliance on visual artifac- 354
t/noise pattern analysis and CLIP-derived semantic/con- 355
textual information. 356

• Vision-language models show considerable potential in 357
AI-generated image detection, suggesting that their capa- 358
bilities may be significantly underestimated and warrant 359
deeper exploration in future research. 360

5. Benchmarking Human Performance under 361

Real-World Scenarios 362

In this section, we conduct a comprehensive analysis of hu- 363
man performance on the RRDataset. Sec. 5.1 introduces the 364
evaluation system and process. Sec. 5.2 presents a detailed 365
analysis of human evaluation results. 366

5.1. Human Benchmark Evaluation System 367

Our HRRBench evaluation system consists of five steps, as 368
shown in Fig. 3. A total of 192 participants were randomly 369
assigned to either a special-scenario group or an everyday- 370
scenario group. The special-scenario group viewed images 371
from six high-impact categories: War & Conflict, Disasters 372
& Accidents, Political & Social Events, Medical & Public 373
Health, Culture & Religion, and Labor & Production. To 374
ensure reliability, there was no time limit, the test was con- 375
ducted in a quiet environment on a standardized 4K display, 376
and participants worked independently without any elec- 377
tronic aids or internet access. 378

Phase One Testing. To facilitate direct comparisons with 379
RRBench, we selected 20 real and 20 AI-generated im- 380
ages from each of three categories—original, transmitted, 381
and re-digitized—yielding 120 test images per participant. 382
For each image, participants answered two questions: 1. 383
Is this image AI-generated or real? If participants classi- 384
fied the image as AI-generated, they selected one of 14 rea- 385
sons—five low-level criteria (texture, edge, clarity, distor- 386
tion, overall hue), five mid-level criteria (light & shadow, 387
shape, content deficiency, symmetry, reflection), and four 388
high-level visual criteria (layout, perspective, theme, irreal- 389
ity), consistent with FakeBench [30]. 390

2. How confident are you in this judgment? Responses 391
were provided on a five-point Likert scale. 392

Few-Shot Learning Phase. Each participant viewed two 393
additional images (original, transmitted, and re-digitized) 394
drawn from RRDataset, ensuring no overlap with the main 395
test set. 396
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Table 2. Performance Comparison of 17 Detectors and 10 VLMs on RRDataset. All values are presented as percentages and represent
the average results from three trials. “Fake” denotes the accuracy on AI-generated images, while “Real” represents the accuracy on real
images. Note: Since C2P-clip[49] has not released its training code, we evaluate the model using its pre-trained weights.

Model Original Transmission Re-digitization Overall
Fake(%) Real(%) Fake(%) Real(%) Fake(%) Real(%) ACC(%)

Detectors (Train on GenImage-SDv1.4 & fine-tune on RRDataset)
DRCT-ConvB[8] 93.52 95.52 92.82(-0.70) 95.09(-0.43) 64.34(-29.18) 96.22(+0.70) 89.59

DIRE[54] 89.72 98.25 90.34(+0.62) 97.87(-0.38) 1.42(-88.30) 98.89(+0.64) 79.42
DNF[60] 90.62 99.05 90.98(+0.36) 94.45(-4.60) 0.05(-90.57) 99.98(+0.93) 79.19
AIDE[56] 78.95 78.94 74.72(-4.23) 78.75(-0.19) 76.04(-2.91) 83.13(+4.19) 78.42

GramNet[33] 81.34 74.65 79.49(-1.85) 75.69(+1.04) 79.45(-1.89) 62.02(-12.63) 75.44
CNNSpot[53] 72.42 89.09 65.72(-6.70) 88.78(-0.31) 43.12(-29.30) 86.72(-2.37) 74.31

LNP[32] 83.14 89.26 38.23(-44.91) 89.30(+0.04) 31.91(-51.23) 91.05(+1.79) 70.48
Fredect[15] 79.60 75.93 58.13(-21.47) 82.11(+6.18) 46.34(-33.26) 69.95(-5.98) 68.68

NPR[51] 49.21 96.18 28.08(-21.13) 97.13(+0.95) 38.65(-10.56) 92.42(-3.76) 66.95
Fusing[20] 87.24 92.46 7.38(-79.86) 99.04(+6.58) 30.79(-56.45) 73.97(-18.49) 65.15
SAFE[29] 98.29 88.22 0.88(-97.41) 98.85(+10.63) 2.29(-96.00) 98.82(+10.60) 64.56

Freq-Net[50] 76.08 82.18 4.47(-71.61) 98.64(+16.46) 37.48(-38.60) 77.99(-4.19) 62.81
F3Net[55] 65.82 71.35 52.18(-13.64) 75.49(+4.14) 31.16(-34.66) 74.85(+3.50) 61.81

UnivFD[38] 64.79 64.90 44.61(-20.18) 70.80(+5.90) 36.15(-28.64) 75.69(+10.79) 59.49
C2P-CLIP[49] 17.21 97.54 28.82(+11.61) 99.58(+2.04) 18.01(+0.80) 90.29(-7.25) 58.58

SSP[9] 61.29 64.54 40.62(-20.67) 70.33(+5.79) 32.58(-28.71) 79.94(+15.40) 58.22
LGrad[48] 51.00 81.29 18.86(-32.14) 92.54(+11.25) 14.71(-36.29) 88.27(+6.98) 57.78

VLMs (Zero-shot)
GPT-4o-latest[1] 96.30 92.68 79.41(-16.89) 90.01(-2.67) 69.23(-27.07) 76.92(-15.76) 84.09

Claude-3.7-sonnet[2] 85.12 94.57 71.26(-13.86) 96.17(+1.60) 62.34(-22.78) 85.41(-9.16) 82.48
Gemini-2-flash[52] 72.10 98.43 52.19(-19.91) 97.41(-1.02) 46.11(-25.99) 97.41(-1.02) 77.28
Grok-2-vision[17] 46.15 91.84 52.12(+5.97) 94.03(+2.19) 48.01(+1.86) 81.63(-10.21) 68.96

Gemini-1.5-pro[52] 36.12 97.78 36.36(+0.24) 95.83(-1.95) 22.22(-13.90) 88.64(-9.14) 62.83
Qwen2vl-72B[3] 31.14 88.74 22.87(-8.27) 89.95(+1.21) 26.99(-4.15) 92.55(+3.81) 58.71
GLM4v-plus[16] 22.16 90.57 30.21(+8.05) 86.01(-4.56) 38.16(+16.00) 82.14(-8.43) 58.21

Moonshot-vision[37] 14.68 99.72 16.24(+1.56) 94.75(-4.97) 24.37(+9.69) 96.84(-2.88) 57.77
Hunyuan-vision[19] 28.57 91.84 20.13(-8.44) 86.06(-5.78) 32.14(+3.57) 81.63(-10.21) 56.73

YI-vision[58] 22.73 89.13 20.45(-2.28) 81.81(-7.32) 28.89(+6.16) 78.26(-10.87) 53.55

Figure 3. Human Benckmark Evaluation System.

Phase Two Testing. Phase Two replicated the Phase One397
procedure to evaluate whether 2-shot learning affected per-398
formance.399

Comprehensive Inquiry . Finally, two additional questions400
were posed: 1. When uncertain, do you tend to judge an401

image as AI-generated or real? 2. Please highlight the area 402
you focus on most. For the second question, participants 403
were split into three subgroups of 32, each viewing six AI- 404
generated images. Subgroup 1 viewed the original images, 405
Subgroup 2 the transmitted versions, and Subgroup 3 the 406
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re-digitized versions. Each participant had 10 seconds to407
mark the region they found most telling, using a freeform408
drawing tool based on their immediate impression.409

5.2. Analysis of Human Evaluation Results410

Overall Human Discrimination Ability: As shown in411
Tab. 3, the everyday life-scenario test group achieved an412
overall accuracy of 69.17%, while the special-scenario test413
group reached 59.52%, suggesting that humans are gener-414
ally more adept at discerning AI-generated images in ev-415
eryday contexts. For real images, the everyday-scenario416
group achieved an average accuracy of 80.05%, while the417
special-scenario group reached 79.40%, indicating a negli-418
gible gap. However, for AI-generated images, the every-419
day life-scenario group attained 58.29% accuracy, whereas420
the special-scenario group managed only 39.64%. This dif-421
ference indicates that in more sensitive, high-stakes con-422
texts, humans are significantly less adept at identifying AI-423
generated images than they are in everyday lifescenarios. In424
both groups, internet transmission and re-digitization led to425
a significant, consistent drop in detection accuracy. During426
the first testing phase, these two factors reduced accuracy427
by 14.01% and 14.29%, respectively.428

Table 3. Human Benchmark Testing Accuracy Results. The nu-
merical values in the table indicate accuracy (ACC). Values below
50% are highlighted in red.

Group Original Trans. Re-digit. Overall
Fake Real Fake Real Fake Real ACC

Pre-learning
Everyday Life 64.87 81.65 46.93 71.63 41.98 83.5 65.09

Special-Scenario 46.21 84.21 23.26 79.10 29.17 65.15 54.52
Post-learning

Everyday Life 66.42 85.30 66.31 78.53 63.24 79.70 73.25
Special-Scenario 58.61 79.63 42.15 81.55 38.42 86.76 64.52

Analysis of Human Few-Shot Learning Ability We com-429
pare the results from the first and second testing phases.430
Tab. 3 highlights humans’ robust few-shot learning capa-431
bilities: the everyday life-scenario group and the special-432
scenario group saw average accuracy increases of 8.16%433
and 10.00%, respectively. From a broader perspective, few-434
shot learning boosted network transmission accuracy by435
11.91% and re-digitization accuracy by 12.08%. Notably,436
AI-generated image detection accuracy rose from 42.07%437
to 55.86%—a 13.79% improvement—while real-image de-438
tection went from 77.54% to 81.92%—a 4.37% gain.439
Confidence Analysis: For the five confidence levels pro-440
vided—very uncertain, somewhat uncertain, ambiguous,441
somewhat certain, and very certain—we found that trans-442
mission and re-digitization significantly decreased partici-443
pants’ confidence in their judgments as shown in Fig. 5.444
For original images, the combined proportion of “somewhat445
certain” and “very certain” responses was 51.8%, which446
dropped to 38.3% for transmitted images and 22.7% for447

Figure 4. Trust Crisis Across Everyday Scenarios & Special Sce-
narios.

Figure 5. Uncertainty Levels across original images, transmission
images and re-digital images where 1, 2, 3, 4, and 5 correspond to
“Very Uncertain,” “Somewhat Uncertain,” “Ambiguous,” “Some-
what Certain,” and “Very Certain,” respectively.

re-digitized images. This indicates that transmission and 448
re-digitization greatly impacted participants’ confidence in 449
their judgments. 450

Trust Crisis Emerged in AIGC Era: In the final part of the 451
testing system, we asked all participants, “When you can- 452
not decide whether an image is AI-generated or real, which 453
type are you more inclined to choose?” Surprisingly, in Fig. 454
4, 70.21% of the everyday-scenario group assumed the im- 455
age was AI-generated, while this figure rose to 89.31% in 456
the special-scenario group. These findings indicate a signif- 457
icant crisis of trust in images’ origins, driven by the rapid 458
advancement of AIGC technologies. The impact is espe- 459
cially severe for highly sensitive topics—such as War & 460
Conflict, Disasters & Accidents, Political & Social Events, 461
Medical & Public Health, Culture & Religion, and Labor & 462
Production—where genuine news may be met with unwar- 463
ranted skepticism, negatively influencing the broader infor- 464
mation ecosystem. We therefore urge the community to de- 465
velop more accurate, real-world-aligned detection methods 466
to help mitigate this growing crisis of trust. 467

Analysis of Judgemental Attribution: As shown in 468
Fig. 6, for the 14 possible reasons provided, transmis- 469
sion significantly increased the proportion of responses 470
citing texture, edge, and clarity, rising from 25.78% to 471
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Figure 6. Comparison of Image Attributes Across Original, Transmission and Re-digital.

52.42%. Re-digitization notably increased the propor-472
tion citing light&shadow, reflection, and overall hue, from473
24.08% to 42.33%. This suggests that the effects of trans-474
mission and re-digitization altered participants’ judgment475
criteria: transmission impacts are more related to reduced476
image quality, such as compression artifacts and detail loss,477
while re-digitization effects are more associated with color478
changes and loss of light and shadow details.479

Table 4. Performance Comparison for Human-Inspired
Robustness-Oriented In-Context Learning.

Original Transmission Redigital
Zero-shot

GPT-4o-latest 92.94 84.71 73.08
Claude-3.7-sonnet 89.85 83.72 73.87
Gemini-2-flash 85.27 74.80 71.76
Grok-2-vision 68.99 73.08 64.82

Robustness-Oriented In-Context Learning
GPT-4o-latest 95.67(+2.73) 88.17(+3.46) 78.58(+5.50)
Claude-3.7-sonnet 92.26(+2.41) 84.97(+1.25) 77.76(+3.79)
Gemini-2-flash 88.38(+3.11) 74.99(+0.19) 75.78(+4.02)
Grok-2-vision 72.86(+3.87) 71.52(-1.56) 71.43(+6.61)

5.3. Human-Inspired In-Context Learning Ap-480
proch for VLM Detection481

Inspired by humans’ remarkable few-shot learning abili-482
ties—where participants rapidly improved their robustness483
against network transmission and re-digitization with only484
a small number of samples—as well as the factors influenc-485
ing human decision-making under these conditions, we aim486
to harness the strong zero-shot and in-context learning ca-487
pabilities of VLMs to further enhance detection resilience.488

Our in-context learning approach explicitly emphasizes489
the impact of transmission and re-digitization artifacts,490
guiding the VLM to focus on core image content while491
disregarding irrelevant distortions. Additional comparisons492
with manually designed prompts and other in-context learn-493
ing strategies are presented in Appendix D.494

As shown in Tab. 4, our approach significantly enhances 495
VLM robustness, particularly in re-digitization scenarios. 496
Notably, on GPT-4o, our method achieves a 5.50% im- 497
provement in re-digitization robustness and a 3.90% in- 498
crease in overall accuracy, reaching an average accuracy of 499
87.47%. This performance is approaching that of DCRT- 500
ConvB (89.59%), the strongest detector on RRBench to 501
date. These findings underscore the potential of VLMs in 502
AI-generated image detection. 503

However, the performance gains from our approach in 504
internet transmission are less pronounced than those ob- 505
served for re-digitization. We hypothesize that image 506
compression and overall quality degradation introduced by 507
transmission obscure key generative artifacts from GANs 508
and diffusion models, leading to the loss of crucial visual 509
details. In contrast, re-digitization artifacts—such as screen 510
moiré patterns, scanning noise, and screen glare—tend to 511
be more distinguishable from AI-generated image charac- 512
teristics, making them easier to classify. 513

6. Conclusion 514

In this paper, we introduced the RRDataset, rethinking 515
the evaluation of AI-generated image detection from 516
the perspective of real-world robustness. Our RRBench 517
includes 17 detectors as well as comparisons with 10 518
VLMs, revealing a significant drop in accuracy for cur- 519
rent detection methods under internet transmission and 520
re-digitization conditions. Additionally, we developed the 521
largest human benchmark to date, with 192 participants 522
and 240 test images. We found that human accuracy 523
dropped dramatically when faced with transmitted and 524
re-digitized images; however, after few-shot learning, this 525
effect of transmission and re-digitization was effectively 526
mitigated. We hope this work encourages researchers 527
to focus on the robustness of AI-generated image de- 528
tection in real-world scenarios and to draw inspiration 529
from humans’ exceptional few-shot learning abilities in 530
developing more robust and effective detection methods. 531
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