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Abstract

With the rapid advancement of generative models, highly
realistic image synthesis has posed new challenges to digi-
tal security and media credibility. Although Al-generated
image detection methods have partially addressed these
concerns, a substantial research gap remains in evaluat-
ing their performance under complex real-world condi-
tions. This paper introduces the Real-World Robustness
Dataset (RRDataset) for comprehensive evaluation of de-
tection models across three dimensions: 1) Scenario Gen-
eralization — RRDataset encompasses high-quality images
from seven major scenarios (War & Conflict, Disasters &
Accidents, Political & Social Events, Medical & Public
Health, Culture & Religion, Labor & Production, and ev-
eryday life), addressing existing dataset gaps from a con-
tent perspective. 2) Internet Transmission Robustness —
examining detector performance on images that have un-
dergone multiple rounds of sharing across various social
media platforms. 3) Re-digitization Robustness — assessing
model effectiveness on images altered through four distinct
re-digitization methods.

We benchmarked 17 detectors and 10 vision-language
models (VLMs) on RRDataset and conducted a large-
scale human study involving 192 participants to investi-
gate human few-shot learning capabilities in detecting Al-
generated images. The benchmarking results reveal the lim-
itations of current Al detection methods under real-world
conditions and underscore the importance of drawing on
human adaptability to develop more robust detection algo-
rithms. Our dataset is publicly available under an anony-
mous link for review purposes: https://zenodo.
org/records/14963880.

1. Introduction

With the emergence of powerful generative models [24,
40, 44, 45], Al-generated images are increasingly diffi-
cult to distinguish from real ones. Such indistinguishable

Al-generated images pose risks to society, including the
spread of misinformation and misleading visual cues. Con-
sequently, the identification of Al-generated images has be-
come a critical task with profound real-world implications.

An increasing number of studies explore various detec-
tion methods based on different features, including image
texture [33], gradients [48], patch-level features [6, 9, 35],
frequency-domain characteristics [12, 13, 15, 59], fine-
grained image details [20, 46], and reconstruction loss
[43, 54]. Large multimodal models (VLMs) have also been
adapted for detection tasks [25, 26, 38, 47]. Although
conventional benchmarks such as Genlmage [62], Fake2M
[34], WildFake [18], and Chameleon [56] offer sizeable
collections of generative images, they share two signifi-
cant limitations. First, they primarily consist of everyday-
life images, making it hard to assess whether the detection
methods can effectively generalize to other scenarios. Sec-
ond, they fail to account for the influence of internet so-
cial media transmissions or re-digitization processes, thus
inflating detection performance relative to the complexities
of real-world conditions.

To address these gaps, we introduce RRDataset, the
first benchmark designed explicitly to evaluate detec-
tors’ robustness in practical contexts. RRDataset encom-
passes images from seven diverse and challenging scenar-
ios—including War & Conflict, Disasters & Accidents, Po-
litical & Social Events, Medical & Public Health, Culture
& Religion, and Labor & Production—thereby filling cru-
cial content gaps in existing benchmarks. Moreover, it sys-
tematically includes internet transmission and four distinct
re-digitization processes, enabling a deeper assessment of
how these factors degrade detector performance in realis-
tic use cases. We benchmark 17 detection methods and
10 vision-language models (VLMs) on RRDataset, find-
ing substantial performance declines under both transmis-
sion and re-digitization conditions—shortcomings that have
largely been overlooked in previous evaluations. We fur-
ther establish a large-scale human benchmark, involving
192 participants and 240 test images, to investigate how hu-
man observers adapt in similar conditions. Although hu-
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Figure 1. Real-Robust Bench overview, featuring a wide range of scenarios and real-world robustness incorporating four re-digitization
methods and internet transmission processes. Additionally, we introduce the largest human benchmark to date, with 192 participants from
diverse backgrounds and 240 test images.
076 man accuracy also decreases when confronted with altered current detectors. However, most of these datasets concen- 111
077 images, it improves significantly after a few-shot learning trate on everyday scenarios drawn from sources like Ima- 112
078 phase, highlighting a capacity for rapid adaptation that may geNet [11] or COCO [31], neglecting critical contexts such 113
079 inspire future detection algorithm design. as war, disasters, or public health, where misinformation 114
080 The main contributions are summarized as follows: can be particularly damaging. 115
081 * We propose RRDataset, the first dataset incorporating six Several recent works also explore robustness under data 116
082 critical high-risk scenarios and aspects of daily life. To augmentation or online transmission. SEMI-TRUTHS [39] 117
083 enhance its realism and applicability, the images within investigates how different augmentations affect detection 118
084 this dataset have been transmitted over the internet and performance, whereas WildRF [5] and FOSID [21] collecta 119
085 re-digitized, thereby simulating real-world image degra- limited amount of web-transmitted data to examine detector 120
086 dation as shown in Fig. 1. robustness. However, their choice of platforms and overall 121
087 * We conduct RRBench, a comprehensive benchmark eval- scale remains narrow, rendering the results less representa- 122
088 uating 17 detection methods and 10 VLMs, revealing that tive of the broader impact of social media transmission. 123
089 current detection strategies suffer notable performance RRDataset addresses these gaps by covering diverse 124
090 drops under transmission and re-digitization. high-impact scenarios while also modeling multiple rounds 125
091 e Our RRBench also constructs the largest human Al- of online transmission and various re-digitization processes. 126
092 Generated image benchmark to date, involving 192 par- This approach enables a more faithful assessment of de- 127
093 ticipants and 240 test images. Our analysis uncovers the tection performance in scenarios that closely mirror actual 128
094 remarkable few-shot adaptation capabilities of human ob- practices and challenges. 129
095 Servers. Human Benchmark for AI Image Detection: HPBench 130
[34] is the first to collect data from 50 participants on 100 131
096 2. Related work test images, along with insights into why participants iden- 132
tified certain images as Al-generated. However, this study 133
097 Al-Generated Image Datasets: With the rapid evolu- used images exclusively generated by Midjourney, which 134
098 tion of generative models, AI-generated image detection may introduce bias due to reliance on a sing]e generator, 135
099 datasets have undergone substantial changes. Early ef- and its limited sample size and question set constrain the 136
100 forts, such as CNNSpot [53], primarily employed Pro- scope of its findings. While FakeBench [30] uses images 137
101 GAN [22]-produced images to evaluate detection perfor- from multiple generators, it does not account for the ef- 138
102 mance. More recent works—including CiFAKE [4] and fects of image transmission or re-digitization and includes 139
103 DE-FAKE [47]—have shifted toward diffusion-based ap- only 34 participants. This paper establish the largest human 140
104 proaches, yielding more realistic synthetic images. benchmark to date, addressing these limitations by incor- 141
105 Large-scale datasets such as Genlmage [62], WildFake porating 192 participants and 240 test images, encompass- 142
106 [18], Fake2M [34], Chameleon [56], and PatchCraft [61] ing original, transmitted, and re-digitized images. We con- 143
107 have pushed the boundaries of size and diversity, reaching ducted a detailed analysis of how AIGC and photography 144
108 millions of synthetic samples from multiple model archi- backgrounds impact detection accuracy. Additionally, we 145
109 tectures. Some datasets like Chameleon [56], emphasize explored human few-shot learning capabilities in detecting 146
110 high-quality human-curated images to expose blind spots in Al-generated images. 147
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Figure 2. Special-scenario image generation pipeline, illustrating scenario definition, theme expansion, prompt refinement, and final image

filtering.

AI-Generated Image Detectors: With the continuous de-
velopment of generative models, numerous detection meth-
ods [6, 8-10, 20, 27, 29, 33, 35, 38, 43, 46, 49, 51, 54, 56]
have emerged. While these methods achieve impressive
accuracy on their respective test sets, robust evaluation re-
mains largely unaddressed. Existing methods typically limit
robustness evaluation to resizing, JPEG compression and
Gaussian blur, with some studies using only JPEG compres-
sion at a quality level of 90, which does not closely simulate
real-world conditions. Therefore, it is essential to evaluate
these detectors’ performance in realistic scenarios. A more
comprehensive overview of Al-generated image detection
methods can be found in Appendix A.

3. Dataset Construction

3.1. Dataset Rationale

The primary goal of RRDataset is to comprehensively
benchmark Al-generated image detectors under real-world
conditions, focusing on three critical dimensions: 1) Multi-
scenario detection capability: We incorporate a broad
range of image contexts, including rarely encountered or
sensitive scenarios, to ensure that detection models are eval-
uated on content closely mirroring real-world usage. 2)
Internet transmission robustness: Images routinely un-
dergo repeated sharing and compression on various social
media platforms. We expect a reliable detector to main-
tain accuracy despite these transmission-induced degrada-
tions. 3) Re-digitization robustness: Re-digitization—via
scanning, re-photographing, or similar methods—is a piv-
otal yet underexplored challenge. Many practical scenarios
lack direct digital files (e.g., PNG, JPG), such as verifying
images in newspapers, presentation slides, or street adver-
tisements. In RRDataset, an image’s label (Real vs. Al) is
determined solely by its original source, underscoring the
need for detectors to withstand transformations introduced

by re-digitization.

By encompassing these three dimensions, RRDataset
aims to provide a comprehensive and realistic evaluation
framework that addresses the often-overlooked factors lim-
iting current detection methods in existing assessments.

3.2. Data Collection

3.2.1. Special-Scenario Image Collection

To capture diverse and critical contexts, RRDataset includes
six specialized scenarios: War & Conflict, Disasters &
Accidents, Political & Social Events, Medical & Public
Health, Culture & Religion, and Labor & Production. First,
each scenario is expanded into 10 manually defined theme
(e.g., traffic accidents, floods, earthquakes, wildfires, and
plane crashes under Disasters & Accidents). Next, we use
Qwen2.57b-instruct [57] to further enrich these sub-topics
into prompts, adding location details and additional descrip-
tive elements. This process yields 24,000 prompts, which
are then used by SD 3.5 Large [44] and Flux.1 [28] to gener-
ate 48,000 images at various resolutions. We filter the gen-
erated images using CLIP-score [41] (removing those be-
low 0.27) and an NSFW safety checker, discarding any that
exhibit low text-image alignment or contain unsafe content.
After filtering, we retain 6,000 high-quality Al-generated
images (1,000 per scenario), the complete image genera-
tion workflow is illustrated in Fig. 2 .For real images, we
collect an additional 6,000 samples from openly licensed
news photography websites, including Reuters Pictures, As-
sociated Press Images, BBC News In Pictures, UN Photo,
and the International Committee of the Red Cross, ensuring
consistent coverage of the same six domains.

3.2.2. Everyday Life-Scenario Image Collection

We then gather 4,000 real-life images from COCO [31],
CC3M-val [7], and the publicly licensed photography plat-
form Unsplash. To generate Al counterparts, we use cap-
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tions from COCO [31] and CC3M-val [7] as prompts for
various generative models (SD 3.5 Large [44], Flux.1 [28],
DALL-E3 [42], SDv1.4, SDv1.5 [44], and Midjourney
[36D).

Since real-world images include both high-resolution
and low-resolution examples [14], we also incorporate a
portion of lower-resolution images generated by StyleGAN
[23] and ProGAN [22] into RRDataset to better capture this
characteristic. This step ensures that RRDataset more ac-
curately reflects the real-world variations in image quality.
Ultimately, we obtained a dataset of 4,000 images repre-
senting everyday scenes.

3.3. Data transformation

In this section, we describe how internet transmission and
re-digitization are applied to our dataset. We also provide a
detailed discussion in App. B on why these transformations
are critical for Al-generated image detection and how they
manifest in real-world scenarios.

3.3.1. Internet Transmission

Social media platforms typically compress images, causing
reductions in resolution, compression artifacts, and detail
loss. To evaluate detector robustness under realistic trans-
mission conditions, we subjected all 10,000 real images and
10,000 Al-generated images from RRDataset to multiple
rounds of sending through popular messaging and social
platforms—Telegram, WeChat, Facebook, QQ, WhatsApp,
X, Instagram, and Tinder. As summarized in Tab. [, each
image underwent 2 to 6 transmission cycles, covering both
cross-platform and single-platform settings. The resulting
images were then added to the RRDataset test set, enabling
a more faithful assessment of detector performance in real-
world scenarios.

Trans-Times Percentage Platforms Self-Trans-Limit

2 10% 1-2 2
3 25% 2-3 2
4 25% 2-4 3
5 25% 3-5 3
6 15% 4-6 3

Table 1. Cross-platform multi-transmission workflow, simulat-
ing three levels of information sharing: direct private messag-
ing, limited-scale forwarding, and repeated forwarding of trending
news.

3.3.2. Re-digitization

Re-digitization refers to the process of converting a digital
image into a physical format—such as printing or display-
ing it on a screen—and then converting it back into digital
form, for instance, via scanning or photography. This pro-
cess inevitably affects image quality, particularly in reso-

lution and color fidelity, and may also introduce geometric

distortions, adding another layer of complexity for detec-

tion. We employ four common re-digitization methods:

¢ Scanning a color printout.

» Photographing a color printout.

* Photographing an image displayed on a screen using var-
ious camera devices.

* Photographing a projected digital image with different
camera devices.

Each method is applied with equal probability to 10,000 real

images and 10,000 Al-generated images. The resulting re-

digitized images—both real and Al-generated—are then in-

corporated into RRDataset.

4. RRBench: Benchmarking Model Perfor-
mance under Real-World Scenarios

4.1. Benchmark Setting

Detector Setup: We evaluated 17 detection methods, in-
cluding the latest state-of-the-art (SOTA) algorithms intro-
duced at KDD 2025, AAAI 2025, and ICLR 2025. Specif-
ically, our benchmarks incorporate CNNSpot [53], F3Net
[55], GramNet [33], DIRE [54], UnivFD [38], LNP [32],
LGard [48], AIDE [56], SSP [9], Fusing [20], Fredect [15],
DNF [60], NPR [51], Freq-Net [50], SAFE [29], DRCT [8],
and C2P-clip [49].

VLM Setup: To further assess detection capabilities, we
tested 10 contemporary vision-language models— gpt-4o-
latest [1], Claude-3-7-sonnet [2], Gemini-1-5 pro [52] ,
Gemini-2 flash [52] , GLM-4v-plus [16], Grok-2-vision
[17], Qwen2.5-VL-72B [3] , Yl-vision [58], Moonshot-
preview-vision-128k[37], and Hunyuan-vision [19], using
the following prompt:

(Prompt for Vision-Language Models R

Act as an expert in computational photography and generative Al. An-

alyze the visual characteristics to classify its origin as either real-world

captured or Al-generated.

Your analysis should:

- Examine technical artifacts (unnatural textures, perfect symmetry,

atypical shadow patterns)

- Check for common GAN/diffusion model fingerprints

- Evaluate biological plausibility (eyes, hair, skin textures)

- Identify hyperrealistic elements vs. physical-world imperfections
kFormat response as JSON: {“classification”: “Al-generated/Real” }

Each model was prompted to provide a JSON-based
prediction—"“Al-generated” or “Real”—based on its visual
analysis. By including these vision-language systems, we
aim to capture cutting-edge approaches to Al-generated im-
age detection, enabling a broader comparison of perfor-
mance across multiple methodological paradigms.

Metric Setup: We use accuracy on real images and accu-
racy on Al-generated images as our primary evaluation met-
rics. Since the dataset is balanced across classes, recall and
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precision are straightforward to compute.

Training Setup: Following the setup outlined in
Chameleon [56] and Genlmage [62], we pretrain the
detectors on Genlmage-sd14 and fine-tune them using
RRDataset-subset. Training details are provided in App. C,
while results for models without fine-tuning are presented
in App. D.

4.2. Results and Analysis

As shown in Tab. 2, none of the 17 detection meth-
ods achieve saturated performance on RRDataset, with the
best accuracy reaching only 89.59%. This highlights both
the ongoing complexity of Al-generated image detection
and the crucial role of RRDataset in examining real-world
challenges. Network transmission and re-digitization sig-
nificantly degrade detection performance, underlining the
dataset’s ability to reveal limitations overlooked by conven-
tional evaluations.

Impact of Internet Transmission: For internet-
transmitted images, 14 detectors exhibit reduced fake ac-
curacy, suggesting that compression artifacts, lower res-
olution, and color distortion lead to misclassification of
Al-generated images as real. In particular, Freq-Net [50],
Fusing [20], and SAFE [29] experience accuracy drops
of 71.61%, 79.86%, and 97.41%, respectively, underscor-
ing their lack of robustness. By contrast, DNF [60]and
DIRE [54], which rely on diffusion-based denoising fea-
tures, show only minor performance fluctuations under the
same conditions. DRCT-ConvB [8], which employs diffu-
sion for image redrawing, similarly demonstrates strong re-
sistance to transmission artifacts. Methods such as Gram-
Net [33] and AIDE [56], which focus on visual artifacts and
noise patterns, also maintain relatively stable results when
confronted with network-induced degradation.

Impact of Re-digitization: Re-digitization proves even
more challenging: 16 of the 17 detection methods suffer
decreases in fake accuracy. Notably, the diffusion-based
DIRE [54] and DNF [60] drop by 88.30% and 90.57%, re-
spectively. In contrast, AIDE [56] exhibits remarkable ro-
bustness, with only 1.89% reduction in fake accuracy and
a 4.19% increase in real accuracy—likely owing to its re-
liance on CLIP-extracted semantic and contextual informa-
tion, which remains largely intact after re-digitization. C2P-
clip [49] further corroborates this advantage, showing con-
sistent resilience under similar transformations.
Vision-Language Models Performance: Vision-language
models demonstrate strong zero-shot classification capabil-
ities, with GPT-40 [1] even surpassing 16 specialized de-
tectors on the original data. However, their performance
declines substantially under network transmission and re-
digitization, indicating that reliance on internal model
knowledge becomes a liability when images degrade in
quality or exhibit color distortion.

Based on our findings, we can draw the following conclu-

sions:

* DRCT-ConvB [8] achieves the highest overall perfor-
mance on RRBench, with diffusion inpainting enhancing
its transmission robustness, while the contrastive training
strategy ensures its re-digitization resilience.

e AIDE [56] demonstrates outstanding resilience on
RRBench, thanks to its dual reliance on visual artifac-
t/noise pattern analysis and CLIP-derived semantic/con-
textual information.

* Vision-language models show considerable potential in
Al-generated image detection, suggesting that their capa-
bilities may be significantly underestimated and warrant
deeper exploration in future research.

5. Benchmarking Human Performance under
Real-World Scenarios

In this section, we conduct a comprehensive analysis of hu-
man performance on the RRDataset. Sec. 5.1 introduces the
evaluation system and process. Sec. 5.2 presents a detailed
analysis of human evaluation results.

5.1. Human Benchmark Evaluation System

Our HRRBench evaluation system consists of five steps, as
shown in Fig. 3. A total of 192 participants were randomly
assigned to either a special-scenario group or an everyday-
scenario group. The special-scenario group viewed images
from six high-impact categories: War & Conflict, Disasters
& Accidents, Political & Social Events, Medical & Public
Health, Culture & Religion, and Labor & Production. To
ensure reliability, there was no time limit, the test was con-
ducted in a quiet environment on a standardized 4K display,
and participants worked independently without any elec-
tronic aids or internet access.
Phase One Testing. To facilitate direct comparisons with
RRBench, we selected 20 real and 20 Al-generated im-
ages from each of three categories—original, transmitted,
and re-digitized—yielding 120 test images per participant.
For each image, participants answered two questions: 1.
Is this image Al-generated or real? If participants classi-
fied the image as Al-generated, they selected one of 14 rea-
sons—five low-level criteria (texture, edge, clarity, distor-
tion, overall hue), five mid-level criteria (light & shadow,
shape, content deficiency, symmetry, reflection), and four
high-level visual criteria (layout, perspective, theme, irreal-
ity), consistent with FakeBench [30].

2. How confident are you in this judgment? Responses
were provided on a five-point Likert scale.
Few-Shot Learning Phase. Each participant viewed two
additional images (original, transmitted, and re-digitized)
drawn from RRDataset, ensuring no overlap with the main
test set.
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Table 2. Performance Comparison of 17 Detectors and 10 VLMs on RRDataset. All values are presented as percentages and represent
the average results from three trials. “Fake” denotes the accuracy on Al-generated images, while “Real” represents the accuracy on real
images. Note: Since C2P-clip[49] has not released its training code, we evaluate the model using its pre-trained weights.
Model Original Transmission Re-digitization Overall
Fake(%) Real(%) Fake(%) Real(%) Fake(%) Real(%) ACC(%)
Detectors (Train on Genlmage-SDv1.4 & fine-tune on RRDataset)
DRCT-ConvB|[8] 93.52 95.52 92.82(-0.70) 95.09(-0.43) 64.34(-29.18)  96.22(+0.70) 89.59
DIRE[54] 89.72 98.25 90.34(+0.62) 97.87(-0.38) 1.42(-88.30) 98.89(+0.64) 79.42
DNF[60] 90.62 99.05 90.98(+0.36) 94.45(-4.60) 0.05(-90.57) 99.98(+0.93) 79.19
AIDE[56] 78.95 78.94 74.72(-4.23) 78.75(-0.19) 76.04(-2.91) 83.13(+4.19) 78.42
GramNet[33] 81.34 74.65 79.49(-1.85) 75.69(+1.04) 79.45(-1.89)  62.02(-12.63) 75.44
CNNSpot[53] 72.42 89.09 65.72(-6.70) 88.78(-0.31) 43.12(-29.30) 86.72(-2.37) 74.31
LNP[32] 83.14 89.26 38.23(-44.91)  89.30(+0.04) | 31.91(-51.23)  91.05(+1.79) 70.48
Fredect[15] 79.60 75.93 58.13(-21.47)  82.11(+6.18) | 46.34(-33.26)  69.95(-5.98) 68.68
NPR[51] 49.21 96.18 28.08(-21.13)  97.13(+0.95) | 38.65(-10.56)  92.42(-3.76) 66.95
Fusing[20] 87.24 92.46 7.38(-79.86) 99.04(+6.58) | 30.79(-56.45)  73.97(-18.49) 65.15
SAFE[29] 98.29 88.22 0.88(-97.41)  98.85(+10.63) | 2.29(-96.00)  98.82(+10.60) 64.56
Freq-Net[50] 76.08 82.18 4.47(-71.61)  98.64(+16.40) | 37.48(-38.60)  77.99(-4.19) 62.81
F3Net[55] 65.82 71.35 52.18(-13.64)  75.49(+4.14) | 31.16(-34.66)  74.85(+3.50) 61.81
UnivFD[38] 64.79 64.90 44.61(-20.18)  70.80(+5.90) | 36.15(-28.64)  75.69(+10.79) 59.49
C2P-CLIP[49] 17.21 97.54 28.82(+11.61)  99.58(+2.04) 18.01(+0.80) 90.29(-7.25) 58.58
SSP[9] 61.29 64.54 40.62(-20.67)  70.33(+5.79) | 32.58(-28.71)  79.94(+15.40) 58.22
LGrad[48] 51.00 81.29 18.86(-32.14)  92.54(+11.25) | 14.71(-36.29)  88.27(+6.98) 57.78
VLMs (Zero-shot)
GPT-4o-latest[ 1] 96.30 92.68 79.41(-16.89)  90.01(-2.67) 69.23(-27.07)  76.92(-15.76) 84.09
Claude-3.7-sonnet[2] 85.12 94.57 71.26(-13.86)  96.17(+1.60) | 62.34(-22.78) 85.41(-9.16) 82.48
Gemini-2-flash[52] 72.10 98.43 52.19(-1991)  97.41(-1.02) 46.11(-25.99)  97.41(-1.02) 77.28
Grok-2-vision[17] 46.15 91.84 52.12(+5.97) 94.03(+2.19) 48.01(+1.86)  81.63(-10.21) 68.96
Gemini-1.5-pro[52] 36.12 97.78 36.36(+0.24) 95.83(-1.95) 22.22(-13.90) 88.64(-9.14) 62.83
Qwen2vl-72B[3] 31.14 88.74 22.87(-8.27) 89.95(+1.21) 26.99(-4.15) 92.55(+3.81) 58.71
GLM4v-plus[16] 22.16 90.57 30.21(+8.05) 86.01(-4.56) | 38.16(+16.00)  82.14(-8.43) 58.21
Moonshot-vision[37] 14.68 99.72 16.24(+1.56) 94.75(-4.97) 24.37(+9.69) 96.84(-2.88) 57.77
Hunyuan-vision[19] 28.57 91.84 20.13(-8.44) 86.06(-5.78) 32.14(+3.57)  81.63(-10.21) 56.73
YI-vision[58] 22.73 89.13 20.45(-2.28) 81.81(-7.32) 28.89(+6.16)  78.26(-10.87) 53.55
\Step 1: Phase Ttest  Image>:001 -. Step 2: Few-shot Learning !
: Question 1: Real or AI 2 e 1
' 120 Propfn:tional if AL, why AI ? : :
:test images Tr;:ir;z]i;n, ! / % :
: Re-digitization Question 2: level of confidence? | — 1
. WS T ! zation Real_ |
:____________St_ep_3_:l_’h_as_e;1_te;t______________-ilr _______ T S_te_ﬂ_c_orﬁp_re_itef_nﬁv_ez_n&u_tr} _____ 7_—_________1
] Same setting with Phase I tes '\ Qfl’s‘iifiﬁ';;"cﬁiﬁ the areas of the e et you are most st i,
Figure 3. Human Benckmark Evaluation System.
397 Phase Two Testing. Phase Two replicated the Phase One image as Al-generated or real? 2. Please highlight the area 402
398 procedure to evaluate whether 2-shot learning affected per- you focus on most. For the second question, participants 403
399 formance. were split into three subgroups of 32, each viewing six Al- 404
. . . . . generated images. Subgroup 1 viewed the original images, 405
400 Comprehensive Inquiry . Fma}ly, two additional questlons Subgroup 2 the transmitted versions, and Subgroup 3 the 406
401 were posed: 1. When uncertain, do you tend to judge an
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re-digitized versions. Each participant had 10 seconds to
mark the region they found most telling, using a freeform
drawing tool based on their immediate impression.

5.2. Analysis of Human Evaluation Results

Overall Human Discrimination Ability: As shown in
Tab. 3, the everyday life-scenario test group achieved an
overall accuracy of 69.17%, while the special-scenario test
group reached 59.52%, suggesting that humans are gener-
ally more adept at discerning Al-generated images in ev-
eryday contexts. For real images, the everyday-scenario
group achieved an average accuracy of 80.05%, while the
special-scenario group reached 79.40%, indicating a negli-
gible gap. However, for Al-generated images, the every-
day life-scenario group attained 58.29% accuracy, whereas
the special-scenario group managed only 39.64%. This dif-
ference indicates that in more sensitive, high-stakes con-
texts, humans are significantly less adept at identifying Al-
generated images than they are in everyday lifescenarios. In
both groups, internet transmission and re-digitization led to
a significant, consistent drop in detection accuracy. During
the first testing phase, these two factors reduced accuracy
by 14.01% and 14.29%, respectively.

Table 3. Human Benchmark Testing Accuracy Results. The nu-
merical values in the table indicate accuracy (ACC). Values below
50% are highlighted in red.

Group ‘ Original Trans. ‘ Re-digit. ‘ Overall
Fake Real | Fake Real | Fake Real ACC
Pre-learning
Everyday Life | 64.87 81.65 | 46.93 71.63 | 41.98 83.5 65.09
Special-Scenario | 46.21  84.21 | 23.26 79.10 ‘ 29.17  65.15 ‘ 54.52
Post-learning
Everyday Life | 66.42 8530 | 66.31 78.53 | 63.24 79.70 | 73.25
Special-Scenario | 58.61 79.63 | 42.15 81.55 | 3842 86.76 | 64.52

Analysis of Human Few-Shot Learning Ability We com-
pare the results from the first and second testing phases.
Tab. 3 highlights humans’ robust few-shot learning capa-
bilities: the everyday life-scenario group and the special-
scenario group saw average accuracy increases of 8.16%
and 10.00%, respectively. From a broader perspective, few-
shot learning boosted network transmission accuracy by
11.91% and re-digitization accuracy by 12.08%. Notably,
Al-generated image detection accuracy rose from 42.07%
to 55.86%—a 13.79% improvement—while real-image de-
tection went from 77.54% to 81.92%—a 4.37% gain.

Confidence Analysis: For the five confidence levels pro-
vided—very uncertain, somewhat uncertain, ambiguous,
somewhat certain, and very certain—we found that trans-
mission and re-digitization significantly decreased partici-
pants’ confidence in their judgments as shown in Fig. 5.
For original images, the combined proportion of ‘“somewhat
certain” and “very certain” responses was 51.8%, which
dropped to 38.3% for transmitted images and 22.7% for

Everyday-Scenario

Special-Scenario

Real

Al-generated

Al-generated

Figure 4. Trust Crisis Across Everyday Scenarios & Special Sce-
narios.

Certainty Levels Across Conditions

N I I I
o T T T
1 2 3

Certainty Levels

Original
Transmission
e Re-digital

Percentage (%)
8
1

i

Figure 5. Uncertainty Levels across original images, transmission
images and re-digital images where 1, 2, 3, 4, and 5 correspond to
“Very Uncertain,” “Somewhat Uncertain,” “Ambiguous,” “Some-
what Certain,” and “Very Certain,” respectively.

re-digitized images. This indicates that transmission and
re-digitization greatly impacted participants’ confidence in
their judgments.

Trust Crisis Emerged in AIGC Era: In the final part of the
testing system, we asked all participants, “When you can-
not decide whether an image is Al-generated or real, which
type are you more inclined to choose?” Surprisingly, in Fig.
4,70.21% of the everyday-scenario group assumed the im-
age was Al-generated, while this figure rose to 89.31% in
the special-scenario group. These findings indicate a signif-
icant crisis of trust in images’ origins, driven by the rapid
advancement of AIGC technologies. The impact is espe-
cially severe for highly sensitive topics—such as War &
Conflict, Disasters & Accidents, Political & Social Events,
Medical & Public Health, Culture & Religion, and Labor &
Production—where genuine news may be met with unwar-
ranted skepticism, negatively influencing the broader infor-
mation ecosystem. We therefore urge the community to de-
velop more accurate, real-world-aligned detection methods
to help mitigate this growing crisis of trust.

Analysis of Judgemental Attribution: As shown in
Fig. 6, for the 14 possible reasons provided, transmis-
sion significantly increased the proportion of responses
citing texture, edge, and clarity, rising from 25.78% to
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Comparison of Image Attributes Across Conditions
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Figure 6. Comparison of Image Attributes Across Original, Transmission and Re-digital.
52.42%. Re-digitization notably increased the propor- As shown in Tab. 4, our approach significantly enhances

tion citing light&shadow, reflection, and overall hue, from
24.08% to 42.33%. This suggests that the effects of trans-
mission and re-digitization altered participants’ judgment
criteria: transmission impacts are more related to reduced
image quality, such as compression artifacts and detail loss,
while re-digitization effects are more associated with color
changes and loss of light and shadow details.

Table 4. Performance Comparison for Human-Inspired
Robustness-Oriented In-Context Learning.

Original Transmission Redigital
Zero-shot
GPT-40-latest 92.94 84.71 73.08
Claude-3.7-sonnet 89.85 83.72 73.87
Gemini-2-flash 85.27 74.80 71.76
Grok-2-vision 68.99 73.08 64.82
Robustness-Oriented In-Context Learning
GPT-40-latest 95.67(+2.73)  88.17(+3.46)  78.58(+5.50)
Claude-3.7-sonnet  92.26(+2.41)  84.97(+1.25)  77.76(+3.79)
Gemini-2-flash 88.38(+3.11)  74.99(+0.19)  75.78(+4.02)
Grok-2-vision 72.86(+3.87)  71.52(-1.56)  71.43(+6.61)

5.3. Human-Inspired In-Context Learning Ap-
proch for VLM Detection

Inspired by humans’ remarkable few-shot learning abili-
ties—where participants rapidly improved their robustness
against network transmission and re-digitization with only
a small number of samples—as well as the factors influenc-
ing human decision-making under these conditions, we aim
to harness the strong zero-shot and in-context learning ca-
pabilities of VLMs to further enhance detection resilience.

Our in-context learning approach explicitly emphasizes
the impact of transmission and re-digitization artifacts,
guiding the VLM to focus on core image content while
disregarding irrelevant distortions. Additional comparisons
with manually designed prompts and other in-context learn-
ing strategies are presented in Appendix D.

VLM robustness, particularly in re-digitization scenarios.
Notably, on GPT-40, our method achieves a 5.50% im-
provement in re-digitization robustness and a 3.90% in-
crease in overall accuracy, reaching an average accuracy of
87.47%. This performance is approaching that of DCRT-
ConvB (89.59%), the strongest detector on RRBench to
date. These findings underscore the potential of VLMs in
Al-generated image detection.

However, the performance gains from our approach in
internet transmission are less pronounced than those ob-
served for re-digitization. We hypothesize that image
compression and overall quality degradation introduced by
transmission obscure key generative artifacts from GANs
and diffusion models, leading to the loss of crucial visual
details. In contrast, re-digitization artifacts—such as screen
moiré patterns, scanning noise, and screen glare—tend to
be more distinguishable from Al-generated image charac-
teristics, making them easier to classify.

6. Conclusion

In this paper, we introduced the RRDataset, rethinking
the evaluation of Al-generated image detection from
the perspective of real-world robustness. Our RRBench
includes 17 detectors as well as comparisons with 10
VLMs, revealing a significant drop in accuracy for cur-
rent detection methods under internet transmission and
re-digitization conditions. Additionally, we developed the
largest human benchmark to date, with 192 participants
and 240 test images. We found that human accuracy
dropped dramatically when faced with transmitted and
re-digitized images; however, after few-shot learning, this
effect of transmission and re-digitization was effectively
mitigated. We hope this work encourages researchers
to focus on the robustness of Al-generated image de-
tection in real-world scenarios and to draw inspiration
from humans’ exceptional few-shot learning abilities in
developing more robust and effective detection methods.
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