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Abstract

It has been observed that transformers with greater depth (that is, more layers) have
more capabilities, but can we establish formally which capabilities are gained?
We answer this question with a theoretical proof followed by an empirical study.
First, we consider transformers that round to fixed precision except inside atten-
tion. We show that this subclass of transformers is expressively equivalent to the
programming language C-RASP and this equivalence preserves depth. Second, we
prove that deeper C-RASP programs are more expressive than shallower C-RASP
programs, implying that deeper transformers are more expressive than shallower
transformers (within the subclass mentioned above). The same is also proven for
transformers with positional encodings (like RoPE and ALiBi). These results are
established by studying a temporal logic with counting operators equivalent to
C-RASP. Finally, we provide empirical evidence that our theory predicts the depth
required for transformers without positional encodings to length-generalize on a
family of sequential dependency tasks.

1 Introduction

Transformers in practice have been getting deeper and deeper over time. The original implementation
(Vaswani et al., 2017) used transformers with 8 layers. BERT-Large (Devlin et al., 2019) had 24;
GPT-2-XL (Radford et al., 2019) had 48; GPT-3 175B (Brown et al., 2020) had 96. Can we explain
what are the effects of deepening the networks?
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Figure 1: Theoretical results. C-RASP is equiva-
lent to fixed-precision transformers, and a strict
depth hierarchy for C-RASP (deeper programs
solve more problems) implies a strict depth hi-
erarchy for fixed-precision transformers (deeper
networks solve more problems).

Accuracy
depth →

1 2 3 4 5 6 7 8 9 10
𝐿3 100 100 100 100 100 100 100 100 100 100
𝐿4 22 100 100 100 100 100 100 100 100 100
𝐿5 11 51 100 100 100 100 100 100 100 100
𝐿6 10 8 37 100 98 100 100 100 100 100
𝐿7 8 8 20 49 100 100 100 100 98 100
𝐿8 5 6 19 52 75 95 100 100 100 100
𝐿9 7 7 6 24 29 66 95 99 98 93
𝐿10 2 2 2 6 12 49 77 96 96 98
𝐿11 2 2 3 3 6 11 46 31 96 89
𝐿12 0 0 0 1 2 4 21 30 27 62

Figure 2: Our theoretical results predict that a
transformer with depth 𝑘 can recognize language
𝐿𝑘+2 but not 𝐿𝑘+3 (demarcated by the black line),
and this closely predicts our experimental results
(shown as numbers and colors).



We can empirically observe capabilities that deeper transformers exhibit which shallower transformers
do not. For instance, Clark et al. (2019) and Tenney et al. (2019) find that attention heads at lower
layers exhibit lower-order patterns (e.g., each symbol attends to the previous symbol), while heads at
higher layers exhibit higher-order patterns (e.g., each direct object attends to its verb). However, we
do not have many theoretical guarantees about the impacts of depth in transformers.

In classical theoretical computer science, one studies the power of computational models by asking
what languages they can express – an equivalent way of asking what problems they can solve. Our
question becomes: What languages can be expressed by transformers of various depths? We explore
this question using the temporal logic TL[↼# ], which is equivalent to the programming language
C-RASP (Yang and Chiang, 2024), a variant of the RASP language (Weiss et al., 2021). Previously,
C-RASP had been shown to be no less expressive than fixed-precision transformers and no more
expressive than arbitrary-precision transformers. In this paper, we prove that when transformers
are defined with rounding to fixed precision except inside attention (see Section 2.1 for a more
precise statement), transformers are expressively equivalent to TL[↼# ]. Moreover, the equivalences
between C-RASP, TL[↼# ], and transformers preserve depth.

We can therefore investigate transformer depth by investigating TL[↼# ] depth. Here, we prove a strict
depth hierarchy for TL[↼# ], meaning that there is a problem that is solvable by a depth-𝑘 TL[↼# ]
formula, but not solvable by any depth-(𝑘 − 1) formulas. This implies a strict depth hierarchy for
C-RASP and transformers (Fig. 1). (We also prove a strict depth hierarchy for the more expressive
logic TL[↼# ,⇀# ]. This implies a strict depth hierarchy for FO[<]-uniform LTC0, which was not
previously known.) We find experimentally that the C-RASP depth hierarchy closely predicts the
depth that transformers require to solve problems with particular sequential dependencies (Fig. 2).

The languages 𝐿𝑘 , which separate transformers of different depths, are just sets of strings with 𝑘 runs
of symbols. This suggests that, for example, in a speech recognition system where each phoneme can
extend over multiple frames, a transformer with fixed depth may have difficulty recognizing 𝑘-grams
of phonemes, for 𝑘 sufficiently large.

We are aware of three previous depth separation results for transformers. Yang et al. (2024) established
a strict depth hierarchy for unique-hard attention transformers, based on the Until hierarchy for linear
temporal logic (Etessami and Wilke, 2000). However, unique-hard attention transformers appear to
diverge from transformers as used in practice (Huang et al., 2025; Liu et al., 2023). Sanford et al.
(2024) proved, conditioned on a widely known conjecture (Ghaffari et al., 2019), that depth Θ(log(𝑘))
is necessary and sufficient for transformers to solve the 𝑘-hop induction heads problem. The first
unconditional depth–width tradeoff, based on communication complexity lower bounds, was shown
by Chen et al. (2025). In essence, a transformer with depth 𝑘 would require an impractically large
width of Ω(poly(𝑛)) to perform the sequential composition of 𝑘 + 1 functions, while a transformer
with depth 𝑘 + 1 can implement a solution with a modest width of 𝑂 (polylog(𝑛)).
The latter two results used transformers whose parameters depended on the sequence length 𝑛. Our
results are parameter-uniform, that is, they construct transformers with parameters independent of 𝑛,
making them applicable to inputs of arbitrary length and better predictors of length generalization.
Below, we compare and contrast these depth separation results with ours:

model transformer unconditional parameter-uniform

Yang et al. (2024) temporal logic unique-hard yes yes
Chen et al. (2025) communication

complexity
softmax yes no

Sanford et al. (2024) massively parallel
computation

softmax no no

This work temporal logic softmax yes yes

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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2 Preliminaries

We write N for the set of nonnegative integers and [𝑛] for the set {1, . . . , 𝑛}. With 𝑤 = 𝑤1 · · ·𝑤𝑛 a
string over Σ, we write 𝑤 [𝑖 : 𝑗] for the substring 𝑤𝑖 · · ·𝑤 𝑗 . With 𝐿 a language, we write 𝐿∗ for the
Kleene star of 𝐿 (𝐿∗ =

⋃
𝑘≥0 𝐿

𝑘) and 𝐿+ for 𝐿𝐿∗. See Appendix G for an index of all notation used.

2.1 Transformers

In this paper, we consider transformers that use fixed-precision numbers. Merrill and Sabharwal
(2023) have pointed out that in a transformer that uses fixed precision for all operations, there is some
length beyond which the attention weights necessarily round to zero, making attention unable to
attend to anything. To get around this, we define fixed-precision transformers without rounding of
numbers that scale as 𝑛 or 1/𝑛. Namely, define an operation on two 𝑛-dimensional vectors,

sumdiv(a, b) =
∑𝑛

𝑗=1 a 𝑗∑𝑛
𝑗=1 b 𝑗

.

Then if q ∈ R1×𝑑 is a query vector, K ∈ R𝑛×𝑑 is a matrix of keys, and v ∈ R𝑛×1 is a value vector,
attention can be written as

att(q,K, v) = sumdiv
(
(exp qK⊤) ◦ v, exp qK⊤)

where ◦ is componentwise multiplication. Because the intermediate results of sumdiv scale with 𝑛,
we do not round them; we only round the final result. Our transformers use future-masking but no
position encodings. See Appendix B.1 for a full definition.

2.2 Temporal logics with counting

Temporal logics are used to express properties of (finite and infinite) strings, using predicates and
temporal operates to assert properties of the current position. For instance, in linear temporal logic
(Gabbay et al., 1980), one can express things like “at some time in the future, there is an 𝑎.” Temporal
logic with counting (Hirshfeld and Rabinovich, 2012; Barceló et al., 2024) adds more general integer-
valued counting operators: a property such as “at some time in the future, there is an 𝑎” thus becomes
“the number of 𝑎’s in the future is at least 1.” Here, we are interested in these logics because they are
equivalent to (variants of) transformers (Section 3 and Appendix B).
Definition 2.1. The syntax of past temporal logic with counting, or TL[↼# ], is as follows:

𝜙 ::= 𝑄𝜎 | 𝑡1 < 𝑡2 | ¬𝜙1 | 𝜙1 ∧ 𝜙2 𝜎 ∈ Σ Boolean-valued formulas
𝑡 ::= ↼

# [𝜙1] | 𝑡1 + 𝑡2 | 1 integer-valued terms

Temporal logic with counting, or TL[↼# ,⇀# ], adds an operator
⇀
# , and is discussed in Appendix D.

In Appendix F.1, we further extend the logic with a MOD predicate and Y operator corresponding
to positional encodings in transformers. Other operators, like ≤, ≥,∨,−, multiplication by integer
constants, and integer constants other than 1, can be defined in terms of the above.

The semantics of TL[↼# ] and TL[↼# ,⇀# ] are defined by the relation 𝑤, 𝑖 |= 𝜙, meaning that the formula
𝜙 is satisfied by string 𝑤 at position 𝑖. First, 𝑤, 𝑖 |= 𝑄𝜎 holds when the 𝑖-th symbol of 𝑤 is 𝜎. The
term

↼
# [𝜙], evaluated on string 𝑤 at position 𝑖, counts the number of positions in 𝑤 [1 : 𝑖] that satisfy

𝜙. Similarly,
⇀
# [𝜙] counts the number of positions in 𝑤 [𝑖 : 𝑛] that satisfy 𝜙 (where 𝑛 = |𝑤 |). Terms

can be added (+) or compared (<). See Definition A.1 for the full definition. We write 𝑤 |= 𝜙
iff 𝑤, |𝑛| |= 𝜙; that is, 𝜙 is satisfied by 𝑤 at its final position.1 Finally, the language defined by 𝜙
L(𝜙) = {𝑤 ∈ Σ∗ | 𝑤 |= 𝜙}.
Example 2.2. The Dyck language is the set of strings of balanced and matched parentheses. The
formula 𝜙balance = (↼# [𝑄 (] =

↼
# [𝑄 ) ]) checks that the number of left and right parentheses is equal.

The formula 𝜙match = (↼# [↼# [𝑄 (] <
↼
# [𝑄 ) ]] = 0) checks that, in every prefix, the number of right

parentheses does not exceed the number of left parentheses. So the Dyck language is defined by
𝜙balance ∧ 𝜙match. Appendix A.2 shows more detailed traces of this formula on some example strings.

1Usually, the semantics of temporal logics is defined by 𝑤 |= 𝜙 iff 𝑤, 1 |= 𝜙. However, in our setting,
our definition mimics the behavior of generative transformer decoders, which for each position, consider all
previously generated tokens (to the left) in order to produce the next token.
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The depth of a formula or term of TL[↼# ] or TL[↼# ,⇀# ] is the maximum depth to which
↼
# and

⇀
#

operators are nested. TL[↼# ]𝑘 is the class of all TL[↼# ] formulas with depth at most 𝑘 , and similarly for
TL[↼# ,⇀# ]𝑘 and the other logics we use. See Definition A.2 in Appendix A.1 for a formal definition. A
depth-1 formula may be a Boolean combination of other formulas of depth 0 and 1; a minimal depth-1
formula is one that does not contain other depth-1 formulas, that is, a formula of the form 𝑡1 < 𝑡2
where 𝑡1 and 𝑡2 are depth-1 terms. For example, 𝑄𝑎∧(1 ≤ 1+1) has depth 0, 𝑄𝑎∧(↼# [𝑄𝑎] <

↼
# [𝑄𝑏])

has depth 1 but is not minimal, and
↼
# [𝑄𝑎] ≤

↼
# [𝑄𝑏] +

↼
# [𝑄𝑐] + 1 is a minimal depth-1 formula.

Yang and Chiang (2024) called TL[↼# ] by a different name, Kt [#]. They showed that it is equivalent
to C-RASP, which admits a notion of depth that corresponds exactly to formula depth.

2.3 Parikh vectors

At the heart of TL[↼# ] is the ability to count symbols, so we introduce some notation related to counts.

Definition 2.3 (Parikh, 1966). Let Σ = {𝜎1, 𝜎2, . . . , 𝜎𝑚} be an (ordered) alphabet. The Parikh vector
of 𝑤, written Ψ(𝑤), records the number of times each symbol occurs in 𝑤, ignoring order. That is,

Ψ : Σ∗ → N𝑚

Ψ𝜎 (𝑤) = |{𝑖 ∈ [|𝑤 |] | 𝑤𝑖 = 𝜎}|
Ψ(𝑤) = (Ψ𝜎1 (𝑤),Ψ𝜎2 (𝑤), . . . ,Ψ𝜎𝑚

(𝑤)).

Definition 2.4. For a Parikh vector ®𝑣 = (𝑣1, 𝑣2, . . . , 𝑣 |Σ | ) ∈ N |Σ | we write the length of ®𝑣 as
∥®𝑣∥ = 𝑣1 + 𝑣2 + . . . + 𝑣 |Σ | . To access individual coordinates, we write [®𝑣]𝜎𝑖

for 𝑣𝑖 .

Definition 2.5. For Parikh vectors ®𝑖, ®𝑗 ∈ N |Σ | , we write ®𝑖 ≤ ®𝑗 iff [®𝑖]𝜎 ≤ [ ®𝑗]𝜎 for all 𝜎 ∈ Σ. We write
[®𝑖, ®𝑗] for the set of all vectors ®𝑣 such that ®𝑖 ≤ ®𝑣 ≤ ®𝑗 . We call [®𝑖, ®𝑗] an interval in N |Σ | , and we write
I(N |Σ | ) for the set of all intervals in N |Σ | . A family of intervals is a function 𝐼 : N |Σ | → I(N |Σ | ).
Definition 2.6. For each partial function 𝜋 : N |Σ | × N → {0, 1} such that 𝜋(®𝑣, 𝑖) is defined iff
1 ≤ 𝑖 ≤ ∥®𝑣∥, define a predicate Π, called a Parikh numerical predicate or PNP:

𝑤, 𝑖 |= Π ⇐⇒ 𝜋(Ψ(𝑤), 𝑖) = 1.

We write TL[↼# ,PNP] and TL[↼# ,⇀# ,PNP] for the logics TL[↼# ] and TL[↼# ,⇀# ], respectively, aug-
mented with arbitrary PNPs.

2.4 Piecewise testable languages

Piecewise testable languages are a subclass of regular languages that has been studied in semigroup
theory and logic (Simon, 1975). Here, they will be key to separating the depth levels of both TL[↼# ]
and TL[↼# ,⇀# ].
Definition 2.7. A J -expression is a language of the form Σ∗𝜎1Σ

∗𝜎2Σ
∗ · · ·Σ∗𝜎𝑘Σ

∗ where
𝜎1, . . . , 𝜎𝑘 ∈ Σ. A language is 𝑘-piecewise testable if it is a Boolean combination of J -expressions
with at most 𝑘 fixed symbols. A language is piecewise testable if it is 𝑘-piecewise testable for some 𝑘 .
Lemma 2.8. For all 𝑘 ≥ 0, define 𝐿𝑘 to be the language of strings with alternating blocks of 𝑎’s
and 𝑏’s, starting with 𝑎:

𝐿𝑘 =

{
(𝑎+𝑏+)𝑘/2 𝑘 even
(𝑎+𝑏+) (𝑘−1)/2𝑎+ 𝑘 odd.

(1)

Then 𝐿𝑘 is 𝑘-piecewise testable.

Proof. Define the following 𝑘-piecewise testable languages:

𝐴𝑘 =

{
Σ∗ (𝑎Σ∗𝑏Σ∗)𝑘 𝑘 even
Σ∗ (𝑎Σ∗𝑏Σ∗) (𝑘−1)/2𝑎Σ∗ 𝑘 odd

𝐵𝑘 =

{
Σ∗ (𝑏Σ∗𝑎Σ∗)𝑘/2 𝑘 even
Σ∗ (𝑏Σ∗𝑎Σ∗) (𝑘−1)/2𝑏Σ∗ 𝑘 odd.

(2)

Then 𝐿𝑘 is a Boolean combination of these:

𝐿𝑘 = Σ∗ \ 𝐵𝑘 ∩ 𝐴𝑘 . □
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𝜙1

𝜙2

↼
# [𝑄𝑏]

1
2
3
4
5
6
7
8

↼
# [𝑄𝑎]1 2 3 4 5 6 7 8 9

𝑤

𝑤′

(a) Strings can be pictured as paths, and minimal
depth-1 subformulas as half-planes.

𝐼

𝜙1

𝜙2

↼
# [𝑄𝑏]

1
2
3
4
5
6
7
8

↼
# [𝑄𝑎]1 2 3 4 5 6 7 8 9

𝐼 ′

(b) Within a sufficiently large rectangle (𝐼), one can
find a sub-rectangle (𝐼′) within which the depth-1 sub-
formulas are either always true or always false.

Figure 3: Visualization of the reduction lemma (Lemma 4.9).

Lemma 2.9. Any 𝑘-piecewise testable language is definable in TL[↼# ]𝑘 , and any (2𝑘 + 1)-piecewise
testable language is definable in TL[↼# ,⇀# ]𝑘+1.
Proof sketch. Since our logics are closed under Boolean operations, we simply need to show the
statement for J -expressions. Let us sketch this in the case 𝑘 = 1. There is a straightforward way to
define Σ∗𝑎Σ∗𝑏Σ∗𝑐Σ∗ in TL[↼# ]2𝑘+1:

↼
# [(↼# [(↼# [𝑄𝑎] ≥ 1) ∧𝑄𝑏] ≥ 1) ∧𝑄𝑐] ≥ 1.

With both past and future counting, we can find the middle symbol 𝑏 and check to the left and right:
↼
# [↼# [𝑄𝑎] ≥ 1 ∧𝑄𝑏 ∧

⇀
# [𝑄𝑐] ≥ 1] ≥ 1.

This is in TL[↼# ,⇀# ]𝑘+1, as desired. See Appendix A.4 for the full proof. □

3 Transformer Equivalence

Logics like TL[↼# ] provide a way to reason about the computations that occur in transformers. Yang
and Chiang (2024) proved that transformers can simulate TL[↼# ], and TL[↼# ] can simulate transformers
that round all values to fixed precision. Here, we show that fixed precision, with rounding slightly
loosened as in Section 2.1, makes it possible to obtain an exact equivalence.
Theorem 3.1. A language 𝐿 is defined by a formula of TL[↼# ] of depth 𝑘 if and only if <BOS> · 𝐿 is
recognized by a fixed-precision transformer of depth 𝑘 .
Proof. See Appendix B. □

In Appendix F, we will extend the transformer-to-logic direction of this result to several position
encodings and an extension of TL[↼# ].

4 Depth Hierarchy

To prove a strict depth hierarchy for TL[↼# ], we adapt the technique of Behle et al. (2009), which was
originally used on M̂AJ2 [<], a logic equivalent to TL[↼# ,⇀# ]. The main idea is to assume, towards a
contradiction, that a certain language is definable by a formula, then to simultaneously restrict the
language and reduce the depth of the formula down to depth 1. The contradiction will be that the
restricted language has a property (namely, sensitivity to ordering) that is not definable at depth 1.
This technique can also be applied to the bidirectional logic TL[↼# ,⇀# ], with implications for other
logics and circuit classes, as detailed in Appendix D.

4.1 Intuition and example

As an example of the technique, consider the following formula:
𝜙 =

↼
# [(2↼# [𝑄𝑎] ≤ 3↼# [𝑄𝑏])︸                      ︷︷                      ︸

𝜙1

∧ (↼# [𝑄𝑎] +
↼
# [𝑄𝑏] ≤ 10)︸                         ︷︷                         ︸
𝜙2

∧𝑄𝑏] ≥ 1.
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This formula has depth 2 and it has two minimal depth-1 subformulas, 𝜙1 and 𝜙2. We want to replace
𝜙1 and 𝜙2 with depth-0 subformulas, reducing the depth of 𝜙 from 2 to 1, while restricting the
language defined.

Since 𝜙1 and 𝜙2 are linear inequalities in the counts
↼
# [𝑄𝜎], we can picture them as half-planes

(Fig. 3a). A string can be pictured as a path, and a prefix of the string as a point on the path. For
concreteness, we fix a vector ®𝑛 = (9, 8) and let 𝐼 be the interval [®0, ®𝑛]. (In the formal proof, ®𝑛 will not
be fixed, and 𝐼 will be a family of intervals depending on ®𝑛.) Suppose we can find some subinterval
𝐼 ′ (which can be pictured as a rectangle, as in Fig. 3b) that does not cross any of the half-plane
boundaries. All points in 𝐼 ′ are equivalent in the sense that the truth value of 𝜙1 and 𝜙2 is the same
for all points in 𝐼 ′.

We restrict the language by choosing a prefix corresponding to a path from the bottom left of 𝐼 to the
bottom left of 𝐼 ′, and a suffix corresponding to a path from the top right of 𝐼 ′ to the top right of 𝐼. In
our example, we picked 𝑏𝑎𝑎𝑎𝑎𝑎 and 𝑏𝑏𝑎𝑏𝑎𝑏𝑏. Informally, we can define the restriction of 𝜙 to this
prefix and suffix like so:

𝜙′ = “prefix is 𝑏𝑎𝑎𝑎𝑎𝑎” ∧ “suffix is 𝑏𝑏𝑎𝑏𝑎𝑏𝑏”
∧ (↼# [𝜙1 ∧ 𝜙2︸  ︷︷  ︸

(∗)

∧𝑄𝑏 ∧ “inside 𝐼 ′”] + ↼
# [𝜙1 ∧ 𝜙2︸  ︷︷  ︸

(†)

∧𝑄𝑏 ∧ “in prefix/suffix”] ≥ 1).

Then the occurrences of 𝜙1 and 𝜙2 marked (∗) are always true and false, respectively, while the
occurrences marked (†) depend only on the position. As we will see, we can replace all of these by
PNPs, reducing the depth of the formula from 2 to 1.

Carefully iterating this process (Lemma 4.9) leads to a depth-1 formula defining a restriction of the
original language. In this language, we will show that the ordering of symbols matters, but we will
see in Lemma 4.6 that depth-1 formulas are (in a particular sense) insensitive to the ordering of
symbols. This is a contradiction, demonstrating that the original language is not definable.

4.2 Affix restrictions

We start by defining the affix restrictions that were informally introduced in at the start of this section.
Krebs (2008) enforced similar restrictions using the algebraic tool of non-uniform morphisms, while
Behle et al. (2009) used numerical predicates on languages with a restricted Parikh image. We follow
the latter approach of expressing this idea within a purely logical framework, but introduce Parikh
numerical predicates as a way to generalize the technique.
Definition 4.1 (cf. Def. 6.5 of Krebs, 2008). An affix restriction is a pair (𝜆, 𝜚), where 𝜆, 𝜚 : N |Σ | →
Σ∗. For any language 𝐿 ⊆ Σ∗ and affix restriction (𝜆, 𝜚), we define the restriction of 𝐿 to (𝜆, 𝜚) as

𝜆𝐿 𝜚 = {𝑤 ∈ 𝐿 : ∃𝑤′ ∈ Σ∗ such that 𝑤 = 𝜆(Ψ(𝑤)) 𝑤′𝜚(Ψ(𝑤))}.

In the definition above, the set of positions occupied by 𝑤′ within each string is the only part not
fixed by (𝜆, 𝜚). This region is important for the depth reduction process, so we give it a name:
Definition 4.2. The middle of an affix restriction (𝜆, 𝜚) is the family of intervals given by ®𝑛 ↦→
[Ψ(𝜆(®𝑛)), ®𝑛 − Ψ(𝜚(®𝑛))].

In order for the middle of an affix restriction to not be too restricted, we typically require affix
restrictions to have the following property.
Definition 4.3. We say that a family of intervals 𝐼 is accommodating if, for any ®𝑠 ∈ N |Σ | , there is an
interval [®𝑖, ®𝑗] in the image of 𝐼 such that ®𝑠 ≤ ®𝑗 − ®𝑖, or, equivalently, ®𝑠 ∈ [®0, ®𝑗 − ®𝑖]. We say that an
affix restriction (𝜆, 𝜚) is accommodating if its middle is accommodating.

An example of a non-accommodating affix restriction, with Σ = {𝑎, 𝑏}, is 𝜆((𝑛𝑎, 𝑛𝑏)) = 𝜖 and
𝜚((𝑛𝑎, 𝑛𝑏)) = 𝑎𝑛𝑎𝑏𝑛𝑏 . In this case 𝜆𝐿 𝜚 will have at most one string for each (𝑛𝑎, 𝑛𝑏). An accommo-
dating affix restriction is the trivial one 𝜆((𝑛𝑎, 𝑛𝑏)) = 𝜚((𝑛𝑎, 𝑛𝑏)) = 𝜖 . In this case 𝜆𝐿 𝜚 will have(𝑛𝑎+𝑛𝑏

𝑛𝑎

)
strings for each (𝑛𝑎, 𝑛𝑏).

Accommodating affix restrictions will be key to depth-reduction. If a language has an accommodating
middle under a restriction (𝜆, 𝜚), then there is enough room to apply another restriction (𝜆′, 𝜚′) inside
the middle, while decreasing the depth of the formula. As long as the property of accommodation is
preserved at each step, this process can be iterated until we reach depth 1.
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4.3 Properties of depth 1

In this section, we exhibit inherent limitations of depth-1 formulas. Informally, we show that these
formulas only recognize commutative languages, that is, languages where the order of symbols does
not matter. But we need to qualify this statement slightly, and we need some technicalities as well.

In particular, affix restrictions will fix the ordering of symbols in the prefix and suffix, so affix-
restricted languages can only be commutative in the following sense:
Definition 4.4. We say that a language 𝐿 is commutative on the middle of an affix restriction (𝜆, 𝜚)
if, for any 𝑤, 𝑤′ ∈ 𝜆Σ

∗
𝜚 such that Ψ(𝑤) = Ψ(𝑤′), we have 𝑤 ∈ 𝐿 if and only if 𝑤′ ∈ 𝐿.

We will use PNPs to enforce ordering in the prefix and suffix, but to allow languages to be commutative
on the middle, we need to prevent the PNPs from enforcing ordering in the middle.
Definition 4.5. We say that a formula 𝜙 is constant on a family of intervals 𝐼 : N |Σ | → I(N |Σ | ) if the
following holds for all ®𝑛 ∈ N |Σ | : For all 𝑤, 𝑤′ ∈ Σ∗ with Ψ(𝑤) = Ψ(𝑤′) = ®𝑛 and all positions 𝑖, 𝑖′ in
𝐼 (®𝑛), we have 𝑤, 𝑖 |= 𝜙 if and only if 𝑤′, 𝑖′ |= 𝜙.

Lemma 4.6 (Commutativity of depth 1). For any depth-1 formula 𝜙 of TL[↼# ,PNP]1 or
TL[↼# ,⇀# ,PNP]1 and any affix restriction (𝜆, 𝜚) with |𝜚(®𝑛) | ≥ 1 for all ®𝑛, if the PNPs of 𝜙 are
constant on the middle of (𝜆, 𝜚), then L(𝜙) is commutative on the middle of (𝜆, 𝜚).
Proof. See Appendix C.1. The reason for the condition |𝜚(®𝑛) | ≥ 1 is that the 𝑄𝜎 predicates are able
to test the symbol in the last position. □

4.4 Cropping and reduction lemmas

In this section, we show how to decrease the quantifier depth of a formula 𝜙 while specifying precisely
how L(𝜙) is weakened. Our approach follows Lemma 3 of Behle et al. (2009) and Lemma 6.8 of
Krebs (2008), but faces additional technical difficulties specific to TL[↼# ] and, to a lesser extent, the
use of PNPs. Since we will be applying this technique on two-letter alphabets, we set Σ = {𝑎, 𝑏}
for the rest of this section. Thus, we can visualize Parikh vectors and intervals in the plane, with the
number of 𝑎’s on the horizontal axis, and the number of 𝑏’s on the vertical axis.

First, the cropping lemma takes a family of intervals 𝐼 and “crops” it down to a family of subintervals
𝐼 ′ on which the minimal depth-1 subformulas are constant. This is done while controlling where 𝐼 ′

sits within 𝐼, and we start by formalizing this notion:

Definition 4.7. We say that an interval [®𝑖′, ®𝑗 ′] sticks to the top of an interval [®𝑖, ®𝑗] if [®𝑖′, ®𝑗 ′] ⊆ [®𝑖, ®𝑗]
and [ ®𝑗 ′]𝑏 = [ ®𝑗]𝑏. Graphically, this means that the top edge of the rectangle [®𝑖′, ®𝑗 ′] is included in the
top edge of the rectangle [®𝑖, ®𝑗]. We define an interval sticking to the bottom, left, or right analogously.

Lemma 4.8 (Cropping Lemma for TL[↼# ]). For any formula 𝜙 of TL[↼# ,PNP] and any accommodat-
ing family of intervals 𝐼 : N |Σ | → I(N |Σ | ) such that the PNPs of 𝜙 are constant on 𝐼, there exists an
accommodating family of intervals 𝐼 ′ : N |Σ | → I(N |Σ | ) such that 𝐼 ′ (®𝑛) sticks only to the top (and no
other side) of 𝐼 (®𝑛) for all ®𝑛 ∈ 𝑁 |Σ | , and all of the minimal depth-1 subformulas (and PNPs) of 𝜙 are
constant on 𝐼 ′. Additionally, there exists such an 𝐼 ′ such that 𝐼 ′ (®𝑛) sticks only to the right of 𝐼 (®𝑛).
Proof. See Appendix C.2. □

Second, the reduction lemma takes an affix restriction (whose middle is 𝐼 ′ given by the cropping
lemma) and rewrites away the minimal depth-1 subformulas, reducing the depth of the formula by 1.
Lemma 4.9 (Reduction Lemma). For any depth-𝑘 formula 𝜙 of TL[↼# ,PNP]𝑘 (or TL[↼# ,⇀# ,PNP]𝑘)
and affix restriction (𝜆, 𝜚), if the PNPs and minimal depth-1 subformulas of 𝜙 are constant on the
middle of (𝜆, 𝜚), then there is a formula 𝜙′ of depth (𝑘 − 1) of TL[↼# ,PNP]𝑘−1 (or TL[↼# ,⇀# ,PNP]𝑘 ,
resp.) that defines 𝜆L(𝜙)𝜚 , and the PNPs of 𝜙′ are constant on the middle of (𝜆, 𝜚).
Proof. See Appendix C.3. □

4.5 Non-definability results

As described by Behle et al. (2009), the key to applying this lemma is to choose a language 𝐿 and
appropriate affix families such that the restricted language does not become trivial. We now use the
cropping and reduction lemmas to derive the strictness of the depth hierarchy of TL[↼# ].
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Theorem 4.10. Let 𝑘 > 0. The language 𝐿𝑘+1 (Eq. (1)) is definable in TL[↼# ]𝑘+1 but not in TL[↼# ]𝑘 .
Proof. Assume that 𝑘 is even (the odd case is similar). For a contradiction, assume there exists
some depth-𝑘 formula 𝜙 ∈ TL[↼# ]𝑘 which defines 𝐿𝑘+1. Let 𝐼𝑘 (®𝑛) = [(1, 0), ®𝑛 − (1, 0)], 𝜆𝑘 (®𝑛) =
𝑎, 𝜚𝑘 (®𝑛) = 𝑎, and 𝜙𝑘 = 𝜙. Note that (𝜆𝑘 , 𝜚𝑘) is accommodating, and 𝜙𝑘 has no PNPs.

For ℓ = 𝑘 − 1, 𝑘 − 2, . . . , 1, we will define the following:

1. An accommodating family of intervals 𝐼ℓ (®𝑛) ⊆ 𝐼ℓ+1 (®𝑛);
2. An accommodating affix restriction 𝜆ℓ (®𝑛) ∈ 𝐿𝑘−ℓ+1 and 𝜚ℓ (®𝑛) ∈ 𝑎+;
3. A depth-ℓ formula 𝜙ℓ ∈ TL[↼# ,PNP]ℓ which defines 𝜆ℓ (𝐿𝑘+1)𝜚ℓ and only uses PNPs which are

constant over (𝜆ℓ , 𝜚ℓ).
We use the following iterative procedure:

1. Using Lemma 4.8, find an accommodating family of intervals 𝐼ℓ such that for all ®𝑛, 𝐼ℓ (®𝑛) sticks
only to the top of 𝐼ℓ+1 (®𝑛), and the minimal depth-1 subformulas of 𝜙ℓ+1 are constant on 𝐼ℓ (®𝑛).

2. Choose an affix restriction whose middle is 𝐼ℓ , as follows. Let [®𝑖, ®𝑗] = 𝐼ℓ+1 (®𝑛) and [®𝑖′, ®𝑗 ′] =
𝐼ℓ (®𝑛); then

𝜆ℓ (®𝑛) =
{
𝜆ℓ+1 (®𝑛)𝑎 [ ®𝑖

′−®𝑖 ]𝑎𝑏 [ ®𝑖
′−®𝑖 ]𝑏 ℓ odd

𝜆ℓ+1 (®𝑛)𝑏 [ ®𝑖
′−®𝑖 ]𝑏𝑎 [ ®𝑖

′−®𝑖 ]𝑎 ℓ even

𝜚ℓ (®𝑛) = 𝑎 [
®𝑗− ®𝑗′ ]𝑎 𝜚ℓ+1 (®𝑛).

𝐼ℓ+1 (®𝑛)
𝐼ℓ (®𝑛)

𝜆ℓ (®𝑛)

𝜚ℓ (®𝑛)

Because 𝜆ℓ+1 (®𝑛) ∈ 𝐿𝑘−ℓ and 𝐼ℓ (®𝑛) sticks only to the top of 𝐼ℓ+1 (®𝑛), we have that 𝜆ℓ ∈ 𝐿𝑘−ℓ+1.
At the same time, 𝜚ℓ (®𝑛) ∈ 𝑎+.

3. Using Lemma 4.9, we can find a depth-ℓ formula 𝜙ℓ of TL[↼# ,PNP]ℓ that defines 𝜆ℓ (𝐿𝑘+1)𝜚ℓ
and only uses PNPs which are constant on (𝜆ℓ , 𝜚ℓ).

At the end of the procedure above, we are left with the accommodating affix restriction 𝜆1 (®𝑛) ∈ 𝐿𝑘

and 𝜚1 (®𝑛) ∈ 𝑎+, as well as the depth-1 formula 𝜙1 ∈ TL[↼# ,PNP]1, which defines 𝜆1 (𝐿𝑘+1)𝜚1 and
only uses PNPs which are constant over (𝜆1, 𝜚1).
Since (𝜆1, 𝜚1) is accommodating, choose ®𝑛 so that the middle has 𝑠𝑎 ≥ 1 occurrences of 𝑎 and 𝑠𝑏 ≥ 1
occurrences of 𝑏. Construct the strings

𝑤 = 𝜆1 (®𝑛)𝑏𝑠𝑏𝑎𝑠𝑎 𝜚1 (®𝑛)
𝑤′ = 𝜆1 (®𝑛)𝑎𝑠𝑎𝑏𝑠𝑏 𝜚1 (®𝑛).

The prefix 𝜆1 (®𝑛) has 𝑘 blocks ending with 𝑏, and the suffix 𝜌1 (®𝑛) is all 𝑎’s. So 𝑤 has (𝑘 + 1) blocks
and is therefore in 𝐿𝑘+1, while 𝑤′ has (𝑘 + 3) blocks and is therefore not in 𝐿𝑘+1. But by Lemma 4.6,
we have 𝑤 |= 𝜙1 ⇐⇒ 𝑤′ |= 𝜙1. This is a contradiction, so we conclude that no formula 𝜙 with
depth 𝑘 can define 𝐿𝑘+1.

If 𝑘 is odd, the argument is the same, with the following changes. First, symbols 𝑎 and 𝑏 are swapped,
but 𝜆ℓ (®𝑛) still starts with 𝑎. Second, 𝐼ℓ (®𝑛) sticks to the right of 𝐼ℓ+1 (®𝑛) instead of the top.

Finally, by Lemma 2.8, 𝐿𝑘+1 is (𝑘 + 1)-piecewise testable. Thus, by Lemma 2.9, 𝐿𝑘+1 is definable in
TL[↼# ]𝑘+1. □

This depth hierarchy on TL[↼# ] implies a depth hierarchy for fixed-precision transformers.
Theorem 4.11. A depth-(𝑘 + 1) fixed-precision transformer can recognize 𝐿𝑘+1, but no depth-𝑘
fixed-precision transformer can.

This also implies a depth hierarchy for transformers using several commonly used positional encodings
(with a different separating language). Definitions and details can be found in Appendix F.
Theorem 4.12. A depth-(𝑘 + 1) fixed-precision transformer can recognize 𝐸𝑘+1, but no depth-𝑘 fixed-
precision transformer can, if the transformers can use sinusoidal positional embeddings (Vaswani
et al., 2017), RoPE (Su et al., 2024), or ALiBi (Press et al., 2022).

5 Experiments

Our depth hierarchy result suggests that transformers will require greater depth in order to model
deeper sequential dependencies. We empirically validate this by training future-masked transformers
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Accuracy on [201, 250]
depth →

1 2 3 4 5 6 7 8 9 10
𝐿3 100 100 100 100 100 100 100 100 100 100
𝐿4 41 100 100 100 100 100 100 100 100 100
𝐿5 36 76 100 100 100 100 100 100 100 100
𝐿6 36 37 74 100 100 100 100 100 100 100
𝐿7 39 40 53 87 100 100 100 100 100 100
𝐿8 37 42 53 78 96 100 100 100 100 100
𝐿9 32 41 45 61 74 93 100 100 100 100
𝐿10 34 36 39 50 57 80 91 100 100 100
𝐿11 37 41 45 49 55 60 77 77 100 100
𝐿12 27 23 34 34 36 47 59 74 73 86

Accuracy on [251, 300]
depth →

1 2 3 4 5 6 7 8 9 10
𝐿3 100 100 100 100 100 100 100 100 100 100
𝐿4 32 100 100 100 100 100 100 100 100 100
𝐿5 24 65 100 100 100 100 100 100 100 100
𝐿6 26 24 59 100 100 100 100 100 100 100
𝐿7 27 24 39 74 100 100 100 100 100 100
𝐿8 23 26 43 82 93 100 100 100 100 100
𝐿9 31 28 25 50 59 91 100 100 100 99
𝐿10 19 17 17 26 37 71 91 99 100 100
𝐿11 19 20 21 26 33 42 69 64 100 98
𝐿12 6 5 8 12 12 21 53 60 56 75

Accuracy on [301, 350]
depth →

1 2 3 4 5 6 7 8 9 10
𝐿3 100 100 100 100 100 100 100 100 100 100
𝐿4 26 100 100 100 100 100 100 100 100 100
𝐿5 15 59 100 100 100 100 100 100 100 100
𝐿6 17 14 49 100 99 100 100 100 100 100
𝐿7 13 12 25 59 100 100 100 100 99 100
𝐿8 11 14 29 68 85 99 100 100 100 100
𝐿9 14 13 11 34 43 80 98 100 99 97
𝐿10 6 5 5 12 24 58 84 98 98 99
𝐿11 6 6 6 8 14 21 59 45 99 96
𝐿12 2 2 2 3 4 9 37 42 38 68

Accuracy on [351, 400]
depth →

1 2 3 4 5 6 7 8 9 10
𝐿3 100 100 100 100 100 100 100 100 100 100
𝐿4 22 100 100 100 100 100 100 100 100 100
𝐿5 11 51 100 100 100 100 100 100 100 100
𝐿6 10 8 37 100 98 100 100 100 100 100
𝐿7 8 8 20 49 100 100 100 100 98 100
𝐿8 5 6 19 52 75 95 100 100 100 100
𝐿9 7 7 6 24 29 66 95 99 98 93
𝐿10 2 2 2 6 12 49 77 96 96 98
𝐿11 2 2 3 3 6 11 46 31 96 89
𝐿12 0 0 0 1 2 4 21 30 27 62

Figure 4: Experimental results. Corollary 5.2 predicts that a transformer with depth 𝑘 can recognize
language 𝐿𝑘+2 but not 𝐿𝑘+3 (demarcated by the black line). Up to at least 𝐿12, this closely predicts
our experimental results (shown as numbers and colors).

with no positional encodings and varying depths to learn the 𝐿𝑘 language, for varying 𝑘 .2 Here, the
𝐿𝑘 language serves as a minimal testbed for depth separation because it represents the simplest form
of sequential dependency (ordering of symbols) using only an alphabet of size 2.

5.1 Problem

Our experimental setup differs slightly from the framework presented above. For the language
recognition problem considered above, training a transformer would require data containing both
positive and negative examples, with the distribution of negative examples potentially having an
important impact on learnability. Following Bhattamishra et al. (2020) and Huang et al. (2025), we
reframe 𝐿𝑘 as a next-token prediction problem: For each prefix of a string, output the set of possible
next symbols of the string.

Our data consist of source–target pairs, where the source is a string in 𝐿𝑘 , preceded by a beginning-
of-string symbol <BOS>, and the target is a string of the same length. Each target symbol is a code
standing for the set of possible next source symbols. If 𝑘 is odd, for example, 𝐿3 = 𝑎+𝑏+𝑎+, then
after <BOS>, there is only one possible set, {𝑎} (coded as 0), and after subsequent symbols, there are
two possible sets, {𝑎, 𝑏} (coded as 0) if the string is in 𝑎+𝑏∗, and {𝑎, <EOS>} (coded as 1) if the string
is in 𝑎+𝑏+𝑎+ (where <EOS> stands for the end of the string). An example source–target pair is:

𝑆 = <BOS> 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎

𝑇 = 0 0 0 0 0 0 0 0 1 1 1 1 1

If 𝑘 is even, the possible sets would be {𝑎} (coded as 0) after <BOS>, and {𝑎, 𝑏} (coded as 0) and
{<EOS>, 𝑏} (coded as 1) subsequently. It turns out that for 𝐿𝑘 , the output for a prefix <BOS> · 𝑤 [1 : 𝑖]
should be 1 if and only if 𝑤 [1 : 𝑖] ∈ 𝐿𝑘 .

2The code used for our experiments is provided at https://github.com/pentagonalize/CRASP_depth.
LLMs were used to assist in writing code and debugging.
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We can define the next-token prediction problem for TL[↼# ] in the same way, but without <BOS>:

Definition 5.1 (Next-Token Prediction Problem for 𝐿𝑘). We say a TL[↼# ] formula 𝜙 can solve the
next-token prediction problem for 𝐿𝑘 if for all 𝑤 ∈ 𝐿𝑘 and 1 ≤ 𝑖 ≤ |𝑤 |, we have 𝑤 [1 : 𝑖] |= 𝜙 ⇐⇒
𝑤 [1 : 𝑖] ∈ 𝐿𝑘 . That is, 𝑤 [1 : 𝑖] |= 𝜙 if the prediction is 1, while 𝑤 [1 : 𝑖] ̸|= 𝜙 if the prediction is 0.
Note that, unlike in recognition, we only consider prefixes of strings that are in 𝐿𝑘 .

The depth hierarchy from Theorem 4.10 can be adapted to the next-token prediction problem for 𝐿𝑘 .

Corollary 5.2 (Corollary of Theorem 4.10). A depth-(𝑘 + 1) TL[↼# ] formula can solve the next-token
prediction problem for 𝐿𝑘+3, but no depth-𝑘 TL[↼# ] formula can.

Proof. See Appendix C.4. □

5.2 Setup

We generated samples of 𝐿𝑘 to place into bins [201, 250], [251, 300], [301, 350], [351, 400] by
uniformly sampling a length 𝑛 from the bin and uniformly sampling 𝑘 − 1 positions at which to
switch between 𝑎 and 𝑏. For each 𝑘 and each bin, 1000 strings were generated. The [201, 250] bin
of 1000 examples was split into a training set of 800 examples and a validation set of 200 examples.
The other bins were reserved for evaluation.

We trained future-masked transformers without positional encodings. Because the sets of next tokens
are mutually exclusive, we trained the transformer to perform multi-class classification with cross-
entropy as the loss function. Adam was used as the optimizer (Kingma and Ba, 2015). The dimension
𝑑 and learning rate 𝜂 were tuned by searching over 𝑑 ∈ [256, 512] and 𝜂 ∈ [10−4, 10−5]. Each
hyperparameter configuration was trained for 25 epochs or until 100% accuracy was achieved on the
validation set. Then we evaluated the trained model on the test sets, considering the transformer to
have made a correct prediction if and only if its prediction matched the target at every single position.
The experiments were run on an internal cluster of GPUs. Performing the training loop for a given
number of layers over all 𝐿𝑘 required an average of 9.37 · 104 TFLOPs and 936.8 MiB of memory.

5.3 Results

Figure 4 shows the final accuracies of models with varying depth on 𝐿𝑘 with varying 𝑘 . Corollary 5.2
predicts that a TL[↼# ] formula must have depth at least 𝑘 in order to solve the next-token prediction
problem for 𝐿𝑘+2. In most cases, the transformer obtains 100% accuracy when Corollary 5.2 predicts
it, and even generalizes to lengths up to double the training length. Other factors, like width, data
diversity, and training dynamics of deeper transformers, may also play a role in practice.

6 Limitations

Our theoretical results apply to fixed-precision transformers with and without positional encodings,
whose definition differs subtly from both standard real-valued softmax transformers and fixed-
precision transformers considered in previous work. Our experimental results did not use positional
encodings because we expect that extremely long input lengths are required to see our negative results
apply. Additionally, our experiments only concern formal language tasks – namely, the languages 𝐿𝑘 .

7 Conclusion

This paper adds to the growing list of exact equivalences between variants of transformers and logics
or complexity classes (Yang et al., 2024; Merrill and Sabharwal, 2024; Li et al., 2024; Li and Cotterell,
2025). Here, we have shown that transformers that round to fixed precision except inside attention
are exactly equivalent to TL[↼# ] and C-RASP. Moreover, we have proven a strict depth hierarchy for
TL[↼# ], which implies a strict depth hierarchy for (this variant of) transformers. Unlike previous depth
separations for softmax transformers (Sanford et al., 2024; Chen et al., 2025), our results apply to
parameter-uniform transformers and so are particularly relevant to length generalization. Future work
on the experimental side could look for real-world phenomena that involve sequential dependencies
like those in 𝐿𝑘 and study how well language models handle them.
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A Logic Preliminaries

A.1 Temporal Logics with Counting

Definition A.1. The syntax of TL[↼# ] is as follows:
𝜙 ::= 𝑄𝜎 | 𝑡1 < 𝑡2 | ¬𝜙1 | 𝜙1 ∧ 𝜙2 𝜎 ∈ Σ Boolean-valued formulas
𝑡 ::= ↼

# [𝜙1] | 𝑡1 + 𝑡2 | 1 integer-valued terms
The syntax of TL[↼# ,⇀# ] additionally has counting terms 𝑡 ::= ⇀

# [𝜙]. The semantics of formulas is
defined as follows:

𝑤, 𝑖 |= 𝑄𝜎 ⇐⇒ 𝑤𝑖 = 𝜎 (3a)
𝑤, 𝑖 |= ¬𝜙 ⇐⇒ 𝑤, 𝑖 ̸ |= 𝜙 (3b)
𝑤, 𝑖 |= 𝜙1 ∧ 𝜙2 ⇐⇒ 𝑤, 𝑖 |= 𝜙1 and 𝑤, 𝑖 |= 𝜙2 (3c)

𝑤, 𝑖 |= 𝑡1 < 𝑡2 ⇐⇒ 𝑡
𝑤,𝑖

1 < 𝑡
𝑤,𝑖

2 . (3d)
The semantics of terms is defined as follows:

↼
# [𝜙]𝑤,𝑖 = |{ 𝑗 ∈ [1, 𝑖] | 𝑤, 𝑗 |= 𝜙}| (4a)
⇀
# [𝜙]𝑤,𝑖 = |{ 𝑗 ∈ [𝑖, |𝑤 |] | 𝑤, 𝑗 |= 𝜙}| (4b)

(𝑡1 + 𝑡2)𝑤,𝑖 = 𝑡
𝑤,𝑖

1 + 𝑡
𝑤,𝑖

2 (4c)

1𝑤,𝑖 = 1. (4d)
We write 𝑤 |= 𝜙 if 𝑤, |𝑤 | |= 𝜙, and we say that 𝜙 defines the language L(𝜙) = {𝑤 | 𝑤 |= 𝜙}.
Definition A.2. The depth of formulas and terms of TL[↼# ] and TL[↼# ,⇀# ] is defined by:

dp(𝑄𝜎) = 0
dp(¬𝜙) = dp(𝜙)

dp(𝜙1 ∧ 𝜙2) = max{dp(𝜙1), dp(𝜙2)}
dp(𝑡1 < 𝑡2) = max{dp(𝑡1), dp(𝑡2)}

dp(↼# [𝜙]) = dp(⇀# [𝜙]) = dp(𝜙) + 1
dp(𝑡1 + 𝑡2) = max{dp(𝑡1), dp(𝑡2)}

dp(1) = 0.

We write TL[↼# ]𝑘 (or TL[↼# ,⇀# ]𝑘) for the set of all TL[↼# ] (or TL[↼# ,⇀# ], resp.) formulas with depth at
most 𝑘 .

We will often assume that any comparison 𝑡1 < 𝑡2 can be written in the form
∑

𝜒∈L 𝜆𝜒
↼
# [𝜒] ≥ 𝐶 or∑

𝜒∈L 𝜆𝜒
↼
# [𝜒] +

∑
𝜒∈R 𝜆𝜒

⇀
# [𝜒] ≥ 𝐶 where L,R are sets of formulas and 𝜆ℓ , 𝐶 ∈ Z.

A.2 Examples of TL[↼# ]

Recall from Example 2.2 that the Dyck language is defined by the formula
𝜙Dyck = (↼# [𝑄 (] =

↼
# [𝑄 ) ]) ∧ (↼# [↼# [𝑄 (] <

↼
# [𝑄 ) ]] = 0).

The table below shows how this formula works for the string (()) (), which belongs to the Dyck
language.

subformula description ( ( ) ) ( )

𝑄 ( is left paren ⊤ ⊤ ⊥ ⊥ ⊤ ⊥
𝑄 ) is right paren ⊥ ⊥ ⊤ ⊤ ⊥ ⊤
↼# [𝑄 (] num of left parens 1 2 2 2 3 3
↼# [𝑄 ) ] num of right parens 0 0 1 2 2 3
↼# [𝑄 (] =

↼# [𝑄 ) ] balanced ⊥ ⊥ ⊥ ⊤ ⊥ ⊤
↼# [𝑄 (] <

↼# [𝑄 ) ] violates matching ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
↼# [↼# [𝑄 (] <

↼# [𝑄 ) ]] num of violations 0 0 0 0 0 0
↼# [↼# [𝑄 (] <

↼# [𝑄 ) ]] = 0 matched ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
↼# [↼# [𝑄 (] <

↼# [𝑄 ) ]] = 0 ∧↼# [𝑄 (] =
↼# [𝑄 ) ] matched and balanced ⊥ ⊥ ⊥ ⊤ ⊥ ⊤

14



The table below shows how this formula works for the string ()) () (, which does not belong to the
Dyck language.

subformula description ( ) ) ( ) (

𝑄 ( is left paren ⊤ ⊥ ⊥ ⊤ ⊥ ⊤
𝑄 ) is right paren ⊥ ⊤ ⊤ ⊥ ⊤ ⊥
↼# [𝑄 (] num of left parens 1 1 1 2 2 3
↼# [𝑄 ) ] num of right parens 0 1 2 2 3 3
↼# [𝑄 (] =

↼# [𝑄 ) ] balanced ⊥ ⊤ ⊥ ⊤ ⊥ ⊤
↼# [𝑄 (] <

↼# [𝑄 ) ] violates matching ⊥ ⊥ ⊤ ⊥ ⊤ ⊥
↼# [↼# [𝑄 (] <

↼# [𝑄 ) ]] num of violations 0 0 1 1 2 2
↼# [↼# [𝑄 (] <

↼# [𝑄 ) ]] = 0 matched ⊤ ⊤ ⊥ ⊥ ⊥ ⊥
↼# [↼# [𝑄 (] <

↼# [𝑄 ) ]] = 0 ∧↼# [𝑄 (] =
↼# [𝑄 ) ] matched and balanced ⊥ ⊤ ⊥ ⊥ ⊥ ⊥

A.3 Extensions to TL[↼# ,⇀# ]

We will often make use of the following operator in TL[↼# ,⇀# ], which does not increase its expressive
power or affect the depth of formulas, but saves space when writing.

(𝜙 ? 𝑡then : 𝑡else)𝑤,𝑖 =

{
𝑡then 𝑤, 𝑖 |= 𝜙

𝑡else 𝑤, 𝑖 ̸ |= 𝜙

Lemma A.3 (Yang and Chiang 2024). Any formula 𝜙 of TL[↼# ,⇀# ] that uses the ? operator can be
converted into a formula that does not use the ? operator, defines the same language as 𝜙, and has
the same depth as 𝜙.

Proof. Any comparison formula involving the ? operator can be written in the form

(𝜓if ? 𝑡then : 𝑡else) +
∑︁

ℓ∈[𝑚]
𝑡ℓ ≥ 𝐶,

which can be rewritten as

©­«𝜓if ∧ 𝑡then +
∑︁

ℓ∈[𝑚]
𝑡ℓ ≥ 𝐶

ª®¬ ∨ ©­«¬𝜓if ∧ 𝑡else +
∑︁

ℓ∈[𝑚]
𝑡ℓ ≥ 𝐶

ª®¬ .
This rule can be used iteratively to rewrite all the ? operators out of a formula. □

It can also be convenient to allow an unmasked counting operator # and strict counting operators
↼◦
#

and
◦⇀
# , which do not count the current position.

#[𝜙]𝑤,𝑖 = |{ 𝑗 ∈ [1, |𝑤 |] | 𝑤, 𝑗 |= 𝜙}|
↼◦
# [𝜙]𝑤,𝑖 = |{ 𝑗 ∈ [𝑖, |𝑤 | − 1] | 𝑤, 𝑗 |= 𝜙}|
◦⇀
# [𝜙]𝑤,𝑖 = |{ 𝑗 ∈ [𝑖 + 1, |𝑤 |] | 𝑤, 𝑗 |= 𝜙}|

Lemma A.4. Any formula 𝜙 of TL[↼# ,⇀# ] that uses #,
↼◦
# or

◦⇀
# can be converted into a formula that

does not use #,
↼◦
# , or

◦⇀
# , defines the same language as 𝜙, and has the same depth as 𝜙.

Proof. These counting terms can be rewritten equivalently using
↼
# and

⇀
# :

#[𝜙] ≡ ↼
# [𝜙] + ⇀

# [𝜙] − (𝜙 ? 1 : 0)
↼◦
# [𝜙] ≡ ↼

# [𝜙] − (𝜙 ? 1 : 0)
◦⇀
# [𝜙] ≡ ⇀

# [𝜙] − (𝜙 ? 1 : 0). □

A.4 Proof of Lemma 2.9 (definability of piecewise testable languages)

Lemma 2.9. Any 𝑘-piecewise testable language is definable in TL[↼# ]𝑘 , and any (2𝑘 + 1)-piecewise
testable language is definable in TL[↼# ,⇀# ]𝑘+1.
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Any 𝑘-piecewise testable language 𝐿 can, by definition, be written as a Boolean combination of
J -expressions of the form

Σ∗𝜎1Σ
∗𝜎2Σ

∗ · · ·Σ∗𝜎𝑘Σ
∗.

This is defined by the TL[↼# ] formula of depth 𝑘:

𝜙 =
↼
# [· · ·↼# [↼# [𝑄𝜎1 ≥ 1] ∧𝑄𝜎2 ] ≥ 1 · · · ∧𝑄𝜎𝑘

] ≥ 1.

Any (2𝑘 + 1)-piecewise testable language 𝐿 can, by definition, be written as a Boolean combination
of J -expressions of the form

Σ∗𝜎1Σ
∗𝜎2Σ

∗ · · ·Σ∗𝜎2𝑘+1Σ
∗.

We need to show that this is expressible with 𝑘 + 1 nestings of
↼
# and

⇀
# . We do this by first finding

the middle symbol 𝜎𝑘+1 and checking to the left and right that the correct symbols appear. First,
define depth-𝑘 subformulas that check the left and right halves of the J -expression:

𝜙𝐿 =
↼
# [𝑄𝜎𝑘

∧ ↼
# [𝑄𝜎𝑘−1 ∧

↼
# [· · ·↼# [𝑄𝜎1 ] ≥ 1 · · · ] ≥ 1] ≥ 1] ≥ 1

𝜙𝑅 =
⇀
# [𝑄𝜎𝑘+2 ∧

⇀
# [𝑄𝜎𝑘+3 ∧

⇀
# [· · ·⇀# [𝑄𝜎2𝑘+1 ] ≥ 1 · · · ] ≥ 1] ≥ 1] ≥ 1.

Then, 𝐿 is defined by the TL[↼# ,⇀# ] formula of depth (𝑘 + 1):

𝜙 =
↼
# [𝜙𝐿 ∧𝑄𝜎𝑘+1 ∧ 𝜙𝑅] ≥ 1.

B Transformer Equivalence

In this section and below, the expression I[·] has the value 1 if the statement inside the brackets is
true, and 0 otherwise.

B.1 Transformers

Definition B.1. A fixed-precision number with 𝑝 total bits and 𝑠 fractional bits is a rational number
of the form 𝑚 · 2−𝑠 where 𝑚 is an integer and −2𝑝−1 ≤ 𝑚 < 2𝑝−1. We write F𝑝,𝑠, or simply F, for
the set of all fixed-precision numbers with 𝑝 total bits and 𝑠 fractional bits.

We represent negative numbers using two’s complement. If 𝑏 ∈ [𝑝], the 𝑏-th bit of a fixed-precision
number 𝑥, written ⟨𝑥⟩𝑏, is defined as

⟨𝑥⟩𝑏 =

{
1 if ⌊𝑥/2𝑏−𝑠−1⌋ is odd
0 otherwise.

If 𝑥 is a real number, we write roundF (𝑥) or simply round(𝑥) for the greatest element of F less than
or equal to 𝑥.

The following definition abstracts away from a number of details, but suffices for our purposes (which
is to prove Proposition B.6).

Definition B.2. A future-masked fixed-precision transformer of depth 𝑘 is a function 𝑇 : Σ∗ → F,
defined in terms of functions

𝐸 : Σ∗ → F𝑑

𝑊
(ℓ )
Q ,𝑊

(ℓ )
K ,𝑊

(ℓ )
V , 𝑓 (ℓ ) : F𝑑 → F𝑑 ℓ = 1, . . . , 𝑘

𝑊out : F𝑑 → F.

On input 𝑤, 𝑇 (𝑤) is computed as follows:

h(0)
𝑖

(𝑤) = 𝐸 (𝑤𝑖) (5)
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For ℓ = 1, . . . , 𝑘:

q(ℓ )
𝑖

(𝑤) = 𝑊
(ℓ )
Q

(
h(ℓ−1)
𝑖

(𝑤)
)

(6)

k(ℓ )
𝑖

(𝑤) = 𝑊
(ℓ )
K

(
h(ℓ−1)
𝑖

(𝑤)
)

(7)

v(ℓ )
𝑖

(𝑤) = 𝑊
(ℓ )
V

(
h(ℓ−1)
𝑖

(𝑤)
)

(8)

s(ℓ )
𝑖 𝑗

(𝑤) = q(ℓ )
𝑖

(𝑤) · k(ℓ )
𝑗

(𝑤) (9)

c(ℓ )
𝑖

(𝑤) = round
©­­«
∑𝑖

𝑗=1 round
(
exp

(
s(ℓ )
𝑖 𝑗

(𝑤)
)

v(ℓ )
𝑗

(𝑤)
)

∑𝑖
𝑗=1 round

(
exp

(
s(ℓ )
𝑖 𝑗

(𝑤)
)) ª®®¬ (10)

h(ℓ )
𝑖

(𝑤) = 𝑓 (ℓ )
(
c(ℓ )
𝑖

(𝑤) + h(ℓ−1)
𝑖

(𝑤)
)

(11)

where we say Eq. (10) evaluates to the average of all v(ℓ )
𝑗

if the denominator is 0, and finally

𝑇 (𝑤) = 𝑊out

(
h(𝑘 )
|𝑤 | (𝑤)

)
. (12)

We say that 𝑇 accepts 𝑤 if 𝑇 (𝑤) > 0.

Note crucially that Eq. (10) is written so that even if 𝑖 ≫ 2𝑠, it is still possible to obtain nonzero
values.

B.2 Proof of Theorem 3.1

Theorem 3.1. A language 𝐿 is defined by a formula of TL[↼# ] of depth 𝑘 if and only if <BOS> · 𝐿 is
recognized by a fixed-precision transformer of depth 𝑘 .

We first define what it means for a fixed-precision transformer and a formula to simulate each other.
Definition B.3. We say that a TL[↼# ] formula 𝜙 simulates a fixed-precision transformer 𝑇 if, for all
𝑤 ∈ Σ∗,

𝑤, 𝑖 |= 𝜙 ⇐⇒ 𝑇 (<BOS> · 𝑤)𝑖 > 0.
In other words, 𝑤 |= 𝜙 if and only if 𝑇 accepts <BOS> · 𝑤.

We say that a fixed-precision transformer 𝑇 with depth 𝑘 and dimension 𝑑 simulates a formula 𝜙 of
TL[↼# ] 𝑇 if, for all 𝑤 ∈ Σ∗,

𝑇 (<BOS> · 𝑤)𝑖 > 0 ⇐⇒ 𝑤, 𝑖 |= 𝜙.

Again, 𝑇 accepts <BOS> · 𝑤 if and only if 𝑤 |= 𝜙.

We prove the two directions of Theorem 3.1 separately: from TL[↼# ] to fixed-precision transformers
in Proposition B.4, and from fixed-precision transformers to TL[↼# ] in Proposition B.6.
Proposition B.4. Let 𝜙 be a TL[↼# ] formula of depth 𝑘 . There exists a fixed-precision transformer
𝑇𝜙 of depth 𝑘 which simulates 𝜙.

Proof. This was essentially shown by Yang and Chiang (2024), but they simulated TL[↼# ] using
infinite-precision transformers with layer normalization. Here, we modify the proof to use rounding
instead of layer normalization to simulate comparison operations.3

The case that differs is that of a subformula 𝜓 =
∑

𝜒∈L 𝜆𝜒
↼
# [𝜒] ≥ 𝐶. Assume that previous layers

have computed I[𝑤, 𝑗 |= 𝜒] for 𝜒 ∈ L at all positions 𝑗 ∈ [𝑛]. We want to construct a new layer
that computes I[𝑤, 𝑖 |= 𝜓] at all positions 𝑖 ∈ [𝑛]. Use uniform attention and construct the value
projection 𝑊V so that

v 𝑗 =
∑︁
𝜒∈L

𝜆𝜒 I[𝑤, 𝑗 |= 𝜒] − 𝐶 I[𝑤 𝑗 = <BOS>] .

3A further difference is that we store Boolean values as 0 for false and 1 for true, while Yang and Chiang
(2024) used

[ +1
−1

]
for false and

[ −1
+1

]
for true. They used this more complicated encoding in order to deal with

layer normalization, which is unnecessary here. Our proof could be modified straightforwardly to accommodate
layernorm by using this representation.
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After averaging, we get

c𝑖 =
1

𝑖 + 1
©­«
∑︁
𝜒∈L

©­«𝜆𝜒

𝑖∑︁
𝑗=1

I[𝑤, 𝑗 |= 𝜒]ª®¬ − 𝐶
ª®¬

which rounds to −2−𝑠 or below if 𝜙 is false, and rounds to 0 or above if 𝜙 is true. We can then use the
FFNN 𝑓 to map these two cases to 0 or 1, respectively.

If 𝜙 is the entire formula, the output function 𝑊out just takes the computed value I[𝑤, 𝑗 |= 𝜙] and
maps 0 and 1 to −1 and +1, respectively. □

The following lemma will be used repeatedly.
Lemma B.5 (Chiang et al., 2023). If 𝐹 : Σ∗ → F∗ is length-preserving, 𝑔 : F → F, and there are
formulas 𝜙⟨𝐹 ⟩𝑏 such that

𝑤, 𝑖 |= 𝜙⟨𝐹 ⟩𝑏 ⇐⇒ ⟨𝐹 (𝑤)𝑖⟩𝑏 = 1
then there is a formula 𝜙⟨𝑔 (𝐹 ) ⟩𝑏 such that

𝑤, 𝑖 |= 𝜙⟨𝑔 (𝐹 ) ⟩𝑏 ⇐⇒ ⟨𝑔(𝐹 (𝑤)𝑖)⟩𝑏 = 1.
Similarly if 𝑔 is a function of more than one fixed-precision number.
Proposition B.6. Let 𝑇 be a fixed-precision transformer of depth 𝑘 . There exists a TL[↼# ] formula
𝜙𝑇 of depth 𝑘 which simulates 𝑇 .

Proof. We will show that for every activation h(ℓ )
𝑖,𝑐

and 𝑏 ∈ [𝑝], there is some formula 𝜙⟨h(ℓ)
𝑐 ⟩𝑏 such

that
𝑤, 𝑖 |= 𝜙⟨h(ℓ)

𝑐 ⟩𝑏 ⇐⇒ ⟨h(ℓ )
𝑖,𝑐

(𝑤)⟩𝑏 = 1. (13)

The construction proceeds by induction on ℓ. For ℓ = 0, define the word embedding as

𝜙⟨h(0)
𝑐 ⟩𝑏 =

∨
𝜎∈Σ

⟨𝐸 (𝜎)𝑐 ⟩𝑏=1

𝑄𝜎

so that Eq. (13) holds for ℓ = 0.

Now suppose that Eq. (13) holds for layer ℓ, and consider layer (ℓ + 1). Use Lemma B.5 on 𝑊Q, 𝑊K,
and 𝑊V to obtain formulas 𝜙⟨q(ℓ)

𝑐 ⟩𝑏 , 𝜙⟨k(ℓ)
𝑐 ⟩𝑏 , and 𝜙⟨v(ℓ)

𝑐 ⟩𝑏 such that

𝑤, 𝑖 |= 𝜙⟨q(ℓ)
𝑐 ⟩𝑏 ⇐⇒ ⟨q(ℓ )

𝑖,𝑐
(𝑤)⟩𝑏 = 1 (14)

𝑤, 𝑖 |= 𝜙⟨k(ℓ)
𝑐 ⟩𝑏 ⇐⇒ ⟨k(ℓ )

𝑖,𝑐
(𝑤)⟩𝑏 = 1 (15)

𝑤, 𝑖 |= 𝜙⟨v(ℓ)
𝑐 ⟩𝑏 ⇐⇒ ⟨v(ℓ )

𝑖,𝑐
(𝑤)⟩𝑏 = 1. (16)

Equation (14) in particular allows us to write formulas 𝜙q(ℓ)= ®𝑞 for each ®𝑞 ∈ F𝑑 such that

𝑤, 𝑖 |= 𝜙q(ℓ)= ®𝑞 ⇐⇒ q(ℓ )
𝑖

= ®𝑞.
Next, we want to compute the summands in the numerator and denominator of Eq. (10). These
depend on two positions (𝑖 and 𝑗), whereas a formula of TL[↼# ] only depends on one position. But
since q𝑖 can only take on finitely many values, we can enumerate all of its possible values. That is,
use Lemma B.5 again to obtain formulas

𝑤, 𝑗 |= 𝛼
(ℓ )
®𝑞,𝑐,𝑏 ⇐⇒

〈
round

(
exp

(
®𝑞 · k(ℓ )

𝑗
(𝑤)

)
v(ℓ )
𝑗 ,𝑐

(𝑤)
)〉

𝑏
= 1

𝑤, 𝑗 |= 𝛽
(ℓ )
®𝑞,𝑏 ⇐⇒

〈
round

(
exp

(
®𝑞 · k(ℓ )

𝑗
(𝑤)

))〉
𝑏
= 1.

and then write counting terms 𝐴
(ℓ )
𝑐 and 𝐵 (ℓ ) that represent the numerator and denominator of c(ℓ )𝑐 :

𝐴
(ℓ )
𝑐 =

∑︁
®𝑞

©­«𝜙q(ℓ)= ®𝑞 ? ©­«
∑︁

𝑏∈[𝑝]
2𝑏+𝑠−1 · ↼#

[
𝛼
(ℓ )
®𝑞,𝑐,𝑏

]ª®¬ : 0ª®¬
𝐵 (ℓ ) =

∑︁
®𝑞

©­«𝜙q(ℓ)= ®𝑞 ? ©­«
∑︁

𝑏∈[𝑝]
2𝑏+𝑠−1 · ↼#

[
𝛽
(ℓ )
®𝑞,𝑏

]ª®¬ : 0ª®¬
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so that

(𝐴(ℓ )
𝑐 )𝑤,𝑖 = 2𝑠

∑︁
𝑗≤𝑖

round
(
exp

(
q(ℓ )
𝑖

(𝑤) · k(ℓ )
𝑗

(𝑤)
)

v(ℓ )
𝑗 ,𝑐

(𝑤)
)

(𝐵 (ℓ ) )𝑤,𝑖 = 2𝑠
∑︁
𝑗≤𝑖

round
(
exp

(
q(ℓ )
𝑖

(𝑤) · k(ℓ )
𝑗

(𝑤)
))

.

Next, to define c(ℓ ) , we need to divide the numerator 𝐴(ℓ )
𝑐 by the denominator 𝐵 (ℓ ) . Without loss of

generality, assume 𝐵 (ℓ ) > 0. The other case is similar. The sign bit is then defined by

𝜙⟨c(ℓ)𝑐 ⟩𝑝 = 𝐴
(ℓ )
𝑐 < 0.

The remaining bits can be defined, from most to least significant, using the grade-school algorithm
for long division:

𝑡𝑝−1 = 2𝑠𝐴(ℓ )
𝑐 + (𝜙⟨c(ℓ)𝑐 ⟩𝑝 ? 2𝑝−1𝐵 (ℓ ) : 0) 𝜙⟨c(ℓ)𝑐 ⟩𝑝−1

= 𝑡𝑝−1 ≥ 2𝑝−2𝐵 (ℓ )

𝑡𝑝−2 = 𝑡𝑝−1 − (𝜙⟨c(ℓ)𝑐 ⟩𝑝−1
? 2𝑝−2𝐵 (ℓ ) : 0) 𝜙⟨c(ℓ)𝑐 ⟩𝑝−2

= 𝑡𝑝−2 ≥ 2𝑝−3𝐵 (ℓ )

𝑡𝑝−3 = 𝑡𝑝−2 − (𝜙⟨c(ℓ)𝑐 ⟩𝑝−2
? 2𝑝−3𝐵 (ℓ ) : 0) 𝜙⟨c(ℓ)𝑐 ⟩𝑝−3

= 𝑡𝑝−3 ≥ 2𝑝−4𝐵 (ℓ )

...

𝑡1 = 𝑡2 − (𝜙⟨c(ℓ)𝑐 ⟩2 ? 21𝐵 (ℓ ) : 0) 𝜙⟨c(ℓ)𝑐 ⟩1 = 𝑡1 ≥ 20𝐵 (ℓ )

Finally, we use Lemma B.5 on 𝑓 to obtain formulas 𝜙⟨h(ℓ)
𝑐 ⟩𝑏 satisfying Eq. (13). □

C Depth Hierarchy for TL[↼#]

C.1 Proof of Lemma 4.6 (Commutativity of depth 1)

Lemma 4.6 (Commutativity of depth 1). For any depth-1 formula 𝜙 of TL[↼# ,PNP]1 or
TL[↼# ,⇀# ,PNP]1 and any affix restriction (𝜆, 𝜚) with |𝜚(®𝑛) | ≥ 1 for all ®𝑛, if the PNPs of 𝜙 are
constant on the middle of (𝜆, 𝜚), then L(𝜙) is commutative on the middle of (𝜆, 𝜚).

Let 𝑛 = |𝑤 | and 𝑤′ ∈ 𝜆Σ
∗
𝜚 with Ψ(𝑤) = Ψ(𝑤′). As such, there is a permutation 𝜋 : [𝑛] → [𝑛] such

that 𝑤′
𝑖
= 𝑤𝜋 (𝑖) for all 𝑖, and if 𝑖 is a position in the prefix (𝜆(®𝑛)) or suffix (𝜚(®𝑛)), then 𝜋(𝑖) = 𝑖. We

want to show for depth-0 formulas 𝜒 that 𝑤, 𝜋(𝑖) |= 𝜒 ⇐⇒ 𝑤′, 𝑖 |= 𝜒.

If 𝜒 = 𝑄𝜎: Since 𝑤′
𝑖
= 𝑤𝜋 (𝑖) we have 𝑤, 𝜋(𝑖) |= 𝜒 ⇐⇒ 𝑤′, 𝑖 |= 𝜒.

If 𝜒 = Π for some Parikh numerical predicate Π: If 𝑖 is a position in the prefix or suffix, then 𝜋(𝑖) = 𝑖,
while if 𝑖 is a position in the middle, Π is constant. In either case, 𝑤, 𝜋(𝑖) |= 𝜒 ⇐⇒ 𝑤′, 𝑖 |= 𝜒.

If 𝜒 = ¬𝜒1 or 𝜒 = 𝜒1 ∧ 𝜒2 where 𝜒1, 𝜒2 have depth 0, then 𝑤, 𝜋(𝑖) |= 𝜒 ⇐⇒ 𝑤′, 𝑖 |= 𝜒 follows
from the semantics of ¬ and ∧.

Any minimal depth-1 formula 𝜙 can be written, for finite sets of depth-0 formulas L and R, as

𝜙 =
∑︁
𝜒∈L

𝜆𝜒
↼
# [𝜒] +

∑︁
𝜒∈R

𝜆𝜒
⇀
# [𝜒] ≥ 𝐶.

We showed above that for each 𝜒, we have 𝑤, 𝜋(𝑖) |= 𝜒 ⇐⇒ 𝑤′, 𝑖 |= 𝜒. The
↼
# terms count all

positions, so
↼
# [𝜒]𝑤,𝑛 =

↼
# [𝜒]𝑤′ ,𝑛. The

⇀
# terms only count the last position, and 𝜋(𝑛) = 𝑛, so

⇀
# [𝜒]𝑤,𝑛 =

⇀
# [𝜒]𝑤′ ,𝑛 for all 𝜒. Thus, 𝑤 |= 𝜙 ⇐⇒ 𝑤′ |= 𝜙.

Finally, if 𝜙 = ¬𝜙1 or 𝜙 = 𝜙1 ∧ 𝜙2 where 𝜙1, 𝜙2 have depth at most 1, then 𝑤, 𝜋(𝑖) |= 𝜙 ⇐⇒
𝑤′, 𝑖 |= 𝜙 again follows from the semantics of ¬ and ∧.

C.2 Proof of Lemma 4.8 (Cropping Lemma for TL[↼# ])

Lemma 4.8 (Cropping Lemma for TL[↼# ]). For any formula 𝜙 of TL[↼# ,PNP] and any accommodat-
ing family of intervals 𝐼 : N |Σ | → I(N |Σ | ) such that the PNPs of 𝜙 are constant on 𝐼, there exists an
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accommodating family of intervals 𝐼 ′ : N |Σ | → I(N |Σ | ) such that 𝐼 ′ (®𝑛) sticks only to the top (and no
other side) of 𝐼 (®𝑛) for all ®𝑛 ∈ 𝑁 |Σ | , and all of the minimal depth-1 subformulas (and PNPs) of 𝜙 are
constant on 𝐼 ′. Additionally, there exists such an 𝐼 ′ such that 𝐼 ′ (®𝑛) sticks only to the right of 𝐼 (®𝑛).

Let 𝜓1, 𝜓2, . . . , 𝜓𝑐 be the minimal depth-1 subformulas of 𝜙. That is, for ℓ ∈ [𝑐],

𝜓ℓ =
©­«

∑︁
𝜒∈Lℓ

𝜆𝜒
↼
# [𝜒]ª®¬ ≥ 𝐶ℓ .

Because any PNPs in each 𝜓ℓ are constant on 𝐼, each 𝜓ℓ defines a half-plane in
↼
# [𝑄𝑎] and

↼
# [𝑄𝑏],

where 𝑤, 𝑖 |= 𝜓ℓ iff 𝑤 [1 : 𝑖] lands in the corresponding half-plane. Then 𝜙 is a Boolean combination
of these half-planes. Thus if Ψ(𝑤 [1 : 𝑖]) and Ψ(𝑤′ [1 : 𝑖′]) both land in the same half-planes, they
will both satisfy 𝜙 or both not satisfy 𝜙.

We will show that for a desired size ®𝑠, there is 𝐼 (®𝑛) sufficiently large such that, there is a subinterval
𝐼 ′ (®𝑛) with size at least ®𝑠 sticking only to the top of 𝐼 (®𝑛) (and no other side).

Let 𝑚 be the minimum absolute slope of any non-horizontal boundary line, and let ℎ be the maximum
𝑏-intercept of any horizontal boundary line.

For any ®𝑠 = (𝑠𝑎, 𝑠𝑏), let ®𝑠′ = (𝑠′𝑎, 𝑠′𝑏) = (𝑠𝑎 + 2, 𝑠𝑏 + 1), and choose ®𝑛 such that 𝐼 (®𝑛) has size at least
[3𝑐 max(𝑠′

𝑏
/𝑚, 𝑠′𝑎), ℎ + 𝑠′

𝑏
]. Our goal is to find a subinterval 𝐼 ′ (®𝑛) that has size ®𝑠′, sticks to the top

of 𝐼 (®𝑛), and does not cross any boundary lines.

Let 𝐼𝑐 be an arbitrary subinterval of size [3𝑐 max(𝑠′
𝑏
/𝑚, 𝑠′𝑎), 𝑠′𝑏] that sticks to the top of 𝐼 (®𝑛). We

will prove by induction on 𝑐: Given an interval 𝐼𝑐 with size [3𝑐 max(𝑠′
𝑏
/𝑚, 𝑠′𝑎), 𝑠′𝑏)] that sticks to

the top of 𝐼 (®𝑛) and a set of 𝑐 boundary lines, there is a subinterval 𝐼 ′ (®𝑛) of size ®𝑠′ that sticks to the
top of 𝐼 (®𝑛) and does not cross any boundary lines.

The base case 𝑐 = 0 is trivial: There are no boundary lines to cross, and 𝑠′𝑎 ≤ max(𝑠′
𝑏
/𝑚, 𝑠′𝑎), so

choose any subinterval of 𝐼0 with size ®𝑠′, and shrink it 1 unit from the left, bottom, and right to obtain
a subinterval 𝐼 ′ (®𝑛) of size ®𝑠 that does not to stick to the left, right, or bottom of 𝐼0.

If 𝑐 > 0, take an arbitrary boundary line and call it ℓ and let 𝐼𝑐 be an interval with size
[3𝑐 max(𝑠′

𝑏
/𝑚, 𝑠′𝑎), 𝑠′𝑏)].

If ℓ is horizontal, it must have 𝑏-intercept at most ℎ, so there must be at least 𝑠′
𝑏

space above it inside
𝐼 (®𝑛). So 𝐼𝑐 does not cross ℓ, and neither does any subinterval of 𝐼𝑐. Arbitrarily choose 𝐼𝑐−1 to be the
middle third of 𝐼𝑐, and use the induction hypothesis on 𝐼𝑐−1 and the remaining boundary lines.

𝐼 (®𝑛)
𝐼𝑐 𝐼𝑐−1

ℓ

If ℓ is not horizontal, it must have absolute slope at least 𝑚. The part of 𝐼𝑐 that is crossed by ℓ must
have width at most 𝑠′

𝑏
/𝑚, whereas 𝐼𝑐 has width 3𝑐 max(𝑠′

𝑏
/𝑚, 𝑠′𝑎) ≥ 3𝑠′

𝑏
/𝑚, so either the left third

or right third of 𝐼𝑐 does not cross ℓ. Choose 𝐼𝑐−1 to be that third, and use the induction hypothesis on
𝐼𝑐−1 and the remaining boundary lines.
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𝐼 (®𝑛)
𝐼𝑐 𝐼𝑐−1

ℓ

≤ 𝑠′
𝑏
/𝑚

≥ 3𝑠′
𝑏
/𝑚

A similar argument (with 𝑎 and 𝑏 swapped) can be used to find an 𝐼 ′ (®𝑛) sticking only to the right of
𝐼 (®𝑛).

C.3 Proof of Lemma 4.9 (Reduction Lemma)

Lemma 4.9 (Reduction Lemma). For any depth-𝑘 formula 𝜙 of TL[↼# ,PNP]𝑘 (or TL[↼# ,⇀# ,PNP]𝑘)
and affix restriction (𝜆, 𝜚), if the PNPs and minimal depth-1 subformulas of 𝜙 are constant on the
middle of (𝜆, 𝜚), then there is a formula 𝜙′ of depth (𝑘 − 1) of TL[↼# ,PNP]𝑘−1 (or TL[↼# ,⇀# ,PNP]𝑘 ,
resp.) that defines 𝜆L(𝜙)𝜚 , and the PNPs of 𝜙′ are constant on the middle of (𝜆, 𝜚).

Let 𝜓1, . . . , 𝜓𝑐 be the minimal depth-1 subformulas of 𝜙. Each 𝜓ℓ for 1 ≤ ℓ ≤ 𝑐 is of the form

𝜓ℓ =
∑︁
𝜒∈Lℓ

𝜆𝜒
↼
# [𝜒] ≥ 𝐶ℓ

if 𝜙 is a formula of TL[↼# ,PNP]𝑘 or

𝜓ℓ =
∑︁
𝜒∈Lℓ

𝜆𝜒
↼
# [𝜒] +

∑︁
𝜒∈Rℓ

𝜆𝜒
↼
# [𝜒] ≥ 𝐶ℓ .

if 𝜙 is a formula of TL[↼# ,⇀# ,PNP]𝑘 .

In either case, 𝜓ℓ is constant on the middle of (𝜆, 𝜚), meaning that for a given ®𝑛, each 𝜓ℓ has the
same truth value for 𝑤 ∈ 𝜆Σ

∗
𝜚 with Ψ(𝑤) = ®𝑛 at positions 𝑖 such that |𝜆(®𝑛) | ≤ 𝑖 ≤ ∥®𝑛∥ − |𝜌(®𝑛) |. The

truth value of 𝜓ℓ , given the restriction to (𝜆, 𝜚), is determined solely by the Parikh vector of the word
and the position 𝑖 at which it is evaluated. Thus there is a PNP 𝑀ℓ which “hard-codes” the behavior
of 𝜓ℓ . Moreover, 𝑀ℓ is constant on the middle of (𝜆, 𝜚) because 𝜓ℓ is. Thus we replace the depth-1
formula 𝜓ℓ with the depth-0 formula 𝑀ℓ . Call the result 𝜙red.

The last step is to write a formula that checks if 𝑤 ∈ 𝜆Σ
∗
𝜚 . For 𝜎 ∈ Σ, define a Parikh numerical

predicate Π𝜎 that is true at position 𝑖 if position 𝑖 belongs to the prefix/suffix and the symbol at that
position of the prefix/suffix is 𝜎:

𝑤, 𝑖 |= Π𝜎 ⇐⇒

𝜆(Ψ(𝑤))𝑖 = 𝜎 𝑖 ≤ |𝜆(Ψ(𝑤)) |
𝜚(Ψ(𝑤))𝑖−( |𝑤 |− | 𝜚 (Ψ(𝑤) ) | ) = 𝜎 𝑖 ≥ |𝑤 | − |𝜚(Ψ(𝑤)) |
⊤ otherwise.

This is a Parikh numerical predicate because it is conditioned only on the position 𝑖 and the Parikh
vector of 𝑤. Moreover, it is constant on the middle of (𝜆, 𝜚).
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Then we can write the following formula, which checks whether 𝑤 ∈ 𝜆Σ
∗
𝜚 by checking whether 𝑤 at

every position 𝑖 has the correct prefix/suffix:

𝜙aff =
(↼
# [(Π𝑎 ∧𝑄𝑎) ∨ (Π𝑏 ∧𝑄𝑏)] =

↼
# [⊤]

)
Finally, define the new formula

𝜙′ = 𝜙red ∧ 𝜙aff

which has depth (𝑘 − 1) and defines 𝜆𝐿 𝜚 . Note that since 𝜙aff does not contain
⇀
# , if 𝜙 did not contain

⇀
# then 𝜙′ does not either, so if 𝜙 ∈ TL[↼# ,PNP]𝑘 then 𝜙′ ∈ TL[↼# ,PNP]𝑘−1.

C.4 Proof of Corollary 5.2

Corollary 5.2 (Corollary of Theorem 4.10). A depth-(𝑘 + 1) TL[↼# ] formula can solve the next-token
prediction problem for 𝐿𝑘+3, but no depth-𝑘 TL[↼# ] formula can.

First, we show that the prediction problem for 𝐿𝑘+3 is solvable in TL[↼# ]𝑘+1. To decide whether to
predict 0 or 1, we need to check that 𝑤 starts with 𝑎 and has exactly (𝑘 + 3) blocks so far: if so,
predict 1; if not, predict 0. Since we may assume that the entire string 𝑤 belongs to 𝐿𝑘+3, we know
that it starts with a block of 𝑎’s, and there are no more than (𝑘 + 2) blocks after that. We can check
blocks 2 through (𝑘 + 2) by checking if 𝑤 belongs to 𝐵𝑘+1 (see Eq. (2)), and we can check the last
block by testing whether the current symbol is 𝑎 (if 𝑘 is even) or 𝑏 (if 𝑘 is odd).

More formally, let 𝜙𝐵𝑘+1 define 𝐵𝑘+1 by Lemma 2.9, and let

𝜙 =

{
𝜙𝐵𝑘+1 ∧𝑄𝑎 𝑘 is even
𝜙𝐵𝑘+1 ∧𝑄𝑏 𝑘 is odd.

Then, for all 𝑤 ∈ 𝐿𝑘+3 and 1 ≤ 𝑖 ≤ |𝑤 | we have that

𝑤 [1 : 𝑖] ∈ 𝐿𝑘+3 ⇐⇒ 𝑤 [1 : 𝑖] |= 𝜙.

In the other direction (the prediction problem for 𝐿𝑘+3 is not solvable in TL[↼# ]𝑘), suppose we had a
depth-𝑘 formula 𝜙 ∈ TL[↼# ]𝑘 such that for all 𝑤 ∈ 𝐿𝑘+3 and 1 ≤ 𝑖 ≤ |𝑤 |, 𝑤 [1 : 𝑖] |= 𝜙 ⇐⇒ 𝑤 [1 :
𝑖] ∈ 𝐿𝑘+3. Assume that 𝑘 is even (the odd case is similar). We can use Lemmas 4.8 and 4.9 just as in
the proof of Theorem 4.10 to obtain an accommodating affix restriction 𝜆1 (®𝑛) ∈ 𝐿𝑘 and 𝜚1 (®𝑛) ∈ 𝑎+,
as well as a depth-1 formula 𝜙1 ∈ TL[↼# ,PNP]1, which defines 𝜆1 (𝐿𝑘+3)𝜚1 and only uses PNPs which
are constant over (𝜆1, 𝜚1).
Since (𝜆1, 𝜚1) is accommodating, choose ®𝑛 so that the middle has 𝑠𝑎 ≥ 2 occurrences of 𝑎 and 𝑠𝑏 ≥ 2
occurrences of 𝑏. Construct strings

𝑤 = 𝜆1 (®𝑛)𝑏𝑠𝑏−1𝑎𝑠𝑎−1𝑏𝑎𝜚1 (®𝑛)
𝑤′ = 𝜆1 (®𝑛)𝑏𝑠𝑏𝑎𝑠𝑎 𝜚1 (®𝑛)𝑏𝑎

which both belong to 𝐿𝑘+3 (because the prefix 𝜆1 (®𝑛) has 𝑘 blocks ending with a block of 𝑏’s and the
suffix 𝜚1 (®𝑛) is all 𝑎’s, so both strings have (𝑘 + 3) blocks). Let 𝑖 = |𝜆1 (®𝑛) | + 𝑠𝑎 + 𝑠𝑏 + |𝜚1 (®𝑛) |, that
is, the position of the last symbol of 𝜚(®𝑛). Then 𝑤 [1 : 𝑖] ∈ 𝐿𝑘+3, while 𝑤′ [1 : 𝑖] ∉ 𝐿𝑘+3. But by
Lemma 4.6, we have 𝑤 [1 : 𝑖] |= 𝜙1 ⇐⇒ 𝑤′ [1 : 𝑖] |= 𝜙1. This is a contradiction, so we conclude
that no formula 𝜙 with depth 𝑘 can solve the prediction problem for 𝐿𝑘+3.

If 𝑘 is odd, the argument is the same, except with 𝑎 and 𝑏 swapped.

D Depth Hierarchy for TL[↼#,
⇀

#]

We can also obtain a strict depth hierarchy for TL[↼# ,⇀# ]. The key observation is that to modify
Lemma 4.8 for TL[↼# ,⇀# ] we use the fact that if the Parikh vector of a word is fixed we can rewrite

⇀
#

in terms of
↼
# and ®𝑛.

Lemma D.1 (Cropping Lemma for TL[↼# ,⇀# ], cf. Lemmas 1–2 of Behle et al., 2009). For any
formula 𝜙 of TL[↼# ,⇀# ,PNP] and any accommodating family of intervals 𝐼 : N |Σ | → I(N |Σ | ), such
that 𝐼 (®𝑛) ⊆ [®0, ®𝑛] and the PNPs of 𝜙 are constant on 𝐼, there exists an accommodating family of
intervals 𝐼 ′ : N |Σ | → I(N |Σ | ) such that 𝐼 ′ (®𝑛) ⊆ 𝐼 (®𝑛) but does not stick to any side of 𝐼 (®𝑛) for all ®𝑛,
and all of the minimal depth-1 subformulas (and PNPs) of 𝜙 are constant on 𝐼 ′.
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Proof. Let 𝜓1, 𝜓2, . . . , 𝜓𝑐 be the minimal depth-1 subformulas of 𝜙. That is, for ℓ ∈ [𝑐],

𝜓ℓ =
©­«

∑︁
𝜒∈Lℓ

𝜆𝜒
↼
# [𝜒]ª®¬ + ©­«

∑︁
𝜒∈Rℓ

𝜆𝜒
⇀
# [𝜒]ª®¬ ≥ 𝐶ℓ .

For any size ®𝑠 = (𝑠𝑎, 𝑠𝑏) ∈ N |Σ | , let ®𝑠′ = (𝑠𝑎 + 2, 𝑠𝑏 + 2). We may, since 𝐼 is accommodating, set ®𝑛
such that 𝐼 (®𝑛) has size at least (2𝑐𝑠′𝑎, 2𝑐𝑠′𝑏). Then we rewrite 𝜓ℓ as

𝜓ℓ =
©­«

∑︁
𝜒∈Lℓ

𝜆𝜒
↼
# [𝜒]ª®¬ + ©­«

∑︁
𝜒∈Rℓ

𝜆𝜒 (𝐶𝜒 − ↼◦
# [𝜒])ª®¬ ≥ 𝐶ℓ

𝐶𝜒 =


𝑛𝑎 + 𝑛𝑏 if 𝜒 = ⊤
𝑛𝑎 if 𝜒 = 𝑄𝑎

𝑛𝑏 if 𝜒 = 𝑄𝑏

0 if 𝜒 = ⊥.

(Regarding the strict counting operator
↼◦
# , see Lemma A.4.) Now each 𝜓ℓ defines a half-plane over

↼
# [𝑄𝑎] and

↼
# [𝑄𝑏], where 𝑤, 𝑖 |= 𝜓ℓ iff 𝑤 [1 : 𝑖] lands on the correct side of the half-plane. Then

𝜙 is a Boolean combination of these half-planes. Thus if 𝑤 [1 : 𝑖] and 𝑤′ [1 : 𝑖′] land in the same
half-planes, they will both satisfy 𝜙 or both not satisfy 𝜙.

Next, we prove that we can find an interval with size at least ®𝑠′ on which all the 𝜓ℓ are constant, by
induction on 𝑐. The base case 𝑐 = 0 is trivial. For 𝑐 > 0, we split the interval into four quadrants,
each of size (2𝑐−1𝑠′𝑎, 2𝑐−1𝑠′

𝑏
). Since a line can only intersect at most three quadrants, there is one

quadrant that is completely contained in the half-plane for 𝜓𝑐 or completely outside. Use the inductive
hypothesis on this quadrant and the remaining half-planes for {𝜓1, . . . , 𝜓𝑐−1}.
Finally, shrink the interval slightly to obtain an interval 𝐼 ′ (®𝑛) of size ®𝑠 that does not touch any side of
𝐼 (®𝑛). □

Then, in order to prove a depth hierarchy for TL[↼# ], each step of reduction needs to eliminate a block
on both the left and the right.

Theorem D.2. Define the family of languages 𝐷𝑘 = 𝐿2𝑘−1 = (𝑎+𝑏+)𝑘−1𝑎+. Then 𝐷𝑘+1 is definable
in TL[↼# ,⇀# ]𝑘+1 but not in TL[↼# ,⇀# ]𝑘 .

Proof. Assume, for the sake of contradiction, that there exists some depth 𝑘 formula 𝜙 ∈ TL[↼# ,⇀# ]𝑘
which defines 𝐷𝑘+1. Let 𝐼𝑘 (®𝑛) = [(1, 0), ®𝑛 − (1, 0)], 𝜆𝑘 (®𝑛) = 𝜚𝑘 (®𝑛) = 𝑎, and 𝜙𝑘 = 𝜙. Note that
(𝜆𝑘 , 𝜚𝑘) is accommodating, and 𝜙𝑘 has no PNPs.

For ℓ = 𝑘 − 1, 𝑘 − 2, . . . , 1, we will define the following, writing 𝐿R for the reversal of 𝐿, that is, the
set of reversal of strings in 𝐿:

1. A accommodating family of intervals 𝐼ℓ (®𝑛) ⊆ 𝐼ℓ+1 (®𝑛).

2. An accommodating affix restriction 𝜆ℓ (®𝑛) ∈ 𝐿𝑘−ℓ+1 and 𝜚ℓ (®𝑛) ∈ 𝐿𝑘−ℓ+1
R.

3. A depth-ℓ formula 𝜙ℓ ∈ TL[↼# ,⇀# ,PNP]ℓ which defines 𝜆ℓ (𝐷𝑘+1)𝜚ℓ and only uses PNPs
which are constant over (𝜆ℓ , 𝜚ℓ).

We use the following iterative procedure:

1. Using Lemma D.1, find an accommodating family of intervals 𝐼ℓ such that 𝐼ℓ (®𝑛) ⊆ 𝐼ℓ+1 (®𝑛)
and does not stick to any side of 𝐼ℓ+1 (®𝑛) for all ®𝑛, and the minimal depth-1 subformulas of
𝜙ℓ+1 are constant on 𝐼.
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2. We choose an affix restriction whose middle is 𝐼ℓ , as follows. Let [®𝑖, ®𝑗] = 𝐼ℓ+1 (®𝑛) and
[®𝑖′, ®𝑗 ′] = 𝐼ℓ (®𝑛); then

𝜆ℓ (®𝑛) =
{
𝜆ℓ+1 (®𝑛)𝑎 [ ®𝑖

′−®𝑖 ]𝑎𝑏 [ ®𝑖
′−®𝑖 ]𝑏 𝑘 − ℓ odd

𝜆ℓ+1 (®𝑛)𝑏 [ ®𝑖
′−®𝑖 ]𝑏𝑎 [ ®𝑖

′−®𝑖 ]𝑎 𝑘 − ℓ even

𝜚ℓ (®𝑛) =
{
𝑏 [ ®𝑗− ®𝑗′ ]𝑏𝑎 [ ®𝑗− ®𝑗′ ]𝑎 𝜚ℓ+1 (®𝑛) 𝑘 − ℓ odd
𝑎 [ ®𝑖

′−®𝑖 ]𝑎𝑏 [ ®𝑗− ®𝑗′ ]𝑏 𝜚ℓ+1 (®𝑛) 𝑘 − ℓ even.

𝐼ℓ−1 (®𝑛)

𝐼ℓ (®𝑛)

𝜆ℓ (®𝑛)

𝜚ℓ (®𝑛)

Because 𝜆ℓ+1 (®𝑛) ∈ 𝐿𝑘−ℓ−1+1 and 𝐼ℓ (®𝑛) does not stick to any side of 𝐼ℓ+1 (®𝑛), we have that
𝜆ℓ ∈ 𝐿𝑘−ℓ+1. Similarly, 𝜚ℓ ∈ 𝐿𝑘−ℓ+1

R.

3. Using Lemma 4.9 we can find a depth-ℓ formula 𝜙ℓ of TL[↼# ,⇀# ,PNP]ℓ that defines
𝜆ℓ (𝐷𝑘+1)𝜚ℓ and only uses PNPs which are constant on (𝜆ℓ , 𝜚ℓ).

At the end of this procedure we are left with

• An accommodating affix restriction 𝜆1 (®𝑛) ∈ 𝐿𝑘 and 𝜚1 (®𝑛) ∈ 𝐿𝑘
R.

• A depth-1 formula 𝜙1 ∈ TL[↼# ,⇀# ,PNP]1 which defines 𝜆1 (𝐷𝑘)𝜚1 and only uses PNPs which
are constant over (𝜆1, 𝜚1).

Since (𝜆1, 𝜚1) is accommodating, choose ®𝑛 so that the middle has 𝑠𝑎 ≥ 2 occurrences of 𝑎 and 𝑠𝑏 ≥ 2
occurrences of 𝑏. Construct strings

𝑤 = 𝜆1 (®𝑛)𝑎𝑠𝑎𝑏𝑠𝑏 𝜚1 (®𝑛)
𝑤′ = 𝜆1 (®𝑛)𝑎𝑠𝑎−1𝑏𝑠𝑏−1𝑎𝑏𝜚1 (®𝑛).

The prefix 𝜆1 (®𝑛) and suffix 𝜚1 (®𝑛) both have 𝑘 blocks, and 𝜆1 (®𝑛) ends with the same letter that 𝜚1 (®𝑛)
starts with. So 𝑤 has (2𝑘 + 1) blocks and is therefore in 𝐷𝑘+1, while 𝑤′ has (2𝑘 + 3) blocks and is
therefore not in 𝐷𝑘+1. But by Lemma 4.6, we have 𝑤 |= 𝜙1 ⇐⇒ 𝑤′ |= 𝜙1. This is a contradiction,
so we conclude that no formula 𝜙 with depth 𝑘 can define 𝐷𝑘+1.

Finally, by Lemma 2.8, 𝐷𝑘+1 = 𝐿2𝑘+1 is a (2𝑘 +1)-piecewise testable language. Thus, by Lemma 2.9,
𝐷𝑘+1 is definable in TL[↼# ,⇀# ]𝑘+1. □

E Equivalence of TL[↼#,
⇀

#] to Other Formalisms

The logic TL[↼# ,⇀# ] is equivalent to two other formalisms studied in the literature. The multiple
different ways of characterizing this class of languages suggest that this is a robust class of languages.

Definition E.1. The syntax of M̂AJ2 [<] is as follows:

𝜙 ::= 𝑄𝜎 (𝑥) | 𝑄𝜎 (𝑦) 𝜎 ∈ Σ

| 𝑥 < 𝑦 | 𝑦 < 𝑥

| ¬𝜙1 | 𝜙1 ∧ 𝜙2

| M̂AJ𝑥 ⟨𝜙1, . . . , 𝜙𝑚⟩ | M̂AJ𝑦 ⟨𝜙1, . . . , 𝜙𝑚⟩ 𝑚 ≥ 1.

The semantics of formulas is defined by the relation 𝑤, 𝜉 |= 𝜙, where 𝜉 is a partial function from
variables in {𝑥, 𝑦} to truth values in {0, 1}. We write 𝜉 [𝑥 ↦→ 𝑖] for the function 𝜉′ such that 𝜉′ (𝑥) = 𝑖
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and 𝜉′ (𝑦) = 𝜉 (𝑦), and similarly for 𝜉 [𝑦 ↦→ 𝑗].

𝑤, 𝜉 |= 𝑄𝜎 (𝑥) ⇐⇒ 𝑤 𝜉 (𝑥 ) = 𝜎 (17a)
𝑤, 𝜉 |= 𝑄𝜎 (𝑦) ⇐⇒ 𝑤 𝜉 (𝑦) = 𝜎 (17b)
𝑤, 𝜉 |= 𝑥 < 𝑦 ⇐⇒ 𝜉 (𝑥) < 𝜉 (𝑦) (17c)
𝑤, 𝜉 |= 𝑦 < 𝑥 ⇐⇒ 𝜉 (𝑦) < 𝜉 (𝑥) (17d)
𝑤, 𝜉 |= ¬𝜙 ⇐⇒ 𝑤, 𝜉 ̸ |= 𝜙 (17e)
𝑤, 𝜉 |= 𝜙1 ∧ 𝜙2 ⇐⇒ 𝑤, 𝜉 |= 𝜙1 and 𝑤, 𝜉 |= 𝜙2 (17f)

𝑤, 𝜉 |= M̂AJ𝑥 ⟨𝜙1, . . . , 𝜙𝑚⟩ ⇐⇒
|𝑤 |∑︁
𝑖=1

𝑚∑︁
ℓ=1

I
[
𝑤, 𝜉 [𝑥 ↦→ 𝑖] |= 𝜙ℓ

]
>

|𝑤 |𝑚
2

(17g)

𝑤, 𝜉 |= M̂AJ𝑦 ⟨𝜙1, . . . , 𝜙𝑚⟩ ⇐⇒
|𝑤 |∑︁
𝑗=1

𝑚∑︁
ℓ=1

I
[
𝑤, 𝜉 [𝑦 ↦→ 𝑗] |= 𝜙ℓ

]
>

|𝑤 |𝑚
2

. (17h)

We write 𝑤 |= 𝜙 to mean 𝑤, ∅ |= 𝜙, and we say that a closed formula 𝜙 defines the language
L(𝜙) = {𝑤 | 𝑤 |= 𝜙}.
Definition E.2. The depth of formulas and terms of M̂AJ2 [<] is defined by:

dp(𝑄𝜎 (𝑥)) = dp(𝑄𝜎 (𝑦)) = 0
dp(𝑥 < 𝑦) = dp(𝑦 < 𝑥) = 0

dp(¬𝜙) = dp(𝜙)
dp(𝜙1 ∧ 𝜙2) = max{dp(𝜙1), dp(𝜙2)}

dp(M̂AJ𝑥 ⟨𝜙1, . . . , 𝜙𝑚⟩) = dp(M̂AJ𝑦 ⟨𝜙1, . . . , 𝜙𝑚⟩⟩ = 1 + max{dp(𝜙1), . . . , dp(𝜙𝑚)}.

We write M̂AJ2 [<]𝑘 for the class of all formulas 𝜙 such that dp(𝜙) ≤ 𝑘 .

Lemma E.3. Any formula 𝜙 of M̂AJ2 [<] that uses ∀ or ∃ can be converted into a formula that does
not use ∀ or ∃, defines the same language as 𝜙, and has the same depth as 𝜙.

Proof. These quantifiers can be rewritten equivalently using M̂AJ:

∃𝑥 [𝜙] ≡ M̂AJ𝑥 ⟨𝜙,⊤⟩
∀𝑥 [𝜙] ≡ ¬M̂AJ𝑥 ⟨¬𝜙,⊤⟩. □

Now, we show the equivalence of TL[↼# ,⇀# ] with M̂AJ2 [<]. First, we show how to translate TL[↼# ,⇀# ]
to M̂AJ2 [<] (Theorem E.4) and then how to translate M̂AJ2 [<] to TL[↼# ,⇀# ] (Theorem E.6).

Theorem E.4. Let 𝜙 be a formula of TL[↼# ,⇀# ]𝑘 . Then there exists a M̂AJ2 [<]𝑘 formula 𝜙′ (𝑥) with
one free variable such that 𝑤, 𝑖 |= 𝜙 ⇐⇒ 𝑤, 𝑥 = 𝑖 |= 𝜙′ (𝑥) for all 𝑤 and 1 ≤ 𝑖 ≤ |𝑤 |.

Proof. We define a transformation M𝑥 ⟦·⟧ from formulas of TL[↼# ,⇀# ] to formulas of M̂AJ2 [<] with
one free variable 𝑥:

M𝑥 ⟦𝑄𝜎⟧ = 𝑄𝜎 (𝑥)
M𝑥 ⟦¬𝜙⟧ = ¬M𝑥 ⟦𝜙⟧

M𝑥 ⟦𝜙1 ∧ 𝜙2⟧ = M𝑥 ⟦𝜙1⟧ ∧M𝑥 ⟦𝜙2⟧ .

Any comparison formula can be written in the form

𝑚∑︁
ℓ=1

𝑡ℓ −
𝑚′∑︁
ℓ=1

𝑡′ℓ > 0

where 𝑡ℓ and 𝑡′
ℓ

are terms. Since this tests whether the sum is greater than 0, whereas the M̂AJ
quantifier tests whether the sum is greater than half of its maximum possible value, we need to pad
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the positive terms (𝑡ℓ) with an equal number of trivially true formulas. Similarly, we need to pad the
negative terms (𝑡′

ℓ
) with an equal number of trivially false formulas.

M𝑥

�
𝑚∑︁
ℓ=1

𝑡ℓ −
𝑚′∑︁
ℓ=1

𝑡′ℓ > 0

�
= M̂AJ𝑦 ⟨F𝑥 ⟦𝑡1⟧ ,⊤, . . . , F𝑥 ⟦𝑡𝑚⟧ ,⊤,¬F𝑥

�
𝑡′1

�
,⊥, . . . ,¬F𝑥 ⟦𝑡′𝑚′⟧ ,⊥⟩

(18a)
F𝑥

�↼
# [𝜙]

�
= (𝑦 ≤ 𝑥 ∧M𝑦 ⟦𝜙⟧) (18b)

F𝑥

�⇀
# [𝜙]

�
= (𝑦 ≥ 𝑥 ∧M𝑦 ⟦𝜙⟧) (18c)

F𝑥 ⟦#[𝜙]⟧ = M𝑦 ⟦𝜙⟧ (18d)
F𝑥 ⟦1⟧ = (𝑦 = 𝑥). (18e)

To see why this works, we can show by induction that for all strings 𝑤, assignments 𝜉, formulas 𝜙,
and terms 𝑡, both of the following hold:

𝑤, 𝜉 |= M𝑥 ⟦𝜙⟧ ⇐⇒ 𝑤, 𝜉 (𝑥) |= 𝜙 (19a)
|𝑤 |∑︁
𝑗=1

I
[
𝑤, 𝜉 [𝑦 ↦→ 𝑗] |= F𝑥 ⟦𝑡⟧

]
= 𝑡𝑤,𝜉 (𝑥 ) . (19b)

The interesting case is

𝑤, 𝜉 |= M𝑥

�
𝑚∑︁
ℓ=1

𝑡ℓ −
𝑚′∑︁
ℓ=1

𝑡′ℓ > 0

�
(18a)
⇐⇒ 𝑤, 𝜉 |= M̂AJ𝑦 ⟨F𝑥 ⟦𝑡1⟧ ,⊤, . . . , F𝑥 ⟦𝑡𝑚⟧ ,⊤,¬F𝑥

�
𝑡′1

�
,⊥, . . . ,¬F𝑥 ⟦𝑡′𝑚′⟧ ,⊥⟩

(17h)
⇐⇒

|𝑤 |∑︁
𝑗=1

(
𝑚∑︁
ℓ=1

(
I
[
𝑤, 𝜉 [𝑦 ↦→ 𝑗] |= F𝑥 ⟦𝑡ℓ⟧

]
+ I[⊤]

)
+

𝑚′∑︁
ℓ=1

(
1 − I

[
𝑤, 𝜉 [𝑦 ↦→ 𝑗] |= F𝑥

�
𝑡′ℓ

�]
+ I[⊥]

))
> |𝑤 | (𝑚 + 𝑚′)

⇐⇒
|𝑤 |∑︁
𝑗=1

(
𝑚∑︁
ℓ=1

I
[
𝑤, 𝜉 [𝑦 ↦→ 𝑗] |= F𝑥 ⟦𝑡ℓ⟧

]
−

𝑚′∑︁
ℓ=1

I
[
𝑤, 𝜉 [𝑦 ↦→ 𝑗] |= F𝑥

�
𝑡′ℓ

�] )
> 0

(19b)
⇐⇒

𝑚∑︁
ℓ=1

(𝑡ℓ)𝑤,𝜉 (𝑥 ) −
𝑚′∑︁
ℓ=1

(𝑡ℓ)𝑤,𝜉 (𝑥 ) > 0

(4c)
⇐⇒ 𝑤, 𝜉 (𝑥) |=

𝑚∑︁
ℓ=1

𝑡ℓ −
𝑚′∑︁
ℓ=1

𝑡ℓ > 0.

Observe that a formula of the form M𝑥 ⟦𝜓⟧ may only have free variable 𝑥, because in Eq. (18a),
M̂AJ𝑦 binds 𝑦. □

In the special case of a comparison formula of # terms, the resulting M̂AJ2 [<] formula will be closed.

Proposition E.5. Let M𝑥 ⟦·⟧ be as in Theorem E.4. If 𝜙 is of the form #[𝜓] > 0, then M𝑥 ⟦𝜙⟧ is
closed.

Proof. Recall that a formula of the form M𝑥 ⟦𝜓⟧ may only have free variable 𝑥, because in Eq. (18a),
M̂AJ𝑦 binds 𝑦. But the special case of M𝑥 ⟦#[𝜓] > 0⟧ is closed, because F𝑥 ⟦#[𝜓]⟧ = M𝑦 ⟦𝜓⟧
(Eq. (18d)) only has free variable 𝑦, and Eq. (18a), M̂AJ𝑦 binds 𝑦. □

Theorem E.6. Let 𝜙(𝑥) be a formula of M̂AJ2 [<]𝑘 with one free variable 𝑥. Then there exists a
TL[↼# ,⇀# ]𝑘 formula 𝜙′ (𝑥) such that for all 𝑤 and all 𝑖 ∈ [|𝑤 |], we have 𝑤, 𝑥 = 𝑖 |= 𝜙(𝑥) ⇐⇒ 𝑤, 𝑖 |=
𝜙′.
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Proof. We define a transformation T𝑥 that transforms a formula of M̂AJ2 [<] with free variable 𝑥 into
a formula of TL[↼# ,⇀# ].

T𝑥 ⟦𝑄𝜎 (𝑥)⟧ = 𝑄𝜎

T𝑥 ⟦¬𝜙(𝑥)⟧ = ¬T𝑥 ⟦𝜙(𝑥)⟧
T𝑥 ⟦𝜙1 (𝑥) ∧ 𝜙2 (𝑥)⟧ = T𝑥 ⟦𝜙1 (𝑥)⟧ ∧ T𝑥 ⟦𝜙2 (𝑥)⟧

T𝑥
�
M̂AJ𝑦 ⟨𝜙1 (𝑥, 𝑦), . . . , 𝜙𝑚 (𝑥, 𝑦)⟩

�
=

∑︁
ℓ∈[𝑚]

C𝑦 ⟦𝜙ℓ (𝑥, 𝑦)⟧ >
∑︁

ℓ∈[𝑚]
C𝑦 ⟦¬𝜙ℓ (𝑥, 𝑦)⟧ .

The transformation T𝑦 is defined similarly.

The transformation C𝑦 ⟦𝜓(𝑥, 𝑦)⟧, in turn, can be read as “count the number of positions 𝑦 that make
𝜓(𝑥, 𝑦) true.” Without loss of generality, assume that 𝜓 is in full disjunctive normal form, that is,
𝜓 =

∨
ℓ∈[𝑚′ ] 𝜓ℓ and at most one of the 𝜓ℓ can be true at the same time. Then we define

C𝑦

�� ∨
ℓ∈[𝑚′ ]

𝜓ℓ (𝑥)

�� =
∑︁

ℓ∈[𝑚′ ]
C𝑦 ⟦𝜓ℓ (𝑥)⟧ .

Each of the 𝜓ℓ can be written as a conjunction of literals with free variable 𝑥, literals with free
variable 𝑦, and possibly a comparison 𝑥 < 𝑦, 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑥, or 𝑦 < 𝑥. Then we define

C𝑦 ⟦𝜓ℓ1 (𝑥) ∧ 𝜓ℓ2 (𝑦) ∧ 𝑥 < 𝑦⟧ = 𝜓ℓ1 ? ◦⇀
#

[
T𝑦 ⟦𝜓ℓ2 (𝑦)⟧

]
: 0

C𝑦 ⟦𝜓ℓ1 (𝑥) ∧ 𝜓ℓ2 (𝑦) ∧ 𝑥 ≤ 𝑦⟧ = 𝜓ℓ1 ? ⇀
#

[
T𝑦 ⟦𝜓ℓ2 (𝑦)⟧

]
: 0

C𝑦 ⟦𝜓ℓ1 (𝑥) ∧ 𝜓ℓ2 (𝑦) ∧ 𝑦 < 𝑥⟧ = 𝜓ℓ1 ? ↼◦
#

[
T𝑦 ⟦𝜓ℓ2 (𝑦)⟧

]
: 0

C𝑦 ⟦𝜓ℓ1 (𝑥) ∧ 𝜓ℓ2 (𝑦) ∧ 𝑦 ≤ 𝑥⟧ = 𝜓ℓ1 ? ↼
#

[
T𝑦 ⟦𝜓ℓ2 (𝑦)⟧

]
: 0

C𝑦 ⟦𝜓ℓ1 (𝑥) ∧ 𝜓ℓ2 (𝑦)⟧ = 𝜓ℓ1 ? #
[
T𝑦 ⟦𝜓ℓ2 (𝑦)⟧

]
: 0.

The transformation C𝑥 is defined similarly. (Regarding the strict counting operators
↼◦
# and

◦⇀
# , see

Lemma A.4.) □

Theorem E.7. L(TL[↼# ,⇀# ]) = L(M̂AJ2 [<]) = L(FO[<]-uniform LTC0). Furthermore, for all
𝑘 ≥ 0 we have TL[↼# ,⇀# ]𝑘 ⊆ M̂AJ2 [<]𝑘+1 and M̂AJ2 [<]𝑘 ⊆ TL[↼# ,⇀# ]𝑘 .

Proof. The equivalence L(M̂AJ2 [<]) = L(FO[<]-uniform LTC0) was shown by Krebs (2008, The-
orem 4.33).

We will show the following:

• L(TL[↼# ,⇀# ]𝑘) ⊆ L(M̂AJ2 [<]𝑘+1) using Theorem E.4.

• L(M̂AJ2 [<]𝑘) ⊆ L(TL[↼# ,⇀# ]𝑘) using Theorem E.6.

If 𝜙 is a formula of TL[↼# ,⇀# ]𝑘 , then by Theorem E.4, there is an equivalent M̂AJ2 [<]𝑘 formula 𝜙′ (𝑥).
This, in turn, is equivalent to the following closed formula:

𝜙′′ = ∃𝑥.(¬∃𝑦.𝑦 > 𝑥) ∧ 𝜙′ (𝑥).

This accounts for the end-satisfaction of TL[↼# ,⇀# ] formulas, but adds a level of depth to the M̂AJ2 [<]
formula.

Conversely, if 𝜙 is a closed formula of M̂AJ2 [<]𝑘 , we may think of it as having one free variable 𝑥,
so by Theorem E.6 below, there is a TL[↼# ,⇀# ]𝑘 formula equivalent to 𝜙. □

This theorem combined with our Theorem D.2 implies the following answer to an open question.
Corollary E.8. The circuit depth hierarchy for FO[<]-uniform LTC0 circuits is strict.

Proof. By Theorem D.2 and Theorem E.7 we know that 𝐷𝑘+1 ∉ L(M̂AJ2 [<]𝑘). On the other hand,
let 𝜙𝑘 be the TL[↼# ,⇀# ]𝑘 formula given by Lemma 2.9 for 𝐷𝑘 . Then apply Theorem E.4 to get a
formula 𝜙′

𝑘
of M̂AJ2 [<]𝑘 that defines 𝐷𝑘 . Since 𝜙𝑘 is of the form #[𝜓] > 0, by Proposition E.5, 𝜙′

𝑘

is closed. Thus, the depth hierarchy for M̂AJ2 [<] is strict.
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By Theorem 3 of Behle et al. (2013), FO[<]-uniform LTC0 circuits form a hierarchy in the circuit
depth iff M̂AJ2 [<] formulas form a hierarchy in the quantifier depth. Their theorem states that there
exists a constant 𝑐 such that a circuit of depth 𝑘 can be expressed as a formula of depth 𝑘 + 𝑐, and a
formula of depth 𝑘 can be expressed as a circuit of depth 𝑐𝑘 . □

F Position Encodings

In this section, we extend the results of Sections 3 and 4 to handle position encodings. On the logic
side, we extend TL[↼# ] with new predicates MOD𝑟

𝑚, which test whether the position is congruent to 𝑟
modulo 𝑚, and a new operator Y𝜙, which tests whether 𝜙 is true at the previous position. On the
transformer side, we consider the original sinusoidal position encodings, as well as RoPE (Su et al.,
2024) and ALiBi (Press et al., 2022).

F.1 TL[↼# ,Y,MOD]

We extend TL[↼# ] to a more expressive logic, TL[↼# ,Y,MOD] (which is equivalent to
C-RASP[local, periodic] of Huang et al. (2025)). The new syntax rules are:

𝜙 ::= Y𝜙1 | MOD𝑟
𝑚

The semantics of the extensions are defined as follows:

𝑤, 𝑖 |= Y𝜙 ⇐⇒ 𝑤, (𝑖 − 1) |= 𝜙 and 𝑖 > 1 (20a)
𝑤, 𝑖 |= MOD𝑟

𝑚 ⇐⇒ 𝑖 ≡ 𝑟 (mod 𝑚). (20b)

F.2 Depth Hierarchy

To prove a strict depth hierarchy for TL[↼# ,Y,MOD], we first we define an intermediate step to
simplify the construction. A formula is in Y-normal form if Y only appears around atomic formulas.
That is, the set of formulas in Y-normal form is defined by the following grammar.

𝜙 ::= 𝑡1 < 𝑡2 | ¬𝜙1 | 𝜙1 ∧ 𝜙2 | 𝜓
𝜓 ::= 𝑄𝜎 | MOD𝑟

𝑚 | Y𝜓1

𝑡 ::= ↼
# [𝜙] | 𝑡1 + 𝑡2 | 1

Below, we will use the shorthand, for any 𝑐 ≥ 0,

Y𝑐𝜙 = Y · · ·Y︸  ︷︷  ︸
𝑐 times

𝜙.

Lemma F.1. For every formula 𝜙 of TL[↼# ,Y,MOD]𝑘 there exists a formula 𝜙′ of TL[↼# ,Y,MOD]𝑘
such that 𝑤, 𝑖 |= 𝜙 ⇐⇒ 𝑤, 𝑖 |= 𝜙′ for all 𝑤 ∈ Σ∗, and 𝜙′ is in Y-normal form.

Proof. Define a transformation N 𝑐 ⟦·⟧, where 𝑐 ≥ 0, applying to both formulas and terms, that
pushes Y’s inwards. The superscript 𝑐 keeps track of how many Y’s are being pushed. For any formula
𝜙, we have 𝑤, 𝑖 |= 𝜙 ⇐⇒ 𝑤, 𝑖 − 𝑐 |= N 𝑐 ⟦𝜙⟧, and for any term 𝑡, we have 𝑡𝑤,𝑖 = N 𝑐 ⟦𝑡⟧𝑤,𝑖−𝑐.

N 𝑐 ⟦𝑄𝜎⟧ = Y𝑐 𝑄𝜎

N 𝑐 ⟦MOD𝑟
𝑚⟧ = Y𝑐 MOD𝑟

𝑚

N 𝑐 ⟦¬𝜙⟧ = ¬N 𝑐 ⟦𝜙⟧
N 𝑐 ⟦𝜙1 ∧ 𝜙2⟧ = N 𝑐 ⟦𝜙1⟧ ∧ N 𝑐 ⟦𝜙2⟧
N 𝑐 ⟦𝑡1 < 𝑡2⟧ = N 𝑐 ⟦𝑡1⟧ < N 𝑐 ⟦𝑡2⟧

N 𝑐 ⟦Y𝜙⟧ = N 𝑐+1 ⟦𝜙⟧
N 𝑐

�↼
# [𝜙]

�
=

↼
# [N 𝑐 ⟦𝜙⟧]

N 𝑐 ⟦𝑡1 + 𝑡2⟧ = N 𝑐 ⟦𝑡1⟧ + N 𝑐 ⟦𝑡2⟧
N 𝑐 ⟦1⟧ = 1.

Now for any formula 𝜙 of TL[↼# ,Y,MOD]𝑘 , it is easily verified that 𝜙′ = N0 ⟦𝜙⟧ is of the same
depth and in the desired normal form. □
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𝑒

𝑒
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𝑒

𝑤1
𝑒
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𝑒

𝑒

𝑤2
𝑒

...

𝑒

𝑒

𝑤3
𝑒

...

𝑒

𝑒

· · ·

𝑤𝑛

𝑒

...

𝑒

𝑒

𝑓 (𝑤) =

𝑤1 𝑤2 𝑤3 · · · 𝑤𝑛𝑤 =

Figure 5: A set of 𝑥 many formulas on a string 𝑤 of length 𝑛 can simulate a formula 𝜙 on a string
𝑓 (𝑤) of length 𝑥( |𝑤 | + 1).

Lemma F.2. Let 𝜙 be a formula of TL[↼# ,Y,MOD]𝑘 over alphabet Σ ∪ {𝑒} for 𝑒 ∉ Σ. There exists a
formula 𝜙′ of TL[↼# ]𝑘 and a mapping (for some 𝑥 ≥ 1)

𝑓 : Σ∗ → (Σ ∪ {𝑒})∗

𝑤1𝑤2 · · ·𝑤𝑛 ↦→ 𝑒𝑥𝑤1𝑒
𝑥−1𝑤2𝑒

𝑥−1 · · ·𝑤𝑛𝑒
𝑥−1

such that for all 𝑤 ∈ Σ∗, 𝑓 (𝑤) |= 𝜙 ⇐⇒ 𝑤 |= 𝜙′.

Proof. First, let 𝑀 be the least common multiple of all moduli used in 𝜙 (or 𝑀 = 1 if there are none),
and let 𝑌 be the Y-depth of 𝜙. Set 𝑥 = 𝑀 (𝑌 + 1). This ensures that 𝑥 ≡ 0 mod 𝑚 for any modulus 𝑚,
and 𝑥 > 𝑌 , which are important conditions for the following proof.

Intuitively, the technical challenge here is that in 𝑤 we can index only |𝑤 | many positions, but
to simulate a formula over 𝑓 (𝑤), we need to simulate a procedure which can index 𝑥( |𝑤 | + 1)
many positions. We address this by defining a transformation T𝑦 ⟦·⟧, for 𝑦 ∈ [𝑥], from formulas of
TL[↼# ,Y,MOD] to TL[↼# ]. At position 𝑖, T𝑦 ⟦𝜙⟧ simulates 𝜙 at position (𝑥𝑖 + 𝑦) (and similarly for
terms 𝑡). That is, for all 𝜙 and 𝑡, and for all strings 𝑤 and 𝑖 ∈ [|𝑤 |],

𝑓 (𝑤), 𝑥𝑖 + 𝑦 |= 𝜙 ⇐⇒ 𝑤, 𝑖 |= T𝑦 ⟦𝜙⟧ 𝑡 𝑓 (𝑤) ,𝑥𝑖+𝑦 = T𝑦 ⟦𝑡⟧𝑤,𝑖
. (21)

The first 𝑥 positions in 𝑓 (𝑤) are not simulated; they are dealt with specially below. In the end,
Eq. (21) will ensure that 𝑓 (𝑤) |= 𝜙 ⇐⇒ 𝑤 |= 𝜙𝑥 . Intuitively, this construction “stores 𝑓 (𝑤𝑖)
vertically” at each symbol 𝑤𝑖 in 𝑤, and thus we can simulate, in place, the value of 𝜙 at each position
of 𝑓 (𝑤𝑖). We can visualize 𝑤 = 𝑤1𝑤2𝑤3 · · ·𝑤𝑛 and 𝑓 (𝑤) as in Fig. 5, with each 𝑓 (𝑤𝑖) viewed as
a vertical column of symbols in an array. We can read 𝑤 left-to-right, and read 𝑓 (𝑤) up-to-down
within each column, and left-to-right across all columns.
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Without loss of generality, we assume by Lemma F.1 that 𝜙 is in Y-normal form. Then we define the
following transformation:

T𝑦 ⟦Y𝑐𝑄𝜎⟧ =

{
𝑄𝜎 𝑦 − 𝑐 = 1
⊥ otherwise

𝜎 ∈ Σ

T𝑦 ⟦Y𝑐𝑄𝑒⟧ =

{
⊥ 𝑦 − 𝑐 = 1
⊤ otherwise

T𝑦 ⟦Y𝑐MOD𝑟
𝑚⟧ =

{
⊤ 𝑦 − 𝑐 ≡ 𝑟 mod 𝑚

⊥ otherwise

T𝑦 ⟦¬𝜙⟧ = ¬T𝑦 ⟦𝜙⟧
T𝑦 ⟦𝜙1 ∧ 𝜙2⟧ = T𝑦 ⟦𝜙1⟧ ∧ T𝑦 ⟦𝜙2⟧
T𝑦 ⟦𝑡1 < 𝑡2⟧ = T𝑦 ⟦𝑡1⟧ < T𝑦 ⟦𝑡2⟧

T𝑦
�↼

# [𝜙]
�
=

©­«
∑︁

𝑦′∈[𝑥 ]
𝑒𝑥 , 𝑦′ |= 𝜙 ? 1 : 0ª®¬ + ©­«

∑︁
𝑦′∈[𝑥 ]

↼◦
# [T𝑦′ ⟦𝜙⟧]ª®¬ + ©­«

∑︁
𝑦′∈[𝑦 ]

T𝑦′ ⟦𝜙⟧ ? 1 : 0ª®¬
T𝑦 ⟦𝑡1 + 𝑡2⟧ = T𝑦 ⟦𝑡1⟧ + T𝑦 ⟦𝑡2⟧

T𝑦 ⟦1⟧ = 1.

We prove Eq. (21) by induction on the structure of 𝜙.

• If 𝜙 = Y𝑐𝑄𝜎 for 𝜎 ∈ Σ ∪ {𝑒}: If 𝑦 − 𝑐 = 1, then

𝑓 (𝑤), 𝑥𝑖 + 𝑦 |= Y𝑐𝑄𝜎 ⇐⇒ 𝑓 (𝑤)𝑥𝑖 = 𝜎 ⇐⇒ 𝑤𝑖 = 𝜎.

But if 𝑦 − 𝑐 ≠ 1, then

𝑓 (𝑤), 𝑥𝑖 + 𝑦 |= Y𝑐𝑄𝜎 ⇐⇒ 𝑓 (𝑤)𝑥𝑖+𝑦−𝑐 = 𝜎 ⇐⇒ 𝑒 = 𝜎.

In either case, and whether 𝜎 ∈ Σ or 𝜎 = 𝑒, Eq. (21) holds.

• If 𝜙 = Y𝑐MOD𝑟
𝑚: Because 𝑥 is a multiple of every 𝑚, we have

𝑓 (𝑤), 𝑥𝑖 + 𝑦 |= Y𝑐MOD𝑟
𝑚 ⇐⇒ 𝑓 (𝑤), 𝑥𝑖 + 𝑦 − 𝑐 |= MOD𝑟

𝑚

⇐⇒ 𝑦 − 𝑐 ≡ 𝑟 mod 𝑚

⇐⇒ 𝑤, 𝑖 |= T𝑦 ⟦Y𝑐MOD𝑟
𝑚⟧ .

• If 𝑡 =
↼
# [𝜙]: We split the count into three parts,

(↼# [𝜙]) 𝑓 (𝑤) ,𝑥𝑖+𝑦 = |{ 𝑗 ∈ [𝑥𝑖 + 𝑦] | 𝑓 (𝑤), 𝑗 |= 𝜙}|
= |{ 𝑗 ∈ [1, 𝑥] | 𝑓 (𝑤), 𝑗 |= 𝜙}|

+ |{ 𝑗 ∈ [𝑥 + 1, 𝑥𝑖] | 𝑓 (𝑤), 𝑗 |= 𝜙}|
+ |{ 𝑗 ∈ [𝑥𝑖 + 1, 𝑥𝑖 + 𝑦] | 𝑓 (𝑤), 𝑗 |= 𝜙}|

In relation to Fig. 5, the first term sums the first column, the second term sums the columns
corresponding to 𝑤1 · · ·𝑤𝑛−1, and the third term sums the last column (corresponding to
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𝑤𝑛). Taking these three terms one at a time:

|{ 𝑗 ∈ [1, 𝑥] | 𝑓 (𝑤), 𝑗 |= 𝜙}| = |{ 𝑗 ∈ [1, 𝑥] | 𝑒𝑥 , 𝑗 |= 𝜙}|

=
©­«

∑︁
𝑦′∈[𝑥 ]

𝑒𝑥 , 𝑦′ |= 𝜙 ? 1 : 0ª®¬
𝑤,𝑖

|{ 𝑗 ∈ [𝑥 + 1, 𝑥𝑖] | 𝑓 (𝑤), 𝑗 |= 𝜙}| =
∑︁

𝑦′∈[𝑥 ]
|{𝑖′ ∈ [1, 𝑖 − 1] | 𝑓 (𝑤), 𝑥𝑖′ + 𝑦′ |= 𝜙}|

ind. hyp.
=

∑︁
𝑦′∈[𝑥 ]

��{𝑖′ ∈ [1, 𝑖 − 1] | 𝑤, 𝑖′ |= T𝑦′ ⟦𝜙⟧}
��

=
©­«

∑︁
𝑦′∈[𝑥 ]

↼◦
# [T𝑦′ ⟦𝜙⟧]ª®¬

𝑤,𝑖

|{ 𝑗 ∈ [𝑥𝑖 + 1, 𝑥𝑖 + 𝑦] | 𝑓 (𝑤), 𝑗 |= 𝜙}| = |{𝑦′ ∈ [1, 𝑦] | 𝑓 (𝑤), 𝑥𝑖 + 𝑦′ |= 𝜙}|
ind. hyp.
=

��{𝑦′ ∈ [1, 𝑦] | 𝑤, 𝑖 |= T𝑦′ ⟦𝜙⟧}
��

=
©­«

∑︁
𝑦′∈[𝑦 ]

T𝑦′ ⟦𝜙⟧ ? 1 : 0ª®¬ .
• The remaining cases are straightforward.

By construction, T𝑥 ⟦𝜙⟧ has the same depth as 𝜙. Setting 𝜙′ = T𝑥 ⟦𝜙⟧ completes the proof. □

Finally, we show the depth separation for TL[↼# ,Y,MOD]. Let 𝐸𝑘 be the language formed by
allowing unlimited insertions of 𝑒 anywhere into strings of 𝐿𝑘 . In other words, 𝐸𝑘 = del−1 (𝐿𝑘),
where del : (Σ ∪ {𝑒})∗ → Σ∗ is the string homomorphism given by del(𝜎) = 𝜎 for 𝜎 ∈ Σ and
del(𝑒) = 𝜖 .

Theorem F.3. Let 𝑘 > 0. The language 𝐸𝑘+1 is definable in TL[↼# ,Y,MOD]𝑘+1 but not in
TL[↼# ,Y,MOD]𝑘 .

Proof. Suppose 𝜙 ∈ TL[↼# ,Y,MOD]𝑘+1 defines 𝐸𝑘+1. By Lemma F.2, there is a string mapping 𝑓
and a formula 𝜙′ ∈ TL[↼# ]𝑘 such that for all 𝑤 ∈ Σ∗, 𝑓 (𝑤) |= 𝜙 ⇐⇒ 𝑤 |= 𝜙′. However, this implies
that 𝑤 |= 𝜙′ ⇐⇒ 𝑤 ∈ 𝐿𝑘+1, which contradicts Theorem 4.10. □

F.3 Sinusoidal position encoding

The original definition of transformers (Vaswani et al., 2017) used sinusoidal position encoding,
which redefines Eq. (5) as follows. Assume 𝑑 is even. Define the rotation matrix

𝑅( ®𝜃) = round



cos 𝜃1 − sin 𝜃1 0 0 · · · 0 0
sin 𝜃1 cos 𝜃1 0 0 · · · 0 0

0 0 cos 𝜃2 − sin 𝜃2 · · · 0 0
0 0 sin 𝜃2 cos 𝜃2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos 𝜃𝑑/2 − sin 𝜃𝑑/2
0 0 0 0 · · · sin 𝜃𝑑/2 cos 𝜃𝑑/2


(22)
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where for 𝑐 ∈ [𝑑/2], 𝜃𝑐 = 1000−2(𝑐−1)/𝑑 . Then

h(0)
𝑖

(𝑤) = 𝐸 (𝑤𝑖) + 𝑅( ®𝜃)𝑖−1



sin 0
cos 0
...

sin 0
cos 0


. (23)

For the rest of this section, let us assume that in a sinusoidal position encoding, all the angles are ®𝜃
are rational (that is, rational multiples of 𝜋), so that the encodings are periodic. Then we can extend
Theorem 3.1 to transformers with sinusoidal positional encoding and TL[↼# ,MOD], using exactly the
same technique as Yang et al. (2024, Cor. 8).
Theorem F.4. A language 𝐿 is defined by a formula of TL[↼# ,MOD] of depth 𝑘 ≥ 1 if and only if
<BOS> · 𝐿 is recognized by a depth-𝑘 fixed-precision transformer with sinusoidal positional encoding.
Theorem F.5. A depth-(𝑘 + 1) fixed-precision transformer with sinusoidal positional encoding can
recognize 𝐸𝑘+1, but no depth-𝑘 fixed-precision transformer with sinusoidal positional encoding can.

Proof. Firstly, 𝐸𝑘+1 is definable by a fixed-precision transformer of depth 𝑘 + 1 even without
sinusoidal positional encodings. Secondly, by Theorem F.4, every language definable by a fixed-
precision transformer with RoPE is definable in TL[↼# ,MOD]𝑘 , but by Theorem F.3, 𝐸𝑘+1 is not
definable in TL[↼# ,MOD]𝑘 . □

F.4 RoPE

Rotary Positional Embedding or RoPE (Su et al., 2024) is currently the de facto standard method for
incorporating positional information in transformers (e.g., Mesnard et al., 2024). It modifies Eq. (9)
as follows:

s(ℓ )
𝑖 𝑗

(𝑤) = 𝑅( ®𝜃)𝑖q(ℓ )
𝑖

(𝑤) · 𝑅( ®𝜃) 𝑗k(ℓ )
𝑗

(𝑤) (24)

where 𝑅 is as in Eq. (22).

Again, let us assume that the angles in ®𝜃 are rational, so that the transformation 𝑅( ®𝜃)𝑖 is periodic in 𝑖.
This ultimately allows simulation using MOD.
Proposition F.6. Let 𝑇 be a depth-𝑘 fixed-precision transformer with RoPEs. There exists a depth 𝑘-
formula of TL[↼# ,MOD] that simulates 𝑇 .

Proof sketch. This is a straightforward adaptation of Proposition B.6. The rotation matrices 𝑅( ®𝜃)𝑖
and 𝑅( ®𝜃) 𝑗 can be computed in fixed-precision using Lemma B.5 and MOD, as in the proof of Yang
et al. (2024, Cor. 8). The attention scores s𝑖 𝑗 = 𝑅( ®𝜃)𝑖q𝑖 · 𝑅( ®𝜃) 𝑗k 𝑗 can be computed using Lemma B.5
and the trick of enumerating all possible queries, as in the proof of Proposition B.6. □

Theorem F.7. A depth-(𝑘 + 1) fixed-precision transformer with RoPE can recognize 𝐸𝑘+1, but no
depth-𝑘 fixed-precision transformer with RoPE can.

Proof. Firstly, 𝐸𝑘+1 is definable by a fixed-precision transformer of depth 𝑘 + 1 even without RoPE.
Secondly, by Proposition F.6, every language definable by a fixed-precision transformer with RoPE is
definable in TL[↼# ,MOD]𝑘 , but by Theorem F.3, 𝐸𝑘+1 is not definable in TL[↼# ,MOD]𝑘 . □

F.5 ALiBi

ALiBi stands for Attention with Linear Bias, introduced by Press et al. (2022) as a method for
improving length generalization in transformers. It decreases the attention scores (s𝑖 𝑗 ) by an amount
that scales linearly with the distance between the key and query positions 𝑖 and 𝑗 . That is, it modifies
Eq. (9) to:

s(ℓ )
𝑖 𝑗

(𝑤) = q(ℓ )
𝑖

(𝑤) · k(ℓ )
𝑗

(𝑤) − 𝑎 · (𝑖 − 𝑗). (25)

First, we note that there is some distance beyond which ALiBi rounds the attention score to 0. This
ultimately allows simulation using Y, as the following shows.
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Lemma F.8. Let F be a fixed-precision representation and let 𝑎 > 0. There exists Δ𝑎 such that for
all 𝑗 ≤ 𝑖 − Δ𝑎 and 𝑥 ∈ F we have that round(exp(𝑥 − 𝑎(𝑖 − 𝑗))) = 0.

Proof. The attention scores (s𝑖 𝑗 ) are bounded above by some 𝑆 > 0 (Chiang et al., 2023, Prop. 21).
Recall that the smallest positive number in F is 2−𝑠, so there is a score 𝑠0 = log 2−𝑠−1 such that
round(exp 𝑠0) = 0. Let Δ𝑎 = (𝑆 − 𝑠0)/𝑎. Then if 𝑖 − 𝑗 ≥ Δ𝑎, then round(exp s𝑖 𝑗 ) = 0. □

Proposition F.9. Let 𝑇 be a depth-𝑘 fixed-precision transformer with ALiBi. There exists a depth-𝑘
TL[↼# ,Y] formula 𝜙𝑇 that simulates 𝑇 .

Proof sketch. If 𝑎 = 0, we can use the same construction as in Proposition B.6. If 𝑎 > 0, we
cannot use the trick of enumerating all possible queries, as in the proof of Proposition B.6. Instead,
by Lemma F.8, there is a finite window [𝑖 − Δ𝑎, 𝑖] which receives nonzero attention. At query
position 𝑖, we can use formulas 𝜙⟨k(ℓ)

𝑐 ⟩𝑏 ,Y
1𝜙⟨k(ℓ)

𝑐 ⟩𝑏 , . . . ,Y
Δ𝑎𝜙⟨k(ℓ)

𝑐 ⟩𝑏 to obtain the keys at positions
𝑖, 𝑖 − 1, . . . , 𝑖 − Δ𝑎. We can then use Lemma B.5 to compute the attention scores according to
Eq. (25). □

Theorem F.10. A depth-(𝑘 + 1) fixed-precision transformer with ALiBi can recognize 𝐸𝑘+1, but no
depth-𝑘 fixed-precision transformer with ALiBi can.

Proof. Firstly, 𝐸𝑘+1 is definable by a fixed-precision transformer of depth 𝑘 + 1 even without ALiBi.
Secondly, by Proposition F.9, every language definable by a fixed-precision transformer with ALiBi
is definable in TL[↼# ,Y]𝑘 , but by Theorem F.3, 𝐸𝑘+1 is not definable in TL[↼# ,Y]𝑘 . □
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G Index of Notation

𝑎 scaling factor for ALiBi (Appendix F.5)
𝐴, 𝐵 terms for numerator and denominator of attention (Proposition B.4)
𝐴𝑘 , 𝐵𝑘 languages (Eq. (2))
a, b numerator and denominator of sumdiv (Section 2.1)
𝑎, 𝑏 symbols (∈ Σ)
𝛼, 𝛽 formulas for numerator and denominator of attention (Proposition B.4)
𝑏 bit number (∈ [𝑝], Proposition B.4)
𝐶 threshold in linear inequality (Appendix A.1 and Proposition B.4)
C transformation for counting (Theorem E.6)
c attention output vector (Definition B.2)
𝑐 number of minimal depth-1 formulas (Appendix C.2 and Lemma D.1)
𝑐 coordinate (∈ [𝑑], Proposition B.6)
𝑐 constant (Corollary E.8)
𝐷𝑘 language separating TL[↼# ,⇀# ] depth levels (Theorem D.2)
𝑑 hidden dimension (Definition B.2)
Δ window of positions [𝑖 − Δ] (Lemma F.8)
𝑒 neutral letter (Lemma F.2)
𝐸𝑘 𝐿𝑘 with a neutral letter 𝑒 (Theorem F.3)
𝐸 word embedding (Definition B.2)
F transformation (Theorem E.4)
𝐹 function Σ∗ → F∗ (Lemma B.5)
F all fixed-precision numbers (Definition B.1)
𝑓 function computing FFNN (Definition B.2)
𝑔 function F → F (Lemma B.5)
ℎ 𝑏-intercept (Appendix C.2)
h hidden vector (Definition B.2)
𝜂 learning rate (Section 5)
𝐼 interval (family of intervals) (Definition 2.5, Lemma 4.8, and Theorem 4.10)
I set of all intervals (Definition 2.5, Lemma 4.8, and Theorem 4.10)
®𝑖, ®𝑗 endpoints of interval (Definition 2.5, Lemma 4.8, and Theorem 4.10)
𝑖, 𝑗 position (∈ [𝑛]) (Section 2 and Appendix A.1)
K, k key matrix/vector (Definition B.2)
𝑘 depth, number of blocks or pieces (Definitions A.2, B.2 and E.2)
𝐿 language (⊆ Σ∗, Section 2)
𝐿𝑘 language (Eq. (1)) separating TL[↼# ] depth levels (Theorem 4.10)
L language recognized/defined by a formula or logic (Theorem E.7)
L set of bodies of left-counting terms (Appendix C.1 and Lemmas 4.8 and 4.9)
ℓ loop from 1 to 𝑘 − 1 (Theorems 4.10 and D.2)
ℓ index of half-plane or minimal depth-1 formula (∈ [𝑐], Lemma 4.8)
ℓ index of formula in M̂AJ, term in a sum (∈ [𝑚], Theorems E.4 and E.6)
ℓ line (Lemma 4.8)
𝜆 prefix family (Definition 4.1)
𝜆 coefficient in linear inequality (Appendix A.1, Proposition B.4, and Lemma 4.9)
M transformation (Theorem E.4)
𝑀 Parikh numerical predicate (Lemma 4.9)
𝑚 |Σ |, only used when |Σ | would be circular (Definition 2.3)
𝑚 significand of fixed-precision number (Definition B.1)
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𝑚 slope (Lemma 4.8)
𝑚 number of formulas in M̂AJ, terms in a sum (Definition E.1 and Theorem E.4)
𝑛 length of 𝑤 (Section 2 and Appendix C.1)
®𝑛 Parikh vector of 𝑤 (Sections 2.3 and 4)
𝜉 truth assignment (Definition E.1)
𝑝 number of bits (Definition B.1)
Π PNP (Parikh numerical predicate) (Definition 2.6 and Lemma 4.9)
𝜋 function corresponding to PNP (Definition 2.6)
𝜋 permutation of [𝑛] (Appendix C.1)
𝑄𝜎 symbol predicate (Appendix A.1 and Definition E.1)
®𝑞 fixed-precision value of q (Proposition B.6)
q query vector (Definition B.2)
𝑅 rotation matrix (Appendix F.3)
R set of bodies of right-counting terms (Appendix C.1 and Lemmas 4.9 and D.1)
𝜚 suffix family (Definition 4.1)
®𝑠 size of interval (Definition 4.3 and Lemma 4.8)
𝑠 number of fractional bits (Definition B.1)
Σ alphabet (Sections 2 and 2.3)
𝜎 symbol (∈ Σ) (Section 2.4)
𝑇 transformer (Section 3)
T transformation (Theorem E.6)
𝑡 term (Appendix A.1)
v value (Definition B.2)
®𝑣 Parikh vector (Section 2.3 and Lemma 4.8)
𝑊K,𝑊Q,𝑊V,𝑊out weight matrices (Definition B.2)
𝑤 string (∈ Σ∗) (Section 2 and Definition 4.1)
𝑥 fixed-precision or real number (Section 3)
𝑥 padding size in reduction proof (Lemma F.2)
𝑥, 𝑦 formal variables (Definition E.1)
𝑦 index in reduction proof (Lemma F.2)
𝜙 formula (Section 4 and Appendix A.1)
𝜒 formula, esp. body of counting term (Lemma 4.8)
Ψ Parikh map (Σ∗ → N |Σ | ) (Section 2.3)
𝜓 formula, esp. comparison (Lemmas 4.8 and 4.9 and Theorem E.6)
𝜃 angle for rotation matrix (Appendix F.4)
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was shown in Appendix B, the claimed depth hierarchy was shown in Section 4.5, and the
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Guidelines:
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All lemmas and theorems have proofs in the appendix besides Theorem 4.10,
which has a proof in the body of the paper. Throughout the paper, intuitive explanations and
proof sketches can be found. The only secion where proofs are omitted is Appendix D, but
this is because they are essentially identical to the proofs of Lemma 4.9 and Lemma 4.6.
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• The answer NA means that the paper does not include theoretical results.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The definition of the formal language 𝐿𝑘 was given in Lemma 2.8. Our method
of generating strings from 𝐿𝑘 as well as the transformer training setup are all fairly standard
and were described in Section 5.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is purely theoretical, and we do not foresee any direct societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Our code is only for training transformers on strings of 𝑎’s and 𝑏’s and thus
has no forseeable method of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: [NA] .
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code implementing our experiments is attached as supplemental material,
and the method of training and data generation is described within Section 5.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: A footnote in Section 5 acknowledged the use of LLMs for assistance in
implementing standard methods and writing parsers. The code was manually inspected and
corrected afterwards.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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