Knee-Deep in C-RASP:
A Transformer Depth Hierarchy

University of Notre Dame

Michaél Cadilhac
DePaul University
michael@cadilhac.name

Andy Yang David Chiang

ayang4@nd.edu dchiang@nd.edu

Abstract

It has been observed that transformers with greater depth (that is, more layers) have
more capabilities, but can we establish formally which capabilities are gained?
We answer this question with a theoretical proof followed by an empirical study.
First, we consider transformers that round to fixed precision except inside atten-
tion. We show that this subclass of transformers is expressively equivalent to the
programming language C-RASP and this equivalence preserves depth. Second, we
prove that deeper C-RASP programs are more expressive than shallower C-RASP
programs, implying that deeper transformers are more expressive than shallower
transformers (within the subclass mentioned above). The same is also proven for
transformers with positional encodings (like RoPE and ALiBi). These results are
established by studying a temporal logic with counting operators equivalent to
C-RASP. Finally, we provide empirical evidence that our theory predicts the depth
required for transformers without positional encodings to length-generalize on a

University of Notre Dame

family of sequential dependency tasks.

1 Introduction

Transformers in practice have been getting deeper and deeper over time. The original implementation
(Vaswani et al., 2017) used transformers with 8 layers. BERT-Large (Devlin et al., 2019) had 24,
GPT-2-XL (Radford et al., 2019) had 48; GPT-3 175B (Brown et al., 2020) had 96. Can we explain

what are the effects of deepening the networks?

Fixed-precision

transformers ~ C-RASP

U U Lg
depth3 = C-RASP;3

Ut Ut 2 Ls
depth2 = C-RASP,

Ut Ut 2 Ly
depth1 = C-RASP;

L

3

Figure 1: Theoretical results. C-RASP is equiva-
lent to fixed-precision transformers, and a strict
depth hierarchy for C-RASP (deeper programs
solve more problems) implies a strict depth hi-
erarchy for fixed-precision transformers (deeper
networks solve more problems).

Accuracy

depth —
1 2 3 4 5 6 7 8 9 10

Lo
Ly
Ly

Figure 2: Our theoretical results predict that a
transformer with depth k can recognize language
L+ but not L3 (demarcated by the black line),
and this closely predicts our experimental results
(shown as numbers and colors).

We can empirically observe capabilities that deeper transformers exhibit which shallower transformers
do not. For instance, Clark et al. (2019) and Tenney et al. (2019) find that attention heads at lower
layers exhibit lower-order patterns (e.g., each symbol attends to the previous symbol), while heads at
higher layers exhibit higher-order patterns (e.g., each direct object attends to its verb). However, we
do not have many theoretical guarantees about the impacts of depth in transformers.

In classical theoretical computer science, one studies the power of computational models by asking
what languages they can express — an equivalent way of asking what problems they can solve. Our
question becomes: What languages can be expressed by transformers of various depths? We explore
this question using the temporal logic TL[#], which is equivalent to the programming language
C-RASP (Yang and Chiang, 2024), a variant of the RASP language (Weiss et al., 2021). Previously,
C-RASP had been shown to be no less expressive than fixed-precision transformers and no more
expressive than arbitrary-precision transformers. In this paper, we prove that when transformers
are defined with rounding to fixed precision except inside attention (see Section 2.1 for a more
precise statement), transformers are expressively equivalent to TL[#]. Moreover, the equivalences
between C-RASP, TL[#], and transformers preserve depth.

—

We can therefore investigate transformer depth by investigating TL[#] depth. Here, we prove a strict
depth hierarchy for TL[#], meaning that there is a problem that is solvable by a depth-k TL[#]
formula, but not solvable by any depth-(k — 1) formulas. This implies a strict depth hierarchy for
C-RASP and transformers (Fig. 1). (We also prove a strict depth hierarchy for the more expressive
logic TL[#, #]. This implies a strict depth hierarchy for FO[<]-uniform LTC®, which was not
previously known.) We find experimentally that the C-RASP depth hierarchy closely predicts the
depth that transformers require to solve problems with particular sequential dependencies (Fig. 2).

The languages Ly, which separate transformers of different depths, are just sets of strings with k runs
of symbols. This suggests that, for example, in a speech recognition system where each phoneme can
extend over multiple frames, a transformer with fixed depth may have difficulty recognizing k-grams
of phonemes, for k sufficiently large.

We are aware of three previous depth separation results for transformers. Yang et al. (2024) established
a strict depth hierarchy for unique-hard attention transformers, based on the Until hierarchy for linear
temporal logic (Etessami and Wilke, 2000). However, unique-hard attention transformers appear to
diverge from transformers as used in practice (Huang et al., 2025; Liu et al., 2023). Sanford et al.
(2024) proved, conditioned on a widely known conjecture (Ghaffari et al., 2019), that depth ®(log(k))
is necessary and sufficient for transformers to solve the k-hop induction heads problem. The first
unconditional depth—width tradeoff, based on communication complexity lower bounds, was shown
by Chen et al. (2025). In essence, a transformer with depth £ would require an impractically large
width of Q(poly(n)) to perform the sequential composition of k + 1 functions, while a transformer
with depth & + 1 can implement a solution with a modest width of O (polylog(n)).

The latter two results used transformers whose parameters depended on the sequence length n. Our
results are parameter-uniform, that is, they construct transformers with parameters independent of n,
making them applicable to inputs of arbitrary length and better predictors of length generalization.
Below, we compare and contrast these depth separation results with ours:

‘ model transformer unconditional parameter-uniform
Yang et al. (2024) temporal logic unique-hard yes yes
Chen et al. (2025) communication softmax yes no
complexity
Sanford et al. (2024) | massively parallel softmax no no
computation
This work temporal logic softmax yes yes

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

2 Preliminaries

We write N for the set of nonnegative integers and [n] for the set {1,...,n}. Withw =w;---w, a
string over X, we write w[i : j] for the substring w; - - - w;. With L a language, we write L* for the

Kleene star of L (L* = Jgso L*) and L* for LL*. See Appendix G for an index of all notation used.

2.1 Transformers

In this paper, we consider transformers that use fixed-precision numbers. Merrill and Sabharwal
(2023) have pointed out that in a transformer that uses fixed precision for all operations, there is some
length beyond which the attention weights necessarily round to zero, making attention unable to
attend to anything. To get around this, we define fixed-precision transformers without rounding of
numbers that scale as n or 1/n. Namely, define an operation on two n-dimensional vectors,

]131

sumdiv(a, b) = e
J

j 1

Then if q € R'*¢ is a query vector, K € R4 is a matrix of keys, and v € R"*! is a value vector,
attention can be written as

att(q, K, v) = sumdiv((expgK") o v,expqKT)

where o is componentwise multiplication. Because the intermediate results of sumdiv scale with n,
we do not round them; we only round the final result. Our transformers use future-masking but no
position encodings. See Appendix B.1 for a full definition.

2.2 Temporal logics with counting

Temporal logics are used to express properties of (finite and infinite) strings, using predicates and
temporal operates to assert properties of the current position. For instance, in linear temporal logic
(Gabbay et al., 1980), one can express things like “at some time in the future, there is an a.” Temporal
logic with counting (Hirshfeld and Rabinovich, 2012; Barcel? et al., 2024) adds more general integer-
valued counting operators: a property such as “at some time in the future, there is an a” thus becomes
“the number of a’s in the future is at least 1.” Here, we are interested in these logics because they are
equivalent to (variants of) transformers (Section 3 and Appendix B).

Definition 2.1. The syntax of past temporal logic with counting, or TL[#], is as follows:

=05t <t2|=¢1| 1 A2 ogex Boolean-valued formulas
to=#[o] |+ |1 integer-valued terms

Temporal logic with counting, or TL[I#_#, ?] , adds an operator %, and is discussed in Appendix D.
In Appendix F.1, we further extend the logic with a MOD predicate and Y operator corresponding
to positional encodings in transformers. Other operators, like <, >, v, —, multiplication by integer
constants, and integer constants other than 1, can be defined in terms of the above.

The semantics of TL[#] and TL[#, #] are defined by the relation w, i = ¢, meaning that the formula
¢ is satisfied by string w at position i. First, w,i I Qs holds when the i-th symbol of w is . The
term # [¢], evaluated on string w at position i, counts the number of positions in w[1 : {] that satisfy
¢. Similarly, #[¢] counts the number of positions in w[i : n] that satisfy ¢ (where n = |w|). Terms
can be added (+) or compared (<). See Definition A.1 for the full definition. We write w | ¢
iff w, |n| | ¢; that is, ¢ is satisfied by w at its final position." Finally, the language defined by ¢
L(p)={weX"|wk ¢}

Example 2.2. The Dyck language is the set of strings of balanced and matched parentheses. The
Jormula ¢paiance = (# [Q(] = # [Q)]) checks that the number of left and right parentheses is equal.
The formula $maen = (H[# (O] < #[0)]] = 0) checks that, in every prefix, the number of right
parentheses does not exceed the number of left parentheses. So the Dyck language is defined by
Pbvalance N Omatch- Appendix A.2 shows more detailed traces of this formula on some example strings.

1Usually, the semantics of temporal logics is defined by w [¢ iff w,1 |= ¢. However, in our setting,
our definition mimics the behavior of generative transformer decoders, which for each position, consider all
previously generated tokens (to the left) in order to produce the next token.

The depth of a formula or term of TL[or TLI;E# # is the maximum depth to which % and #
operators are nested. TL[#]k is the class of all TL[#] formulas with depth at most k, and similarly for
TL[#, #]x and the other logics we use. See Definition A.2 in Appendix A.1 for a formal definition. A
depth-1 formula may be a Boolean combination of other formulas of depth O and 1; a minimal depth-1
formula is one that does not contain other depth-1 formulas, that is, a formula of the form #; < 1,
where ¢ and #, are depth-1 terms. For example, O, A (1 < 1+1) has depth 0,0.A(#[04] < #[0s])
has depth 1 but is not minimal, and #[Q,] < #[0p] + #[0.] + 1is a minimal depth-1 formula.

Yang and Chiang (2024) called TL[#] by a different name, K;[#]. They showed that it is equivalent
to C-RASP, which admits a notion of depth that corresponds exactly to formula depth.

2.3 Parikh vectors

At the heart of TL[;] is the ability to count symbols, so we introduce some notation related to counts.

Definition 2.3 (Parikh, 1966). Let X = {0, 0%, ...,0m} be an (ordered) alphabet. The Parikh vector
of w, written ¥ (w), records the number of times each symbol occurs in w, ignoring order. That is,
¥Y: 3" > N7"
Yo (w) =[{i € [Iw]] [wi =0}
Y(w) = (Ye, (W), ¥Yo,(w), ..., ¥s,, (W)).

Definition 2.4. For a Parikh vector Vv = (vi,va,...,v|z|) € N2 we write the length of ¥ as
IVl = vi+va+...+ V. To access individual coordinates, we write [V] », for v;.

Definition 2.5. For Parikh vectorsi,] € NI= we writei < j iff [i]o < [[1o for all & € E. We write
[7, /1 for the set of all vectors ¥ such thati <V < j. We call [i, j] an interval in N'*|, and we write
I (N2 for the set of all intervals in N'*!. A family of intervals is a function I: NI*I — 1 (NI*I),

Definition 2.6. For each partial function n: N*| x N — {0, 1} such that n(3,i) is defined iff
1 <i < ||V||, define a predicate 11, called a Parikh numerical predicate or PNP:

w,i Il & n(¥(w),i)=1.

We write TL[#,PNP] and TL[#, #,PNP] for the logics TL[#] and TL[#, #], respectively, aug-
mented with arbitrary PNPs.

2.4 Piecewise testable languages

Piecewise testable languages are a subclass of regular languages that has been studied in semigroup
theory and logic (Simon, 1975). Here, they will be key to separating the depth levels of both TL[#]
and TL[#, #].

Definition 2.7. A J-expression is a language of the form X0 X*opX* - -Z*ox X" where
O1,...,0k € X. A language is k-piecewise testable if it is a Boolean combination of J -expressions
with at most k fixed symbols. A language is piecewise testable if it is k-piecewise testable for some k.

Lemma 2.8. For all k > 0, define Ly, to be the language of strings with alternating blocks of a’s
and b’s, starting with a:

N
O I O
Then Ly is k-piecewise testable.
Proof. Define the following k-piecewise testable languages:
A = {Z*(aZ*bZ*)k) k even . {Z*(bZ*aZ*)k/z_ k even)
T (aZ*bT*)*k-D2g3* k odd (b ax*)*k-D2p3* k odd.
Then L is a Boolean combination of these:
Ly =X"\ Br N Ayg. m}

- w — 1
#[0p] 8 W #[0p] 8
7 7
6 b 6
5 5 ¢71-‘I7
4 4]
3 3
2) I
1 L 1
123456789#[Q“] 123456789#[Q“]

(a) Strings can be pictured as paths, and minimal (b) Within a sufficiently large rectangle (1), one can
depth-1 subformulas as half-planes. find a sub-rectangle (/") within which the depth-1 sub-
formulas are either always true or always false.

Figure 3: Visualization of the reduction lemma (Lemma 4.9).

Lemma 2.9. Any k-piecewise testable language is definable in TL[#]%. and any (2k + 1)-piecewise
testable language is definable in TL[#, #]x+1.

Proof sketch. Since our logics are closed under Boolean operations, we simply need to show the
statement for 7 -expressions. Let us sketch this in the case k = 1. There is a straightforward way to
define Z*aX*bX*cX* in TL[#]ok+1:
#IFI(F[Qal 2 DAQL] 2 DAL 2 1.
With both past and future counting, we can find the middle symbol & and check to the left and right:
HI#H[Qal = 1AQ, A#[Q] 2 1] 2 1.
This is in TL[E, ?] k+1, as desired. See Appendix A.4 for the full proof. m}

3 Transformer Equivalence

P

Logics like TL[#] provide a way to reason about the computations that occur in transformers. Yang
and Chiang (2024) proved that transformers can simulate TL[#], and TL[#] can simulate transformers
that round all values to fixed precision. Here, we show that fixed precision, with rounding slightly
loosened as in Section 2.1, makes it possible to obtain an exact equivalence.

Theorem 3.1. A language L is defined by a formula of TL[;] of depth k if and only if <BOS> - L is
recognized by a fixed-precision transformer of depth k.

Proof. See Appendix B. O

In Appendix F, we will extend the transformer-to-logic direction of this result to several position
encodings and an extension of TL[#].

4 Depth Hierarchy

To prove a strict depth hierarchy for TL[E] , we adapt the technique of Behle et al. (2009), which was

originally used on MAJ,[<], a logic equivalent to TL[#, #]. The main idea is to assume, towards a
contradiction, that a certain language is definable by a formula, then to simultaneously restrict the
language and reduce the depth of the formula down to depth 1. The contradiction will be that the
restricted language has a property (namely, sensitivity to ordering) that is not definable at depth 1.
This technique can also be applied to the bidirectional logic TL[#, #], with implications for other
logics and circuit classes, as detailed in Appendix D.

4.1 Intuition and example

As an example of the technique, consider the following formula:
¢ = #[(2#[Qa] <3#[05]) A (#[Qul + #[05] < 10) A Qp] 2 1.

[(4]

This formula has depth 2 and it has two minimal depth-1 subformulas, ¢ and ¢>. We want to replace
¢1 and ¢, with depth-0 subformulas, reducing the depth of ¢ from 2 to 1, while restricting the
language defined.

Since ¢ and ¢, are linear inequalities in the counts E[QU_], we can picture them as half-planes
(Fig. 3a). A string can be pictured as a path, and a prefix of the string as a point on the path. For
concreteness, we fix a vector 77 = (9, 8) and let 7 be the interval [6, 7). (In the formal proof, 7 will not
be fixed, and I will be a family of intervals depending on 71.) Suppose we can find some subinterval
I’ (which can be pictured as a rectangle, as in Fig. 3b) that does not cross any of the half-plane
boundaries. All points in I’ are equivalent in the sense that the truth value of ¢ and ¢; is the same
for all points in 7”.

We restrict the language by choosing a prefix corresponding to a path from the bottom left of 7 to the
bottom left of I’, and a suffix corresponding to a path from the top right of I’ to the top right of /. In
our example, we picked baaaaa and bbababb. Informally, we can define the restriction of ¢ to this
prefix and suffix like so:

¢" = “prefix is baaaaa” A “suffix is bbababb”

A(#[d1 A da AQp A“inside I'] + #[¢1 A 2 A Qp A “in prefix/suffix”] > 1).
~——— ~———
() ()
Then the occurrences of ¢; and ¢, marked () are always true and false, respectively, while the
occurrences marked (§) depend only on the position. As we will see, we can replace all of these by
PNPs, reducing the depth of the formula from 2 to 1.

Carefully iterating this process (Lemma 4.9) leads to a depth-1 formula defining a restriction of the
original language. In this language, we will show that the ordering of symbols matters, but we will
see in Lemma 4.6 that depth-1 formulas are (in a particular sense) insensitive to the ordering of
symbols. This is a contradiction, demonstrating that the original language is not definable.

4.2 Affix restrictions

We start by defining the affix restrictions that were informally introduced in at the start of this section.
Krebs (2008) enforced similar restrictions using the algebraic tool of non-uniform morphisms, while
Behle et al. (2009) used numerical predicates on languages with a restricted Parikh image. We follow
the latter approach of expressing this idea within a purely logical framework, but introduce Parikh
numerical predicates as a way to generalize the technique.

Definition 4.1 (cf. Def. 6.5 of Krebs, 2008). An affix restriction is a pair (1,), where A, o: NI*I —
. For any language L C X* and affix restriction (A, 0), we define the restriction of L to (4, o) as

aLo ={w € L: 3w’ € X" such that w = A(¥(w)) w’ o(¥(w))}.

In the definition above, the set of positions occupied by w’ within each string is the only part not
fixed by (4, o). This region is important for the depth reduction process, so we give it a name:

Definition 4.2. The middle of an affix restriction (A, 0) is the family of intervals given by i +>
[P (A7), 71 = ¥ (o(i))].

In order for the middle of an affix restriction to not be too restricted, we typically require affix
restrictions to have the following property.

Definition 4.3. We say that a family of mtervals li is accommodating if, for any 5 € NIZl there is an

interval [i,]] in the image of I such that 5 <] -7 or, equivalently, 5 € [0] —7]. We say that an
affix restriction (A4, o) is accommodating if its middle is accommodating.

An example of a non-accommodating affix restriction, with X = {a, b}, is A((n4,np)) = € and
0((ng,np)) = ab"". In this case 1L, will have at most one string for each (n4, n3). An accommo-
dating affix restriction is the trivial one A((n4,np)) = 0((n4,np)) = €. In this case 4L, will have

("4+"*) strings for each (nq, np).

Accommodating affix restrictions will be key to depth-reduction. If a language has an accommodating
middle under a restriction (4, o), then there is enough room to apply another restriction (1’, ¢”) inside
the middle, while decreasing the depth of the formula. As long as the property of accommodation is
preserved at each step, this process can be iterated until we reach depth 1.

4.3 Properties of depth 1

In this section, we exhibit inherent limitations of depth-1 formulas. Informally, we show that these
formulas only recognize commutative languages, that is, languages where the order of symbols does
not matter. But we need to qualify this statement slightly, and we need some technicalities as well.

In particular, affix restrictions will fix the ordering of symbols in the prefix and suffix, so affix-
restricted languages can only be commutative in the following sense:

Definition 4.4. We say that a language L is commutative on the middle of an affix restriction (4, o)
if, for any w,w’ € 2 X7, such that ¥ (w) = ¥(w’), we have w € L if and only if w’ € L.

We will use PNPs to enforce ordering in the prefix and suffix, but to allow languages to be commutative
on the middle, we need to prevent the PNPs from enforcing ordering in the middle.

Definition 4.5. We say that a formula ¢ is constant on a family of intervals I: N'*I — T (NI*!) if the
following holds for all ii € NI*I: For all w,w’ € * with W(w) = ¥(w’) = ii and all positions i,i’ in
1(1), we have w,i |= ¢ if and only if w',i’ |E ¢

Lemma 4.6 (Commutativity of depth 1). For any depth-1 formula (b of TL[#,PNP]; or
TL[#, #,PNP]; and any affix restriction (A, o) with |o(n)| > 1 for all i, if the PNPs of ¢ are
constant on the middle of (A, 0), then L($) is commutative on the middle of (A, o).

Proof. See Appendix C.1. The reason for the condition |o(i7)| > 1 is that the Q- predicates are able
to test the symbol in the last position. O

4.4 Cropping and reduction lemmas

In this section, we show how to decrease the quantifier depth of a formula ¢ while specifying precisely
how L(¢) is weakened. Our approach follows Lemma 3 of Behle et al. (2009) and Lemma 6.8 of
Krebs (2008), but faces additional technical difficulties specific to TL[#] and, to a lesser extent, the
use of PNPs. Since we will be applying this technique on two-letter alphabets, we set £ = {a, b}
for the rest of this section. Thus, we can visualize Parikh vectors and intervals in the plane, with the
number of a’s on the horizontal axis, and the number of b’s on the vertical axis.

First, the cropping lemma takes a family of intervals / and “crops” it down to a family of subintervals
I’ on which the minimal depth-1 subformulas are constant. This is done while controlling where I’
sits within /, and we start by formalizing this notion:

Deﬁnltlon 4.7. We say that an interval [7] sticks to the top of an interval [] if [] c[i,jl

and [J e =1]] Graphlcally, this means that the top edge of the rectangle [7,] is mcluded in the
top edge of the rectangle [l,]]. We define an interval sticking to the bottom, left, or right analogously.

Lemma 4.8 (Cropping Lemma for TL[#]). For any formula ¢ of TL[#, PNP] and any accommodat-
ing family of intervals I: N¥! — T (NI®) such that the PNPs of ¢ are constant on I, there exists an
accommodating family of intervals I’ : N'=| — T (NIZ) such that I (i?) sticks only to the top (and no
other side) of I(ii) for all ii € N'*|, and all of the minimal depth-1 subformulas (and PNPs) of ¢ are
constant on I'. Additionally, there exists such an I’ such that I’ (i) sticks only to the right of 1(#i).

Proof. See Appendix C.2. m}

Second, the reduction lemma takes an affix restriction (whose middle is I’ given by the cropping
lemma) and rewrites away the minimal depth-1 subformulas, reducing the depth of the formula by 1.
Lemma 4.9 (Reduction Lemma). For any depth-k formula ¢ of TL[#,PNP], (or TL[#, #, PNP];)
and affix restriction (A, 9), if the PNPs and minimal depth-1 subformulas of ¢ are constant on the
middle of (A, 0), then there is a formula ¢’ of depth (k — 1) of TL[#, PNP]«_1 (or TL[#, #, PNP]x,
resp.) that defines 1. L(¢) o, and the PNPs of ¢" are constant on the middle of (4, o).

Proof. See Appendix C.3. O

4.5 Non-definability results

As described by Behle et al. (2009), the key to applying this lemma is to choose a language L and
approprlate affix families such that the restricted language does not become trivial. We now use the
cropping and reduction lemmas to derive the strictness of the depth hierarchy of TL[#]

Theorem 4.10. Let k > 0. The language Ly, (Eq. (1)) is definable in TL[#] k.1 but not in TL[#].

Proof. Assume that k is even (the odd case is similar). For a contradiction, assume there exists
some depth-k formula ¢ € TL[#]k which defines Ly,;. Let I (71) = [(1,0),7 — (1,0)], Ax (1) =
a, o (i) = a, and ¢, = ¢. Note that (1, ox) is accommodating, and ¢, has no PNPs.

For{ =k -1,k—-2,...,1, we will define the following:

1. An accommodating family of intervals I, (1) C Ip4(7);

2. An accommodating affix restriction A¢(71) € Li_¢4+1 and o¢(71) € a*

3. A depth-¢ formula ¢, € TL[# PNP], which defines 1, (Lk+1) o, and only uses PNPs which are
constant over (¢, 0¢).

We use the following iterative procedure:

1. Using Lemma 4.8, find an accommodating family of intervals I, such that for all 7, I, (7) sticks
only to the top of Iz, (7), and the minimal depth-1 subformulas of ¢[+1 are constant on Ig(ﬁ)

2. Choose an affix restriction whose middle is I, as follows. Let [1 J] = I+ (n) and [,J] =

I, (#); then
o lea) "7 00 ()
10) = /lg+1(n)a[i_i]ab[i_i]b ¢ odd J
Aep1 (D)L= e gl =1]a p even
oc (i) = a7 g, (). A ()

Because Agy (1) € Ly_¢ and Ig(ﬁ) sticks only to the top of Ir.1(7), we have that 1y € Ly_g41.
At the same time, o, (7)) € a*

3. Using Lemma 4.9, we can ﬁnd a depth-¢ formula ¢, of TL[# PNP], that defines 1, (Lk+1) o,
and only uses PNPs which are constant on (¢, 0¢).

At the end of the procedure above, we are left with the accommodating affix restriction A1 (77) € Ly
and o (i) € a*, as well as the depth-1 formula ¢; € TL[#, PNP];, which defines 4, (Li+1),, and
only uses PNPs which are constant over (41, 01).

Since (41, 1) is accommodating, choose 7 so that the middle has s, > 1 occurrences of @ and 55, > 1
occurrences of b. Construct the strings
w = A1 (H)b** a* o, (i)
w' = A1 (R)a* b* o, (7).
The prefix A1 (#) has k blocks ending with b, and the suffix p;(7) is all a’s. So w has (k + 1) blocks
and is therefore in L1, while w’ has (k + 3) blocks and is therefore not in L,;. But by Lemma 4.6,

we have w E ¢1 <= w’ | ¢,. This is a contradiction, so we conclude that no formula ¢ with
depth k can define L.

If & is odd, the argument is the same, with the following changes. First, symbols a and b are swapped,
but A, (1) still starts with a. Second, I, (7) sticks to the right of Iz, (7) instead of the top.

Finally, by Lemma 2.8, Ly is (k + 1)-piecewise testable. Thus, by Lemma 2.9, Ly, is definable in
TL[#]k+1- o

This depth hierarchy on TL[#] implies a depth hierarchy for fixed-precision transformers.

Theorem 4.11. A depth-(k + 1) fixed-precision transformer can recognize L1, but no depth-k
fixed-precision transformer can.

This also implies a depth hierarchy for transformers using several commonly used positional encodings
(with a different separating language). Definitions and details can be found in Appendix F.
Theorem 4.12. A depth-(k + 1) fixed-precision transformer can recognize Ey1, but no depth-k fixed-
precision transformer can, if the transformers can use sinusoidal positional embeddings (Vaswani
etal.,, 2017), RoPE (Su et al., 2024), or ALiBi (Press et al., 2022).

5 Experiments

Our depth hierarchy result suggests that transformers will require greater depth in order to model
deeper sequential dependencies. We empirically validate this by training future-masked transformers

Accuracy on [201, 250] Accuracy on [251,300]
depth — depth —

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Accuracy on [301, 350] Accuracy on [351,400]
depth — depth —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
L3 L3
Ly Ly
Ls Ls
Le Le
Ly Ly
Lg Lg
Ly Ly
Lio Lio
Ly Ly
Ly Ly

Figure 4: Experimental results. Corollary 5.2 predicts that a transformer with depth k can recognize
language Ly, but not L3 (demarcated by the black line). Up to at least L, this closely predicts
our experimental results (shown as numbers and colors).

with no positional encodings and varying depths to learn the L; language, for varying k.> Here, the
Ly language serves as a minimal testbed for depth separation because it represents the simplest form
of sequential dependency (ordering of symbols) using only an alphabet of size 2.

5.1 Problem

Our experimental setup differs slightly from the framework presented above. For the language
recognition problem considered above, training a transformer would require data containing both
positive and negative examples, with the distribution of negative examples potentially having an
important impact on learnability. Following Bhattamishra et al. (2020) and Huang et al. (2025), we
reframe Ly as a next-token prediction problem: For each prefix of a string, output the set of possible
next symbols of the string.

Our data consist of source—target pairs, where the source is a string in L, preceded by a beginning-
of-string symbol <BOS>, and the target is a string of the same length. Each target symbol is a code
standing for the set of possible next source symbols. If k is odd, for example, L3 = a*b*a*, then
after <BOS>, there is only one possible set, {a} (coded as 0), and after subsequent symbols, there are
two possible sets, {a, b} (coded as 0) if the string is in a*b*, and {a, <E0S>} (coded as 1) if the string
isin a*b*a* (where <EOS> stands for the end of the string). An example source—target pair is:

S =<B0S>aaabbbbaaaaa
T= 0 000000011111
If k is even, the possible sets would be {a} (coded as 0) after <BOS>, and {a, b} (coded as 0) and

{<E0S>, b} (coded as 1) subsequently. It turns out that for Ly, the output for a prefix <BOS>- w(1 : i]
should be 1 if and only if w[l : {] € Lg.

2The code used for our experiments is provided at https://github.com/pentagonalize/CRASP_depth.
LLMs were used to assist in writing code and debugging.

https://github.com/pentagonalize/CRASP_depth

We can define the next-token prediction problem for TL[#] in the same way, but without <BOS>:

Definition 5.1 (Next-Token Prediction Problem for Ly). We say a TL[#] formula ¢ can solve the
next-token prediction problem for Ly if forallw € Ly and 1 <i < |w|, we have w[l :i] F ¢
w(l :i] € L. Thatis, w[1 : i] | ¢ if the prediction is 1, while w1 : i] [¢ if the prediction is 0.
Note that, unlike in recognition, we only consider prefixes of strings that are in Ly.

The depth hierarchy from Theorem 4.10 can be adapted to the next-token prediction problem for L.

Corollary 5.2 (Corollary of Theorem 4.10). A depth-(k + 1) TL[I:E] formula can solve the next-token
prediction problem for L3, but no depth-k TL[#] formula can.

Proof. See Appendix C.4. O

5.2 Setup

We generated samples of L to place into bins [201,250], [251,300], [301, 350], [351,400] by
uniformly sampling a length »n from the bin and uniformly sampling k£ — 1 positions at which to
switch between a and b. For each k and each bin, 1000 strings were generated. The [201, 250] bin
of 1000 examples was split into a training set of 800 examples and a validation set of 200 examples.
The other bins were reserved for evaluation.

We trained future-masked transformers without positional encodings. Because the sets of next tokens
are mutually exclusive, we trained the transformer to perform multi-class classification with cross-
entropy as the loss function. Adam was used as the optimizer (Kingma and Ba, 2015). The dimension
d and learning rate 57 were tuned by searching over d € [256,512] and 7 € [107#,1077]. Each
hyperparameter configuration was trained for 25 epochs or until 100% accuracy was achieved on the
validation set. Then we evaluated the trained model on the test sets, considering the transformer to
have made a correct prediction if and only if its prediction matched the target at every single position.
The experiments were run on an internal cluster of GPUs. Performing the training loop for a given
number of layers over all L required an average of 9.37 - 10* TFLOPs and 936.8 MiB of memory.

5.3 Results

Figure 4 shows the final accuracies of models with varying depth on L with varying k. Corollary 5.2
predicts that a TL[#] formula must have depth at least k in order to solve the next-token prediction
problem for L. In most cases, the transformer obtains 100% accuracy when Corollary 5.2 predicts
it, and even generalizes to lengths up to double the training length. Other factors, like width, data

diversity, and training dynamics of deeper transformers, may also play a role in practice.

6 Limitations

Our theoretical results apply to fixed-precision transformers with and without positional encodings,
whose definition differs subtly from both standard real-valued softmax transformers and fixed-
precision transformers considered in previous work. Our experimental results did not use positional
encodings because we expect that extremely long input lengths are required to see our negative results
apply. Additionally, our experiments only concern formal language tasks — namely, the languages Ly.

7 Conclusion

This paper adds to the growing list of exact equivalences between variants of transformers and logics
or complexity classes (Yang et al., 2024; Merrill and Sabharwal, 2024; Li et al., 2024; Li and Cotterell,
2025). Here, we have shown that transformers that round to fixed precision except inside attention
are exactly equivalent to TL[#] and C-RASP. Moreover, we have proven a strict depth hierarchy for
TL[#], which implies a strict depth hierarchy for (this variant of) transformers. Unlike previous depth
separations for softmax transformers (Sanford et al., 2024; Chen et al., 2025), our results apply to
parameter-uniform transformers and so are particularly relevant to length generalization. Future work
on the experimental side could look for real-world phenomena that involve sequential dependencies
like those in Ly and study how well language models handle them.

10

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under Grant
No. 2502292 and a Graduate Research Fellowship under Grant No. 2236418. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation. We would like to thank Dana
Angluin and Lena Strobl for their generous input on the presentation of the theoretical results and
development of the experiments in this paper. We also thank Michael Hahn for introducing us to the
fascinating connection between TL[#, #] and MAJ, [<], which paved the way towards the results
proven here, and Gavin Dooley, Peter Cholak, and Anand Pillay for insightful conversations about

—

TL[#]. Finally, we thank the anonymous reviewers for their helpful comments.

References

Pablo Barceld, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir V. Podolskii. 2024.
Logical languages accepted by transformer encoders with hard attention. In Proceedings of the
Twelfth International Conference on Learning Representations (ICLR).

Christoph Behle, Andreas Krebs, and Mark Mercer. 2013. Linear circuits, two-variable logic and
weakly blocked monoids. Theoretical Computer Science, 501:20-33.

Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. 2009. Regular languages definable by
majority quantifiers with two variables. In Developments in Language Theory: 13th International
Conference, DLT 2009, pages 91-102.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. 2020. On the ability and limitations of
transformers to recognize formal languages. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 7096-7116.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, and 12 others. 2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems 33 (NeurlPS), pages 1877-1901.

Lijie Chen, Binghui Peng, and Hongxun Wu. 2025. Theoretical limitations of multi-layer Transformer.
In Proceedings of the IEEE 66th Annual Symposium on Foundations of Computer Science (FOCS).
To appear.

David Chiang, Peter Cholak, and Anand Pillay. 2023. Tighter bounds on the expressivity of trans-
former encoders. In Proceedings of the 40th International Conference on Machine Learning
(ICML), pages 5544-5562.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does BERT
look at? An analysis of BERT’s attention. In Proceedings of the ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 276-286.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional Transformers for language understanding. In Proceedings of the Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT), pages 4171-4186.

Kousha Etessami and Thomas Wilke. 2000. An until hierarchy and other applications of an
Ehrenfeucht-Fraiissé game for temporal logic. Information and Computation, 160(1):88—108.

Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. On the temporal analysis
of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 163—173.

Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. 2019. Conditional hardness results for massively
parallel computation from distributed lower bounds. In Proceedings of the IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1650-1663.

11

https://openreview.net/forum?id=gbrHZq07mq
https://doi.org/10.1016/j.tcs.2013.07.005
https://doi.org/10.1016/j.tcs.2013.07.005
https://doi.org/10.1007/978-3-642-02737-6_7
https://doi.org/10.1007/978-3-642-02737-6_7
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2412.02975
https://proceedings.mlr.press/v202/chiang23a.html
https://proceedings.mlr.press/v202/chiang23a.html
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1006/inco.1999.2846
https://doi.org/10.1006/inco.1999.2846
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1109/FOCS.2019.00097

Yoram Hirshfeld and Alexander Rabinovich. 2012. Continuous time temporal logic with counting.
Information and Computation, 214:1-9.

Xinting Huang, Andy Yang, Satwik Bhattamishra, Yash Sarrof, Andreas Krebs, Hattie Zhou, Preetum
Nakkiran, and Michael Hahn. 2025. A formal framework for understanding length generaliza-
tion in transformers. In Proceedings of the Thirteenth International Conference on Learning
Representations (ICLR).

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A method for stochastic optimization. In
Proceedings of the Third International Conference on Learning Representations (ICLR).

Andreas Krebs. 2008. Typed semigroups, majority logic, and threshold circuits. Ph.D. thesis,
Universitat Tiibingen.

Jiaoda Li and Ryan Cotterell. 2025. Characterizing the expressivity of transformer language models.
In Advances in Neural Information Processing Systems 38 (NeurIPS). To appear.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. 2024. Chain of thought empowers transformers
to solve inherently serial problems. In Proceedings of the Twelfth International Conference on
Learning Representations (ICLR).

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. 2023. Exposing
attention glitches with flip-flop language modeling. In Advances in Neural Information Processing
Systems 36 (NeurIPS).

William Merrill and Ashish Sabharwal. 2023. A logic for expressing log-precision transformers. In
Advances in Neural Information Processing Systems 36 (NeurIPS), pages 52453-52463.

William Merrill and Ashish Sabharwal. 2024. The expressive power of transformers with chain of
thought. In The Twelfth International Conference on Learning Representations (ICLR).

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Aakanksha
Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie
Héliou, Andrea Tacchetti, and 30 others. 2024. Gemma: Open models based on Gemini research
and technology. arXiv:2403.08295.

Rohit J. Parikh. 1966. On context-free languages. Journal of the ACM, 13(4):570-581.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train short, test long: Attention with linear biases
enables input length extrapolation. In Proceedings of the Tenth International Conference on
Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask learners. OpenAl.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. 2024. Transformers, parallel computation, and
logarithmic depth. In Proceedings of the 41st International Conference on Machine Learning
(ICML), pages 43276-43327.

Imre Simon. 1975. Piecewise testable events. In Automata Theory and Formal Languages: 2nd GI
Conference, pages 214-222.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. 2024. RoFormer:
Enhanced transformer with Rotary Position Embedding. Neurocomputing, 568.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems 30 (NIPS).

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. Thinking like transformers. In Proceedings of the
38th International Conference on Machine Learning, pages 11080-11090.

12

https://doi.org/10.1016/j.ic.2011.11.003
https://openreview.net/forum?id=U49N5V51rU
https://openreview.net/forum?id=U49N5V51rU
https://arxiv.org/abs/1412.6980
http://hdl.handle.net/10900/49222
https://arxiv.org/abs/2505.23623
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=3EWTEy9MTM
https://proceedings.neurips.cc/paper_files/paper/2023/hash/510ad3018bbdc5b6e3b10646e2e35771-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/510ad3018bbdc5b6e3b10646e2e35771-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.1145/321356.321364
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://proceedings.mlr.press/v235/sanford24a.html
https://proceedings.mlr.press/v235/sanford24a.html
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.18653/v1/P19-1452
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v139/weiss21a.html

Andy Yang and David Chiang. 2024. Counting like transformers: Compiling temporal counting logic
into softmax transformers. In Proceedings of the First Conference on Language Modeling (CoLM).

Andy Yang, David Chiang, and Dana Angluin. 2024. Masked hard-attention transformers recog-
nize exactly the star-free languages. In Advances in Neural Information Processing Systems 37
(NeurlPS), pages 10202-10235.

13

https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=FmhPg4UJ9K
https://proceedings.neurips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html

A Logic Preliminaries

A.1 Temporal Logics with Counting

Definition A.1. The syntax of TL[#] is as follows:

(3a)
(3b)
(3o

o:=0s |1 <t2| 1| D1 AP ocgEeX Boolean-valued formulas
t = ;[qﬁl] |t1+25 |1 integer-valued terms
The syntax ofTL[E, #] additionally has counting terms t ::= #[¢]. The semantics of formulas is
defined as follows:
w,i = Qs = w;=0
w,i |E ¢ = w,ifEa¢
WiEd ANpy = w,iE ¢ andw,il= ¢y
wikti <ty e <ot

The semantics of terms is defined as follows:
#[o1™ = 1{j € [Li] | w,j F ¢}
#[0]" =1 € [i, W] [w,j E ¢}
(t1+0)" 7 ="+
" =1.

We write w |= ¢ if w, |w| E ¢, and we say that ¢ defines the language L(p) = {w | w E ¢}.

Definition A.2. The depth of formulas and terms of TL[#] and TL[#, #] is defined by:
dp(Qs) =0
dp(=¢) = dp(¢)
dp(¢1 A ¢2) = max{dp(¢1),dp(¢2)}
dp(r1 < 12) = max{dp(t1),dp(r2)}
dp(#[¢]) = dp(#[g]) = dp(¢) + 1
dp(t1 + 12) = max{dp(1),dp(r2)}
dp(1) =0.

(3d)

(4a)
(4b)
(4c)
(4d)

We write TL[#]x (or TL[#, ?]k)for the set of all TL[#] (or TL[#, #], resp.) formulas with depth at

most k.

We will often assume that any comparison 7; < 7, can be written in the form », ¢ » 4 X?[x] =Cor

Yyel /lXE[)(] + 2 peR /l)(ﬁ[/\/] > C where L, R are sets of formulas and 1., C € Z.

A.2 Examples of TL[#]

Recall from Example 2.2 that the Dyck language is defined by the formula
Ppyek = (#[Q(] = #[O)]) A (#[#[Q(] < #[0Q)]] = 0).

The table below shows how this formula works for the string (())(), which belongs to the Dyck

language.
subformula description ‘ Cc C)y >y)
O is left paren T T 1 1 T 1
0) is right paren L L T T L 7T
#[0(] num of left parens 1 2 2 2 3 3
#[0)] _ num of right parens o o 1 2 2 3
i[Q(] = i[Q)] balanced L 1L 1 T L 7T
i [g(] < # [g)] violates matching L 1 1 1 1 1
i[i[Q(] < ﬁ[Q)]] num of violations o o0 o0 o0 o0 o
#[#[0 < #[Q)]]1 =0 matched T T T T T T
#1#[0 < #[Q)]] =0A #[Q(] = #[Q)] matchedandbalanced | + 1 1L T 1 T

14

The table below shows how this formula works for the string ())()(, which does not belong to the
Dyck language.

subformula description ‘ C)y)y) «(
Q¢ is left paren T 1 1 T L 7T
0) is right paren L T T L T L
#[0(] num of left parens 1 1 1 2 2 3
#lo)l num of right parens 0 1 2 2 3 3
#10(= #10)] balanced L T L T L T
#10() < #[0)] violates matching L L T L T 1
#[#[0(< #[Q)]] num of violations o o0 1 1 2 2
#[#[Q] < #[Q)]] =0 matched T T L1 L1 1 1
#[#[01 < #[Q)]1=0A #[Q(] = #[Q)] matchedandbalanced | L T L L 1 1

A.3 Extensions to TL[E, 3]

We will often make use of the following operator in TL[;, ?], which does not increase its expressive
power or affect the depth of formulas, but saves space when writing.

i fthen W1 I: ¢
(¢ 7 tm, =ll)w"={ .
on T rene felse W,1 | ¢

Lemma A.3 (Yang and Chiang 2024). Any formula ¢ of TL[;, Q] that uses the ? operator can be
converted into a formula that does not use the ? operator, defines the same language as ¢, and has
the same depth as ¢.

Proof. Any comparison formula involving the ? operator can be written in the form
(wif ? Ithen * tclse) + Z te 2 C,
te[m]

which can be rewritten as

Wit A tihen + Z te 2 C|V | Wit A telse + Z tr2CJ.
te(m) te[m]

This rule can be used iteratively to rewrite all the ? operators out of a formula. O

It can also be convenient to allow an unmasked counting operator # and strict counting operators ¥
and # , which do not count the current position.

#lo1" = {j e [LIwl] | w,] E ¢}l
Ho]™ = {7 e [i,Iwl =11 | w,j E ¢}
Flo1™ =i eli+ 1wl |w,jE o}

Lemma A.4. Any formula ¢ of TL[%, #] that uses #, # or % can be converted into a Sformula that
does not use #, #, or #, defines the same language as ¢, and has the same depth as ¢.

Proof. These counting terms can be rewritten equivalently using % and #:

#o] = #[g]+ #[#] - (471:0)
#L#)=#[6]-(921:0)
Flol=#[g]-(21:0). o

A.4 Proof of Lemma 2.9 (definability of piecewise testable languages)

Lemma 2.9. Any k-piecewise testable language is definable in TL[#]x, and any (2k + 1)-piecewise
testable language is definable in TL[#, #]k+1-

15

Any k-piecewise testable language L can, by definition, be written as a Boolean combination of
J -expressions of the form

2*0'12*0'22* ce Z*o-kZ*.

This is defined by the TL[#] formula of depth k:

p=#[#[#[Qo, 2 11AQm] 21 AQp] 2 1.

Any (2k + 1)-piecewise testable language L can, by definition, be written as a Boolean combination
of J -expressions of the form

2*0'12*0'22* e Z*O'Qkﬂz*.
We need to show that this is expressible with k + 1 nestings of % and #. We do this by first finding

the middle symbol o1 and checking to the left and right that the correct symbols appear. First,
define depth-k subformulas that check the left and right halves of the J -expression:
¥ #F[Qm] =121 21] 21

= lg[QO'k /\l#_#[Ok-1 A
A# CH Qo =1 121> 1] > 1.

[.
[Qoys A #1

Then, L is defined by the TL[#, #] formula of depth (k + 1):

¢=#[oL A Qo ARl 2 1.

B Transformer Equivalence

In this section and below, the expression I[-] has the value 1 if the statement inside the brackets is
true, and O otherwise.

B.1 Transformers

Definition B.1. A fixed-precision number with p total bits and s fractional bits is a rational number
of the form m - 275 where m is an integer and =2P~' < m < 2P~1. We write Fp s, or simply F, for
the set of all fixed-precision numbers with p total bits and s fractional bits.

We represent negative numbers using two’s complement. If b € [p], the b-th bit of a fixed-precision
number x, written {(x)p, is defined as

1 if [x/2b757] is odd
0 otherwise.

)y = {

If x is a real number, we write roundg (x) or simply round(x) for the greatest element of F less than
or equal to x.

The following definition abstracts away from a number of details, but suffices for our purposes (which
is to prove Proposition B.6).

Definition B.2. A future-masked fixed-precision transformer of depth k is a function T: Z* — F,
defined in terms of functions

E: > —» T4
€) w(&) () £). md d _
Wo W W FOCR S B e=1,0
Wou: F! - F.

On input w, T(w) is computed as follows:

h;o)(w) = E(w;) ©)

16

Fort=1,...,k:

a\”) =W (n" () ©)
k() =W (b0 () ™
v ow) =W (B) ®)
si () =g/ (w) -k (w) ©)

23:1 round(exp(sgf) (w)) V;[) (w))

cff) (w) = round . 5 (10)
21,':1 round(exp(sfj (w)))
b (w) = £ (el () + B () (1)
where we say Eq. (10) evaluates to the average of all VE.[) if the denominator is 0, and finally
T(w) = Wour (B () (12)

We say that T accepts w if T(w) > 0.

Note crucially that Eq. (10) is written so that even if i > 2%, it is still possible to obtain nonzero
values.

B.2 Proof of Theorem 3.1

Theorem 3.1. A language L is defined by a formula of TL[I#_#] of depth k if and only if <BOS> - L is
recognized by a fixed-precision transformer of depth k.

We first define what it means for a fixed-precision transformer and a formula to simulate each other.

Definition B.3. We say that a TL[I#:_#] formula ¢ simulates a fixed-precision transformer T if, for all
we X",

w,i E ¢ < T(<BOS>-w); > 0.
In other words, w |= ¢ if and only if T accepts <BOS> - w.

We say that a fixed-precision transformer T with depth k and dimension d simulates a formula ¢ of
TL[#] T if, forallw € Z*,
T(<B0OS>-w); >0 & w,i [¢.

Again, T accepts <BOS> - w if and only if w = ¢.

We prove the two directions of Theorem 3.1 separately: from TL [}] to fixed-precision transformers
in Proposition B.4, and from fixed-precision transformers to TL[#] in Proposition B.6.

P

Proposition B.4. Let ¢ be a TL[#] formula of depth k. There exists a fixed-precision transformer
Ty of depth k which simulates ¢.

Proof. This was essentially shown by Yang and Chiang (2024), but they simulated TL[#] using
infinite-precision transformers with layer normalization. Here, we modify the proof to use rounding
instead of layer normalization to simulate comparison operations.>

The case that differs is that of a subformula ¢ = >, ¢ o /l)(g[x] = C. Assume that previous layers
have computed I[w, j E x] for y € L at all positions j € [rn]. We want to construct a new layer
that computes I[w,i |] at all positions i € [n]. Use uniform attention and construct the value
projection Wy so that

vi= > A Iw,j k x] - Cllw; = <B0S>].
xel

3A further difference is that we store Boolean values as 0 for false and 1 for true, while Yang and Chiang
(2024) used [J_rll] for false and [;11] for true. They used this more complicated encoding in order to deal with
layer normalization, which is unnecessary here. Our proof could be modified straightforwardly to accommodate
layernorm by using this representation.

17

After averaging, we get

i

= | 3 [Diw |- €

xel j=1

which rounds to —27% or below if ¢ is false, and rounds to O or above if ¢ is true. We can then use the
FFNN f to map these two cases to 0 or 1, respectively.

If ¢ is the entire formula, the output function Wy just takes the computed value I[w, j E ¢] and
maps 0 and 1 to —1 and +1, respectively. m}

The following lemma will be used repeatedly.

Lemma B.5 (Chiang et al., 2023). If F: X" — F* is length-preserving, g: F — F, and there are
formulas ¢ (ry, such that
w,i |y, & (F(w)i)p =1
then there is a formula ¢ 4 (), such that
Wi by, = GFMW)I =1
Similarly if g is a function of more than one fixed-precision number.

—

Proposition B.6. Let T be a fixed-precision transformer of depth k. There exists a TL[#] formula
o1 of depth k which simulates T.

Proof. We will show that for every activation h}gc) and b € [p], there is some formula ¢ Oy, such

that ,
Wi Gy, () (w))p = 1. (13)

The construction proceeds by induction on €. For ¢ = 0, define the word embedding as

Py, = V Qo

oEex
<E<(r)c>b:1
so that Eq. (13) holds for £ = 0.

Now suppose that Eq. (13) holds for layer £, and consider layer (£ + 1). Use Lemma B.5 on W<, Wy,
and Wy to obtain formulas ¢ @y, ¢ RGI and ¢ Oy, such that

wii kg, & (@)W =1 (14)
Wi g0, = k(W) =1 (15)
woi ko, = V) =1, (16)
Equation (14) in particular allows us to write formulas gqu:q for each g € F¥ such that
Wi E g0 = q\” =3.

Next, we want to compute the summands in the numerator and denominator of Eq. (10). These
depend on two positions (i and j), whereas a formula of TL[#] only depends on one position. But
since (; can only take on finitely many values, we can enumerate all of its possible values. That is,
use Lemma B.5 again to obtain formulas

w,j E 06(762-,;, = <T0und(exp(‘7 ‘ kﬁ.[)(w))Vfc) (w))>b =1
e

and then write counting terms AE.[) and B© that represent the numerator and denominator of cy):

t -1 4 14
AD =Yooz 2| 2 F o)] 20

a belp]
&) _ bs-1 _Z|pO|].
BO =Y Nggag?| . 2 F|8]] <0
q be(p]

18

so that

(4L =20)" round (exp (g (w) -k (w)) v ()

=i

(B =28 Zround (exp (ql@(w) . ky)(w))) .

j<i
Next, to define ¢(©), we need to divide the numerator AE.Z) by the denominator B‘“). Without loss of
generality, assume B(*) > 0. The other case is similar. The sign bit is then defined by
_ A0
¢<c££) Yy = A’ <.

The remaining bits can be defined, from most to least significant, using the grade-school algorithm
for long division:

= ZSA((:F) " (¢<c(”) 92p-1p(0) : 0) ¢(c(”) (=lpo1 2 p-2p5(0)
c r c pP-
tp-2=tp-1=(d 0, 7 2P2B0) ;) b0y , =tp-22 2p=3p0)
tp-3 =tp2 = (P07 2P73B0) 1) by = 1p-3 2 2p=4B0)
1=t — (¢<c(\[’)>2 22!'BO) ; 0) ¢<c(e)>] =1 > 2B
Finally, we use Lemma B.5 on f to obtain formulas ¢ ®y, satisfying Eq. (13). O

C Depth Hierarchy for TL[#]

C.1 Proof of Lemma 4.6 (Commutativity of depth 1)

Lemma 4.6 (Commutativity of depth 1). For any depth-1 formula ¢ of TL[#,PNP]; or
TL[#, #,PNP]; and any affix restriction (A, o) with |o(n)| = 1 for all n, if the PNPs of ¢ are
constant on the middle of (A, 0), then L($) is commutative on the middle of (4, o).

Letn = [w|and w’ € 227, with ¥(w) = ¥(w’). As such, there is a permutation : [n] — [n] such
that w} = w ;) for all , and if i is a position in the prefix (A(ii)) or suffix (o(#)), then (i) = i. We
want to show for depth-0 formulas y that w,n(i) F y & w',i [x

If ¥ = Qy: Since w; = wr(;) wehave w, (i) E y & w',iE x.

If y = II for some Parikh numerical predicate IT: If i is a position in the prefix or suffix, then 7 (7) = i,
while if i is a position in the middle, IT is constant. In either case, w, (i) F y & w',i E x

If ¥ = —x1 or ¥ = x1 A x2 where xi, x2 have depth O, then w, 7(i) E y & w’,i E y follows
from the semantics of = and A.

Any minimal depth-1 formula ¢ can be written, for finite sets of depth-0 formulas £ and R, as
6= > L EI+ Y R A= C
XL XER

We showed above that for each y, we have w, (i) F yx < w',i = x. The ¥ terms count all
positions, so_# ["= = #[x]"" . The # terms only count the last position, and 7(n) = n, so
#xIW" = #] "forall)(Thus wEeE¢ = w E¢.

Finally, if ¢ = —¢ or ¢ = ¢ A ¢, where ¢, ¢, have depth at most 1, then w,7n(i) F ¢
w’,i = ¢ again follows from the semantics of — and A.

C.2 Proof of Lemma 4.8 (Cropping Lemma for TL[#])

Lemma 4.8 (Cropping Lemma for TL[#]). For any formula ¢ of TL[#, PNP] and any accommodat-
ing family of intervals I: NI¥! — T (NIZl) such that the PNPs of ¢ are constant on I, there exists an

19

accommodating family of intervals I’ : N'*| — T (NIZ) such that I (i7) sticks only to the top (and no
other side) of I(i1) for all it € N'*!, and all of the minimal depth-1 subformulas (and PNPs) of ¢ are
constant on I'. Additionally, there exists such an I’ such that I’ (i) sticks only to the right of 1(7).

Lety,¥2, ..., ¥ be the minimal depth-1 subformulas of ¢. That is, for € € [c],

ve=| D L HEX| = Co.

xeLe

Because any PNPs in each i, are constant on /, each ¢, defines a half-plane in E[Qa] and ;[Qb],
where w, i |= ¢ iff w[1 :] lands in the corresponding half-plane. Then ¢ is a Boolean combination
of these half-planes. Thus if ¥(w[1 : i]) and ¥(w’[1 : i’]) both land in the same half-planes, they
will both satisfy ¢ or both not satisfy ¢.

We will show that for a desired size s, there is I(7) sufficiently large such that, there is a subinterval
I’ (1) with size at least § sticking only to the top of /(i) (and no other side).

Let m be the minimum absolute slope of any non-horizontal boundary line, and let / be the maximum
b-intercept of any horizontal boundary line.

For any 5 = (sq4, 5p), let 5 = (s}, 5}) = (4 + 2, 5p + 1), and choose 7 such that /(i) has size at least
[3€ max (s}, /m,s;), h +s}]. Our goal is to find a subinterval I’ (7) that has size 5", sticks to the top
of I(1), and does not cross any boundary lines.

Let /. be an arbitrary subinterval of size [3¢ max(sj,/m, s;,), s}] that sticks to the top of I(77). We
will prove by induction on c¢: Given an interval /. with size [3° max(s; /m, s,), s})] that sticks to
the top of 1(#) and a set of ¢ boundary lines, there is a subinterval I’ (i) of size 5 that sticks to the
top of 1(72) and does not cross any boundary lines.

The base case ¢ = 0 is trivial: There are no boundary lines to cross, and s/, < max(s;j/ m,s’,), so
choose any subinterval of Iy with size 57, and shrink it 1 unit from the left, bottom, and right to obtain
a subinterval I’ (i) of size § that does not to stick to the left, right, or bottom of I.

If ¢ > 0, take an arbitrary boundary line and call it £ and let /. be an interval with size
[3¢ max(sy,/m,s,),s),)].

If ¢ is horizontal, it must have b-intercept at most £, so there must be at least s;) space above it inside
I(n). So I. does not cross ¢, and neither does any subinterval of I.. Arbitrarily choose I._; to be the
middle third of /., and use the induction hypothesis on /._; and the remaining boundary lines.

1(7)

I Iy

If ¢ is not horizontal, it must have absolute slope at least m. The part of /.. that is crossed by £ must
have width at most s, /m, whereas 1. has width 3“ max (s, /m, s;,) > 3s} /m, so either the left third
or right third of /. does not cross €. Choose /._ to be that third, and use the induction hypothesis on
I._ and the remaining boundary lines.

20

1(7)

A similar argument (with a and b swapped) can be used to find an I’ (7) sticking only to the right of
1(n).

C.3 Proof of Lemma 4.9 (Reduction Lemma)

Lemma 4.9 (Reduction Lemma). For any depth-k formula ¢ of TL[#,PNP]x (or TL[#, #, PNP]y)
and affix restriction (A,), if the PNPs and minimal depth-1 subformulas of ¢ are constant on the
middle of (A, 0), then there is a formula ¢’ of depth (k — 1) of TL[#, PNP]x_1 (or TL[#, #, PNP]x,
resp.) that defines 1 L(¢) o, and the PNPs of ¢’ are constant on the middle of (1, o).

Letyy,..., ¢ be the minimal depth-1 subformulas of ¢. Each ¢, for 1 < £ < c is of the form

be=) LE] = C

xeLe

if ¢ is a formula of TL[E, PNP]; or

ve= Y LR+ Y 4% = Cr

xeLe XERe

if ¢ is a formula of TL[#, #, PNP].

In either case, Y is constant on the middle of (4, ¢), meaning that for a given #, each i, has the
same truth value for w € 427, with ¥(w) = 7i at positions i such that |A(7i)| < i < [|ii]| - [p(7i)|. The
truth value of ¢, given the restriction to (4,), is determined solely by the Parikh vector of the word
and the position i at which it is evaluated. Thus there is a PNP M, which “hard-codes” the behavior
of Y,. Moreover, M, is constant on the middle of (4, o) because ¥, is. Thus we replace the depth-1
formula i, with the depth-0 formula M,. Call the result ¢ cq.

The last step is to write a formula that checks if w € X% . For o € X, define a Parikh numerical
predicate I1,, that is true at position 7 if position 7 belongs to the prefix/suffix and the symbol at that
position of the prefix/suffix is o:

A¥Y(w))i =0 i< |A(Y(w))]
w,iElly &= {0(YW)i-(wi-lo¥mwy =0 2 [w|—[o(¥(w))]
T otherwise.

This is a Parikh numerical predicate because it is conditioned only on the position i and the Parikh
vector of w. Moreover, it is constant on the middle of (4, p).

21

Then we can write the following formula, which checks whether w € 427, by checking whether w at
every position i has the correct prefix/suffix:

batr = (#[(a A Q) V (TTp A Qp)] = #[T])

Finally, define the new formula

¢ = Pred A Patt
which has depth (k — 1) and defines 4L ,. Note that since ¢, does not contain #,if ¢ did not contain
then ¢’ does not either, so if ¢ € TL[#, PNP], then ¢’ € TL[#, PNP]_;.

C.4 Proof of Corollary 5.2

Corollary 5.2 (Corollary of Theorem 4.10). A depth-(k + 1) TL[IE] formula can solve the next-token
prediction problem for Ly, but no depth-k TL[#] formula can.

First, we show that the prediction problem for L3 is solvable in TL[IE] x+1. To decide whether to
predict 0 or 1, we need to check that w starts with a and has exactly (k + 3) blocks so far: if so,
predict 1; if not, predict 0. Since we may assume that the entire string w belongs to L3, we know
that it starts with a block of a’s, and there are no more than (k + 2) blocks after that. We can check
blocks 2 through (k + 2) by checking if w belongs to By (see Eq. (2)), and we can check the last
block by testing whether the current symbol is a (if k is even) or b (if k is odd).

More formally, let ¢, ,, define By, by Lemma 2.9, and let

_ | #Bu AQa kiseven
= ¢, ANQp kisodd.

Then, for all w € L3 and 1 < i < |w| we have that

wll:i] € Lyyz &= wl[l:i] E ¢.

In the other direction (the prediction problem for L3 is not solvable in TL[E]), suppose we had a
depth-k formula ¢ € TL[#]; such that forallw € Lyizand 1 <i < |wl,w[l :i] F¢ & w[l:
i] € Li43. Assume that k is even (the odd case is similar). We can use Lemmas 4.8 and 4.9 just as in
the proof of Theorem 4.10 to obtain an accommodating affix restriction A1 (77) € Ly and o (#) € a*
as well as a depth-1 formula ¢; € TL[#, PNP],, which defines 2, (Lk43) o, and only uses PNPs Wthh
are constant over (41, 01).

Since (41, 1) is accommodating, choose 7 so that the middle has s, > 2 occurrences of a and s, > 2
occurrences of b. Construct strings

w =1 ()b a*bap, (i)

w’ = A1 (n)b** a’ o1 (i) ba
which both belong to L.z (because the prefix A;(72) has k blocks ending with a block of b’s and the
suffix o1 (7) is all a’s, so both strings have (k + 3) blocks). Leti = |1, ()| + s4 + sp + |01 (71)], that
is, the position of the last symbol of o(i). Then w[l : i] € L.z, while w'[1 : i] ¢ Li,3. But by

Lemma 4.6, we have w[l : i] E ¢; <= w’[]1 :i] E ¢;. This is a contradiction, so we conclude
that no formula ¢ with depth k can solve the prediction problem for Lg.3.

If k is odd, the argument is the same, except with a and b swapped.

D Depth Hierarchy for TL[#, #]

We can also obtain a strict depth hierarchy for TL[#, #] The key observation is that to modify
Lemma 4.8 for TL[# #] we use the fact that if the Parikh vector of a word is fixed we can rewrite #
in terms of # and .

Lemma D.1 (Cropping Lemma for TL[E, ﬁ] cf. Lemmas 1-2 of Behle et al., 2009). For any
formula ¢ ofTL[;, #,PNP] and any accommodating family of intervals I: N'*| — T (NIZ0) such
that 1(i1) C [6, 7| and the PNPs of ¢ are constant on I, there exists an accommodating family of
intervals I’ : NI — T (N such that I’ (i) € 1(7i) but does not stick to any side of 1(ii) for all i,
and all of the minimal depth-1 subformulas (and PNPs) of ¢ are constant on I'.

22

Proof. Lety, ¥, ..., Y. be the minimal depth-1 subformulas of ¢. That is, for € € [c],

ve=| >, A E |+ D) Akxl| = Ce.

xeLe XERe

For any size 5 = (54, 5) € NI®l let 5 = (s, + 2, 55 + 2). We may, since / is accommodating, set i

such that /(i7) has size at least (25, 2¢s)). Then we rewrite ¢, as

ve=| D AEDA |+ D) (G -FhD |2 ¢

xeLe YERe

ng+np ify=T

C. = Rg if/\/:Qa
A P if x =0p
0 if y = L.

(Regarding the strict counting operator #, see Lemma A.4.) Now each V¢ defines a half-plane over
#[0Q4] and #[Qp], where w,i = ¢ iff w[1 : i] lands on the correct side of the half-plane. Then
¢ is a Boolean combination of these half-planes. Thus if w[1 : i] and w’[1 : '] land in the same
half-planes, they will both satisfy ¢ or both not satisfy ¢.

Next, we prove that we can find an interval with size at least 5" on which all the ¢, are constant, by
induction on c¢. The base case ¢ = 0 is trivial. For ¢ > 0, we split the interval into four quadrants,
each of size (2“‘152, ZC‘ISZ). Since a line can only intersect at most three quadrants, there is one
quadrant that is completely contained in the half-plane for ¢ . or completely outside. Use the inductive
hypothesis on this quadrant and the remaining half-planes for {1, ..., ¥c-1}.

Finally, shrink the interval slightly to obtain an interval I’ (i) of size 5 that does not touch any side of
1(7i). m

Then, in order to prove a depth hierarchy for TL[;] , each step of reduction needs to eliminate a block
on both the left and the right.

Theorem D.2. Define the family of languages Dy = Lyx_1 = (a*b*)*"'a*. Then Dy is definable
in TL[#, # i1 but not in TL[#, #]«.

Proof. Assume, for the sake of contradiction, that there exists some depth k formula ¢ € TL[E, E] k

which defines Dy,i. Let Ix(i1) = [(1,0),7 — (1,0)], 24 (7)) = ok (i) = a, and ¢ = ¢. Note that
(A, 0x) is accommodating, and ¢y has no PNPs.

For{ =k —-1,k-2,...,1, we will define the following, writing LR for the reversal of L, that is, the
set of reversal of strings in L:

1. A accommodating family of intervals I, (i1) C Iz (7).
2. An accommodating affix restriction Az (i) € Ly_¢41 and 0 (1) € Li_p4iR.

3. A depth-¢ formula ¢, € TL[E, ?, PNP], which defines 4,(Dg+1)o, and only uses PNPs
which are constant over (¢, 0¢).

We use the following iterative procedure:

1. Using Lemma D.1, find an accommodating family of intervals I, such that I, (1) C I, ()
and does not stick to any side of Iy, (7) for all 77, and the minimal depth-1 subformulas of
¢e+1 are constant on 1.

23

-

2. We choose an affix restriction whose middle is I, as follows. Let [?, jl = Ips1 (1) and
[i7,j'] = I, (71); then

Ir-1 (i)
o A Gal"~Hapli=ils k — ¢ odd o¢ (i)
() = Ayl 1o 171
Agr1 () e gl "ta ke — ¢ even
gy} 2 - I 7
. pli-i"bgli=i"lag, (1) k —€odd (%)
0c(R) = =il pli-7'] 7
a* "HabUr b gpyy(n) k- Ceven. Ae (i)

Because Ag41(71) € Lig_¢-141 and I () does not stick to any side of I, (i), we have that
A¢e € Li_py1. Similarly, or¢ € Lk_[+1R.

3. Using Lemma 4.9 we can find a depth-¢ formula ¢, of TL[#,#,PNP], that defines

1, (Dk+1) o, and only uses PNPs which are constant on (A, o¢).

At the end of this procedure we are left with

* An accommodating affix restriction A;(7) € Ly and o, (i1) € L;R.

* A depth-1 formula ¢; € TL[E, #, PNP]; which defines ,, (D), and only uses PNPs which
are constant over (41, 01).

Since (A1, 1) is accommodating, choose 7 so that the middle has s, > 2 occurrences of a and 55, > 2
occurrences of b. Construct strings

w =21 (i)a’ b* o1 (i)

w' = A (i)a* b abo (ii).
The prefix A (71) and suffix o (7) both have k blocks, and 1, (1) ends with the same letter that o1 (i)
starts with. So w has (2k + 1) blocks and is therefore in Dy, while w’ has (2k + 3) blocks and is

therefore not in Dy.;. But by Lemma 4.6, we have w |= ¢ <= w’ [¢;. This is a contradiction,
so we conclude that no formula ¢ with depth k can define D, ;.

Finally, by Lemma 2.8, Dy = L1 is a (2k + 1)-piecewise testable language. Thus, by Lemma 2.9,
Dy, is definable in TL[#, #]x+1. m]

E Equivalence of TL[#, #] to Other Formalisms

The logic TL[;, E] is equivalent to two other formalisms studied in the literature. The multiple
different ways of characterizing this class of languages suggest that this is a robust class of languages.

Definition E.1. The syntax of MAJ,[<] is as follows:

¢ =05 | 0s(y) l=p>
[x<yly<x
| =¢1 | ¢1 Ao
| MAJ(B1, ...,) | MAJ (1, ...,) m> 1.

The semantics of formulas is defined by the relation w,& | ¢, where & is a partial function from
variables in {x, y} to truth values in {0, 1}. We write £[x v i] for the function & such that &' (x) =i

24

and &' (y) = €(y), and similarly for é[y — J].

w,é E Qs (x) = We) =0 (17a)
w, & F Qs () = Wwgy) =0 (17b)
wEEx<y = £(x) <€) (17¢)
w,EEy<x = &) <£&) (17d)
w,§ ¢ = wil¢ (17¢)
w,.& FE 1A — w,EE¢randw,§E ¢ (17f)
Wl m
wE ERL) = 3 S I[welem il Fo] > 0 a7y
i=1 ¢=1
wl m
WoEENMAL(B1, .o pmy = Y D T[w.ély o 1 ¢ > @ (17h)
j=1 =1

We write w = ¢ to mean w,0 = ¢, and we say that a closed formula ¢ defines the language

L(p) ={w|w ¢}
Definition E.2. The depth of formulas and terms of MAJ, [<] is defined by:
dp(Qo(x)) =dp(Qs(y) =0
dp(x <y) =dp(y <x) =0
dp(—~¢) = dp(¢)
dp(¢1 A ¢2) = max{dp(¢1),dp(¢2)}
dp(MAJ(@1. ¢m)) = dp(MAJy(d1.. ... b)) = 1 +max{dp(¢y).....dp(¢m)}.

We write MAJy [<] for the class of all formulas ¢ such that dp(¢) < k.

Lemma E.3. Any formula ¢ of MAJ, [<] that uses ¥ or 3 can be converted into a formula that does
not use ¥ or 3, defines the same language as ¢, and has the same depth as ¢.

Proof. These quantifiers can be rewritten equivalently using MAJ:

Ix[4] = MAJ (s, T)
Vx[¢] = “MAJ, (=, T). O

Now, we show the equivalence of TL[#, #] with MAJ, [<]. First, we show how to translate TL[#, #]
to MAJ;[<] (Theorem E.4) and then how to translate MAJ,[<] to TL[#, #] (Theorem E.6).

Theorem E.4. Let ¢ be a formula ofTL[E, E]k. Then there exists a MAJ, [<]x formula ¢’ (x) with
one free variable such that w,i | ¢ < w,x =i ¢'(x) forallwand1 <i < |w|.

Proof. We define a transformation M, [-] from formulas of TL[#, #] to formulas of MAJ> [<] with
one free variable x:
M [[Qo-]] =Q0s(x)
M [=¢] = M« ¢]
Mg A g2l = M1] A M [[42] -
Any comparison formula can be written in the form

’

m
Zl‘f— t, >0
=1

1

3

S
I

where t, and t} are terms. Since this tests whether the sum is greater than 0, whereas the MAJ
quantifier tests whether the sum is greater than half of its maximum possible value, we need to pad

25

the positive terms () with an equal number of trivially true formulas. Similarly, we need to pad the
negative terms (7;) with an equal number of trivially false formulas.

HZQ—ZK H MAI (T [] T oo B] T =T [Lo~ [] L)
=1

(18a)

T [#181] = (v < x AM, [8]) (18b)
T [#101] = (v = x A My [9]) (18c)
F (#1611 = My [#] (18d)
Fxll1] = (y = x). (18e)

To see why this works, we can show by induction that for all strings w, assignments &, formulas ¢,
and terms ¢, both of the following hold:

w.& EMco] &= w.é(x) ¢ (19a)

[wl

Do aw,ély = 1 E Fele]] = 5, (19b)

The interesting case is

= w,& EMAIF] oo B ltm] s T~ 1] Lo oo ~F [15 L)

wl [m
= Z(Z(H[W,E[ij] = 7] +1171)

=i\ =
s 3 (1=1]w.ély > 1 E 7] +}I[L])) > wl(m +m’)

=1

= Z(;ﬂwf)"—’] E P el ZI[[W,f[ij]Izﬁ[[t}]]])>0

=1 =1

(19b) w,&(x S w,&(x
= Z(tg) 40)—Z(t[) £ 50

&} Wf(x)'ZZZ‘[—Zt[>O
=1

Observe that a formula of the form M, [] may only have free variable x, because in Eq. (18a),
MAJ, binds y. O

In the special case of a comparison formula of # terms, the resulting MAJ, [<] formula will be closed.

Proposition E.5. Let My [[-]| be as in Theorem E.4. If ¢ is of the form #[y] > 0, then M, [[¢] is
closed.

Proof. Recall that a formula of the form M, [y] may only have free variable x, because in Eq. (18a),
MAJ, binds y. But the special case of M, [#[y] > 0] is closed, because Fy [#[y]] = M, [¢]
(Eq. (18d)) only has free variable y, and Eq. (18a), I\W/IJ binds y. m]

Theorem E.6. Let ¢(x) be a formula of MAJ> [<]« with one free variable x. Then there exists a
TL[#, #]x formula ¢’ (x) such that for all w and all i € [|w|], we have w,x =i £ ¢(x) = w,i

¢

26

Proof. We define a transformation 7 that transforms a formula of MAJ> [<] with free variable x into
a formula of TL[# #]

Tx [[Qo-(x)]] =0
Ti[—o0)] =7 [¢(x)]
T l[¢1(x) A d2(0)]| = T [[1 ()] A Tx [P2(x)]

v [DNRENERI AR ERS)] EN N F226000) B Z Cy [

te[m)
The transformation 7y is defined similarly.

The transformation Cy, [¢ (x, y)], in turn, can be read as “count the number of positions y that make
¥ (x,y) true.” Without loss of generality, assume that ¢ is in full disjunctive normal form, that is,
¥ =\ pepm) e and at most one of the ¢ can be true at the same time. Then we define

\ we@]= > Clwe®].

te[m’] te[m’]

Each of the ¢, can be written as a conjunction of literals with free variable x, literals with free
variable y, and possibly a comparison x < y,x <y, y < x, ory < x. Then we define

Cyllver () A (y) Ax <yl =ve 2 F# [T W] : 0
Cylve1 () Aoy Ax <yl =ver 2 # [T [we(]] 10
Cyllver () Avea () Ay <x =yn ? # [T [Wa]] : 0
Cy [Wer(0) Avea () Ay < x| =wer 2 % [Ty [Wea(0)]] 20
Cy [ver(x) Ay =ver #[Ty [wex(WD]] 20

The transformation Cy is defined similarly. (Regarding the strict counting operators # and %, see
Lemma A.4.) m]

Theorem E.7. L(TL[?,?]) = L(MAJZ[D = L(FO[<]-uniform LTC®). Furthermore, for all
k > 0 we have TL[#, #]x € MAJ2[<]ss1 and MAJ2[<]x C TL[#, #].

Proof. The equivalence .E(I\WA\JZ [<]) = L(FO[<]-uniform LTC®) was shown by Krebs (2008, The-
orem 4.33).

We will show the following:

. ~E(TL[;, Q]k) C L(I\WKJQ[<]/(+1) using Theorem E.4.
. L(m2[<]k) C L(TL[#, #]%) using Theorem E.6.

If ¢ is a formula of TL[E, ?] > then by Theorem E.4, there is an equivalent MAJ, [<]& formula ¢’ (x).
This, in turn, is equivalent to the following closed formula:

¢ =Ax.(=3y.y > x) A ¢’ (x).

This accounts for the end-satisfaction of TL[IE, 3] formulas, but adds a level of depth to the MAJ, [<]
formula.

Conversely, if ¢ is a closed formula of I\@gk] k> we may think of it as having one free variable x,
so by Theorem E.6 below, there is a TL[#, # | formula equivalent to ¢. O

This theorem combined with our Theorem D.2 implies the following answer to an open question.
Corollary E.8. The circuit depth hierarchy for FO[<]-uniform LTC? circuits is strict.

Proof. By Theorem D.2 and Theorem E.7 we know that Dy ¢ L(MAJ>[<]). On the other hand,
let ¢x be the TL[# #] formula given by Lemma 2.9 for Dy. Then apply Theorem E.4 to get a

formula ¢ of MAJ>[<]x that defines Dy. Since ¢y is of the form #[y/] > 0, by Proposition E.5, ¢},
is closed. Thus, the depth hierarchy for MAJ, [<] is strict.

27

By Theorem 3 of Behle et al. (2013), FO[<]-uniform LTC? circuits form a hierarchy in the circuit

depth iff MAJ, [<] formulas form a hierarchy in the quantifier depth. Their theorem states that there
exists a constant ¢ such that a circuit of depth k can be expressed as a formula of depth k + ¢, and a
formula of depth k can be expressed as a circuit of depth ck. o

F Position Encodings

In this section, we extend the results of Sections 3 and 4 to handle position encodings. On the logic
side, we extend TL[#] with new predicates MOD?, , which test whether the position is congruent to r
modulo m, and a new operator Y¢, which tests whether ¢ is true at the previous position. On the
transformer side, we consider the original sinusoidal position encodings, as well as RoPE (Su et al.,
2024) and ALiBi (Press et al., 2022).

F1 TL[#,Y,MOD]

We extend TL[#] to a more expressive logic, TL[#,Y,MOD] (which is equivalent to
C-RASP[local, periodic] of Huang et al. (2025)). The new syntax rules are:

¢ :=Y¢ | MOD],
The semantics of the extensions are defined as follows:

wiEYs = w(i-1)fEdandi>1 (202)
w,i EMOD,, < i=r (modm). (20b)

F.2 Depth Hierarchy

To prove a strict depth hierarchy for TL[E, Y, MOD], we first we define an intermediate step to
simplify the construction. A formula is in Y-normal form if Y only appears around atomic formulas.
That is, the set of formulas in Y-normal form is defined by the following grammar.
pu=t <tr| =1 d1 A2 | Y
¥ = Qs | MOD;, | Yy
to=#[o] |1+ |1
Below, we will use the shorthand, for any ¢ > 0,
Y¢p=Y --Y¢.
——
c times
Lemma F.1. For every formula ¢ of TL[#,Y,MOD] there exists a formula ¢’ of TL[#, Y, MOD]
suchthatw,i ¢ & w,i = ¢ forallw € ¥, and ¢’ is in Y-normal form.

Proof. Define a transformation N [-], where ¢ > 0, applying to both formulas and terms, that
pushes Y’s inwards. The superscript ¢ keeps track of how many Y’s are being pushed. For any formula

¢, wehave w,i = ¢ & w,i—c | N[¢],and for any term 7, we have 1> = N [1]"" 7.
N¢ [[Q(T]] =Y0Q,
N [MOD’,] = Y¢ MODY,
Ne[-¢] =-N°[¢]
Nelg1 Aol = N1] AN [62]
Nt <] =N[u] < N []
Ne[Yg] = N 9]
Ne[#(a] = #INC [
N+ = N [a] + N1:]
Ne1] = 1.

Now for any formula ¢ of TL[#, Y,MOD]y, it is easily verified that ¢’ = N° [¢] is of the same
depth and in the desired normal form. m}

28

wi w2 w3 Wn

flw) =

Figure 5: A set of x many formulas on a string w of length n can simulate a formula ¢ on a string
f(w) of length x(|w| + 1).

Lemma E2. Let ¢ be a formula of TL[E, Y, MOD] over alphabet . U {e} for e ¢ X. There exists a
Sformula ¢’ of TL[#]x and a mapping (for some x > 1)

f:2Z - (Zu{e))”

Wiwa Wy = eSwieX Twae o, et

such that forallw € ¥, f(w) F ¢ & w ¢

Proof. First, let M be the least common multiple of all moduli used in ¢ (or M = 1 if there are none),
and let Y be the Y-depth of ¢. Set x = M (Y + 1). This ensures that x = 0 mod m for any modulus m,
and x > Y, which are important conditions for the following proof.

Intuitively, the technical challenge here is that in w we can index only |w| many positions, but
to simulate a formula over f(w), we need to simulate a procedure which can index x(|w| + 1)
many positions. We address this by defining a transformation 75 [[-]|, for y € [x], from formulas of
TL[#,Y,MOD] to TL[#]. At position i, Ty [¢] simulates ¢ at position (xi + y) (and similarly for
terms). That is, for all ¢ and ¢, and for all strings w and i € [|w]],

fwhxi+ylE¢ = w,iE=7(¢] Oy — e] (1)

The first x positions in f(w) are not simulated; they are dealt with specially below. In the end,
Eq. (21) will ensure that f(w) E ¢ < w = ¢,. Intuitively, this construction “stores f(w;)
vertically” at each symbol w; in w, and thus we can simulate, in place, the value of ¢ at each position
of f(w;). We can visualize w = wiwows - - - w, and f(w) as in Fig. 5, with each f(w;) viewed as
a vertical column of symbols in an array. We can read w left-to-right, and read f(w) up-to-down
within each column, and left-to-right across all columns.

29

Without loss of generality, we assume by Lemma F.1 that ¢ is in Y-normal form. Then we define the
following transformation:

Oy y—-c=1

c —

TIY Qo= {J_ otherwise Tex
c L y-c=1

7Y el = {T otherwise

) T y—c=rmodm
7, [Y¢MOD.,] =
o ml {J_ otherwise

Ty [-¢] = =75 [¢]
Tyllor Aol =Ty [¢1] ATy [42]
Tyl <] =70ul <7 (2]
7;|[¥[¢]]|=(Ze*,y’|:¢?1:0+ S FT Lol |+ 3 Tlel 2110
y'elx] Y €lx] yely]
Tyt + o] =7, (0] + 7 [2]
T[] = 1.

We prove Eq. (21) by induction on the structure of ¢.

e Ifp=YQy foro € 2U{e}: If y—c =1, then
fW)xi+y EYQr & f(Whxi=0 & w;=0.
Butif y —c # 1, then
fO0)xi+y EY Qe & f(Whisy-c=0 & e=0.

In either case, and whether o € X or o = ¢, Eq. (21) holds.

* If ¢ = Y°MOD],: Because x is a multiple of every m, we have

fw),xi+y EYMOD], < f(w),xi+y—-c = MOD;,
& y—c=rmodm
& w,i 7, [YMOD,,] .

o If 7 = #[$]: We split the count into three parts,

(#[p)T > = {j € [xi+y] | f(w).] E ¢}
= |{j € [Lx] | f(w).] E ¢}
+{j € [x+Lxil | f(w),] E o}
+1{j € [xi+ Lxi+y] | f(w),] E ¢}

In relation to Fig. 5, the first term sums the first column, the second term sums the columns
corresponding to wy - - - w,_1, and the third term sums the last column (corresponding to

30

wy,). Taking these three terms one at a time:

I/ € [Lx] | f(w).j F ¢}

{j € [L.x][e".) F ¢}

= Z Y EG?1:0
Y €lx]
Hjelx+Lxi | f(w),)jFE¢}= Z i € [Li = 1] | f(w),xi" +Y" E ¢}
y'€elx]
ind._hyp.

D e lLi=1] i BT[]}
y'e[x]

D, FI7 o]

Y €[x]

1y € [Ly] | f(w)xi+y [6}
DR e (L y] | wai E Ty (6]}

I{j € [xi+ Lxi+yl| f(w).] [¢}

- Z Ty [¢] 21:0].

y'elyl

* The remaining cases are straightforward.

By construction, 7y [¢] has the same depth as ¢. Setting ¢’ = 75 [¢]] completes the proof. m|

Finally, we show the depth separation for TL[E, Y,MOD]. Let Ej be the language formed by
allowing unlimited insertions of e anywhere into strings of Ly. In other words, E; = del™'(Ly),

where del: (£ U {e})* — X* is the string homomorphism given by del(o) = o for o € X and
del(e) = €.

Theorem F.3. Let k > 0. The language Eyyy is definable in TL[;, Y,MOD] 41 but not in
TL[#,Y,MOD],.

Proof. Suppose ¢ € TL[# Y, MOD] 4 defines Er;. By Lemma F.2, there is a string mapping f
and a formula ¢’ € TL[#] such that forall w € £*, f(w) £ ¢ —= w [¢’. However, this implies
that w E ¢ <= w € L4, which contradicts Theorem 4.10.]

F.3 Sinusoidal position encoding

The original definition of transformers (Vaswani et al., 2017) used sinusoidal position encoding,
which redefines Eq. (5) as follows. Assume d is even. Define the rotation matrix

[cos 6, —sinb, 0 0 0 0
sin 64 cos 0 0 0 0 0
0 0 cosfd, —sinf, 0 0

0 0 (22)

R(§) =round| O 0 sin 6, cos 6,

cosbgpn —sinfgp

sinfzn cosfg]

31

where for ¢ € [d/2], 6, = 1000~2(c=1)/d_Then
sin 0
cos0
(0) _ -1 .
h;” (w) = E(w;) + R(9) . (23)
sin 0
cos0

For the rest of this section, let us assume that in a sinusoidal position encoding, all the angles are 6
are rational (that is, rational multiples of), so that the encodings are periodic. Then we can extend
Theorem 3.1 to transformers with sinusoidal positional encoding and TL[#, MOD], using exactly the
same technique as Yang et al. (2024, Cor. 8).

Theorem F.4. A language L is defined by a formula of TL[;, MOD] of depth k > 1 if and only if
<BOS> - L is recognized by a depth-k fixed-precision transformer with sinusoidal positional encoding.

Theorem E.5. A depth-(k + 1) fixed-precision transformer with sinusoidal positional encoding can
recognize Ey1, but no depth-k fixed-precision transformer with sinusoidal positional encoding can.

Proof. Firstly, Epy is definable by a fixed-precision transformer of depth k£ + 1 even without
sinusoidal positional encodings. Secondly, by Theorem F.4, every language definable by a fixed-
precision transformer with RoPE is definable in TL[#, MOD]y, but by Theorem F.3, Ey,; is not
definable in TL[#, MOD]. O

F4 RoPE

Rotary Positional Embedding or RoPE (Su et al., 2024) is currently the de facto standard method for
incorporating positional information in transformers (e.g., Mesnard et al., 2024). It modifies Eq. (9)
as follows:

i,/ () = R@O)'q;") (w) - ROVK (w) (24)
where R is as in Eq. (22).
Again, let us assume that the angles in g are rational, so that the transformation R(é)i is periodic in i.

This ultimately allows simulation using MOD.

Proposition K.6. Let T be a depth-k fixed-precision transformer with RoPEs. There exists a depth k-
Sformula of TL[#,MOD] that simulates T.

Proof sketch. This is a straightforward adaptation of Proposition B.6. The rotation matrices R(§)i
and R(é)f can be computed in fixed-precision using Lemma B.5 and MOD, as in the proof of Yang
etal. (2024, Cor. 8). The attention scores s;; = R(§)iqi . R(é)jkj can be computed using Lemma B.5
and the trick of enumerating all possible queries, as in the proof of Proposition B.6. O

Theorem E.7. A depth-(k + 1) fixed-precision transformer with RoPE can recognize Ej.1, but no
depth-k fixed-precision transformer with RoPE can.

Proof. Firstly, Ex4 is definable by a fixed-precision transformer of depth k£ + 1 even without RoPE.
Secondly, by Proposition F.6, every language definable by a fixed-precision transformer with RoPE is
definable in TL[#, MOD]y, but by Theorem F.3, E; is not definable in TL[#, MOD]. m]

F.5 ALiBi

ALiBi stands for Attention with Linear Bias, introduced by Press et al. (2022) as a method for
improving length generalization in transformers. It decreases the attention scores (s;;) by an amount
that scales linearly with the distance between the key and query positions i and j. That is, it modifies
Eq. (9) to:

S;f)(w) = qlm(w) -k;.f)(w) —a-(i—j). (25)

First, we note that there is some distance beyond which ALiBi rounds the attention score to 0. This
ultimately allows simulation using Y, as the following shows.

32

Lemma E.8. Let F be a fixed-precision representation and let a > 0. There exists A, such that for
all j <i— A, and x € F we have that round(exp(x — a(i — j))) = 0.

Proof. The attention scores (s;;) are bounded above by some S > 0 (Chiang et al., 2023, Prop. 21).
Recall that the smallest positive number in F is 279, so there is a score so = log2~*~! such that
round(exp so) = 0. Let A, = (S — s9)/a. Thenifi — j > A,, then round(exps;;) = 0. O

Proposition F.9. Let T be a depth-k fixed-precision transformer with ALiBi. There exists a depth-k
TL[#, Y] formula ¢ that simulates T.

Proof sketch. If a = 0, we can use the same construction as in Proposition B.6. If a > 0, we
cannot use the trick of enumerating all possible queries, as in the proof of Proposition B.6. Instead,
by Lemma F.8, there is a finite window [i — A,,i] which receives nonzero attention. At query

position i, we can use formulas ¢ Ky, Y1¢ Ky, ,YA“¢ Ky, to obtain the keys at positions
i,i—1,...,i —A,. We can then use Lemma B.5 to compute the attention scores according to
Eq. (25).]

Theorem F.10. A depth-(k + 1) fixed-precision transformer with ALiBi can recognize Ey.1, but no
depth-k fixed-precision transformer with ALiBi can.

Proof. Firstly, Ey4; is definable by a fixed-precision transformer of depth k + 1 even without ALiBi.
Secondly, by Proposition F.9, every language definable by a fixed-precision transformer with ALiBi
is definable in TL[#, Y], but by Theorem F.3, Ey; is not definable in TL[#, Y]. |

33

G Index of Notation

Nmms>AD

SN NS TS0 Ny

hkvﬁi.\l
- . .

TIREEEECOSSSNAD

scaling factor for ALiBi (Appendix E.5)

terms for numerator and denominator of attention (Proposition B.4)
languages (Eq. (2))

numerator and denominator of sumdiv (Section 2.1)

symbols (€ X)

formulas for numerator and denominator of attention (Proposition B.4)
bit number (€ [p], Proposition B.4)

threshold in linear inequality (Appendix A.1 and Proposition B.4)
transformation for counting (Theorem E.6)

attention output vector (Definition B.2)

number of minimal depth-1 formulas (Appendix C.2 and Lemma D.1)
coordinate (€ [d], Proposition B.6)

constant (Corollary E.8)

language separating TL[#, #] depth levels (Theorem D.2)

hidden dimension (Definition B.2)

window of positions [i — A] (Lemma F.8)

neutral letter (Lemma F.2)

L with a neutral letter ¢ (Theorem F.3)

word embedding (Definition B.2)

transformation (Theorem E.4)

function £* — F* (Lemma B.5)

all fixed-precision numbers (Definition B.1)

function computing FFNN (Definition B.2)

function F — F (Lemma B.5)

b-intercept (Appendix C.2)

hidden vector (Definition B.2)

learning rate (Section 5)

interval (family of intervals) (Definition 2.5, Lemma 4.8, and Theorem 4.10)
set of all intervals (Definition 2.5, Lemma 4.8, and Theorem 4.10)
endpoints of interval (Definition 2.5, Lemma 4.8, and Theorem 4.10)
position (€ [n]) (Section 2 and Appendix A.1)

key matrix/vector (Definition B.2)

depth, number of blocks or pieces (Definitions A.2, B.2 and E.2)
language (C X*, Section 2)

language (Eq. (1)) separating TL[E] depth levels (Theorem 4.10)
language recognized/defined by a formula or logic (Theorem E.7)

set of bodies of left-counting terms (Appendix C.1 and Lemmas 4.8 and 4.9)
loop from 1 to k — 1 (Theorems 4.10 and D.2)

index of half-plane or minimal depth-1 formula (€ [c¢], Lemma 4.8)
index of formula in m, term in a sum (€ [m], Theorems E.4 and E.6)
line (Lemma 4.8)

prefix family (Definition 4.1)

coefficient in linear inequality (Appendix A.1, Proposition B.4, and Lemma 4.9)
transformation (Theorem E.4)

Parikh numerical predicate (Lemma 4.9)

|Z], only used when |X| would be circular (Definition 2.3)

significand of fixed-precision number (Definition B.1)

34

slope (Lemma 4.8)

number of formulas in m, terms in a sum (Definition E.1 and Theorem E.4)
length of w (Section 2 and Appendix C.1)

Parikh vector of w (Sections 2.3 and 4)

truth assignment (Definition E.1)

number of bits (Definition B.1)

PNP (Parikh numerical predicate) (Definition 2.6 and Lemma 4.9)
function corresponding to PNP (Definition 2.6)

permutation of [n] (Appendix C.1)

symbol predicate (Appendix A.1 and Definition E.1)
fixed-precision value of q (Proposition B.6)

query vector (Definition B.2)

rotation matrix (Appendix F.3)

set of bodies of right-counting terms (Appendix C.1 and Lemmas 4.9 and D.1)
suffix family (Definition 4.1)

size of interval (Definition 4.3 and Lemma 4.8)

number of fractional bits (Definition B.1)

alphabet (Sections 2 and 2.3)

symbol (€ Z) (Section 2.4)

transformer (Section 3)

transformation (Theorem E.6)

term (Appendix A.1)

value (Definition B.2)

Parikh vector (Section 2.3 and Lemma 4.8)

Wk, Wq, Wy, Woue weight matrices (Definition B.2)

w string (€ X£*) (Section 2 and Definition 4.1)

fixed-precision or real number (Section 3)

padding size in reduction proof (Lemma F.2)

formal variables (Definition E.1)

index in reduction proof (Lemma F.2)

formula (Section 4 and Appendix A.1)

formula, esp. body of counting term (Lemma 4.8)

Parikh map (X* — NI*I) (Section 2.3)

formula, esp. comparison (Lemmas 4.8 and 4.9 and Theorem E.6)
angle for rotation matrix (Appendix F.4)

9

Sld T QN ME R [NN A ON MM IS I O3

HoR o=
<

TE xS

35

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claimed equivalence between fixed-precision transformers and C-RASP
was shown in Appendix B, the claimed depth hierarchy was shown in Section 4.5, and the
claimed empirical evidence was provided in Section 5.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The section Section 6 summarizes the limitations of our work. Theoretical
limitations of our model compared to other works are discussed in the introduction, and
empirical limitations are discussed in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

36

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All lemmas and theorems have proofs in the appendix besides Theorem 4.10,
which has a proof in the body of the paper. Throughout the paper, intuitive explanations and
proof sketches can be found. The only secion where proofs are omitted is Appendix D, but
this is because they are essentially identical to the proofs of Lemma 4.9 and Lemma 4.6.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The definition of the formal language L was given in Lemma 2.8. Our method
of generating strings from L as well as the transformer training setup are all fairly standard
and were described in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

37

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be provided in the supplemental material, and made publicly
available in a github repo sometime in the future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details were provided in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiments were primarily designed to support our theoretical proof of
existence and non-existence of transformers solving the next-token prediction task for Ly.
In Section 5 the existence of a single transformer attaining 100% is sufficient to confirm our
theoretical existence result, and there are also many data-points that affirm the theoretical

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

non-existence result - thus, we don’t believe that error bars would substantially useful
information for the reader.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The metrics provided by the internal cluster used were reported in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and believe that the research in
this paper conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

39

https://neurips.cc/public/EthicsGuidelines

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is purely theoretical, and we do not foresee any direct societal
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our code is only for training transformers on strings of a’s and »’s and thus
has no forseeable method of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .
Justification: [NA] .

Guidelines:

40

13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code implementing our experiments is attached as supplemental material,
and the method of training and data generation is described within Section 5.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

41

paperswithcode.com/datasets

Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: A footnote in Section 5 acknowledged the use of LLMs for assistance in
implementing standard methods and writing parsers. The code was manually inspected and
corrected afterwards.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Transformers
	Temporal logics with counting
	Parikh vectors
	Piecewise testable languages

	Transformer Equivalence
	Depth Hierarchy
	Intuition and example
	Affix restrictions
	Properties of depth 1
	Cropping and reduction lemmas
	Non-definability results

	Experiments
	Problem
	Setup
	Results

	Limitations
	Conclusion
	Logic Preliminaries
	Temporal Logics with Counting
	Examples of TL With Counting
	Extensions to Past TL Without Counting
	Proof of lem:piecewisetestabledepth (definability of piecewise testable languages)

	Transformer Equivalence
	Transformers
	Proof of thm:transformerequivalence

	Depth Hierarchy for TL With Counting
	Proof of lem:TLCPcommutative (Commutativity of depth 1)
	Proof of lem:croppingoneway (Cropping Lemma for TL With Counting)
	Proof of lem:reduction (Reduction Lemma)
	Proof of cor:predictiontaskdepth

	Depth Hierarchy for Past TL Without Counting
	Equivalence of Past TL Without Counting to Other Formalisms
	Position Encodings
	TL[#to -.5,Y,MOD]
	Depth Hierarchy
	Sinusoidal position encoding
	RoPE
	ALiBi

	Index of Notation

