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ABSTRACT

Convolutional Neural Networks (CNN) are used for various applications ranging from
computer vision to natural language processing. A kernel, known as the matrix of weights,
performs a convolution operation on input data. In general, the optimizer updates the
weights of the kernel. Recent research suggests that applying a deterministic kernel after
convolution operation can help a CNN to gain better generalization. However, how to
compute the weights of the deterministic kernel is still a field of active research. In this
work, we derived a lemma that shows of the representativeness of an adaptive deterministic
kernel. We construct an adaptive deterministic kernel based on the Gaussian distribution of
convoluted data. We generate many set of kernels by shifting weights to different positions
of the initially created Gaussian kernel. We notice a pattern of weight distribution in
deterministic kernels constructed from the Gaussian distribution of convoluted data. Using
the derived lemma, it is possible to sort out a set of kernels (from many set of kernels) that
tends to gain better performance in CNN for image classification task. The main object of
this research work1 is to identify these patterns and recommend the better set of kernels to
gain performance.

1 INTRODUCTION

Convolutional Neural Network (CNN) gains impressive performance on computer vision tasks such as image
classification (He et al., 2016), image segmentation (Long et al., 2015), and object detection (Redmon et al.,
2016). A kernel (i.e., matrix of weights) performs convolution operations on input data to extract relevant
features. The outcome of the convolution operation is the convoluted data, which is passed to the next layer.
A CNN variant can have convolution, non-linear, and fully connected (FC) layers, and the order of these
layers can vary based on the variant.

There are several ways to compute the weights of the kernel and distribute the weights into the kernel space
(i.e., the size of the matrix). Saxe et al. (2011); Pinto et al. (2011); Jarrett et al. (2009); Salehinejad et al.
(2022) gain better results by using randomly initialized kernels. Coates et al. (2011); Mairal et al. (2014);
Cho & Saul (2009) use unsupervised criterion to learn the weights of the kernel. The usual practice is to use
a single kernel in a CNN variant. Bo et al. (2010); Li et al. (2015) use multiple kernels and achieve better
accuracy in CNN. In the context of image processing, the kernels are learnable parameters of the model. The
weight of the kernel is updated via back-propagation by the optimizer based on the training loss/error.

Adaptive kernel shows an impressive performance in computer vision tasks (Du et al., 2017; Li et al., 2017;
Xiong et al., 2015; Ding et al., 2018; Li et al., 2019). Recently, Curriculum by Smoothing (CBS) (Sinha
et al., 2020) shows excellent results by building an adaptive kernel that controls the amount of high-frequency
information propagated within the CNNs as training progress. CBS uses a Gaussian kernel after convolution

1https://github.com/PaperUnderReviewDeepLearning/KernelSet
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.3315 .1889 .0554

.1889 .1076 .0315

.0554 .0315 .0092

.0751 .1238 .0751

.1238 .2041 .1238

.0751 .1238 .0751
Top-left (Seed kernel) Static-center

Table 1: The weights of the Gaussian kernel distribution of convoluted data (top-left) used by our adaptive
kernel method and the static Gaussian kernel distribution used by CBS (static-center) (best viewed in color).
As an example, the weights of the top-left kernel are taken from layer seven of ResNet18 architecture on
the CIFAR100 dataset, where the σ=1.2265 and µ=-0.3461 are recorded at epoch 13. The static Gaussian
kernel distribution has a fixed σ = 1 and µ = 1. The darker color means the higher weight, and the lighter
one means the less weight.

operation. By annealing standard deviation of the Gaussian kernel (i.e., the variance parameter) CBS controls
the amount of high-frequency information that filters in the early stage of training. The adaptive kernel
designed by CBS fundamentally improves the ability of CNNs to learn better representation from data.

The adaptive kernel introduced by CBS has less flexibility as they use a fixed mean (µ) and standard deviation
(σ) for a specified range of epochs. CBS also uses the same adaptive kernel for every layer of a CNN
architecture. This arises three research questions: 1. Can we dynamically initialize the value of deterministic
kernel instead of static design done by CBS? 2. Is there any impact of weight distribution in deterministic
Gaussian kernel? 3. Is a different or same deterministic adaptive kernel better for each layer of a CNN
architecture?

To answer these questions, we propose a dynamic Gaussian distribution based kernel while CBS uses a static
Gaussian distribution base kernel. We compute the mean (µ) and standard deviation (σ) of the convoluted
data and use them to form a Gaussian kernel (we call it ‘Seed kernel’). We create multiple kernel sets by
re-distributing the weights from the seed kernel and propose an adaptive kernel selection method to answer
questions two and three. Finally, we derive a lemma that shows the representativeness of an adaptive kernel
based on the variance parameter. The adaptive Gaussian kernel used in our work is a deterministic function,
meaning the kernel’s weights are not updated via back-propagation.

Table 1 shows the proposed dynamic seed kernel and the static kernel used by CBS. We name the kernel
constructed based on the Gaussian distribution of the convoluted data as top-left (left two matrices in Table 1)
because the maximum weight is on the top-left position of the kernel. The static Gaussian distribution (right
two matrices in Table 1) holds the maximum weight in the middle of the kernel, and then the weight intensity
decreases around the neighbor. The weight distribution nature of the static Gaussian can be described as a
ripple effect on the water. However, the weight intensity decreases from one corner to another corner in
the Gaussian distribution of convoluted data. We can compare this scenario to painting a wall with a brush
where the intensity decreases as the brush moves far from its starting point.

Figure 1 shows the detail of the kernel set creation and selection process by utilizing convoluted data. The
top dotted box represents the conventional CNN training phase. The bottom dotted box shows the adaptive
kernel creation phase. At each epoch and each layer, our proposed method constructs a Gaussian distribution
of convoluted data to form a kernel. After constructing the initial kernel, we re-distribute the weights into
kernel space by shifting weights to a different position to create a set of kernels (examples of kernel sets are
shown in Table 3). Each layer randomly selects a kernel from the set of kernels and performs a convolution
operation on that layer’s data and randomly selected kernel. Based on the experimental result, we find out
the importance of weight distribution in kernel space and recommend the different deterministic adaptive
kernel that can gain better efficiency in a CNN variant.

The main contribution of this paper can be summarized as follows:
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Figure 1: Overview of the adaptive kernel method in Convolutional Neural Network (CNN). We compute µ
and σ of a layer’s convoluted data to construct a Gaussian kernel (‘seed kernel’). Then after shifting weights,
we construct a set of kernels (details of this step are in Section 3.2). A random kernel is selected from the
set of kernels at each layer. Then a convolution operation on convoluted data and the selected kernel is
performed. The outcome of the convolution operation passes to the next component of CNN.

• We create an adaptive kernel from the Gaussian distribution of the layer’s convoluted data.

• We re-distribute the weights of the initially created seed kernel into different positions to create a
set of adaptive kernels.

• We derive a lemma that shows the representativeness of adaptive kernel based on variance parame-
ter.

• The adaptive kernel designed by our method is a deterministic function and does not add any train-
able parameter to the model.

• The implementation of the proposed method (bottom dotted box in Figure 1) can easily be attached
to any existing CNN variant (top dotted box in Figure 1).

2 RELATED WORK

2.1 KERNEL DESIGN IN CNN

A kernel is a matrix of weights that performs convolution operations with input data to extract relevant
features. Saxe et al. (2011); Pinto et al. (2011); Jarrett et al. (2009); Salehinejad et al. (2022) gain better
result by randomly initialized kernel. To detect edges at a certain orientation or scale, (Gao et al., 2010;
Canny, 1986) use static kernel. Coates et al. (2011) use a k-means clustering algorithm to learn centroid as a
convolution kernel in small image patches as unsupervised learning. Cho & Saul (2009) use positive-definite
kernel functions for shallow and deep kernel-based CNN architectures. Mairal et al. (2014) introduce an
unsupervised convolutional neural network that is trained to approximate the kernel map. Bo et al. (2010)
introduces three types of kernels to measure similarities between image patches instead of using one kernel.

2.2 GAUSSIAN KERNEL IN CNN

Gaussian kernel considerably uses in computer vision (Khumaidi et al., 2017; Bouboulis et al., 2010; So-
tak Jr & Boyer, 1989; Wang et al., 2003). Gaussian kernel is used as a low-pass filter in signal processing
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domain (Deng & Cahill, 1993; Shin et al., 2005; Young & Van Vliet, 1995). Recently, Bietti & Mairal
(2019); Lee et al. (2020); Mairal (2016) use the anti-aliasing properties of Gaussian kernel in CNN.

2.3 ADAPTIVE KERNEL DESIGN IN CNN

Adaptive kernel uses dynamic kernels instead of fixed kernel (Du et al., 2017; Li et al., 2017; Xiong et al.,
2015). (Li et al., 2015) propose a kernel adaptation method that dynamically determines the convolutional
kernels according to the spatial distribution of facial landmarks. Ding et al. (2018); Li et al. (2019) use
kernel selection scheme to automatically adjust the receptive field size based on the input. Ding et al. (2017)
splits the training data into the cluster and learns an exclusive kernel for each cluster. (Li et al., 2015)
dynamically determines the convolutional kernels according to the spatial distribution of facial landmarks,
which performs better in learning features. Ding et al. (2017); Jia et al. (2016); Klein et al. (2015); Su
et al. (2019); Zamora Esquivel et al. (2019) feed input images into kernel function to dynamically generate
kernels. Gong et al. (2021) proposed a new adaptation mechanism that automatically determines the layers
to employ dynamic kernel and attention maps.

Curriculum by Smoothing (henceforth, CBS) (Sinha et al., 2020) is a recent work that designs an adaptive
kernel for CNN by using a Gaussian kernel. First, fixed values of σ and µ (σ = 1, µ = 1) are being used
to generate a Gaussian kernel. Second, to adapt curricula with the progression of the models’ training, they
reduce the value of σ by σ ← σ ∗ 0.925 to create a new Gaussian kernel. Third, they construct a new
Gaussian kernel after every five or ten epochs depending on the CNN variants. However, curricula propose
by Sinha et al. (2020) is pre-determined and does not learn from the data. It is unclear why they always
reduce the σ by σ ← σ ∗ 0.925 after every five or ten epochs to construct a new Gaussian kernel.

3 CONVOLUTIONAL NEURAL NETWORK (CNN)

To denote the convolutional operation of some kernel θw on some input X , we use θw ⊛ X . In deep
learning, a typical CNN is composed of stacked trainable convolutional layers LeCun et al. (1998), pooling
layers Boureau et al. (2010), and non-linearities Nair & Hinton (2010).

The input tensor X is organised by batch size, channel number, height, and width. A typical CNN convo-
lution operation at n-th layer can be mathematically represented by Equation 1, where θw are the learned
weights of the kernel.

Xn = (θw ⊛Xn−1) (1)

3.1 GAUSSIAN KERNEL

We use a parameterized Gaussian kernel after the convolution operation. This Gaussian kernel is analogous
to a convolutional layer kernel. Bietti & Mairal (2019); Lee et al. (2020); Mairal (2016) use the anti-aliasing
properties of Gaussian kernel in CNN. Standard deviation (σ) is the hyperparameter of the kernel, which
masks the high-frequency information from the input by using Gaussian’s low-pass filter attribute. x has a
Gaussian distribution with parameters µ and σ, denoted by

θG(x;σ) =
1

σ
√
2π

exp{− 1

2σ2
(x− µ)2}, x ∈ R (2)

where µ ∈ R and σ > 0.
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.3315 .1889 .0554

.1889 .1076 .0315

.0554 .0315 .0092
Top-left (Seed kernel) Top-right Bottom-right Bottom-left

Table 2: The base four elements of Gaussian kernels for our adaptive kernel set (best viewed in color). As
an example, the values of the top-left kernel (i.e., the ‘Seed kernel’) are taken from layer seven of ResNet18
architecture on the CIFAR100 dataset, where the σ=1.2265 and µ=-0.3461 are recorded at epoch 13. The
‘top-left’ kernel is always constructed from the convoluted data. The rest of the kernels are constructed by
shifting weights to different positions by clockwise. The intensity of the color represents the weight. The
darker color means the higher weight, and the lighter one means the less weight.

A 2D Gaussian kernel can be constructed as a deterministic function of the size of the kernel by the following
equation

θG(x, y;σ) =
1

2πσ2
exp(−x2 + y2

2σ2
) (3)

3.2 DESIGN OF ADAPTIVE GAUSSIAN KERNEL

Figure 2: Gaussian kernel construction process from
the convoluted data. After constructing the seed Gaus-
sian kernel (θ1G) from the convoluted data, a set of ker-
nels are also constructed by shifting weights.

The Gaussian kernel is used to the output of convo-
lutional layer to train a CNN variant via curriculum
learning Sinha et al. (2020). The addition (i.e., the
convolution operation) of the Gaussian kernel to the
CNN layer can be expressed by the following equa-
tion:

hn = ReLU(pool(θG ⊛ (θw ⊛Xn))) (4)

where hn is the n-th hidden layer and θG is the
Gaussian kernel. We compute the σ and µ from the
convoluted data and determine θG by using Equa-
tion 3. We perform convolution operation on con-
voluted data (i.e., θw⊛Xn) and the Gaussian kernel
(i.e., θG) as shown in Equation 4. It is noteworthy
that we use a deterministic Gaussian kernel so that
the Gaussian kernel is not trained via backpropaga-
tion.

We compute a set of adaptive kernels at each layer
of a CNN variant as shown in Figure 1. Figure 2
shows the process of computing the set of kernels for a particular layer of a CNN variant. The exact process
has been applied to all the layers of a CNN variant. A random adaptive kernel is chosen from the kernel set
at each layer and the convolution operation is performed on the convoluted data.

First, we compute the σ and µ from the convoluted data of a layer (Figure 2). Based on the σ and µ, we
compute the Gaussian Kernel (θG) using Equation 3. We call it the ‘Seed Gaussian Kernel’ and denote it by
θ1G (the left kernel shown in Figure 2). The ‘top-left’ labeled kernel in Figure 2 shows the color representation
of θ1G. θ1G always put maximum weight on the top-left position of the kernel. We compute three more kernels
from θ1G by shifting weights to different positions of the kernel. For example, to get ‘top-right’ kernel (i.e.,
θ2G, which puts maximum weight on the top right position of the kernel), we move the first column of θ1G
to the first row of θ2G, the second column of θ1G to the second row of θ2G, and the third column of θ1G to the
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third row of θ2G, all clockwise. All these four kernels (i.e., θ1G, θ2G, θ3G, θ4G in Figure 2) are the base elements
of the kernel set. Different combination of these four kernels are used to form different kernel sets. In our
adaptive kernel design the following five types of kernel sets:

• Set of one kernel (1-Kernel): {top-left}— {bottom-right}— {top-right}— {bottom-left}
• Set of two kernels (2-Kernel): {top-left, bottom-right} — {bottom-left, top-right} — {top-left,

bottom-left}— {top-right, bottom-right}— {top-left, top-right}— {bottom-left, bottom-right}
• Set of three kernels (3-Kernel): {top-left, bottom-right, static-center} — {bottom-left, top-right,

static-center}— {top-left, bottom-left, static-center}— {top-right, bottom-right, static-center}—
{top-left, top-right, static-center}— {bottom-left, bottom-right, static-center}

• Set of four kernels (4-Kernel): {top-left, bottom-right, top-right, bottom-left}
• Set of five kernels (5-Kernel): {top-left, bottom-right, top-right, bottom-left, static-center}

3.3 ADAPTIVE KERNEL SELECTION LEMMA

Let the total number of kernel sets be k and our goal is to find the kernel set number k̂ ∈ T where T = {y :
k ≥ y ≥ 1} that maximize the accuracy/performance. In each kernel set (we call it ‘Type’), theoretically,
there could be any number of square matrices. Let the number of square matrices (of n dimension) of a
kernel set j be mj . The direct sum of square matrices A1, A2, . . . , Am (of equal dimension) is defined
recursively as follows: if A1, A2 ∈ Rn×n, the direct sum of A1 and A2 is given by

A1 ⊕A2 = B ∈ Rn×n, Bij = (A1)ij + (A2)ij for 1 ≤ i, j ≤ n

The definition then extends recursively,
m⊕
i=1

Ai = A1 ⊕A2 ⊕ · · · ⊕Am

:= (A1 ⊕A2 ⊕ · · · ⊕Am−1)⊕Am

The standard deviation of the direct sum of square matrices A1, A2, . . . , Am of a kernel set j is defined as
follows:

σj(
m⊕
i=1

Ai) where j ∈ T

The desired kernel set would be the one with minimum standard deviation of the direct sum of square
matrices in it and is defined as follows:

k̂ = argmin
j∈T

(σj(
m⊕
i=1

Ai))

4 EVALUATION AND EXPERIMENTAL RESULTS

In this section, we empirically evaluate the effectiveness of our adaptive kernel method on three dif-
ferent CNN variants. We test these CNN variants on three different datasets (i.e., CIFAR10, CI-
FAR100 (Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011)) and report Top-1 classification accuracy.
For optimization, we use stochastic gradient descent (SGD) with the same learning rate scheduling, momen-
tum, and weight decay as stated in the original papers (Sinha et al., 2020; He et al., 2016; Simonyan &
Zisserman, 2014), without hyper-parameter tuning. The objective of all image classification experiments is
a standard unweighted multi-class cross-entropy loss (Sinha et al., 2020).

4.1 CNN VARIANTS, DATASETS, TASKS AND EVALUATION METRICS

To evaluate our adaptive kernel selection method, we perform the image classification task on two standard
vision datasets, CIFAR10 and CIFAR100, containing images of 10 and 100 classes, respectively. SVHN,
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Type Kernel Set Superposition σ Group

1
.331 .188 .055
.188 .107 .031
.055 .031 .009

.009 .013 .055

.031 .107 .188

.055 .188 .331

.340 .220 .110

.220 .251 .220

.110 .220 .340
0.07671 3

Top-left Bottom-right

2
.055 .031 .009
.188 .107 .031
.331 .188 .055

.055 .188 .331

.031 .107 .188

.009 .031 .055

.110 .220 .340

.220 .251 .220

.340 .220 .110
0.07671

Bottom-left Top-right

3
.331 .188 .055
.188 .107 .031
.055 .031 .009

.055 .031 .009

.188 .107 .031

.331 .188 .055

.386 .220 .014

.377 .215 .063

.386 .220 .014
0.14486

Top-left Bottom-left

4
.055 .188 .331
.031 .107 .188
.009 .031 .055

.009 .013 .055

.031 .107 .188

.055 .188 .331

.014 .220 .386

.063 .215 .377

.014 .220 .386
0.14486 5

Top-right Bottom-right

5
.331 .188 .055
.188 .107 .031
.055 .031 .009

.055 .188 .331

.031 .107 .188

.009 .031 .055

.386 .377 .386

.220 .215 .220

.014 .063 .014
0.14486

Top-left Top-right

6
.055 .031 .009
.188 .107 .031
.331 .188 .055

.009 .013 .055

.031 .107 .188

.055 .188 .331

.014 .063 .014

.220 .215 .220

.386 .377 .386
0.14486

Bottom-left Bottom-right

7
.331 .188 .055
.188 .107 .031
.055 .031 .009

.009 .013 .055

.031 .107 .188

.055 .188 .331

.075 .123 .075

.123 .204 .123

.075 .123 .075

.415 .344 .185

.344 .419 .344

.185 .344 .415
0.08495 4

Top-left Bottom-right Static-center

8
.055 .031 .009
.188 .107 .031
.331 .188 .055

.055 .188 .331

.031 .107 .188

.009 .031 .055

.075 .123 .075

.123 .204 .123

.075 .123 .075

.185 .344 .415

.344 .419 .344

.415 .344 .185
0.08495

Bottom-left Top-right Static-center

9
.331 .188 .055
.188 .107 .031
.055 .031 .009

.055 .031 .009

.188 .107 .031

.331 .188 .055

.075 .123 .075

.123 .204 .123

.075 .123 .075

.462 .344 .089

.501 .419 .186

.462 .344 .089
0.15204

Top-left Bottom-left Static-center

10
.055 .188 .331
.031 .107 .188
.009 .031 .055

.009 .013 .055

.031 .107 .188

.055 .188 .331

.075 .123 .075

.123 .204 .123

.075 .123 .075

.089 .344 .462

.186 .419 .501

.089 .344 .462
0.15204 6

Top-right Bottom-right Static-center

11
.331 .188 .055
.188 .107 .031
.055 .031 .009

.055 .188 .331

.031 .107 .188

.009 .031 .055

.075 .123 .075

.123 .204 .123

.075 .123 .075

.462 .501 .462

.344 .419 .344

.089 .186 .089
0.15204

Top-left Top-right Static-center

12
.055 .031 .009
.188 .107 .031
.331 .188 .055

.009 .013 .055

.031 .107 .188

.055 .188 .331

.075 .123 .075

.123 .204 .123

.075 .123 .075

.089 .186 .089

.344 .419 .344

.462 .501 .462
0.15204

Bottom-left Bottom-right Static-center

13
.331 .188 .055
.188 .107 .031
.055 .031 .009

.009 .013 .055

.031 .107 .188

.055 .188 .331

.055 .031 .009

.188 .107 .031

.331 .188 .055

.055 .188 .331

.031 .107 .188

.009 .031 .055

.451 .440 .451

.440 .430 .440

.451 .440 .451
0.00707 1

Top-left Bottom-right Bottom-left Top-right

14
.331 .188 .055
.188 .107 .031
.055 .031 .009

.009 .013 .055

.031 .107 .188

.055 .188 .331

.055 .031 .009

.188 .107 .031

.331 .188 .055

.055 .188 .331

.031 .107 .188

.009 .031 .055

.075 .123 .075

.123 .204 .123

.075 .123 .075

.526 .564 .526

.564 .634 .564

.526 .564 .526
0.03320 2

Top-left Bottom-right Bottom-left Top-right Static-center

Table 3: The weights of the kernel are taken from layer seven of ResNet18 architecture on the CIFAR100
dataset, where the σ=1.2265 and µ=-0.3461 are recorded at epoch 13. The static Gaussian kernel distribution
has a fixed σ = 1 and µ = 1. The superposition kernel is constructed by the lemma defined in Section 3.3. The
darker color means the higher weight, and the lighter one means the less weight. The second last column
shows the standard deviation value of the superposition kernel. The last column shows the ranked group
(number) of kernel type(s) based on the increasing values of the lemma’s standard deviation (σ).
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Table 4: Top-1 classification accuracy (Acc.) on CIFAR10, CIFAR100, and SVHN datasets. The bold
numbers represent the better scores.

Dataset
Model CIFAR 10 CIFAR 100 SVHN

CNN 80.4 ± 0.2 47.2 ± 0.2 89.4 ± 0.2
Base ResNet18 89.3 ± 0.3 64.3 ± 0.3 95.0 ± 0.3

VGG16 82.0 ± 0.3 48.8 ± 0.3 93.8 ± 0.3
CNN + CBS 77.3 ± 0.2 46.5 ± 0.2 89.4 ± 0.2

Base + CBS ResNet18 + CBS 89.3 ± 0.2 65.8 ± 0.3 96.1 ± 0.3
VGG16 + CBS 83.6 ± 0.3 49.1 ± 0.3 94.2 ± 0.3
CNN +1-Kernel 78.4 ± 0.2 47.2 ± 0.3 89.4 ± 0.2

Base + 1 Kernel Set ResNet18+ 1-Kernel 87.7 ± 0.3 61.3 ± 0.3 93.3 ± 0.3
VGG16 + 1-Kernel 81.2 ± 0.3 46.1 ± 0.3 88.5 ± 0.3
CNN + Kernel Type-1 83.5 ± 0.2 47.4 ± 0.2 89.4 ± 0.2
ResNet18 + Kernel Type-1 89.7 ± 0.3 68.1 ± 0.3 95.7 ± 0.3
VGG16 + Kernel Type-1 83.5 ± 0.3 51.8 ± 0.3 94.4 ± 0.3
CNN + Kernel Type-2 83.4 ± 0.2 47.4 ± 0.2 89.4 ± 0.2
ResNet18 + Kernel Type-2 89.7 ± 0.3 68.8 ± 0.3 95.7 ± 0.3
VGG16 + Kernel Type-2 83.5 ± 0.3 51.6 ± 0.3 94.4 ± 0.3
CNN + Kernel Type-3 81.7 ± 0.2 47.2 ± 0.2 89.4 ± 0.2

Base + 2 Kernel Set ResNet18 + Kernel Type-3 87.1 ± 0.3 62.6 ± 0.3 95.8 ± 0.3
VGG16 + Kernel Type-3 83.6 ± 0.3 50.9 ± 0.3 92.3 ± 0.3
CNN + Kernel Type-4 80.6 ± 0.2 46.9 ± 0.2 88.4 ± 0.2
ResNet18 + Kernel Type-4 89.2 ± 0.3 64.2 ± 0.3 95.9 ± 0.3
VGG16 + Kernel Type-4 83.3 ± 0.3 50.6 ± 0.3 91.0 ± 0.3
CNN + Kernel Type-5 81.9 ± 0.2 45.9 ± 0.2 89.2 ± 0.2
ResNet18 + Kernel Type-5 87.9 ± 0.3 61.7 ± 0.3 95.6 ± 0.3
VGG16 + Kernel Type-5 83.5 ± 0.3 50.3 ± 0.3 89.8 ± 0.3
CNN + Kernel Type-6 81.2 ± 0.2 46.1 ± 0.2 89.0 ± 0.2
ResNet18 + Kernel Type-6 89.6 ± 0.3 64.2 ± 0.3 95.7 ± 0.3
VGG16 + Kernel Type-6 83.6 ± 0.3 50.3 ± 0.3 89.2 ± 0.3
CNN + Kernel Type-7 83.0 ± 0.2 47.3 ± 0.2 89.4 ± 0.2
ResNet18 + Kernel Type-7 89.2 ± 0.3 65.8 ± 0.3 95.8 ± 0.3
VGG16 + Kernel Type-7 84.8 ± 0.3 51.1 ± 0.3 94.2 ± 0.3
CNN + Kernel Type-8 81.6 ± 0.2 47.1 ± 0.2 89.4 ± 0.2
ResNet18 + Kernel Type-8 90.0 ± 0.3 65.5 ± 0.3 95.8 ± 0.3
VGG16 + Kernel Type-8 84.5 ± 0.3 51.3 ± 0.3 94.2 ± 0.3
CNN + Kernel Type-9 81.6 ± 0.2 47.2 ± 0.2 89.4 ± 0.2

Base + 3 Kernel Set ResNet18 + Kernel Type-9 87.1 ± 0.3 62.5 ± 0.3 95.7 ± 0.3
VGG16 + Kernel Type-9 82.5 ± 0.3 50.7 ± 0.3 92.2 ± 0.3
CNN + Kernel Type-10 80.4 ± 0.2 46.5 ± 0.2 88.4 ± 0.2
ResNet18 + Kernel Type-10 89.1 ± 0.3 64.1 ± 0.3 95.6 ± 0.3
VGG16 + Kernel Type-10 82.2 ± 0.3 50.2 ± 0.3 90.5 ± 0.3
CNN + Kernel Type-11 81.7 ± 0.2 45.8 ± 0.2 89.2 ± 0.2
ResNet18 + Kernel Type-11 87.7 ± 0.3 61.6 ± 0.3 95.5 ± 0.3
VGG16 + Kernel Type-11 82.3 ± 0.3 50.2 ± 0.3 89.8 ± 0.3
CNN + Kernel Type-12 81.0 ± 0.2 46.1 ± 0.2 88.9 ± 0.2
ResNet18 + Kernel Type-12 89.5 ± 0.3 64.2 ± 0.3 95.5 ± 0.3
VGG16 + Kernel Type-12 82.6 ± 0.3 50.2 ± 0.3 89.2 ± 0.3
CNN + Kernel Type-13 83.5 ± 0.2 47.6 ± 0.2 89.5 ± 0.2

Base + 4 Kernel Set ResNet18 + Kernel Type-13 91.7 ± 0.2 69.0 ± 0.3 96.7 ± 0.3
VGG16 + Kernel Type-13 85.7 ± 0.2 52.3 ± 0.3 94.7 ± 0.3
CNN + Kernel Type-14 83.0 ± 0.2 47.2 ± 0.2 89.4 ± 0.3

Base + 5 Kernel Set ResNet18 + Kernel Type-14 90.0 ± 0.2 66.3 ± 0.2 96.4 ± 0.3
VGG16 + Kernel Type-14 85.1 ± 0.2 51.5 ± 0.3 94.5 ± 0.3
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the other dataset, is a digit recognition dataset that consists of natural images of the 10 digits collected from
the street view. Both ResNet (He et al., 2016) and VGG (Simonyan & Zisserman, 2014) are based on CNN
architecture and have different variations based on the number of layers. We consider ResNet18 (He et al.,
2016) and VGG16 (Simonyan & Zisserman, 2014) variations in our experiment. Curriculum by Smoothing
(CBS) (Sinha et al., 2020) uses an adaptive kernel to train a CNN variant. CBS applied to CNN variants, such
as ResNet18 + CBS and VGG16 + CBS, to improve the accuracy of image classification tasks. We compare
our adaptive kernel method with the base models (i.e., CNN, ResNet18, and VGG16), CBS and reported
kernel set variations for the Top-1 classification accuracy and Pearson correlation for the three mentioned
datasets.

4.2 RESULTS AND ANALYSIS

Dataset
Model CIFAR10 CIFAR100 SVHN
CNN 0.8727 0.8230 0.8155

ResNet18 0.8589 0.8421 0.8916
VGG16 0.8871 0.8887 0.8832

Table 5: Pearson correlation between the ranked
Group numbers and their Top-1 classification ac-
curacy for different CNN variants and datasets.

The experimental results are summarized in Table 4. We
run experiments with and without our adaptive kernel
to evaluate Top-1 classification accuracy (Acc.). Based
on our experiment, ‘Kernel Type-13’ (top-left, top-right,
bottom-right, bottom-left) outperformed the base, CBS,
and all the other variations of kernels in CIFAR10, CI-
FAR100, and SVHN datasets.

We can sort the fourteen types of kernels into six groups
based on the increasing values of the lemma’s standard
deviation (σ). The groups are as follows: Group 1={Kernel Type 13}, Group 2={Kernel Type 14}, Group
3={Kernel Type 1, 2}, Group 4={Kernel Type 7, 8}, Group 5={Kernel Type 3, 4, 5, 6}, and Group=6
{Kernel Type 9, 10, 11, 12}. Group 1 (i.e., Kernel Type 13) has the lowest σ, and our lemma predicts that
Kernel Type 13 is better than the other kernel types. Similarly, Kernel Type 14 should perform better than
Kernel Type 7 and Kernel Type 8. At the same time, our lemma predicts that Kernel Type 7 and Kernel
Type 8 should have similar classification accuracy as they are in the same group. We compute the Pearson
correlations (shown in Table 5) between the ranked Group numbers and their Top-1 classification accuracy
for different CNN variants and datasets to verify if the classification accuracies of all the six groups of
kernels maintain the order predicted by our lemma.

Static Gaussian distribution has more weights in the center, and the weight intensity decreases from the
center. The drawback of this approach is the center part of the data always gains higher weight and neglects
the feature property around the border. In contrast to static design, the proposed adaptive kernel method has
an equal probability of choosing a kernel from the kernel type at each epoch in training. As a result, the
adaptive kernel method can collectively emphasize all data positions in training. Collectively, the lower the
σ, the higher the uniformity of weights in kernel space. The higher uniformity of weights in kernel space
emphasizes all data positions in convolution operation.

5 CONCLUSION

In this research work, we dynamically initialize a deterministic adaptive kernel. We construct a ‘Seed’ kernel
based on the Gaussian distribution of convoluted data. We redistribute the weights of the seed kernel and
construct a set of kernel types. We also derived a lemma that shows the ‘quality’ of the representativeness
of kernel type. Based on our experiment, a set of four kernels perform better compared to other kernel
variations. It indicates that the convoluted data distribution in kernel space has an impact. Kernel type with
minimum standard deviation performs better as it has higher uniformity in kernel space that emphasizes all
data positions in convolution operation. Our adaptive kernel method achieves better accuracy than the CBS
by the range of 0.1%∼3.2% in image classification task.
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You may include other additional sections here.
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