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Abstract:
A series of region-based methods succeed in extracting regional features and en-
hancing grasp detection quality. However, faced with a cluttered scene with po-
tential collision, the definition of the grasp-relevant region stays inconsistent. In
this paper, we propose Normalized Grasp Space (NGS) from a novel region-aware
viewpoint, unifying the grasp representation within a normalized regional space
and benefiting the generalizability of methods. Leveraging the NGS, we find that
CNNs are underestimated for 3D feature extraction and 6-DoF grasp detection in
clutter scenes and build a highly efficient Region-aware Normalized Grasp Net-
work (RNGNet). Experiments on the public benchmark show that our method
achieves significant > 20% performance gains while attaining a real-time infer-
ence speed of approximately 50 FPS. Real-world cluttered scene clearance ex-
periments underscore the effectiveness of our method. Further, human-to-robot
handover and dynamic object grasping experiments demonstrate the potential of
our proposed method for closed-loop grasping in dynamic scenarios.
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1 Introduction

Grasping, a fundamental task for robotic manipulation, has seen significant advancements. Notably,
recent strides in deep-learning methodologies have paved the way for data-driven grasp detection
techniques. These techniques, capable of directly deducing the positions and rotations of avail-
able grasps, offer superior generalization to novel scenes compared to the traditional template-based
methods. Meanwhile, 6-DoF grasping has grown significantly because of its effectiveness in appli-
cations and scenarios that require accurate and reasonable manipulation of objects.

Towards efficient 6-DoF grasping, most grasp detection methods treat the task as a detection-style
problem involving the acquisition of optimal grasp positions and rotations from a single-view RGBD
image or point cloud. Most of them process the global scene information to generate all possible
grasps in the scene. Typical works like [1, 2] extract scene geometric features and regress grasps
directly. The crucial problem is the redundancy and ambiguity of the entire scene information,
which is time-consuming. Facing the challenge of grasping in cluttered scenes, recent methods [3,
4, 5, 6, 7, 8] encode global per-points features to infer potential grasp centers and segment graspable
regions by integrating the regional points with the global features. While global-to-local schemes
have demonstrated effectiveness, leveraging regional information without a consistent representation
may undermine the generalization capability for novel scenes. The primary challenge lies in devising
a method to extract regional information in a consistent representation.

In this work, we propose a novel Region-aware Grasp Framework decoupling grasp detection into
graspable region extraction and follow-up regional grasp generation. Specifically, we propose Nor-
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malized Grasp Space (NGS), a unified representation bridging the patch extraction and regional
grasp detection. With extracted region information, the grasp detection problem within NGS can
be formulated into a normalized form, which shows the invariance to the gripper size and the ro-
bustness to perturbations on the grasp center localization. Thus, considering grasp detection from a
region-aware viewpoint, we propose Regional Normalized Grasp Network (RNGNet) to extract
grasp-relevant geometric features and generate rotation heatmaps, demonstrating enhanced robust-
ness and efficiency. Quantitative experiment results show a significant over 20% improvement in
the grasp Average Precision (AP) on the public benchmark with 10× faster inference speed than the
former SOTA, AnyGrasp [9]. Real-world clutter clearance experiments validate our framework’s
robustness and generalizability. Further demonstration of grasping in dynamic scenes proves the ef-
ficiency and flexibility of our proposed region-aware framework and the potential for more complex
tasks like target-oriented manipulation. The contributions of the paper mainly include:

1) A novel Region-aware Grasp Framework for 6-DoF grasp detection in cluttered scenes, decou-
pling grasp detection tasks into two-stage heatmap prediction and enhancing method efficiency.

2) Normalized Grasp Space (NGS), a novel unified space defined for general parallel gripper grasp
detection, empowering aligned and scale-invariant grasp detection in regions.

3) A highly efficient Region Normalized Grasp Network (RNGNet) aiming at extracting region-
aware features and predicting high-quality 6-DoF grasps via rotation heatmap prediction.

2 Related Work

Vision-based 6-DoF Grasp Detection: Research has focused on detecting 6-DoF grasps primarily
relying on single-view RGBD images or point clouds. Pioneer works ten Pas et al. [10], Liang et al.
[11] mainly follow a sample-evaluation strategy, generating numerous grasp proposals and selecting
optimal grasps through an evaluation model. Qin et al. [2] employ PointNet++ [12] for per-point
feature extraction and direct regression of grasp parameters. Recent advancements, benefiting from
large-scale datasets [3, 13, 14], adopt an end-to-end strategy. Wang et al. [6] introduces point-
wise graspness to represent grasp location probabilities and aggregate regional features for rotation
prediction. HGGD [15] employs 2D CNNs to generate heatmaps for grasp locations and integrate
2D semantics with 3D geometric features to configure 6D grasps. Tang et al. [16] investigates scene
regions for high-quality grasp detection but ignores helpful regional characteristics. Diverging from
existing approaches, our method employs a region-aware scheme forcing the network to capture
scene-independent regional features, enhancing efficiency and generalization capability.

Region Normalization for Grasp Detection: Traditional 4-DoF grasp detection approaches
[17, 18] conduct image-based normalization or crop the image patches with the exact sizes [19]
to improve model performance. However, such 2D frameworks are limited, overlooking critical 3D
geometric information and sensitive to camera viewpoints. For 6-DoF grasp detection, the utiliza-
tion of regional 3D geometry is also not unique. However, most methods operate under a fixed
gripper setting and extract local regions of predetermined sizes [2, 3, 6, 5]. These methods strug-
gle to generalize or require model retraining when applied to grippers with different sizes or novel
scenes. We normalize regions and corresponding grasps according to adjustable gripper sizes to ob-
tain consistent 3D normalized grasp spaces, allowing more efficient grasp detection and adaptation
for challenging applications, such as dynamic grasping.

3 Method

Similar to prior works [15, 20, 3], we focus on the problem of 6-DoF grasp detection of parallel
grippers in clutter scenes from a single-view RGBD image χ ∈ RH×W×4 as input. Inspired by
[15], we adopt the grasp representation as g = (x, y, z, θ, γ, β, w), in which (x, y, z) is the 3-DoF
translations of grasp centers, w is the grasp width and (θ, γ, β) compose the 3-DoF intrinsic rotation
as Euler angles. w is predicted within the range of [0, wgripper] to avoid collisions in clutter scenes.
(θ, γ, β) are all constrained in [−π

2 ,
π
2 ].
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Figure 1: Region-aware Grasp Framework. With an RGBD image input, Grasp Heatmap Model
(GHM) [15] predicts grasp location heatmap. Subsequently, graspable patches are extracted through
an adaptive grid generator, which samples mesh grids based on the location heatmap and the gripper
scale. Local patches are then converted into Normalized Grasp Space and fed into the Regional
Normalized Grasp Network to predict regional rotation heatmaps and grasps. Finally, we apply
the inverse of the normalization process and obtain the scene-level grasps.

3.1 Normalized Grasp Space

Figure 2: Depth-Adaptive Patch Extrac-
tion and grasp representation.

Depth-Adaptive Patch Extraction: As shown in Fig.
2(A)(B), we utilize the RGBD image χ ∈ RH×W×4

and patch centers pi = (xi, yi, zi) sampled from grasp
location heatmap predicted by [15] as input, aiming
at acquiring corresponding patches P raw

i ∈ RS×S×4.
To better leverage geometric features and avoid camera
viewpoint variations, rather than using a fixed patch
size, we design an adaptive grid generator that effi-
ciently generates sampling grids with different sizes
centered at the centers. Inspired by the setting in [21],
the principle is to generate adaptive receptive fields for
different patches and keep the receptive fields invari-
ant to real-world distances. Thus, the patch sizes can
be formulated as:

ri =
wref ∗ F

zi
, (1)

where ri is the patch image side length for the ith patch, zi is the depth to the ith center in the camera
frame, and F is the camera focal length. It is noteworthy that wref is the reference receptive field
size in the real world. To ensure the local patch size is adequate to infer grasps and avoid potential
collisions, wref is set to 2 ∗ wgripper. Then the regular spatial grids will be rescaled and applied to
the input RGBD image, resulting in the depth-adaptive local patches.

Space Normalization: Normalized Space has been proved helpful for neural network learning.
During Space Normalization, our goal is to acquire a more structural and aligned representation
among patches and regional grasps. Thus, firstly we convert the 4-channel raw RGBD image patches
into the 6-channel RGBXYZ form P i ∈ RS×S×6 using the camera intrinsics and imaging model,
in which XYZ denotes the 3D coordinate maps. For clarity, because RGB channels require no extra
normalization, we omit the RGB channels and only consider the XYZ channels in the following
discussion. Then as is shown in Fig. 2(C), the normalized region patch P ∗

i can be obtained with the
patch centers pi and the given reference receptive field wref as below:

P ∗
i =

P i − pi

wref
. (2)
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Figure 3: Visualization for the characteristics of Normalized Grasp Space.

Notably, input normalization is only part of the Normalization Grasp Space. We filter and normalize
the grasp labels inside P ∗

i . Our 6-DoF grasp pose representation g = (x, y, z, θ, γ, β, w) is equiva-
lent to the representation in the SE(3) space g = (t,R, w), where t ∈ R3×1 denotes the translation,
R ∈ R3×3 is the rotation matrix in the camera frame, w denotes the grasp width. Thus, R can be
represented as Euler angles: R = Rz(θ)Rx(β)Ry(γ), where Rz(θ) represents the rotation of θ
radians around the z-axis and similar notations apply for the other two rotations.

We limit our scope to grasp labels located within a spherical boundary of 0.1 ∗ wref centered at pi.
Such distance boundary is consistent with the widely adopted grasp coverage criterion in [22, 4, 15],
in which two grasps are regarded as equivalent if their center distance is less than a threshold. The
grasps, denoted as G∗

i = {g∗
j}, where G∗

i is the set of normalized grasp labels g∗
j :

g∗
j = (t∗j ,R

∗
j , w

∗
j ) = (

tj − pi

wref
,Rj ,

wj

wref
),

G∗
i = {g∗

j |
∥∥t∗j∥∥ < 0.1}. (3)

As Fig. 2(D) indicates, our region-aware framework only focuses on the grasps near the patch
centers, making the problem statement clearer and more concentrated. Then, for the regional 6-DoF
grasp detection problem, the defined grasp function is f : P ∗

i → G∗
i . Our goal is learn a network

f̂λ : P ∗
i → Ĝ

∗
i with parameters λ to fit f . By inverting the normalizing process, we can finally get

the grasp predictions Ĝi for this patch in the camera frame.

Characteristics of Normalized Grasp Space: As shown in Fig. 3, constraining the grasp detection
problem in the Normalized Grasp Space brings beneficial characteristics as follows. For clarity, we
omit the patch index i and denotes the grasp labels within the transformed patches as G∗

T .

1) Translation-invariance: When the patch P i translates with ∆t, we get the same normalized
patch P ∗

i and the grasps inside the patch keep invariant:

G∗
T = f(P ∗

T ) = f(Norm(P +∆t)) = f(Norm(P )) = f(P ∗) = G∗. (4)

2) SE(2)-rotation invariance for (β, γ) and equivariance for θ: When the patch P i rotates along
the z-axis in the camera frame with ∆θ, the grasps inside the patch rotates equivariantly:

R∗
T = Rz(∆θ)R∗ = Rz(∆θ)Rz(θ)Rx(β)Ry(γ) = Rz(θ +∆θ)Rx(β)Ry(γ). (5)

3) Scale-invariance: With the coordinates (XYZ) of the patches or the scene scaled by a factor
a ∈ R+, we get the same normalized patch P ∗

i and the grasps inside the patch keep invariant if the
receptive field for normalization is scaled by the same factor a:

G∗
T = f(P ∗

T ) = f(Norm(aP |wref = aw0)) = f(
a(P − pi)

aw0
) = f(P ∗) = G∗. (6)
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Thus, based on the characteristics above, the latter trained grasp function f̂λ to fit the ground truth
grasp function f is able to generate consistent results across scenes and grippers in different scales.

Patch Scale Randomization: Above, we consider the ideal scenario for applying Normalized Grasp
Space. However, in the real world, noise from depth sensors is non-negligible and may cause un-
stable patch extraction. Furthermore, the gripper sizes in grasp detection datasets are usually fixed,
which means that though we train our model through a normalized scheme, it senses the regions with
a fixed receptive field. Thus, we add randomization to the receptive field wref during training. The
receptive field is randomly selected in the range [

wref

2 , 2 ∗wref ], which can improve the robustness
and generalization capability of our grasp network.

3.2 Regional Normalized Grasp Network

Figure 4: Detailed structure of RNGNet.

Region-aware Patch Feature Extraction: To ef-
ficiently detect grasps in regions, our approach ex-
tracts patch-wise features in a region-aware man-
ner. The XYZ coordinates of the patches are cru-
cial for understanding object contact and collision.
Hence, it is imperative to incorporate the over-
all 3D XYZ coordinates instead of only the depth
channel for feature extraction. For geometric fea-
ture extraction from point-wise coordinates, previ-
ous methods utilize shared MLP (Multi-layer Per-
ceptron) combined with sampling and grouping
[23, 12, 24], which is effective but introduces a
significant computation overhead. Thus, combin-
ing the advantages of point-wise shared MLPs and
CNNs, as depicted in Fig. 4, we design an efficient
network to process the normalized patches.

Inspired by the gated CNN in [25, 26], we establish a multi-stage Gated CNN with a novel Point-
wise Gate (PG) Module. Point-wise Gate Module is built with shared MLP operating on 3D point
coordinate XYZ maps, increasing the dimensions of XYZ maps in different resolutions to obtain
spatial feature gate values in each convolution stage. By multiplying the original feature maps
with the gate values, Point-wise Gate enables selective amplification or attenuation of filters within
convolution layers.

Rotation Heatmap Predictor: Based on the regional anchor-based grasp generator in [3, 6, 15],
with the region-aware features extracted, we predefine a series of non-uniform rotation anchors for
(γ, β) generated via the Anchor Shifting algorithm in [15], whose Cartesian product forms a 2D
rotation heatmap (one axis for γ, the other of β). Then, the grasp detection can be considered a two-
class semantic segmentation problem, while the normalized grasp widths and extra center offsets are
regressed for each possible rotation (pixel in the heatmap).

4 Dataset Experiments

Dataset and Metrics: GraspNet-1Billion [3] is a large-scale grasp dataset widely adopted in recent
6-DoF grasp detection research [9, 15, 8, 20], which provides large-scale training data and a standard
evaluation platform for the task of general robotic grasping. During our experiments, we follow the
official evaluation pipeline and code of the GraspNet-1Billion dataset, in which detected grasp poses
are first filtered with non-maximum suppression, and then the top 50 grasp poses are evaluated with
force-closure [28] metrics under a series of friction coefficients condition.

Quantitative Results: We compare the overall performance of our RNGNet with multiple typical
grasp detection algorithms trained on the same dataset training split. As Table 1 indicates, RNGNet
achieves excellent performance, reaching an average 58.06/52.24 AP by RealSense/Kinect cameras.
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Method Average ↑ Seen ↑ Similar ↑ Novel ↑ Paras ↓ Time1/ms ↓
GPD [10] 17.48 / 19.05 22.87 / 24.38 21.33 / 23.18 8.24 / 9.58 - -

PointnetGPD [11] 19.29 / 20.88 25.96 / 27.59 22.68 / 24.38 9.23 / 10.66 - -
GraspNet-baseline [3] 21.41 / 23.08 27.56 / 29.88 26.11 / 27.84 10.55 / 11.51 - 126†

TransGrasp [27] 27.65 / 25.70 39.81 / 35.97 29.32 / 29.71 13.83 / 11.41 - -
HGGD† [15] 42.79 / 39.79 58.35 / 56.85 47.93 / 43.93 22.10 / 18.59 3.42M† 34†

Scale Balanced Grasp [8] 44.85 / - 58.95 / - 52.97 / - 22.63 / - - 242†

GSNet [6] 47.92 / 42.53 65.70 / 61.19 53.75 / 47.39 24.31 / 19.01 15.4M† 61†

AnyGrasp w/ CD [9] 49.01 / - 66.12 / - 56.09 / - 24.81 / - 24.7M† 198†

RNGNet 58.06 / 52.24 75.20 / 72.23 66.62 / 58.43 32.38 / 26.05 3.66M 17
RNGNet w/ CD 59.13 / 52.81 76.28 / 72.89 68.26 / 59.42 32.84 / 26.12 3.66M 20

“-”: Result Unavailable; CD:Collision Detection, the grasp post-processing algorithm proposed in [3] and utilized by [9].
1 Evaluated with batch size = 1 on Ubuntu20.04 with AMD 5600x CPU and a single NVIDIA RTX 3060Ti GPU.
† Reimplemented or tested with the provided codebases. More detailed results are shown in Table 7 of the Appendices.

Table 1: Results on GraspNet dataset. Showing APs on RealSense/Kinect split and model efficiency.

Figure 5: Qualitative results covering seen/similar/novel test
set. Top 50 grasps after grasp-NMS [3] are displayed. Color
implies the predicted grasp confidence (red: high, blue: low).

Figure 6: Performance (Average
AP) curve. Tested under different
difficulties (friction coefficient).

Compared with other methods, RNGNet outperforms current state-of-the-art by a large margin on all
dataset splits, especially on the unseen (similar and novel) splits, proving the efficacy and general-
izability of our proposed region-aware grasp framework. Furthermore, considering the computation
cost for one shot of grasp detection, our method achieves the fastest speed with the best grasp de-
tection quality, which implies the potential of our approach to be applied in dynamic scenes or on
widely used computation-resource-constrained platforms in robot deployment.

As shown in Fig. 6, we conduct grasp evaluation using the force-closure metric under different
difficulties with different object friction coefficients. With lower object friction, the object is more
likely to drop from the gripper and thus requires more high-quality grasp detection results. It can
be clearly seen in the figure that RNGNet surpasses former SOTAs by a large margin with different
object friction coefficients, especially for the settings with lower friction coefficients.

As is indicated in Table 2, following the setting in [8], we evaluate the grasp quality at all scales (S:
Small, M: Medium, L: Large). RNGNet significantly improves performance with all the metrics,
especially in the small-scale grasps and the novel split, proving the proposed NGS’s effectiveness.
RNGNet can learn more robust and generalizable region features across different scales with NGS.

Method Seen Similar Novel
APS APM APL APS APM APL APS APM APL

Scale Balanced Grasp [8] 13.47 48.12 61.81 6.23 37.90 53.89 7.60 17.04 23.10
Scale Balanced Grasp + OBS [8] 18.29 52.60 64.34 10.03 42.77 57.09 9.29 18.74 24.36

RNGNet 22.94 64.06 68.50 19.34 59.55 64.58 21.51 29.84 28.57

Table 2: Multi-scale results. Grasps with different scales are tested separately on RealSense split.
OBS: Object Balanced Sampling proposed in [8] which requires extra instance segmentation.
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Components Seen Similar Novel
Norm Adapt Rand

66.71 51.66 26.97
✓ 69.93 53.15 28.71
✓ ✓ 73.98 64.89 30.99
✓ ✓ ✓ 75.20 66.62 32.38

Norm: Patch Normalization
Adapt: Depth-adaptive Patch Extraction
Rand: Scale Randomization

Table 3: Normalized Grasp Space ablation.
Tested on Realsense Split.

Components Seen Similar Novel
Z XY RGB PG
✓ 72.68 61.49 28.31
✓ ✓ 73.76 63.43 30.15
✓ ✓ ✓ 74.31 65.41 31.72
✓ ✓ ✓ ✓ 75.20 66.62 32.38

PG: Point-wise Gate Module

Table 4: Input modality and network ablation.
Tested on Realsense Split.

Qualitative Results: We also conduct grasp detection visualization with HGGD [15] and GSNet
[6] on three parts of the test set (seen: scene100-129, similar: scene130-159, novel: scene160-189).
As depicted in Fig. 5, RNGNet exhibits superior grasp detection quality and achieves a higher grasp
coverage rate in cluttered scenes than prior works, even in scenarios involving occlusion or partial
observation. This enhancement provides the robot with more feasible action alternatives, benefiting
scene-level grasp planning and execution. Furthermore, when compared with [15, 9], it is note-
worthy that our proposed region-aware framework enables the generation of grasps better aligned
with object centers and surfaces, consequently enhancing grasp stability. The overall qualitative re-
sults underscore the validity of our representation and approach in cluttered scenes, offering a more
comprehensive perspective.

Normalized Grasp Space Ablation: We perform ablation studies on our proposed Normalized
Grasp Space, which primarily consists of Patch Normalization, Depth-adaptive Patch Extraction,
and Scale Randomization. The results in Table 3 illustrate the effects of these three components
on Normalized Grasp Space. As expected, both Patch Normalization and Depth-adaptive Patch
Extraction significantly enhance performance across all scenes, proving the effectiveness of the
novel viewpoint about generating grasps in the region-aware and grasp-centric spaces. Additionally,
Scale Randomization also boosts the performance of our methods on the dataset.

Region Normalized Grasp Network Ablation: Table 4 presents the ablation experiments con-
ducted on the RNGNet with different input modalities. Remarkably, our method achieves a com-
mendable performance even with only depth maps as input. Introducing XY maps or RGB images
as supplementary inputs leads to considerable improvements. While geometric information from Z
maps plays a crucial role in 6-DoF grasp detection, the additional positional information from XY
maps and the inclusion of colors contribute to enhanced feature extraction and are especially benefi-
cial for generalization to previously unseen (similar and novel) scenes. Finally, applying Point-wise
Gate Module to feature maps in all stages yields further improvements across all test splits, with a
negligible increase in the number of parameters (approximately 36k, or about 1% of the total pa-
rameters). These findings support the efficacy of our approach, which is built with a combination of
point-based networks and CNNs.

5 Realworld Experiments

Cluttered Scene Clearance: To conduct a comprehensive comparison of grasp detection methods in
real-world cluttered scenes, we constructed multiple cluttered scenes consisting of 6 to 9 randomly
placed objects within a 50cm × 50cm workspace, including novel objects, object stacking and
occlusion, as shown in Fig. 7. We deployed multiple representative grasp detection methods [15, 9]
on our real-world robot platform. Subsequently, akin to the metrics utilized in [15], we assessed the
overall Success Rate and Completion Rate to facilitate overall comparison.

Compared with other methods, results presented in Table 5 demonstrate the generalization capability
to real-world grasping of our framework. However, it is worth noting that HGGD struggles to
generate grasps for objects with small scales, and AnyGrasp exhibits imprecise rotation predictions,
resulting in unstable grasping and frequent drops, particularly evident when objects are stacked.
Both methods are prone to failure when the captured point cloud becomes more noisy or only partial
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Figure 7: Robot settings
and object samples.

Scene Objects RNGNet HGGD AnyGrasp
1 8 8 / 9 7† / 9 8 / 10
2 7 7 / 9 7 / 9 7 / 9
3 9 9 / 10 9 / 11 9 / 10
4 6 6 / 6 6 / 6 6 / 6
5 7 7 / 8 7 / 9 7 / 9
6 8 8 / 9 8 / 10 8 / 10
7 9 9 / 9 9 / 11 9 / 11
Success Rate 90%(54 / 60) 82%(53 / 64) 83%(54 / 65)

Completion Rate 100%(7 / 7) 86%(6 / 7) 100%(7 / 7)

Table 5: Real-world clutter clearance results. Robot performs grasp
detection and executes grasping for each scene until no grasp is de-
tected or 15 attempts are tried. † means failed to grasp all the objects.

Figure 8: Real-world closed-loop experiment settings.

Setting Success Rate

Handover
82.5%

(33 / 40)

Conveyor
67.5%

(27 / 40)

Table 6: Closed-loop results.

object observations are available. In contrast, RNGNet, with its robustness to noise originating from
the depth sensor, demonstrates the ability to predict more stable grasps with precise rotations. This
effectively reduces collisions and object drops, showcasing the potential of this method.

Closed-loop Grasping: With RNGNet, we are able to detect grasps in any region regardless of the
patch location or the scene structure. This implies a practical downstream application potential when
there is no need to generate grasps across the scene. To evaluate the efficiency of our framework
in more challenging scenes, we build two dynamic settings as illustrated in Fig. 8: (a) Human-to-
robot handover; (b) Moving object on the conveyor. Experiment results in Table 6 confirm that our
framework can accomplish dynamic grasping at a satisfactory success rate by detecting high-quality
grasps in a real-time frame rate and executing the closed-loop controlling. The proposed closed-loop
grasping pipeline can effectively handle more complex nontable-top grasping scenarios. Thus, our
proposed method proves robust to a much noisier environment, which underscores the potential of
our method for addressing challenging dynamic scenarios. The closed-loop grasping algorithm is
demonstrated in Algorithm. 1 of the Appendices, and more demonstrations of the dynamic grasping
experiments can be found in the Supplementary Videos.

6 Limitation and Conclusion

Normalized Grasp Space (NGS), a unified space for region-based grasp detection, is proposed
to obtain consistent region representation. With the representation, we further build an efficient
convolution-based Region Normalized Grasp Network (RNGNet) to extract features and predict ro-
tation heatmap. Though efficient, our method, relying on single-view images, is vulnerable to noises
and can be only applied with rigid bodies. We plan to explore integrating scene-level information
from the multi-view image during the process of closed-loop grasping, which is critical for precise
manipulation in complex scenes or with specific instructions. More limitations are discussed in the
Section C and D of the Appendices.
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Appendices
A Additional Results

Detailed Results on the GraspNet-1Billion Dataset: In addition to the overall grasp AP (Average
Precision) metric, we also provide the evaluated grasp quality based on force-closure metric [28]
with varying friction coefficients, denoting APµ, representing the average precision at given friction
coefficient µ. As is shown in Table 7, our proposed RNGNet outperforms previous state-of-the-
art methods in terms of all metrics under different friction conditions, especially on the difficult
scenarios (similar/novel splits and AP0.4 with lower friction coefficient).

Method Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GPD [10] 22.87/24.38 28.53/30.16 12.84/13.46 21.33/23.18 27.83/28.64 9.64/11.32 8.24/9.58 8.89/10.14 2.67/3.16
PointnetGPD [11] 25.96/27.59 33.01/34.21 15.37/17.83 22.68/24.38 29.15/30.84 10.76/12.83 9.23/10.66 9.89/11.24 2.74/3.21

GraspNet-baseline [3] 27.56/29.88 33.43/36.19 16.95/19.31 26.11/27.84 34.18/33.19 14.23/16.62 10.55/11.51 11.25/12.92 3.98/3.56
TransGrasp [27] 39.81/35.97 47.54/41.69 36.42/31.86 29.32/29.71 34.80/35.67 25.19/24.19 13.83/11.41 17.11/14.42 7.67/5.84

HGGD† [15] 58.35/56.85 66.54/64.60 55.96/52.94 47.93/43.93 56.91/52.73 41.86/36.88 22.10/18.59 27.37/22.98 14.31/11.91
Scale Balanced Grasp [8] 58.95/ - 68.18/ - 54.88/ - 52.97/ - 63.24/ - 46.99/ - 22.63/ - 28.53/ - 12.00/ -

GSNet [6] 65.70/61.19 76.25/71.46 61.08/56.04 53.75/47.39 65.04/56.78 45.97/40.43 23.98/19.01 29.93/23.73 14.05/10.60
AnyGrasp w/ CD [9] 66.12/ - 77.27/ - 61.02/ - 56.09/ - 68.29/ - 47.31/ - 24.81/ - 31.08/ - 13.82/ -

RNGNet 75.20/72.23 85.02/82.04 71.71/67.95 66.62/58.43 78.53/68.69 59.23/51.87 32.38/26.05 40.44/32.29 19.84/16.24
RNGNet w/ CD 76.28/72.89 86.58/83.10 72.26/68.11 68.26/59.42 80.86/70.16 60.01/52.13 32.84/26.12 41.07/32.45 19.68/15.92

“-”: Result Unavailable, CD: Collision Detection
† Reimplemented with official codebase without CD.

Table 7: Detailed results on GraspNet Dataset. Showing APs on RealSense/Kinect split under
different friction coefficient.

Extra Real-world Results: For more detailed performance evaluation, we conduct extra real-world
experiments at different noise levels to illustrate the practical benefits and robustness of our method.
In the extra real-world experiments, for more challenging grasping, we introduce more novel objects
(50 objects in total vs 24 used in the manuscript) in the experiments, and more objects (6 to 12 now
vs 6 to 9 in the manuscript) may be randomly placed in a clutter. Each method is tested with extra 6
scenes under different settings. The other settings (grasp order, collision check, robot control, etc.)
are kept the same as in HGGD [15] and the manuscript.

Noise Deviation (m) Method Attempt Success Rate Scene Clearance Rate

0
AnyGrasp 52 / 67 = 77.6 % 5 / 6 = 83.3 %
RNGNet 53 / 60 = 88.3 % 6 / 6 = 100 %

0.01
AnyGrasp 41 / 89 = 46.1 % 2 / 6 = 33.3 %
RNGNet 48 / 80 = 60.0 % 4 / 6 = 66.7 %

0.02
AnyGrasp 8 / 90 = 8.9 % 0 / 6 = 0 %
RNGNet 39 / 88 = 44.3 % 2 / 6 = 33.3 %

Table 8: Additional Real-world Clutter Clearance Experiments.

As is shown in the table above, our method achieves an impressive success rate in attempts without
additional noise, efficiently clearing all scenes. In comparison, AnyGrasp exhibits lower attempt
success and scene clearance rates and may struggle to clear scenes due to repeated failures on specific
objects. Our method, on the other hand, offers more viable grasps across scenes with multiple
sampled patches, which benefit the scene clearance process. This is also illustrated in Figure 5 of
the manuscript (AnyGrasp mainly uses GSNet for one-frame grasp detection).

As for grasp detection with noisy inputs, AnyGrasp shows a significant decline in performance as
noise increases, while our method performs more consistent grasp detection results in noisy envi-
ronments and is capable of clearing scenes with relatively high noise levels (0.02 m). These results
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demonstrate the superior robustness and reliability of our method across varying noise levels. Its
ability to maintain high performance in the presence of noise makes it a more reliable choice, espe-
cially in environments where noise is a factor.

Real-world Ablations: One of the purposes of the proposed Normalized Grasp Space (NGS) is
to better leverage geometric features and avoid camera viewpoint variations, keeping the receptive
fields invariant to real-world camera positions. Thus, we conduct more extensive testing across
various camera viewpoint to ablate the proposed NGS in the manuscript. We conduct robot grasp-
ing with a variable camera viewpoint rather than a fixed camera position by changing the camera
distance to the table. All other experiment settings are the same as above.

Camera Viewpoint Method Attempt Success Rate Scene Clearance Rate

close: 0.5 m (default)
RNGNet w/o NGS 52 / 66 = 78.8 % 5 / 6 = 83.3 %

RNGNet 53 / 60 = 88.3 % 6 / 6 = 100 %

medium: 0.6 to 0.8 m
RNGNet w/o NGS 48 / 79 = 60.8 % 4 / 6 = 66.7 %

RNGNet 53 / 62 = 85.5 % 6 / 6 = 100 %

far: 0.8 to 1.0 m
RNGNet w/o NGS 18 / 90 = 20.0 % 0 / 6 = 0 %

RNGNet 53 / 65 = 81.5 % 6 / 6 = 100 %

Camera Viewpoint: camera distance to the table surface
Attempt Success Rate = Successful Attempt Number / Total Attempt Number
Scene Clearance Rate = Cleared Scene Number / Total Scene Number

Table 9: Real-world Clutter Clearance Ablations of proposed Normalized Grasp Space.

As the results show, RNGNet with NGS demonstrates superior robustness and adaptability across
different camera viewpoints. The inclusion of NGS significantly enhances the method’s ability to
maintain high performance, even as the camera viewpoint moves further away. Without NGS, the
performance drops considerably, especially at greater distances, making the NGS component crucial
for reliable and consistent performance in varying conditions.

Backbone Ablation: To further prove the efficiency and robustness of our 2D-convolution-based
network, in Table 10, we replace the backbone with the widely used [6, 20, 29] high-dimensional
sparse convolution backbone, MinkowskiFCNN [30]. As is shown in the results, our simple 2D
convolution network is more efficient than the more complicated sparse convolution network in
experiments, especially with high-resolution input. When facing low-resolution input, SparseCNN
performs slightly better due to its particular design for sparse input. Significantly, both RNGNet and
SparseCNN show quite consistent performance with input patches of different resolutions, which
proves the robustness of our region-aware framework.

Backbone Size Seen Similar Novel Time/ms

SparseCNN [30]
64× 64 72.17 61.90 29.85 74
32× 32 71.76 61.63 29.89 29
16× 16 68.16 56.68 25.76 18

RNGNet
64× 64 75.20 66.62 32.38 8
32× 32 72.13 62.81 29.86 5
16× 16 67.04 55.35 25.63 4

Table 10: Backbone ablation. Showing APs on Realsense split and network inference time.

Guidance Ablation: Though RNGNet utilizes the Grasp Heatmap Model as a part of the patch
extractor by default. However, we only introduce the Grasp Heatmap Model for locating graspable
regions, and our model can be easily used without the Grasp Heatmap Model. To better investigate
the ability of our method to detect high-quality grasp in regions, we compare the performance of
our method under different settings (with or without Grasp Heatmap Model). Without the Grasp
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Heatmap Model, we filter the table pointcloud by z coordinates and use farthest sampling on the
foreground pointcloud to acquire region centers. As is shown in the table below, even without the
guidance of the Grasp Heatmap Model, our method can still perform high-quality grasp detection
for a relatively slower speed (more patches are processed).

Localization Seen Similar Novel Time1 (ms)
Heatmap 75.20 66.62 32.38 17

Foreground 74.75 66.06 33.59 30
1 Same settings as in Table 1.

Table 11: Ablation Experiments of Patch Localization Algorithm. Showing APs on Realsense
split.

Grasp Inference with Multi-scale Grippers: As clarified in Section. 3.1, the Normalized Grasp
Space (NGS) demonstrates scale invariance. In other words, our grasp detection model can be
easily scaled to accommodate a different range from the fixed gripper width defined in the training
dataset without any extra training. In Fig. 9, we illustrate this by enlarging the gripper scale from
wgripper = 0.05 m to wgripper = 0.2 m, showcasing grasps in a cluttered scene. These results
affirm that our framework can seamlessly adapt to grippers of varying sizes. As is shown in Fig. 10,
we extend the application of our framework to a much larger indoor scene than the typical table-
top settings. The proposed RNGNet successfully generates large-scale grasps for large objects,
validating the effectiveness of the Normalized Grasp Space.

To further investigate the effectiveness of our Normalized Grasping Space for object grasping with
grippers of different scales, We build scenes with objects with significantly different scales in the
Sapien [31] simulator and conduct grasp detection and robot grasping. Experiments prove that
our Normalized Grasping Space can generalize well to grippers with different scales and has the
potential to apply to industrial scenes, in which data and labels are hard to obtain. Detailed results
and visualization can be found in our Supplementary Video.

Figure 9: Visualizations of grasp predictions of different gripper scales. Different colors mean
different gripper widths. From (a) to (e), as the gripper scale enlarges, it shows adaptive grasp
predictions under different configurations.

B Implemetation Details

Normalized Patch Dataset Preparation: Currently, most grasp datasets focus on providing object-
level grasp labels [13, 14] or scene-level grasp label [3, 32], which are not directly suitable for our
normalized scheme training. Although GraspNet-1Billion offers a large number of RGBD images
and grasps annotations, based on the proposed Normalized Grasp Space, we need to construct a
patch-based grasp dataset providing normalized patches and grasps annotations. As is shown in
Fig. 11, utilizing the scene-level annotations provided in the GraspNet-1Billion dataset, we gener-
ate a new patch-based grasp dataset for Regional Normalized Grasp Network training. Firstly we
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Figure 10: Grasp detection in a room-scale scene. (a) Target RGB image and depth image of an
ordinary indoor scene with a sofa placed. (b) Extracted patch RGB and normalized z image. (c)
Detected grasps of the sofa.

obtain the object segmentation mask in the original dataset and adopt a Gaussian kernel to dilate
the mask image for covering possible graspable regions as much as possible. Then a fixed number
of patch center candidates are randomly sampled on the dilated mask image and cropped. Also,
as is mentioned in [33], depth information is important to generate collision-free grasp detection
results. Thus, we add domain randomization to the patch center depth on the RGBD image planes,
which provides a patch-based dataset covering more of the possible circumstances and improves the
robustness of our training method.

Figure 11: Pipeline of Normalized Patch Dataset Preparation.

Grasping Order and Execution in Clutters: In our cluttered scene clearance experiments, we
mainly adopt the perception-planning-grasping open-loop scheme. For each grasp attempt, firstly,
the robot moves to the initial home pose and captures the single-view RGBD image, from which
multiple normalized grasp regions are extracted. Then, grasps are detected in each region to compose
the scene-level grasps for later grasp execution. During the grasping part, the grasp with the highest
score is selected as the current target pose. We utilize the MoveIt [34] framework to plan the robot’s
trajectory and execute the grasp poses using the UR5e equipped with the Robotiq gripper. RRT
[35] serves as our path planner to plan a feasible trajectory to the target pose and execute the final
grasp action. To avoid potential collisions and unsafe planning trajectories, MoveIt’s collision box
construction tool is employed to define collision geometry. In case of failed grasp execution resulting
from collisions or inaccurate grasps, the scene will be restored, and the objects will be re-placed.

Target-oriented Grasping: Actually, by utilizing the proposed region-aware grasp framework, we
successfully decouple the grasp location problem and grasp detection problem. As we state in the
closed-loop grasping section in the manuscript, with RNGNet, we are able to detect grasps in any
region regardless of the patch location or the scene structure. This implies a practical downstream
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application potential when there is no need to generate grasps across the scene. In short, Region-
aware Grasp Framework allows a more flexible patch localization for different purposes.

Closed-loop Grasping Pipeline: As demostrated in the Algorithm. 1, we integrate grasp detection
with simple closed-loop robot controlling and keep tracking the real-time grasp detection results to
achieve closed-loop grasping in dynamic scenes.

Algorithm 1 Closed-loop Grasping in Dynamic Scenes
Inputs:
Mworkspace - workspace mask
min dis - distance threshold
Python-Style Pseudocode:

1: ## Tracking phrase
2: while dist(grasps[0].pose, robot.pose) > min dis do
3: image = get RGBD image()
4: centers = uniform sample(Mworkspace)

# sample patch centers within the mask
5: patches = normalize(patch extract(centers, image))

# extract and normalize patch regions
6: grasps = RNGNet(patches)

# detect grasps for objects in the workspace
7: grasps.sort by score()
8: robot.set speed(grasps[0].pose − robot.pose)

# robot moving towards the best grasp pose
9: end while

10: ## Grasping phrase
11: robot.move pose(grasps[0].pose)

robot.grasp()
# move robot to the final grasp pose and grasp

Hyperparameters and Loss: In the patch extraction, we extract normalized patches with size S ×
S = 64 × 64 by default. We process the input image as the same size 640 × 360 and adopt the
pre-trained Grasp Heatmap Model checkpoint in [15] for a fair performance comparison. In the
feature extraction part, we directly adopt the ResNet-18 [36] with half width as the mainstream of
our backbone in RNGNet. For the implementation of the Point-wise Gate module, a 3-layer shared
MLP with the same width as the corresponding feature maps is adopted to generate gate value for
feature maps of each resolution. In our rotation heatmap predictor, the settings about rotation anchor
are kept unchanged from those in the [15]. AdamW optimizer is adopted to train our RNGNet.

The training loss of RNGNet is the weighted sum of the regression losses and the anchor classifica-
tion losses:

L = Lθ cls + Lθ reg + Lγβ + Lt + Lw, (7)

where Lθ cls and Lγβ are the losses for Euler angle classification, calculated using focal loss [37]
and Lθ reg, Lt and Lw are the losses for θ refinement, translation regression and width regression,
calculated using smoothed L1 loss.

C Discussion

Data Efficiency: To further confirm the data efficiency of our framework, we conduct extra experi-
ments by training methods with different portions of data. For fair comparisons, we test our method
without Grasp Heatmap Model (pretrained Grasp Heatmap Model from HGGD uses all the training
data and may lead to higher test results), that is, using the farthest sampling in the filtered foreground
pointcloud to extract local regions. As is shown in the Table 12 below, our method achieves bet-
ter data efficiency than other baselines. Even with only 10% training data, our method performs a
competitive grasp detection performance.
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Method 1/50† scenes 1/20† scenes 1/10† scenes Full scenes
GSNet 8.64 30.65 36.15 47.81

AnyGrasp 7‡ - 35‡ 49.01
RNGNet w/o Heatmap 25.60 41.61 47.43 58.13

† “1/X scenes” means annotations from X scenes are used out of total 100 training scenes.
‡ Approximate results from Fig. 15 (Evaluation results on the GraspNet-1Billion test set
when training with different portions of real-world data) in the AnyGrasp paper[9].

Table 12: Experiments of Method Data Efficiency. Showing APs on all Realsense test split with
different portions of training data.

Equivariant Neural Networks: The proposed RNGNet is not inherently equivariant. We have
incorporated rotation augmentation techniques to reduce the burden on the network to learn equiv-
ariance from scratch, thereby improving generalization and reducing the amount of training data
required. Experiments above also show the efficacy of our proposed Region-aware Grasp Frame-
work for offering better sample efficiency than former methods. In the future, to further improve the
performance and efficiency of our approach, we may use equivariant networks in our framework.

Introduction of Scene Priors: Actually, our approach is designed to be easily integrated with
widely adopted preprocessing modules to enhance results and extend functionality. Such shape
completion and instance segmentations can serve as the data processing module for the input of
our Region Normalized Grasp Network. Shape completion enhances object surface information,
contributing to collision-free and stable grasp detection, while instance segmentation can provide
valuable object pose information for more precise grasp detection. In practice, we have also ex-
plored integrating SAM (Segment Anything Model) [38] as the instance segmentation model and
Grounding Dino [39] as the object detection model, enabling our method to address target-oriented
and instruction-guided grasping tasks seamlessly.

D Limitations

Although our proposed region-aware framework demonstrates excellent performance and flexibility
across diverse grasping tasks, several limitations remain. Primarily, our method relies on single-view
RGBD images, which are vulnerable to degradation from severe noise and occlusion. Secondly, our
current design focuses exclusively on common rigid bodies, and does not address the challenges
posed by transparent, reflective, or deformable objects. Lastly, while our closed-loop algorithm
addresses grasping tasks in some dynamic scenes, our online grasp generation and selection methods
could be further optimized. For example, integrating it with reinforcement learning could enhance
adaptability, facilitating smoother task execution.
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