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ABSTRACT

Transforming a design into a high-quality product is a challenge in metal additive
manufacturing due to rare events which can cause defects to form. Detecting these
events in-situ could, however, reduce inspection costs, enable corrective action,
and is the first step towards a future of tailored material properties. In this study a
model is trained on laser input information to predict nominal laser melting con-
ditions. An anomaly score is then calculated by taking the difference between the
predictions and new observations. The model is evaluated on a dataset with known
defects achieving an F1 score of 0.821. This study shows that anomaly detection
methods are an important tool in developing robust defect detection methods.

1 INTRODUCTION

Machine learning (ML) methods are increasingly used in additive manufacturing (AM) to automate
inspection (Scime & Beuth| 2018), predict defects (Larsen & Hooper, |[2022), as well as potentially
tailor microstructure and material properties (DebRoy et al., 2021). In Laser-Powder Bed Fusion
(L-PBF), a thin layer of powdered material is spread across a build plate. A laser then scans back
and forth melting the powder. The process is repeated layer-by-layer until a 3-dimensional part is
formed. As a result of chaotic melting conditions, micron sized flaws can occur. Hence, in-situ
monitoring cameras have been combined with ML to observe the process. There is, however, a
high cost associated with collecting labelled data for training ML algorithms. This requires X-ray
computed tomography (XCT) to characterise the flaws which form as pores inside the material. XCT
is also limited to very small parts. It is, therefore, desirable to develop robust anomaly detection
approaches which require minimal flaws for training ML models.

Another challenge is to represent the AM process complexity with the available information. This
can be addressed by geometric deep learning methods. Graph neural networks (GNN) have be-
come increasingly popular for modelling data that takes on a graph type structure. This includes
molecules (Gainza et al., [2020), physics simulations (Sanchez-Gonzalez et al., 2020), traffic pre-
diction (Derrow-Pinion et al., 2021), and material property prediction (Xie & Grossman), [2018]).
Monitoring signals are dependent on the geometry of the component being manufactured as well as
the laser scanning strategy. Therefore, a graph structure is highly suited to modelling the underlying
process physics.

The objective of this study is to develop an anomaly detection approach that requires no labelled data
other than nominal processing conditions. Due to spatio-temporal correlations in the data, a graph
structure is selected to represent the positional information. Given a graph and the laser feature
inputs, such as power and scan direction, the model is trained to predict nominal melting conditions.
This serves as an approach to compare new observations to the expected result, yielding an anomaly
score.
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Figure 1: (a) Representative image of the melt pool which forms as the laser melts material. (b)
Segmentated image. (c) Temporal signal of a melt pool and laser power. (d) Laser scan direction
feature. (e) X-ray CT scan image slice with pore defects shown as dark spots.

2 METHODOLOGY

2.1 SENSOR AND DATA COLLECTION

Images were acquired of the melt pool with a high-speed recording at 100 kHz (Fig. [Th) (Hooper
2018). The camera is located co-axial to the laser and measures the melt pool radiation. The images
were segmented to extract a number of melt pool features including: size, shape, intensity, and
number of spatter particles (Fig. [Ip). These features are used as node labels described in the next
section. The melt pool signal correlates with the laser power which is pulse width modulated (Fig.
[Ik). The laser also changes direction as it scans over the layer (Fig. [Id). A number of defects were
injected into a part during processing and the measured signal taken from the next layer. After the
component was built, an X-ray CT scan was carried out (Fig. [Tk). Defects, given by porosity, were
characterised within the part using a segmentation algorithm. A small amount of anomalous process
conditions could then be mapped back to the measured signal location to act as an evaluation dataset
for the anomaly detector.

2.2 MACHINE LEARNING

The framework for anomaly detection can be seen in Fig. 2] An anomalous observation is defined as
a data point that differs considerably from the other data within a set of observations. For instance
reduced intensity or excessive spatter shown in Fig. [I] Therefore, the goal is to learn a score
function that can be compared to new observations. Since there are contextual events, such as
the laser features and part geometry, this known physics should be incorporated into the model.
Hence, we propose to predict the expected sensor observation (Y) given a set of laser inputs (X),
Y = fo(X, A), where fy is a function mapping of inputs to outputs parametrised by 6 and A is the
adjacency matrix. At test time the predicted features are compared to the measured features. This is
computed with an error metric given by

Zi =Y (Yi; —Yij), ()
j=1

where Z will approach a Gaussian distribution for nominal conditions compared to anomalies. Laser
features including scan direction, power, node number and track number were used as model inputs
(node features).

As the laser data is correlated both temporally and spatially, a graph was constructed based on the
nearest neighbours of each node. These are expected to correlate since a defect can span multiple
laser tracks. The input information is fed to a Graph Transformer network (Shi et alJ |2020). This
enables the use of edge attributes as well as node features to be represented. In this case, we label
edges based on whether they are connected to an adjacent scan track or a not, i.e. temporally or
spatially correlated. This is followed by a Fully Connected (FC) post-message passing layer before
predicting the expected sensor signature.
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Figure 2: The framework for anomaly detection developed in this study.

The model was trained on nominal processing conditions to minimise the mean squared error (MSE)
using the Adam optimiser (Kingma & Bal [2014). Each graph corresponded to a layer of deposited
material, with training data on eight graphs totalling 182,450 nodes. The model was evaluated
on four graphs known to contain anomalies, where 1,735 nodes were defective and 70,495 were
nominal with a data imbalance of 40.6 to 1.

After the error score was computed it was smoothed to remove noise and to enable information
propagation in the local neighbourhood of each node. This was performed with a symmetric nor-
malisation and aggregation given by

7' =D 2AD 37, 2)

where D is the degree matrix.

3 RESULTS AND DISCUSSION

3.1 NODE LEVEL PREDICTIONS

A threshold was obtained for the outlier model using the precision-recall curve which was chosen
due to the data imbalance (Fig. Eh). The area under the curve, or average precision (AP) was 0.832,
while a maximum F1 score was measured as 0.821. Fig. [Bp shows a histogram of nominal and
anomalous prediction errors along with the selected threshold from the precision-recall curve.

The prediction error was expected to converge to a Gaussian distribution if the sources of variation
are accounted for. This motivates studying the selected threshold from a quantiles perspective (Fig.
Bk). The prediction errors were mapped to a standard Gaussian distribution along with the threshold.
This enabled an estimate of how many false positives (FP) might be expected for a given nominal
layer. In this case, a threshold of 3.42 resulted in a false positive rate (FPR) of around 6 in 10,000
(Table[I). When compared on the quantile plot of a Gaussian distribution it is expected to be closer
to 3 in 10,000. Therefore, an improvement may still be possible though this is in good agreement.
However, the quantiles of the unseen data are different, particularly in the negative region. This is
likely due to the few graphs used in the dataset (only 8 in training). We believe this can be further
improved by including more examples thereby improving the prediction model.

The input feature importance was also evaluated (Fig. [3d). The laser power was the most important
in making predictions. This is due to the laser turning on and off which correlates with the signal
in the camera. When the laser turns off, the signal reduces. This information is essential to include
since anomalous events, such as a reduced signal, can also be associated with defect formation.
The node and track features were less important but provide some contextual information as the
laser traverses the layer heating the component over time. The scanning directions were close to
redundant in the predictions.
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Figure 3: (a) Precision-recall curve. (b) Histogram of error for nominal and anomalous data. (¢) QQ
plot of both nominal and anomalous datasets corresponding to (b). (d) Feature importance of inputs.

3.2 MODEL COMPARISONS

The model was compared to: Graph Attention Networks (GAT) (Velickovic et al 2017), a Graph
Convolutional Network (GCN) (Kipf & Welling}, [2016)), a Graph Isomorphism Network (GIN)
[2018), and a FC network (Table [I). Furthermore, an autoencoder (AE) anomaly detection
method was included and trained to reconstruct both laser and image features.

The Graph Transformer (Graph-T) model had the highest average precision (AP) and F1 score.
The closest performing model (GAT) had similar AUROC but lower AP. We consider the AP a
better evaluation in this application due to the data imbalance and add larger weight to the lower
FP achieved by the Graph-T model. When comparing the FC with the GNN models (GAT, GCN,
GIN), the loss was higher for the GNNs. It is thought that these models might over-smooth the
inputs causing some information to be lost in the forward pass, while the FC does not utilise the
graph structure until test time. The Graph Transformer can, however, take advantage of both pieces
of information.

Table 1: Comparative performance of different models including Graph Transformer with an abso-
lute anomaly metric (Graph-T-A) and without output smoothing (Graph-T-Z).

Model AP AUROC F1 FP FN TP TN Loss

AE 0.808 0.958 0.800 52 545 1190 70443 0.0181
FC 0.817 0.961 0.813 65 501 1234 70430 0.0025
GAT 0.826 0.963 0.815 78 489 1246 70417 0.0147
GCN 0.818 0.959 0.798 95 521 1214 70400 0.0273
GIN 0.813 0.960 0.806 71 517 1218 70424 0.0148

Graph-T-A  0.725 0932 0.695 386 605 1130 70109 0.0024
Graph-T-Z  0.246 0.833 0338 1759 1025 710 68736 0.0024
Graph-T 0.832 0.963 0.821 40 499 1236 70455 0.0024
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An absolute error model (Graph-T-A) and an unsmoothed output (Graph-T-Z) were also considered,
changing Equation [I| and removing Equation [2| respectively. The absolute error metric had larger
error rates since there will be FPs from both sides of the distribution. This confirms that the error
signal direction is important to consider in this task.

Removing the smoothing step at the output caused a large decrease in performance at test time. Av-
erage precision reduced from 0.832 to 0.246, a decrease of 70%. This would suggest that smoothing
the outputs to minimise noise from predictions is also a critical step to improving the robustness of
the anomaly detector.

4 CONCLUSION

In this study, a GNN was trained to predict the nominal processing conditions from the laser fea-
tures and positional information represented as a graph. The output prediction was compared to
new observations giving a measure of the difference between the two. We found that performing
a smoothing step at the output was essential, while the method is robust when compared with a
Gaussian distribution. In future work we will test the method on more complex geometries.
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