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Few-Shot Multimodal Explanation for Visual Question Answering
Anonymous Authors

ABSTRACT
A key object in eXplainable Artificial Intelligence (XAI) is to cre-
ate intelligent systems capable of reasoning and explaining real-
world data to facilitate reliable decision-making. Recent studies
have acknowledged the importance of providing user-friendly and
verifiable explanations to facilitate trustworthy Visual Question
Answering (VQA) systems. This paper aims to promote explain-
able VQA from both data and method perspectives. First, we pro-
pose a new Standard Multimodal Explanation (SME) dataset and
a new Few-Shot Multimodal Explanation for VQA (FS-MEVQA)
task, which aims to generate the multimodal explanation of the
underlying reasoning process for solving visual questions with
few training samples. Our SME dataset includes 1,028,230 sam-
ples composed of questions, images, answers, and multimodal ex-
planations, which can facilitate the research in both traditional
MEVQA and FS-MEVQA. To the best of our knowledge, this is
the first large-scale dataset with joint language-vision explana-
tions based on standard English and additional visual grounding
tokens, which bridge MEVQA to a broad field in Natural Language
Processing (NLP). Second, we propose a training-free Multimodal
Explaining Agent (MEAgent) method based on an LLM agent with
multimodal open-world tools to infer answers and generate multi-
modal explanations for visual questions. Our MEAgent can learn
multimodal explaining from merely 𝑁 (= 16) training samples and
leverage open-world abilities to perform FS-MEVQA on test sam-
ples. Comprehensive experimental results evaluated by language
quality metrics, visual detection metric, and visual attribution met-
rics on our SME dataset indicate the superiority of our method
for FS-MEVQA, compared to state-of-the-art MEVQA methods and
the multimodal LLM GPT-4V. Our code and data are available at
https://anonymous.4open.science/r/FS-MEVQA-646D/.
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Figure 1: An example of multimodal explanations con-
structed in the REX dataset [7] and our SME dataset. In REX,
#𝑖 denotes boxes pre-extracted by Faster R-CNN, belonging
to only 81 classes. We use [𝐵𝑂𝑋 ] to represent the detection
boxes needed in the explanation and annotate these boxes
with their corresponding names mentioned in the explana-
tion, based on the scene graph annotated by humans. Our
explanation is in standard English with additional [𝐵𝑂𝑋 ].

Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Reasoning is a fundamental element of human intelligence and a
crucial challenge in artificial intelligence [9, 10, 18]. Traditional
reasoning models typically provide answers without offering expla-
nations for their reasoning. This limitation greatly restricts their
applicability, particularly in safety-sensitive situations, such as
healthcare, transportation, and finance. To address this problem, a
key object in eXplainable Artificial Intelligence (XAI) is to create
intelligent systems capable of reasoning and explaining real-world
data to facilitate reliable decision-making [11, 37, 42]. The recent
development of Large Language Models (LLMs) has led to remark-
able progress in reasoning on textual data and generating textual
explanations for reasoning processes [12, 26]. However, when it
comes to the field of multimodal reasoning, tasks necessitate the
ability to comprehendmultimodal content and generate multimodal
explanations to reveal the underlying reasoning processes, which
is still a challenging problem.

While Visual Question Answering (VQA) [3, 4, 13, 15, 32] is a
typical and important multimodal reasoning task, some pioneering
work has been made in Multimodal Explanation for VQA (MEVQA)
[7, 50, 51]. Zellers [51] construct the VCR dataset with four expla-
nation choices for every question. The proposed task is to select
the correct explanation, which is usually impractical. Moreover,
VCR only considers people as visual objects in explanation, limit-
ing its application range. Recently, Chen and Zhao [7] convert the
reasoning step graph to multimodal explanations, proposing the
REX dataset and a generative task, as shown in Figure 1. However,
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Figure 2: Performance ofMEVQAmethodswith varying num-
ber of training samples.

their customized format reduces the readability of the explanations.
Moreover, they use a Faster R-CNN [36] trained on MS-COCO [25]
to extract object boxes for explanation annotation, which can only
detect 81 classes and bring inaccuracy in explanations. Furthermore,
existing generative methods for multimodal explaining [7, 50] rely
on large-scale training data, which is costly and may be impractical
in various vertical domains. As shown in Figure 2, when trained
on a small amount of data, state-of-the-art methods experience a
notable decline in performance, despite being built upon pretrained
Vision-Language Models (VLMs). Especially considering the recent
progress in open-world learning (e.g., LLMs), more streamlined and
applicable learning frameworks may represent the future direction.
Therefore, we propose the Few-Shot MEVQA (FS-MEVQA) task
that aims to learn MEVQA from few training samples. Meanwhile,
GPT-4V, which may currently be the most powerful multimodal
LLM, also performs unsatisfactorily, showing the flaws of LLMs in
explaining the implicit multimodal reasoning processes. Inspired
by the observation of the above pioneering works in MEVQA, we
attempt to promote MEVQA from both data and model perspectives,
proposing a new multimodal explanation dataset and a novel LLM
agent-based training-free method for FS-MEVQA.

To improve the readability and user-friendliness of multimodal
explanations, we propose the Standard Multimodal Explanation
(SME) dataset, where the explanations are in standard English with
additional [𝐵𝑂𝑋 ] tokens for visual grounding, as shown in Fig-
ure 1. Our constructed explanations are based on reasoning steps
for solving the visual questions, with the associated key objects
in Visual Genome scene graphs [17] of 1,703 classes. After con-
verting the structured reasoning steps into natural language-like
explanations with visual object annotations, we utilize GPT-3.5
[6] to revise the explanations without [𝐵𝑂𝑋 ] into standard Eng-
lish. Moreover, to facilitate an effective evaluation of visual objects
grounded in multimodal explanations, we annotate key visual ob-
jects with their corresponding names mentioned in explanations
and add special [𝐵𝑂𝑋 ] tokens to represent grounded visual boxes.
We further propose a visual detection metric to evaluate the ability
to simultaneously generate names and ground regions of key visual
objects to explain the multimodal reasoning processes. As shown
in Table 1, compared to the existing explanations for VQA, our
multimodal explanations based on standard English with additional
[𝐵𝑂𝑋 ] tokens can be more user-friendly and expressive with far
more visual objects involved in explanation, bridging MEVQA to a
broad area in Natural Language Processing (NLP).

To overcome the dependency on large-scale training data, we
propose a training-free Multimodal Explaining Agent (MEAgent)

Table 1: Comparison of explanations for VQA. Visual Object
denotes visual objects grounded in explanation.

Dataset Modality Visual Object Format
VQA-E [22] Language None Standard English
VCR [51] Language-Vision Only people Customized
REX [7] Language-Vision 81 Customized

SME (Ours) Language-Vision 1,703 Standard English with [𝐵𝑂𝑋 ]

method based on an LLM agent with multimodal open-world tools
to infer answers and generate multimodal explanations for visual
questions, given merely 𝑁 (= 16) training samples. Traditionally,
𝑁−𝑠ℎ𝑜𝑡 few-shot learning represents given 𝑁 training samples for
every class (i.e., every answer in VQA) [8, 39, 45], which is still costly
and cannot address unseen classes in the test. Moreover, consider-
ing the recent progress in open-world learning [16, 19, 31, 35, 49],
the paradigm of learning reasoning knowledge for every class may
be outdated. Therefore, we propose a stronger and more practi-
cal few-shot learning setting for MEVQA, where only 𝑁 training
samples are given for all classes. Under such a setting, the value of
training samples mostly lies in defining the MEVQA task, while the
model needs out-of-training knowledge and open-world tools to
solve the test questions. Inspired by the recent work in LLM-based
visual programming [14], we construct a GPT-3.5-based LLM agent
with multimodal open-world tools, such as an open-world object
detector, image croppers, and customized Python functions. With a
few-shot program prompt and a few-shot explanation prompt con-
structed based on 𝑁 (= 16) in-context examples, our MEAgent can
generate the multimodal program for solving the input question,
execute it via open-world tools to infer the answer, and translate
the execution process into a multimodal explanation of the mul-
timodal reasoning process. Additionally, we propose a rethinking
mechanism to complete the visual objects needed in the explanation
but ignored in multimodal programming. Extensive experiments
demonstrate that MEAgent significantly outperforms the state-of-
the-art MEVQA methods [7, 50] with even thousands of training
samples and the multimodal LLM GPT-4V [1] for FS-MEVQA.

In brief, the contributions of our work are as follows:
• We propose SME, a new dataset for Multimodal Explanation for
Visual Question Answering (MEVQA) comprising 1,028,230 sam-
ples, with 1,703 visual objects requiring detection in explanations.
To our knowledge, this is the first dataset where the explanations
are in standard English with additional visual grounding tokens,
bridging MEVQA with a broad area in NLP.

• We propose MEAgent, a novel training-free method based on
an LLM agent with multimodal open-world tools for Few-Shot
MEVQA (FS-MEVQA). MEAgent can infer answers and generate
multimodal explanations of the reasoning processes for visual
questions, given only 𝑁 (= 16) training samples. Additionally, we
propose a rethinking mechanism to complete the visual objects
needed in explanation but ignored in multimodal programming.

• Extensive experiments demonstrate the effectiveness of our dataset
and method for FS-MEVQA. We adopt language quality metrics,
visual detection metric, and visual attribution metrics to evalu-
ate the generated multimodal explanations. Experimental results
show the superiority of our MEAgent compared to the state-of-
the-art MEVQA methods and the multimodal LLM GPT-4V.
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Figure 3: Brief construction procedure of our multimodal explanations: (1) Traverse scene graphs to link reasoning processes
with visual objects; (2) Convert reasoning processes into multimodal explanations by automatic programs; (3) Convert the text
(excluding [𝐵𝑂𝑋 ]) into standard English by GPT-3.5 and add [𝐵𝑂𝑋 ] back.

2 RELATEDWORK
We review three highly related topics in explainable Visual Question
Answering (VQA).

Textual explanation for VQA. Researchers have long recog-
nized the importance of explanations in yielding verifiable rea-
soning results and establishing trustworthy VQA systems. Early
attempts focus on providing textual explanations [21, 22, 28, 30, 44].
Zhou et al [53] propose a multi-task model to predict the answer
to a visual question and generate the image caption to explain the
answer simultaneously. Since their VQA data and image captioning
data are from independent sources, the caption may be irrelevant to
the question. Following their work, Li et al. [22] propose the VQA-E
dataset by adopting the answer-related caption as the explanation.
Differently, Wen and Peng [47] propose to retrieve related text from
databases to explain the reasoning process.

Though textual explanations are simple and easy to obtain, re-
searchers have also acknowledged their limitations. While VQA
involves reasoning on multiple modalities, textual explanations
often fail to effectively explain the visual concepts involved in
the reasoning processes. Therefore, recent research has begun to
explore Multimodal Explanation for VQA (MEVQA).

Multimodal explanation for VQA. Early research on MEVQA
attempts to provide individual visual explanations in addition to
textual explanations [34, 48]. These works typically relate visual
attention maps to the predicted answers or explanations. However,
attention maps can be confusing. For example, textual explanations
“a man riding on a horse" and “a horse riding on a man" can have
similar attention maps. To provide more expressive and accurate
explanations of the reasoning processes, joint language-vision ex-
planations are proposed [7, 50, 51]. For example, Chen and Zhao
[7] propose to represent visual objects in the textual explanations
by their grounding number predicted by a trained Faster R-CNN
[36], belonging to only 81 classes. Moreover, their constructed ex-
planations are in unnatural format, reducing the readability and
applicability. Following their research, Xue et al. [50] recently pro-
pose a variational causal model to improve answer-explanation
consistency by establishing the corresponding causal correlation.

However, traditional MEVQA methods rely on large-scale train-
ing data, which are costly and may be impractical in various vertical

domains. Moreover, considering that the recent open-world mod-
els (e.g., LLMs) have already learned open-world abilities [27, 46,
52], more streamlined and applicable learning frameworks may
represent the future direction. Therefore, we propose the SME
dataset, where the explanations are in standard English with ad-
ditional visual grounding tokens, supporting the research of Few-
Shot MEVQA (FS-MEVQA). To perform FS-MEVQA, our proposed
MEAgent can leverage a GPT-3.5-based agent with multimodal
open-world tools to infer answers and generate multimodal expla-
nations for visual questions, given only 𝑁 (= 16) training samples.

Few-shot explanation for VQA Recent studies have found that
LLMs are powerful few-shot learners [6, 23, 38]. Therefore, several
LLM-based few-shot explanation methods have been developed
[28, 29], which mainly focus on textual explanation. For example,
Lu et al. [28] input the image caption and the question with in-
context examples into GPT-3 to generate a chain-of-thought (i.e.,
textual explanation) and the answer. Different from the existing
methods, we propose a few-shot method to generate multimodal
explanations for visual questions, thereby enhancing the under-
standing of multimodal reasoning processes for VQA.

3 DATASET
Explaining reasoning processes for visual questions can aid in un-
derstanding and verifying the predicted answers, thereby enhanc-
ing the reliability and credibility of VQA systems. Our proposed
dataset aims to provide an effective benchmark for MEVQA. Com-
pared to previous multimodal explanations for VQA [7, 34, 51], our
dataset has three key advantages: (1) Instead of separate textual
and visual explanations [34], we integrate language and vision to
construct brief but expressive explanations; (2) Instead of using
unnatural formats [7, 51], our explanations are in standard English
with additional [𝐵𝑂𝑋 ] tokens for visual grounding, bridging to
broad advancements in Natural Language Processing (NLP). We
annotate both object boxes and their corresponding names men-
tioned in explanations, which support (3) a more effective visual
metric for measuring the ability to simultaneously generate names
and ground regions of key visual objects to explain the multimodal
reasoning processes. Figure 3 demonstrates a brief construction
procedure of our multimodal explanations.

3
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Data collection. We leverage VQA samples in the GQA dataset
[15]. Given the 127 different operations in GQA, we first represent
each reasoning step in the reasoning process by a <operation, rela-
tion/attribution, dependency 1, dependency 2> tuple, where “depen-
dency 1" and “dependency 2" can be previous reasoning steps. Then,
we follow [7] to categorize all operations into 12 atomic operations
that cover the essential semantics, i.e., 𝑆𝑒𝑙𝑒𝑐𝑡 , 𝐸𝑥𝑖𝑠𝑡 , 𝐹𝑖𝑙𝑡𝑒𝑟 , 𝑄𝑢𝑒𝑟𝑦,
𝑉𝑒𝑟𝑖 𝑓 𝑦,𝐶𝑜𝑚𝑚𝑜𝑛, 𝑆𝑎𝑚𝑒 ,𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 ,𝐶𝑜𝑚𝑝𝑎𝑟𝑒 , 𝑅𝑒𝑙𝑎𝑡𝑒 ,𝐴𝑛𝑑 , and𝑂𝑟 .
For example, to answer “Does the cucumber that is to the left of
the tomato look thin and green?", we need to find the tomato first
by executing “<𝑆𝑒𝑙𝑒𝑐𝑡 , 𝑡𝑜𝑚𝑎𝑡𝑜 , 𝑁𝑜𝑛𝑒 , 𝑁𝑜𝑛𝑒>", or “𝑆𝑒𝑙𝑒𝑐𝑡 (𝑡𝑜𝑚𝑎𝑡𝑜)”
in abbreviation.

3.1 Multimodal Explanation Construction
With reasoning step tuples, we need to convert reasoning steps into
explanations. Previous work [7] uses a Faster-RCNN [36] trained on
MS-COCO [25] to annotate visual objects related to reasoning steps,
since their proposed explanation model also uses Faster-RCNN to
extract visual objects. However, Faster-RCNN is often inaccurate
for annotating objects in the GQA dataset. In contrast, we traverse
the human-annotated scene graphs to obtain the results of all steps
and link reasoning steps with their related visual objects. Then,
we convert the reasoning process graphs into explanations with
templates designed for all operations. For example, a 𝑉𝑒𝑟𝑖 𝑓 𝑦 op-
eration “<𝑉𝑒𝑟𝑖 𝑓 𝑦, 𝐴𝑇𝑇 , 𝐷𝐸𝑃1, 𝑁𝑜𝑛𝑒>” is converted into “(DEP1)
is [RETURN] ATT", where [RETURN] is “not" if this operation
returns “no" or empty otherwise. (DEP1) is the phrase converted
from the dependent operation. Moreover, we use the [𝐵𝑂𝑋 ] tokens
in explanations to represent the grounding boxes of visual objects
related to the reasoning steps. To facilitate the visual metric pre-
sented in Section 3.2, we annotate both the values of grounding
boxes and their corresponding names mentioned in the explana-
tions. We also design programs to correct some grammar issues
in generated explanations, e.g., merging two 𝑉𝑒𝑟𝑖 𝑓 𝑦 operations
in Figure 3. However, rigid programs cannot address all language
errors in the constructed explanations. Therefore, we leverage the
powerful language ability of GPT-3.5 [6] to correct our explana-
tions. To avoid disruptions of [𝐵𝑂𝑋 ], we remove [𝐵𝑂𝑋 ] in the
explanations and utilize GPT-3.5 to convert the explanations into
standard English. Then, we add back the [𝐵𝑂𝑋 ] tokens according
to their names. Finally, we take several rounds of manual checks to
further clean the constructed explanations. After removing a small
number of low-quality samples, we obtain 1,028,230 multimodal
explanations in standard English with additional [𝐵𝑂𝑋 ] tokens for
visual grounding. All data are divided into 901,203 training samples,
97,027 validation samples, and 30,000 test samples. In the MEVQA
task, the model is required to answer the visual question, generate a
textual representation of the explanation (e.g., “There is a cucumber
[BOX] to the left of the tomato [BOX] that is green and not thin."),
and grounds visual boxes linked to all [𝐵𝑂𝑋 ] tokens.

3.2 Metrics
To evaluate the generated multimodal explanations (aka., reference
explanations), we adopt textual and visual metrics. For textual
metrics, since we only add [𝐵𝑂𝑋 ] into standard English, we di-
rectly adopt widely-used language metrics, i.e., BLEU-4 [33], ME-
TEOR [5], ROUGE-L[24], CIDEr [43], and SPICE [2]. For visual

(a) Number of words (b) Number of [𝐵𝑂𝑋 ]

Figure 4: Distributions of the explanation lengths and the
numbers of [𝐵𝑂𝑋 ] in explanations of our SME dataset.

metrics, we propose a new detection metric to comprehensively
evaluate the ability to generate the names of visual objects and
ground their corresponding regions in images. For every object
name 𝑠 annotated in a ground truth explanation (e.g., “cucumber"
and “tomato" in Figure 3), we match the [𝐵𝑂𝑋 ] token following 𝑠 in
the reference explanation. Then, we compute the IoU (intersection
over union) score between the ground truth boxes 𝐵𝑠𝑔𝑡 of 𝑠 and the
reference boxes 𝐵𝑠𝑟𝑒 related to this [𝐵𝑂𝑋 ] token, evaluating the
detection precision of this object. The final detection score of one
explanation is averaged over all object names, as follows:

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =
1
𝑁

∑︁
𝑠

𝐼𝑜𝑈 (𝐵𝑠𝑔𝑡 , 𝐵𝑠𝑟𝑒 ), (1)

where 𝑁 is the number of object names that occur in the ground
truth and reference explanations. Therefore, the redundant boxes
in the reference explanation and the missing boxes can punish
the final detection score. Moreover, we propose visual attribution
metrics to evaluate the ability of models to understand key visual
attributions and generate them in explanations for MEVQA, which
is introduced in Section 5.5.

More discussions of our adopted metrics, especially their im-
provements compared to previous work, are included in Supple-
mentary Materials.

3.3 Data Analysis
Our SME dataset is composed of 901,203 training samples, 97,027
validation samples, and 30,000 test samples.

Distribution of Multimodal Explanations. The main statis-
tics of multimodal explanations in the training, validation, and
test sets are shown in Figure 4. Three split sets have similar dis-
tributions of the explanation length and the number of [𝐵𝑂𝑋 ] in
explanations. The explanation lengths range from 3 words to 32
words. The majority (97.0%) of explanations consist of between 5
to 19 words, indicating the requirement of generating brief but ex-
pressive text. The numbers of [𝐵𝑂𝑋 ] in explanations range from 0
to 6, which corresponds to the number of visual objects that should
be grounded for explaining. The majority (95.8%) of explanations
contain at least 1 [𝐵𝑂𝑋 ], highlighting the crucial role of vision in
our multimodal explanations. When comparing three split sets, the
test set shows a slightly higher proportion of explanations with 2
or 3 [𝐵𝑂𝑋 ], which improves the difficulty of the test set.

More information about our dataset is provided in Supplemen-
tary Materials.
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Figure 5: Framework of our proposed Multimodal Explaining Agent (MEAgent) method: (1) Convert the input question into the
program and execute it by open-world tools, with a few-shot program prompt; (2) Translate the execution process into the
explanation with a few-shot explanation prompt and link the detected visual boxes to form the multimodal explanation.

4 METHOD
State-of-the-art MEVQA methods [7, 34, 50] rely on large-scale
training data for learning explanation, despite being built upon
pretrained Vision-Language Models (VLMs). However, annotating
VQA data with explanations is costly and may be impractical in
various vertical domains. Meanwhile, recent research [14, 29, 40]
has shown that LLM-based visual programming is effective for
few-shot VQA. Inspired by the above observations, we propose a
training-free Multimodal Explaining Agent (MEAgent) method for
Few-ShotMEVQA (FS-MEVQA) in this paper, givenmerely𝑁 (= 16)
training samples. MEAgent leverages GPT-3.5 andmultimodal open-
world tools to conduct think and actions for FS-MEVQA, composed
of Multimodal Programming and Explanation Translation stages.
Figure 5 illustrates the framework of our method.

Multimodal Programming. In Multimodal Programming (Mul-
Prog), we decompose the input question 𝑄 into program steps,
which are then executed with the input image 𝐼 by multimodal
open-world tools. Specifically, we select a set of multimodal open-
world tools as our program modules. For example, we use the open-
world object detection model OWL-ViT [31] as our location module
𝐿𝑂𝐶 (𝑖𝑚𝑎𝑔𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡). These modules can be flexibly customized and
expanded to improve the reasoning capability of our MEAgent. To
convert 𝑄 into a program instantiated by pre-defined program
modules, we use 𝑁 (= 16) in-context examples to form the few-
shot program prompt that exemplifies the correspondence between
questions and programs. To improve the effectiveness, our designed
prompt includes all 16 selected modules. By inputting the prompt
and the input question 𝑄 , GPT-3.5 can comprehend the correspon-
dence and generate the program for solving 𝑄 . Then, multimodal
open-world tools are activated to execute the program, inferring
the answer with a program-like execution process. We denote the
textual representation of the execution process as 𝑃 , while values of
variables are not directly contained in 𝑃 . More details of Multimodal
Programming are included in Supplementary Materials.

Explanation Translation. Though the MulProg stage provides
a program-like execution process for solving the visual question,
such a process is abstract, verbose, and hard to read by general
users. Therefore, this stage aims to translate the execution process
into a user-friendly multimodal explanation. The textual repre-
sentation 𝑃 of the execution process obtained by MulProg can be
comprehended by GPT-3.5. Motivated by this, as shown in Figure

Figure 6: Our few-shot explanation prompt. [𝑄] denotes the
input question and [𝑃] denotes its execution process.

6, we construct a few-shot explanation prompt, including 𝑁 (= 16)
in-context examples to demonstrate the correspondence between
execution processes and explanations in standard English with
additional {𝐵𝑂𝑋𝑖} tokens that represent the box variables in pro-
grams. For the input question 𝑄 and its execution process 𝑃 , the
prompted GPT-3.5 can generate the explanation for the reasoning
process. However, since MulProg aims to solve the visual question
and neglects to explain the reasoning process, some key visual ob-
jects for explanation may be ignored in the generated program. To
address this problem, we propose a simple yet effective rethinking
mechanism to improve the generated explanation. As shown in our
prompt, MEAgent allows GPT-3.5 to directly output the needed
objects that may not be in the program. Next, MEAgent checks all
box variables in the generated explanation and links those existing
in the program to their computed values. For visual boxes ignored
in the program, MEAgent extracts their object names in the ex-
planation and utilizes the location module 𝐿𝑂𝐶 to compute their
values. Finally, MEAgent can obtain the multimodal explanation
with [𝐵𝑂𝑋 ] tokens to represent boxes of key visual objects.

5 EXPERIMENTS
We conduct extensive experiments on the proposed SME dataset to
investigate the effectiveness of our proposed MEAgent method for
FS-MEVQA. More details are included in Supplementary Materials.
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Table 2: The results of Few-Shot Multimodal Explanation for Visual Question Answering on the SME dataset. 𝑁 denotes the
number of training samples. Gray results are trained on the whole training set.

Method Backbone 𝑁 BLEU-4 METEOR ROUGE-L CIDEr SPICE Detection ACC
REX VisualBERT 16 0.00 4.37 23.23 0.89 0.00 0.00 17.77
REX VisualBERT 64 0.00 4.84 24.08 0.91 0.00 0.00 17.77
REX VisualBERT 256 0.00 4.87 24.76 0.98 0.00 0.00 18.05
REX VisualBERT 1K 8.84 10.83 38.60 34.86 4.10 0.43 18.19
REX VisualBERT 4K 33.88 24.98 59.24 99.31 26.63 1.84 27.50
REX VisualBERT 16K 56.35 39.22 75.49 275.16 48.42 3.94 33.04
REX VisualBERT All 84.26 56.22 90.50 763.63 78.88 7.66 61.38
REX LXMERT All 87.45 58.90 92.15 798.55 82.69 7.82 71.91
VCIN VisualBERT 16 9.17 19.82 33.34 4.28 13.39 0.28 17.77
VCIN VisualBERT 64 20.27 25.61 47.53 9.72 25.97 0.41 17.77
VCIN VisualBERT 256 29.69 28.94 53.96 24.35 27.96 0.67 18.05
VCIN VisualBERT 1K 37.00 31.99 59.07 54.01 29.84 1.10 24.10
VCIN VisualBERT 4K 47.07 35.49 67.91 142.59 39.65 4.79 28.62
VCIN VisualBERT 16K 59.42 41.54 75.54 309.85 50.93 9.77 35.71
VCIN VisualBERT All 90.64 61.80 93.73 833.37 86.63 21.90 64.00
VCIN LXMERT All 91.52 62.96 94.44 847.43 88.41 23.04 73.31
GPT-4V GPT-4V 16 45.51 35.17 52.67 269.68 37.67 7.00 42.30

MEAgent (Ours) GPT-3.5 16 67.91 50.55 79.41 510.44 64.09 29.09 51.45

5.1 Experimental Setup
Baseline methods.We adopt three baseline methods, including
two state-of-the-art methods for MEVQA, as follows:

REX [7] grounds visual objects by Faster-RCNN [36] and utilizes
an LSTM-based generator to generate multimodal explanations,
based on features extracted by pretrained Vision-Language Models
(VLMs).

VCIN [50] is the state-of-the-art method for MEVQA, which
utilizes a gating Transformer to generate explanations and establish
causal correlations to improve explanation-answer consistency,
based on Faster-RCNN and pretrained VLMs.

Experiments reported in [50] adopt VisualBERT [20] and LXMERT
[41] as backbone VLMs. Given that LXMERT is pretrained on the
GQA dataset which overlaps with the questions and images in our
dataset, we only adopt VisualBERT in few-shot experiments.

GPT-4V(ision) [1] may be currently the most powerful mul-
timodal LLM. Since GPT-4V can generate text and detect visual
objects, we also construct a prompt with the same 𝑁 (= 16) exam-
ples in our method to facilitate question answering and multimodal
explanation generation via GPT-4V. The details are included in
Supplementary Materials.
Evaluation. As introduced in Section 3, we adopt BLEU-4 [33],
METEOR [5], ROUGE-L[24], CIDEr [43], and SPICE [2] to evaluate
the language quality. To evaluate the ability to generate the names
of visual objects and ground their corresponding regions in images,
we leverage our proposed visual detection metric. Moreover, we
report the answering accuracy (abbr., ACC).
Implementation details. While our SME dataset of 1,028,230
samples can also be adopted in the research of traditional MEVQA,
we focus on FS-MEVQA in our experiments. In the few-shot setting,
different from traditional 𝑁 -shot learning [8, 39, 45], we randomly
sample 𝑁 training samples for training and evaluate models on
the whole test set. All results are averaged on 5 runs with different
random seeds. More details are in Supplementary Materials.

5.2 Results and Discussions
The experimental results on our SME dataset are shown in Table 2.
From the results, we have the following observations:

• The performance of traditional MEVQA methods (i.e., REX and
VCIN) significantly drops when 𝑁 is small. This shows these
methods cannot effectively conduct FS-MEVQA, though being
built upon pretrained VLMs. These methods rely on large-scale
training data, which may not be an ideal training paradigm in
practice, especially considering the recent progress in open-world
learning and LLM.

• The detection scores of REX and VCIN are much lower than that
of our MEAgent, even trained on all 901,203 training samples.
This can be attributed to their adopted Faster R-CNN for pre-
extracting 36 objects for every image, which may not contain the
needed objects and lacks open-world objects. Differently, we use
an open-world detector OWL-ViT to detect objects with their
names mentioned in explanations.

• Our MEAgent significantly outperforms GPT-4V with the same
𝑁 and state-of-the-art MEVQA methods with even thousands
of training samples, showing its effectiveness for FS-MEVQA.
Though 16 samples are insufficient for learning question answer-
ing and explaining, they are effective in defining our standard
English-like multimodal explanations. Based on this, our LLM
agent-based method can leverage out-of-training knowledge and
multimodal open-world tools to perform FS-MEVQA.

• The language quality (i.e., BLEU-4, METEOR, ROUGE-L, CIDEr,
and SPICE) of REX and VCIN trained on all training samples
significantly outperforms GPT-4V and our MEAgent with few
training samples. This shows the quality of our constructed train-
ing set and the current performance gap between traditional
MEVQA and FS-MEVQA, suggesting more future work on FS-
MEVQA.
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Figure 7: Qualitative results of the generated multimodal explanations and the predicted answers. The [𝐵𝑂𝑋 ] tokens link to
visual boxes of the same colors in the images.

Table 3: Ablation results on the SME test set. 𝑁 denotes
the number of training samples. MEAgent-RTK denotes
MEAgent without the rethinking mechanism.

Method 𝑁 BLEU-4 METEOR ROUGE-L CIDEr SPICE Detection
MEAgent-RTK 16 65.15 46.31 75.66 456.03 55.39 23.58

MEAgent 4 52.50 41.72 69.61 372.97 45.32 15.77
MEAgent 8 62.93 47.39 75.85 477.38 59.06 22.52
MEAgent 16 67.91 50.55 79.41 510.44 64.09 29.09

5.3 Ablation Study
In this section, we ablate our rethinking mechanism and investi-
gate the effect of 𝑁 in our method. The ablation results are shown
in Table 3, from which we have the following observations: (1)
MEAgent-RTK removes the rethinking mechanism and only uses
visual objects detected in multimodal programming, which per-
forms worse than MEAgent, especially on the detection metric.
This indicates the effectiveness of the rethinking mechanism which
can generate and ground objects ignored in the previousmultimodal
programming. (2) MEAgent performs better with more training
samples (i.e., 𝑁 ). However, compared to the results in Table 2, our
MEAgent with 𝑁 = 4 can still outperform GPT-4V with 𝑁 = 16 or
REX and VCIN with 𝑁 = 4K. Our MEAgent with 𝑁 = 8 can still
outperform REX and VCIN with 𝑁 = 16K. These results further
verify the effectiveness of our method.

5.4 Qualitative Results
In addition to quantitative results, we demonstrate qualitative re-
sults of the predicted answers and explanations for FS-MEVQA

in Figure 7. Compared to VCIN (𝑁=16K) and GPT-4V (𝑁=16), our
MEAgent (𝑁=16) can generate more rational, accurate, and co-
herent explanations of the reasoning process: (1) In (b)-(d), VCIN
cannot ground the key visual objects in the images for explanation,
while our MEAgent can utilize the names of objects and an open-
world detector to locate accurate boxes. (2) VCIN usually predicts
inconsistent answers and explanations. This is because VCIN needs
large-scale data to learn the causal correlation between the answer
and explanation. Differently, we utilize LLM to translate the exe-
cution process of inferring the answer to its explanation, ensuring
inherent consistency between answers and explanations. (3) In (b)-
(d), the detection accuracy of GPT-4V is also unsatisfactory. In (d),
GPT-4V grounds an unimportant object (i.e., “wall") in the explana-
tion but ignores key objects (i.e., “soap dispensers" and “bathroom"),
which shows GPT-4V fails to capture the correct reasoning process
for solving this question. Differently, our MEAgent explicitly gen-
erates the multimodal program for solving the input question and
generates the explanation accordingly. Therefore, MEAgent can
capture rational reasoning processes more effectively.

5.5 Results of Visual Attribution Metrics
We further propose metrics to evaluate the ability of models to un-
derstand key visual attributions and generate them in explanations
for FS-MEVQA. We have collected 38, 41, 16, 96, 6, 11, 14, 9, 79, 38,
and 43 keywords about colors, materials, shapes, activities, sizes,
poses, sports, directions, animals, people, and plants that occur in
the test explanations, separately. Then, we compute the percent-
age of correctly generated keywords in the explanations for every
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Table 4: The accuracy of explaining key visual attributions on the SME test set. 𝑁 denotes the number of training samples.

Method 𝑁 Color Material Shape Activity Size Pose Sport Direction Animal Person Plant
VCIN 16K 31.65 24.45 10.50 59.76 39.21 33.40 16.29 55.23 29.79 70.39 31.07
GPT-4V 16 63.11 59.07 61.43 65.27 70.48 71.56 68.42 69.13 72.73 48.68 60.00

MEAgent 16 82.67 76.90 83.60 95.25 79.77 92.46 89.71 87.92 82.97 83.45 67.85

Figure 8: Out-of-distribution results of our MEAgent for FS-MEVQA. The [𝐵𝑂𝑋 ] tokens link to visual boxes of the same colors
in the images.

attribution, which are demonstrated in Table 4. From the results,
we have the following observations: (1) Explaining plants appears
to be the most challenging one, which may be due to the limited
training data on subdivided plant species in current research. There-
fore, the experimented LLMs and VLMs may have less knowledge
about plant species. (2) Interestingly, GPT-4V demonstrates superior
performance compared to VCIN across all attributions except for
𝑃𝑒𝑟𝑠𝑜𝑛, despite having lower language scores in Table 2. This can
be attributed to the extensive open-world knowledge of GPT-4V,
while VLM-based VCIN suffers from insufficient knowledge in few-
shot learning. This comparison also shows the complementarity
of visual attribution metrics in evaluating visual knowledge for ex-
planation. (3) GPT-4V achieves an especially low score for 𝑃𝑒𝑟𝑠𝑜𝑛,
which indicates GPT-4V may be too cautious in identifying the
biological sexes, ages, and occupations of people. (4) Our MEAgent
significantly outperforms both baselines, showing its superior abil-
ity to understand visual attributions and explain them. Though
GPT-3.5 can only understand and generate text, the GPT-3.5-based
MEAgent can leverage open-world visual tools (e.g., object detec-
tor and image croppers) to perform multimodal explanation, even
outperforming the stronger multimodal LLM GPT-4V.

5.6 Out-Of-Distribution Results
Given the limited knowledgewithin training samples in FS-MEVQA,
a key to performing FS-MEVQA is leveraging open-world knowl-
edge. Therefore, we further gather Out-Of-Distribution (OOD) vi-
sual questions that involve concepts not present in our SME dataset
to test our MEAgent method. In Figure 8, we show the results for
four OOD samples belonging to healthcare, industry, science, and
office domains. We are surprised to find that MEAgent can predict

rational answers and generate good explanations for these ques-
tions. In (a), since we implement a 𝐶𝑂𝑈𝑁𝑇 module to count the
number of detected boxes, MEAgent can even explain the number
of injured fingers. In (d), while MEAgent can accurately locate the
title and the chart, its answer is not very accurate (“upper left" may
be a better answer). These results may suggest a boarder application
range of our MEAgent in various domains. By employing an LLM
agent with open-world tools for visual reasoning and multimodal
explanation, MEAgent is capable of overcoming the limited knowl-
edge in training data and generalizing to encompass open-world
questions. Moreover, we argue that utilizing domain-specific pro-
grammingmodules and examples can further improve the capability
of MEAgent in a particular domain.

6 DISCUSSION AND CONCLUSION
In this paper, we propose a Standard Multimodal Explanation (SME)
dataset with 1,028,230 samples for Visual Question Answering
(VQA) with elaborately constructed multimodal explanations of the
underlying multimodal reasoning processes. Based on our dataset,
we propose a new Few-Shot Multimodal Explanation for VQA (FS-
MEVQA) task, which aims to answer the visual question and ex-
plain the reasoning process with a limited number (denoted as 𝑁 )
of training samples. To the best of our knowledge, SME is the first
large-scale dataset for MEVQA with joint language-vision explana-
tions based on standard English and additional visual grounding
tokens, which bridge MEVQA to a broad field in Natural Language
Processing (NLP). Moreover, we propose a training-free Multimodal
Explaining Agent (MEAgent) method based on an LLM agent with
multimodal open-world tools for FS-MEVQA. Extensive experi-
ments demonstrate that our MEAgent significantly outperforms
traditional MEVQA methods and GPT-4V for FS-MEVQA.
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