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Figure 1: DIFFusion Counterfactuals. We illustrate the counterfactual results from our methods
on the Butterfly dataset, the Black Hole dataset, and the Retina dataset. In the Butterfly dataset,
the Viceroy has a cross-sectional line (yellow), a smaller head with less dots (magenta), and more
“scaley” dots (blue), compared to the Monarch. In the Black Hole dataset, SANE has more uniform
wisps (yellow) and less of a prominent photon ring (blue) as compared to MAD, with these distin-
guishing features discovered through our method rather than known a priori. In the Retina dataset,
normal retinas lack the horizontal line bumps (yellow) present in retinas with drusen.

ABSTRACT

Scientific expertise often requires recognizing subtle visual differences that re-
main challenging to articulate even for domain experts. We present a system
that leverages generative models to automatically discover and visualize mini-
mal discriminative features between categories while preserving instance identity.
Our method generates counterfactual visualizations with subtle, targeted transfor-
mations between classes, performing well even in domains where data is sparse,
examples are unpaired, and category boundaries resist verbal description. Exper-
iments across six domains, including black hole simulations, butterfly taxonomy,
and medical imaging, demonstrate accurate transitions with limited training data,
highlighting both established discriminative features and novel subtle distinctions
that measurably improved category differentiation. User studies confirm our gen-
erated counterfactuals significantly outperform traditional approaches in teaching
people to correctly differentiate between fine-grained classes, showing the poten-
tial of generative models to advance human visual learning and scientific research.

1 INTRODUCTION

Generative models, especially large-scale image diffusion models, have transformed text-to-image
creation, opening new ways to visualize concepts across various domains. While these models
excel in everyday contexts with clear category distinctions, a far more challenging frontier exists
in scientific fields where visual differences between categories are so subtle that they often remain
unknown and unidentified even to domain experts.

In specialized scientific domains, the complete set of visual features distinguishing between cate-
gories may be partially or entirely undiscovered. For example, astronomers studying black hole sim-
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ulations have no established verbal characteristics to differentiate MAD from SANE models because
these distinguishing features have not yet been comprehensively identified. Entomologists may dif-
ferentiate Viceroy and Monarch butterflies through the Viceroy’s characteristic cross-sectional black
line, yet may miss other distinguishing features that could further help the differentiation. This rep-
resents the fundamental challenge for visual expertise training: how do we teach recognition of
patterns we ourselves do not fully understand?

One of the most effective ways to reveal subtle category differences is to transform an image and
rapidly flip between the original and its altered version to highlight differences. In scientific do-
mains, using generative models for such targeted image editing faces three key challenges: (1)
automatically identifying discriminative features that may not be known or easily articulated even
by experts, (2) limiting changes exclusively to these category-defining features, and (3) preserv-
ing all other identity characteristics of the instance. We develop a system that combines state-
of-the-art image editing techniques with visual algebraic conditioning guidance to address these
challenges in data-scarce scientific domains. Our approach automatically identifies discriminative
features through visual algebraic operations that extract category-specific information without re-
quiring explicit articulation. By integrating inverted noise maps (z) to preserve identity features
with conditioning vectors (c) that guide category transformations, our system achieves effective
identity-preserving yet category-changing results, that isolate and visualize subtle differences be-
tween scientific categories.

Our approach overcomes limitations in current counterfactual visualization methods, which have
traditionally been applied in domains where category distinctions are already well-understood and
easily verbalized. Text-guided editing methods rely on linguistic descriptions, which can be too
ambiguous to specify desired visual changes. Methods like Concept Sliders (Gandikota et al., 2023),
which is guided by the image distributions themselves, depend on paired examples in most cases—a
constraint limiting their use in teaching scenarios. Visual counterfactual generation methods often
rely on gradients from a classifier, a limitation when data is scarce. Classifier-free alternatives, like
TIME (Jeanneret et al., 2024), struggle with image quality and coherence for subtle differences.

Through experiments across six domains, we demonstrate our approach’s effectiveness in highlight-
ing visual differences between categories. For instance, in black hole simulations, where distin-
guishing characteristics between MAD and SANE models remain largely unknown, our counterfac-
tual visualizations emphasize distinct visual patterns in the image distribution. The transformations
draw attention to variations in the uniformity of wisps and prominence of the photon ring, which are
features that black hole experts themselves had not previously identified.

User studies confirm the effectiveness of our approach: participants who trained with our coun-
terfactual visualizations demonstrated significantly better category differentiation performance than
those using traditional approaches with unpaired images. This validates that our method highlights
meaningful visual patterns that can be used to build expertise, even when those subtle patterns have
not yet been explicitly identified or understood.

2 RELATED WORK

Visual Counterfactual Explanations. A counterfactual image shows how an input would ap-
pear if altered to switch its class, enhancing interpretability. Counterfactual inference crafts im-
ages that not only differ in classification but also clarify the visual features defining each distri-
bution. Approaches for visual counterfactual explanations (VCEs) make use of generative model
edits, with VAEs (Rodriguez et al., 2021), GANs (Lang et al., 2021), and more recently, diffusion-
based methods (Jeanneret et al., 2022; 2023; 2024; Augustin et al., 2024; Sobieski & Biecek, 2024;
Farid et al., 2023). Most diffusion-based approaches adapt classifier guidance (Dhariwal & Nichol,
2021) to steer the generative process of counterfactuals, requiring access to the classifier and test-
time optimization to produce counterfactual images. However, generating counterfactuals this way
can be challenging, as the optimization problem closely resembles that of adversarial examples.
TIME (Jeanneret et al., 2024) proposes an alternative approach by using Textual Inversion (Gal
et al., 2022) to encode class and dataset contexts into a set of text embeddings, providing a black-
box framework for counterfactual explanations. While this removes the need for direct classifier
access, Textual Inversion is primarily designed for personalization, focusing on regenerating con-
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cepts in novel scenes rather than preserving image structure-an essential aspect of counterfactual
generation.

Image Editing. Recent advances in text-to-image diffusion models (Ramesh et al., 2022; Rom-
bach et al., 2022; Saharia et al., 2022; Nichol et al., 2022; Labs, 2024) have enabled test-time
controls for image editing, ranging from semantic modifications to attention-based edits and la-
tent space manipulation. Early approaches, such as SDEdit (Meng et al., 2022), applied noise to
an image and then denoised it using a new prompt, but this often resulted in significant structural
changes. Later methods refined direct prompt modifications by incorporating cross-attention ma-
nipulations or masking to better preserve image structure (Hertz et al., 2022; Parmar et al., 2023;
Brack et al., 2024; Tumanyan et al., 2023; Couairon et al., 2022). Unlike single-image editing meth-
ods, Concept Sliders (Gandikota et al., 2023) introduce a different approach by optimizing a global
semantic direction across the diffusion model. While text pairs can guide their optimization, they
also propose visual sliders based on image pairs. However, the visual slider approach struggles with
unpaired data.

Diffusion Models with Image Prompts. Text-to-image diffusion models generate images from
text prompts, but text often falls short in capturing nuanced concepts. Image prompts offer a richer
alternative, conveying nuanced details more effectively, as ”a picture is worth a thousand words.”
DALL-E 2 (Ramesh et al., 2022) pioneered this by conditioning a diffusion decoder on CLIP im-
age embeddings, aided by a diffusion prior for text mapping. Later works offer different architec-
tures (Razzhigaev et al., 2023) or adapt text-to-image models for image prompts (Ye et al., 2023;
Arar et al., 2023; Guo et al., 2024).

Diffusion Inversion. Editing a real image typically requires first obtaining a latent representation
that can be fed into the model for reconstruction. This latent representation can then be modified,
either directly or by altering the generative process, to produce the desired edit. Most diffusion-
based inversion methods rely on the DDIM (Song et al., 2022) sampling scheme, which provides
a deterministic mapping from a noise map to a generated image (Mokady et al., 2022; Wallace
et al., 2022; Parmar et al., 2023). However, this approach introduces small errors at each diffu-
sion step, which can accumulate into significant deviations, particularly when using classifier-free
guidance (Ho & Salimans, 2022). Instead of predicting an initial noise map that reconstructs the
image through deterministic sampling, an alternative approach considers DDPM (Ho et al., 2020)
sampling and inverts the image into intermediate noise maps (Wu & la Torre, 2022). Building on
this, (Huberman-Spiegelglas et al., 2024) proposed an inversion technique for the DDPM sampler,
along with an edit-friendly noise space better suited for editing applications. We use this technique
while conditioning on image prompts.

Machine Teaching. Machine teaching optimizes human learning via computational models. Early
work framed this as an optimization task, minimizing example sets for efficient teaching (Zhu,
2015). Generally, the field of machine learning for discovery has machine teaching as a goal (Jumper
et al., 2021; Chiquier & Vondrick, 2023). Recent advances leverage generative models and LLMs for
cross-modal discovery, synthesizing representations for conceptual learning (Chiquier et al., 2024),
decoding structures in mathematics, or programs for scientific discovery (Mall et al., 2025; Romera-
Paredes et al., 2024). Parallel efforts amplify subtle signals for perception: language models detect
fine-grained textual differences (Dunlap et al., 2024), while video motion magnification enhances
visual cues (Liu et al., 2005; Wu et al., 2012; Oh et al., 2018). These methods, though effective
for fine-grained discrimination, typically require aligned, abundant data and focus on single modal-
ities. Our work extends these efforts, using diffusion models to generate visual counterfactuals for
nuanced category learning.

3 METHOD

We begin by introducing DIFFusion for counterfactual image generation, as illustrated in Figure 2.
In Section 3.1, we provide the necessary background on diffusion models. In Section 3.2, we present
our proposed method, outlining its design and implementation.
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Figure 2: DIFFusion method. Our method consists of four parts. (i) Inverting the real image with
DDPM-EF to obtain noise maps. (ii) Performing conditioning space arithmetic using positive and
negative embeddings obtained from the training set. (iii) Generation via diffusion sampling, starting
from the inverted noise conditioning on the manipulated conditioning vector ĉ. (iv) Optional domain
tuning, in which we fine-tune the diffusion model for domain adaptation.

3.1 DIFFUSION PRELIMINARIES

Diffusion models generate data by sampling from a distribution through iterative denoising of noisy
intermediate vectors. A forward process is first applied, where noise is gradually added to a clean
image x0 over T steps. A noisy sample at timestep t can be expressed as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, t = 1, ..., T (1)

where ϵ ∼ N (0, I), αt is a predetermined variance schedule, and ᾱt =
∏T

i=1 αi. The model learns
to reverse the forward noising process, which can be expressed as an update step over xt,

xt−1 = µθ(xt, c) + σtzt, t = T, ..., 1 (2)

where zt are i.i.d standard normal vectors, σt is a variance schedule, and µθ(xt, c) is typically
parameterized as:

µθ(xt, c) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, c)

)
(3)

Here ϵθ(xt, t, c) is the trained noise prediction network, and c is an optional conditioning context,
such as an image prompt embedding.

3.2 DIFFUSION

Given an input image x0, our goal is to find a fine-grained, discriminative edit that changes a clas-
sifier’s prediction. Let Rθ(z, c) be the recursive application of the denoising diffusion model from
Equation 2. Our approach finds these edits by inverting the image x0, into a sequence of noise
maps, z, and manipulating the CLIP embeddings of the original image, c = E(x), into a resulting
conditioning vector ĉ, before sampling the modified image. We generate the modified image x̂0

through:

x̂0 = Rθ(z, ĉ) (4)

Since the diffusion model must generate an image consistent with the original noise maps z, and
has a conditioning vector ĉ that steers from the source towards the target class, the resulting samples
maintain the identity of the original image, but with subtle modifications such that the class label
flips.

Inversion. We are interested in extracting noise vectors z, such that, if used in Equation 2, would
recover the original image x0. Note that any sequence of T + 1 images x0, ..., xT can be used to
extract consistent noise maps for reconstruction by isolating zt from Equation 2 as

zt =
xt−1 − µθ(xt, c)

σt
, t = T, ..., 1 (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Input EF-DDPM TI + EF-DDPM TIME Concept Sliders DIFFusion

Ca
t

Ki
ki

M
on

ar
ch

Dr
us

en
M
AD

Se
rio

us
Dog

Bouba
Viceroy

Norm
al

SANE
Sm

iling

Input EF-DDPM TI + EF-DDPM TIME Concept Sliders DIFFusion

Figure 3: Qualitative Results. We present our qualitative results, where each row corresponds to
one direction of our binary datasets. The first column contains the inputs, and each subsequent
column contains the results from each baseline, with the last column containing the result from
DIFFusion. In particular, the magnified boxes in the magenta frame show that our method is able
to pick up on small discriminative cues. For example, when converting from MAD to SANE, the
whisps become amplified and more uniform in brightness, and when converting from Monarch to
Viceroy, a cross-sectional line is added on the wing. Note: The value in the top left corner of each
image represents the probability predicted by the oracle classifier, as explained in Section 4.2.

We follow the choice suggested in (Huberman-Spiegelglas et al., 2024) and compute the noise maps
through the standard forward diffusion process Equation 1, but using statistically independently-
sampled noise for each timestep. This yields noise maps z = {xT , zT , . . . , z1} that are consistent
with x0.

Conditioning. We generate edits that flip the category through arithmetic operations on c, resulting
in ĉ. We apply an additive translation to the conditioning vector c = E(x):

ĉ = c+ ω∆c (6)

where c is the CLIP image embedding of the original image, ∆c is a direction that moves the class
from the original class to the target class, and ω is a scaler that varies the direction’s strength. We
calculate this translation through the difference of means for each class:

∆c = Exp
[E(xp)]− Exn

[E(xn)] (7)
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such that xp is an image of class p and xn is an image of class n (e.g, positive and negative classes).
We normalize all the image embeddings with L2 norm prior to the arithmetic.

Sampling. We use ĉ as the conditioning vector for DDPM sampling, paired with the inverted
noise maps, z, to generate the counterfactual image. As suggested in (Huberman-Spiegelglas et al.,
2024), we run the generation process starting from timestep T − Tskip, where Tskip is a parameter
controlling the resemblance to the input image. Therefore, similar to Equation 2, denoting the
denoised edited image at timestep t as x̂t we have,

x̂t−1 = µθ(x̂t, ĉ) + σtzt, t = T − Tskip, ..., 1 (8)

This approach allows us to systematically steer the image generation toward the target class by
adjusting the manipulation scale ω, while maintaining key structural features of the original image
through Tskip. Intuitively, a larger Tskip results in fewer denoising steps under the manipulated
condition ĉ, leading to greater adherence to the input image.

Domain Tuning We use a pre-trained diffusion model (Shakhmatov et al., 2023) that conditions
on CLIP image embeddings. When adapting to a new domain, we fine-tune the model using LoRA
(Hu et al., 2021), training only its cross-attention and corresponding projection layers. As discussed
in B.2, we find that domain tuning is beneficial for the Butterfly (Van Horn et al., 2018) and Retina
(Kermany et al., 2018) datasets, but has minimal impact on the other datasets.

Implementation Details. For inversion, we adapt the edit-friendly DDPM inversion scheme
(Huberman-Spiegelglas et al., 2024) to our diffusion decoder (Shakhmatov et al., 2023). Specifi-
cally, we use CFG (Ho & Salimans, 2022) in both inversion and generation. We first aim to find
guidance scale parameters that achieve perfect reconstruction, and then use these guidance scales
for our method. This process is further discussed in B.3. To generate counterfactuals, we manipu-
late the conditioning space using Equation 6, adjusting the manipulation guidance scale per dataset
(ω = 1.0 for AFHQ, ω = 2.0 for the rest of the datasets). We then sample for T − Tskip steps,
where T = 100 and the choice of the Tskip parameter is further discussed in Section 4.2.

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

Table 1: Datasets and their classification tasks.

Dataset Class 0 / Class 1
AFHQ Dog / Cat
KikiBouba Kiki / Bouba
Retina Drusen / Normal
Black-Holes MAD / SANE
Butterfly Monarch / Viceroy
CelebA-HQ Smile / No-Smile

Datasets. We quantitatively benchmark on
datasets from diverse domains. We also note
the corresponding directions under examina-
tion for each dataset in Table 1. We eval-
uate on AFHQ (Choi et al., 2020), Cele-
baHQ (Lee et al., 2020) and KikiBouba (Alper
& Averbuch-Elor, 2024) as our non-scientific
datasets. We also evaluate on three scientific
datasets. The first is Retina (Kermany et al.,
2018), a dataset of retina cross-sections, both
diseased and healthy. The second is Black
Holes, which is a dataset of images taken from
fluid simulations of accretion flows around a
black hole (Wong et al., 2022). The simulations assume general relativistic magnetohydrodynam-
ics (GRMHD) under one of two regimes: magnetically arrested (MAD) or standard and normal
evolution (SANE) (Jiang et al., 2023). Finally, we also evaluate on Monarch and Viceroy, a fine-
grained species classification task. Monarch butterflies evolved to be mimics of Viceroys, and the
two species are notoriously difficult to tell apart.

Baselines. We use TIME (Jeanneret et al., 2024) as our counterfactual baseline, and replace black-
box classifier labels with ground truth labels. For editing baselines, we compare against Stable
Diffusion (Rombach et al., 2022) with EF-DDPM inversion (Huberman-Spiegelglas et al., 2024) us-
ing class-name prompts. To better accommodate visual concepts, we implemented another baseline
that uses Textual Inversion (Gal et al., 2022) for each class of images and then applies source and
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Table 2: Performance comparison across datasets. SR = Success Ratio, LPIPS = Perceptual Dis-
tance. In bold are the best results, and in underline are the second-best results.

Science Datasets Regular Datasets

Method Retina Butterfly KikiBouba Black-Holes AFHQ CelebA-HQ

SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓ SR↑ LPIPS↓
EF-DDPM 0.39 0.272 0.86 0.328 0.68 0.343 0.73 0.117 1.0 0.187 1.0 0.104
TI+EF-DDPM 0.89 0.330 1.0 0.289 0.97 0.332 0.5 0.045 1.0 0.211 1.0 0.181
TIME 0.50 0.358 0.13 0.320 0.17 0.170 0.52 0.086 0.95 0.217 0.79 0.166
Concept Sliders 0.48 0.248 0.27 0.362 0.13 0.206 0.53 0.155 0.49 0.375 0.21 0.238
DIFFusion 0.98 0.217 1.0 0.218 0.98 0.176 1.0 0.076 1.0 0.245 1.0 0.116

target prompts based on the desired edit direction. We term this baseline TI + EF-DDPM. Lastly,
we use the visual sliders objective of Concept Sliders (Gandikota et al., 2023) that provides a vi-
sual counterpart to text-driven attribute edits. To ensure a robust evaluation, we experimented with
varying the rank and number of images used for defining the concept direction, selecting the best
configuration for each dataset. Since the original method assumes paired data, we adapted it for
unpaired settings.

4.2 EDITING RESULTS

We quantitatively evaluate how well our method can make minimal edits to the image to flip the
classifier’s prediction. For evaluation, we take a balanced sample of 50 images per class from the
validation set of each dataset, totaling 100 images from each dataset. Since our method can generate
different strengths of edits, to pick the minimal edit, we generate 10 edits with varying strengths
using the Tskip parameter, as does the TIME baseline (Jeanneret et al., 2024), testing from highest
to lowest Tskip, and select the first edit that flips the classifier prediction while maximizing LPIPS
similarity to the original image.

Metrics. We evaluate our method using two key metrics. Success Ratio (SR): Also known
as Flip-Rate, quantifies the ability of a method to flip an oracle classifier’s decision. The oracle
classifier we use is an ensemble of ResNet-18 (He et al., 2015), MobileNet-V2 (Sandler et al.,
2019), and EfficientNet-B0 (Tan & Le, 2020), trained on each dataset. LPIPS (Zhang et al.,
2018): Measures the perceptual similarity between the input and generated image, by capturing
feature-level difference in a learned embedding space.

Quantitative Results. As seen in Table 2, our method achieves the highest SR across all datasets
compared to baseline approaches. In terms of LPIPS, it shows significant improvements over pre-
vious methods on datasets where language struggles to capture visual details (e.g., Black-Holes,
KikiBouba), unlike datasets with common objects like AFHQ. It also performs either best or com-
petitively on the remaining natural-image datasets. Additionally, while TI + EF-DDPM improves
the same text-based baseline, it still struggles with images that are hard to describe textually, such
as Black-Holes.

Qualitative Results. In Figure 3, we present class transitions for all baselines and DIFFusion.
On familiar datasets like CelebA-HQ and AFHQ, our method performs well, similar to baselines.
However, its strengths stand out in datasets where language may not fully capture visual details. For
KikiBouba, only our method and TI + EF-DDPM round Kiki’s edges, though the baseline changes
the original colors, while ours keeps them intact. In the Butterfly dataset, the baselines miss the
cross-sectional line, and in the Retina dataset, only our approach removes Drusen while preserving
image identity. For the Black-Holes dataset, our method flips the classifier’s prediction with notable
visual differences, as also highlighted in Figure 4b. These results suggest our method handles subtle
visual nuances particularly well.
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Figure 4: (a) Varying number of images. Average LPIPS vs. number of images used per class.
LPIPS stabilizes around 50 images for most datasets, reflecting improved identity fidelity and subtle
class-distinctive feature shifts with increased embedding samples. (b) Difference Overlay. We
visualize the difference between the input image and the counterfactual from DIFFusion. From
SANE to MAD we notice a highlighting of the photon ring (green). From MAD to SANE we notice
that the ring becomes less pronounced (magenta), and wisps appear (green).

4.3 TEACHING RESULTS

We evaluate our method’s effectiveness in teaching people subtle visual differences between classes.

User Study Design. We divided participants into three groups of 10 people each. Group 1 studied
only unpaired images. Group 2 studied videos transitioning from original images to counterfactual
images generated by the best baseline. Group 3 studied videos transitioning from original images to
counterfactual images generated by our method. Since Groups 2 and 3 viewed transitions from real
to edited images, they were also exposed to the unpaired image distribution seen by Group 1. All
participants studied their respective materials for 3 minutes to learn to distinguish between the two
classes before taking a test. The test required labeling 50 images, evenly distributed with 25 images
from each class.

Table 3: User Study Results - Mean Accuracy (%)

Black Holes Butterfly Avg.
Method Mean±SD Mean±SD Impr.

Unpaired 78.6±13.7 61.6±22.8 —
Baseline 77.2±11.5 62.8±16.8 -0.1%
Ours 90.8±4.8 87.8±10.4 +19.2%

User Study Results. We assess DIFFusion
for teaching via a user study on the Black Holes
and Butterfly datasets (Van Horn et al., 2018),
shown in Table 3 and Figure 5. For Black
Holes, unpaired material gave a 78% average
score, but our counterfactuals boosted this to
90%, with 40% of users hitting near-perfect
scores (96%+), surpassing baselines and coun-
terfactuals. For Butterfly, unpaired data led to
varied scores, but our counterfactuals raised 9
out of 10 users above 80%, standardizing un-
derstanding effectively. P-tests confirm signif-
icance: Black Holes (p = 0.016 vs. 0.811 for baseline) and Butterfly (p = 0.004 vs. 0.897 for
baseline), both p < 0.05. Our counterfactuals consistently outperform alternatives, demonstrating
the usefulness of our method for teaching humans subtle visual differences.

4.4 METHOD ANALYSIS

Varying Dataset Size. In Figure 4a, we examine the impact of varying the number of images per
class on the average LPIPS metric across the test sets. We notice that for most datasets, the LPIPS
stops improving at around 50 images. In Section B.4, we show qualitative results as the number of
images changes. We notice that as the number of images incorporated into the average embeddings

8
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Figure 5: User Study Results. We plot the results from user studies across users who studied our
counterfactuals, users who studied the best baseline counterfactuals, and users who studied unpaired
images. For both Butterfly and Black Hole datasets, we observe that the users who studied our coun-
terfactuals significantly outperformed the other groups. The violin plots illustrate the distribution of
user percentages, where the width of each grey shape represents the density of data points.

increases, the fidelity to the original image’s identity improves, while subtly altering the features
that are distinctive between classes.

Figure 6: Dataset Bias. DIFFusion reveals dataset bias. Squirreltail-to-Canada Wild Rye edits
mphasize environmental backgrounds over plant traits, reflecting iNaturalist’s contextual bias, and
Dachshund-to-Corgi edits prioritize foreground dog features, yet still reflect environmental bias.

4.5 VISUALIZING DATASET BIAS

Our method edits images using differences between class mean embeddings, making it sensitive
to dataset bias. If distinguishing features reflect unintended biases rather than targeted traits, edits
deviate from our intent. This is both a limitation - preventing precise control, and a strength, as it
visualizes dataset biases, revealing underlying structure. We show how dataset bias is captured by
our method in Figure 6. In iNaturalist (Van Horn et al., 2018), counterfactuals from Squirreltail (dry
climates) to Canada Wild Rye (humid) shift backgrounds more than plant structure, suggesting envi-
ronmental bias dominates. Conversely, using the Spawrious (Lynch et al., 2023) dataset, Dachshund-
to-Corgi counterfactuals prioritize dog features (e.g., shape, size) over jungle-to-desert backgrounds.
We attribute this to stronger foreground differences in dogs and clearer object-background separa-
tion, unlike plants blending into settings in iNaturalist data. The effect of dataset bias on edits varies
with class prominence and context.

5 DISCUSSION AND LIMITATIONS

DIFFusion generates counterfactuals to support visual expertise training across domains with lim-
ited data. It reveals dataset biases, often shifting unintended features due to embedding reliance,
which limits precise control. Additionally, the arithmetic is very simple: a difference of averages,
highlighting a trade-off between flexibility and specificity. Future work could explore disentangle-
ment or guidance mechanisms to enhance edit precision in specialized applications.
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