

TEACHING HUMANS SUBTLE DIFFERENCES WITH DIFFUSION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

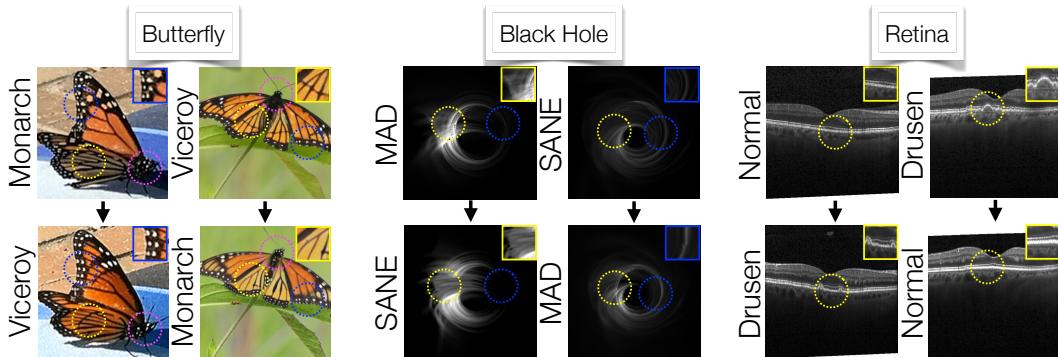


Figure 1: **DIFFusion Counterfactuals**. We illustrate the counterfactual results from our methods on the Butterfly dataset, the Black Hole dataset, and the Retina dataset. In the Butterfly dataset, the Viceroy has a cross-sectional line (yellow), a smaller head with less dots (magenta), and more “scaley” dots (blue), compared to the Monarch. In the Black Hole dataset, SANE has more uniform wisps (yellow) and less of a prominent photon ring (blue) as compared to MAD, with these distinguishing features discovered through our method rather than known a priori. In the Retina dataset, normal retinas lack the horizontal line bumps (yellow) present in retinas with drusen.

ABSTRACT

Scientific expertise often requires recognizing subtle visual differences that remain challenging to articulate even for domain experts. We present a system that leverages generative models to automatically discover and visualize minimal discriminative features between categories while preserving instance identity. Our method generates counterfactual visualizations with subtle, targeted transformations between classes, performing well even in domains where data is sparse, examples are unpaired, and category boundaries resist verbal description. Experiments across six domains, including black hole simulations, butterfly taxonomy, and medical imaging, demonstrate accurate transitions with limited training data, highlighting both established discriminative features and novel subtle distinctions that measurably improved category differentiation. User studies confirm our generated counterfactuals significantly outperform traditional approaches in teaching people to correctly differentiate between fine-grained classes, showing the potential of generative models to advance human visual learning and scientific research.

1 INTRODUCTION

Generative models, especially large-scale image diffusion models, have transformed text-to-image creation, opening new ways to visualize concepts across various domains. While these models excel in everyday contexts with clear category distinctions, a far more challenging frontier exists in scientific fields where visual differences between categories are so subtle that they often remain unknown and unidentified even to domain experts.

In specialized scientific domains, the complete set of visual features distinguishing between categories may be partially or entirely undiscovered. For example, astronomers studying black hole sim-

054 ulations have no established verbal characteristics to differentiate MAD from SANE models because
 055 these distinguishing features have not yet been comprehensively identified. Entomologists may dif-
 056 ferentiate Viceroy and Monarch butterflies through the Viceroy’s characteristic cross-sectional black
 057 line, yet may miss other distinguishing features that could further help the differentiation. This rep-
 058 presents the fundamental challenge for visual expertise training: how do we teach recognition of
 059 patterns we ourselves do not fully understand?

060 One of the most effective ways to reveal subtle category differences is to transform an image and
 061 rapidly flip between the original and its altered version to highlight differences. In scientific do-
 062 mains, using generative models for such targeted image editing faces three key challenges: (1)
 063 automatically identifying discriminative features that may not be known or easily articulated even
 064 by experts, (2) limiting changes exclusively to these category-defining features, and (3) preserv-
 065 ing all other identity characteristics of the instance. We develop a system that combines state-
 066 of-the-art image editing techniques with visual algebraic conditioning guidance to address these
 067 challenges in data-scarce scientific domains. Our approach automatically identifies discriminative
 068 features through visual algebraic operations that extract category-specific information without re-
 069 quiring explicit articulation. By integrating inverted noise maps (z) to preserve identity features
 070 with conditioning vectors (c) that guide category transformations, our system achieves effective
 071 identity-preserving yet category-changing results, that isolate and visualize subtle differences be-
 072 tween scientific categories.

073 Our approach overcomes limitations in current counterfactual visualization methods, which have
 074 traditionally been applied in domains where category distinctions are already well-understood and
 075 easily verbalized. Text-guided editing methods rely on linguistic descriptions, which can be too
 076 ambiguous to specify desired visual changes. Methods like Concept Sliders (Gandikota et al., 2023),
 077 which is guided by the image distributions themselves, depend on paired examples in most cases—a
 078 constraint limiting their use in teaching scenarios. Visual counterfactual generation methods often
 079 rely on gradients from a classifier, a limitation when data is scarce. Classifier-free alternatives, like
 080 TIME (Jeanneret et al., 2024), struggle with image quality and coherence for subtle differences.

081 Through experiments across six domains, we demonstrate our approach’s effectiveness in highlight-
 082 ing visual differences between categories. For instance, in black hole simulations, where distin-
 083 guishing characteristics between MAD and SANE models remain largely unknown, our counterfac-
 084 tual visualizations emphasize distinct visual patterns in the image distribution. The transforma-
 085 tions draw attention to variations in the uniformity of wisps and prominence of the photon ring, which are
 086 features that black hole experts themselves had not previously identified.

087 User studies confirm the effectiveness of our approach: participants who trained with our coun-
 088 terfactual visualizations demonstrated significantly better category differentiation performance than
 089 those using traditional approaches with unpaired images. This validates that our method highlights
 090 meaningful visual patterns that can be used to build expertise, even when those subtle patterns have
 091 not yet been explicitly identified or understood.

093 2 RELATED WORK

095 **Visual Counterfactual Explanations.** A counterfactual image shows how an input would ap-
 096 pear if altered to switch its class, enhancing interpretability. Counterfactual inference crafts im-
 097 ages that not only differ in classification but also clarify the visual features defining each distri-
 098 bution. Approaches for visual counterfactual explanations (VCEs) make use of generative model
 099 edits, with VAEs (Rodriguez et al., 2021), GANs (Lang et al., 2021), and more recently, diffusion-
 100 based methods (Jeanneret et al., 2022; 2023; 2024; Augustin et al., 2024; Sobieski & Biecek, 2024;
 101 Farid et al., 2023). Most diffusion-based approaches adapt classifier guidance (Dhariwal & Nichol,
 102 2021) to steer the generative process of counterfactuals, requiring access to the classifier and test-
 103 time optimization to produce counterfactual images. However, generating counterfactuals this way
 104 can be challenging, as the optimization problem closely resembles that of adversarial examples.
 105 TIME (Jeanneret et al., 2024) proposes an alternative approach by using Textual Inversion (Gal
 106 et al., 2022) to encode class and dataset contexts into a set of text embeddings, providing a black-
 107 box framework for counterfactual explanations. While this removes the need for direct classifier
 108 access, Textual Inversion is primarily designed for personalization, focusing on regenerating con-

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
cepts in novel scenes rather than preserving image structure—an essential aspect of counterfactual generation.

Image Editing. Recent advances in text-to-image diffusion models (Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022; Nichol et al., 2022; Labs, 2024) have enabled test-time controls for image editing, ranging from semantic modifications to attention-based edits and latent space manipulation. Early approaches, such as SDEdit (Meng et al., 2022), applied noise to an image and then denoised it using a new prompt, but this often resulted in significant structural changes. Later methods refined direct prompt modifications by incorporating cross-attention manipulations or masking to better preserve image structure (Hertz et al., 2022; Parmar et al., 2023; Brack et al., 2024; Tumanyan et al., 2023; Couairon et al., 2022). Unlike single-image editing methods, Concept Sliders (Gandikota et al., 2023) introduce a different approach by optimizing a global semantic direction across the diffusion model. While text pairs can guide their optimization, they also propose visual sliders based on image pairs. However, the visual slider approach struggles with unpaired data.

Diffusion Models with Image Prompts. Text-to-image diffusion models generate images from text prompts, but text often falls short in capturing nuanced concepts. Image prompts offer a richer alternative, conveying nuanced details more effectively, as “a picture is worth a thousand words.” DALL-E 2 (Ramesh et al., 2022) pioneered this by conditioning a diffusion decoder on CLIP image embeddings, aided by a diffusion prior for text mapping. Later works offer different architectures (Razzhigaev et al., 2023) or adapt text-to-image models for image prompts (Ye et al., 2023; Arar et al., 2023; Guo et al., 2024).

Diffusion Inversion. Editing a real image typically requires first obtaining a latent representation that can be fed into the model for reconstruction. This latent representation can then be modified, either directly or by altering the generative process, to produce the desired edit. Most diffusion-based inversion methods rely on the DDIM (Song et al., 2022) sampling scheme, which provides a deterministic mapping from a noise map to a generated image (Mokady et al., 2022; Wallace et al., 2022; Parmar et al., 2023). However, this approach introduces small errors at each diffusion step, which can accumulate into significant deviations, particularly when using classifier-free guidance (Ho & Salimans, 2022). Instead of predicting an initial noise map that reconstructs the image through deterministic sampling, an alternative approach considers DDPM (Ho et al., 2020) sampling and inverts the image into intermediate noise maps (Wu & la Torre, 2022). Building on this, (Huberman-Spiegelglas et al., 2024) proposed an inversion technique for the DDPM sampler, along with an edit-friendly noise space better suited for editing applications. We use this technique while conditioning on image prompts.

Machine Teaching. Machine teaching optimizes human learning via computational models. Early work framed this as an optimization task, minimizing example sets for efficient teaching (Zhu, 2015). Generally, the field of machine learning for discovery has machine teaching as a goal (Jumper et al., 2021; Chiquier & Vondrick, 2023). Recent advances leverage generative models and LLMs for cross-modal discovery, synthesizing representations for conceptual learning (Chiquier et al., 2024), decoding structures in mathematics, or programs for scientific discovery (Mall et al., 2025; Romera-Paredes et al., 2024). Parallel efforts amplify subtle signals for perception: language models detect fine-grained textual differences (Dunlap et al., 2024), while video motion magnification enhances visual cues (Liu et al., 2005; Wu et al., 2012; Oh et al., 2018). These methods, though effective for fine-grained discrimination, typically require aligned, abundant data and focus on single modalities. Our work extends these efforts, using diffusion models to generate visual counterfactuals for nuanced category learning.

3 METHOD

We begin by introducing *DIFFusion* for counterfactual image generation, as illustrated in Figure 2. In Section 3.1, we provide the necessary background on diffusion models. In Section 3.2, we present our proposed method, outlining its design and implementation.

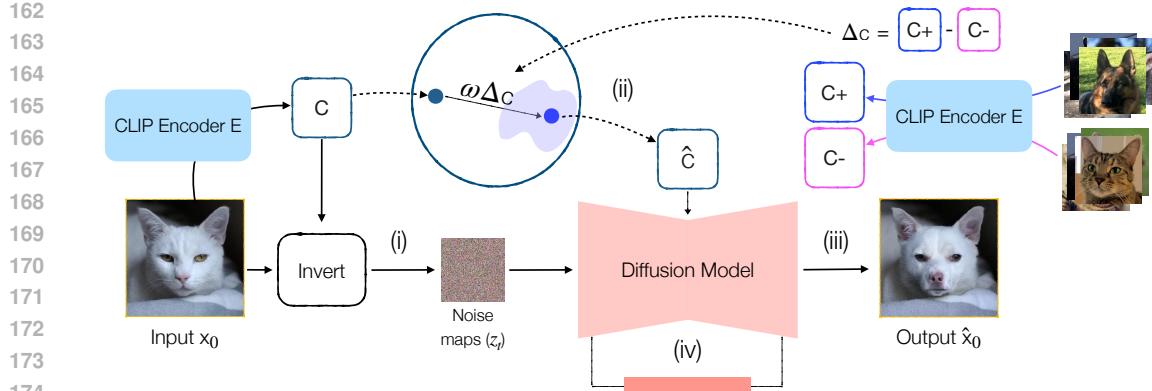


Figure 2: **DIFFusion method.** Our method consists of four parts. (i) Inverting the real image with DDPM-EF to obtain noise maps. (ii) Performing conditioning space arithmetic using positive and negative embeddings obtained from the training set. (iii) Generation via diffusion sampling, starting from the inverted noise conditioning on the manipulated conditioning vector \hat{c} . (iv) Optional domain tuning, in which we fine-tune the diffusion model for domain adaptation.

3.1 DIFFUSION PRELIMINARIES

Diffusion models generate data by sampling from a distribution through iterative denoising of noisy intermediate vectors. A forward process is first applied, where noise is gradually added to a clean image x_0 over T steps. A noisy sample at timestep t can be expressed as

$$x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon, \quad t = 1, \dots, T \quad (1)$$

where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, α_t is a predetermined variance schedule, and $\bar{\alpha}_t = \prod_{i=1}^T \alpha_i$. The model learns to reverse the forward noising process, which can be expressed as an update step over x_t ,

$$x_{t-1} = \mu_\theta(x_t, c) + \sigma_t z_t, \quad t = T, \dots, 1 \quad (2)$$

where z_t are i.i.d standard normal vectors, σ_t is a variance schedule, and $\mu_\theta(x_t, c)$ is typically parameterized as:

$$\mu_\theta(x_t, c) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t, c) \right) \quad (3)$$

Here $\epsilon_\theta(x_t, t, c)$ is the trained noise prediction network, and c is an optional conditioning context, such as an image prompt embedding.

3.2 DIFFUSION

Given an input image x_0 , our goal is to find a fine-grained, discriminative edit that changes a classifier’s prediction. Let $\mathcal{R}_\theta(\mathbf{z}, c)$ be the recursive application of the denoising diffusion model from Equation 2. Our approach finds these edits by inverting the image x_0 , into a sequence of noise maps, \mathbf{z} , and manipulating the CLIP embeddings of the original image, $c = E(x)$, into a resulting conditioning vector \hat{c} , before sampling the modified image \hat{x}_0 through:

$$\hat{x}_0 = \mathcal{R}_\theta(\mathbf{z}, \hat{c}) \quad (4)$$

Since the diffusion model must generate an image consistent with the original noise maps \mathbf{z} , and has a conditioning vector \hat{c} that steers from the source towards the target class, the resulting samples maintain the identity of the original image, but with subtle modifications such that the class label flips.

Inversion. We are interested in extracting noise vectors \mathbf{z} , such that, if used in Equation 2, would recover the original image x_0 . Note that any sequence of $T + 1$ images x_0, \dots, x_T can be used to extract consistent noise maps for reconstruction by isolating z_t from Equation 2 as

$$z_t = \frac{x_{t-1} - \mu_\theta(x_t, c)}{\sigma_t}, \quad t = T, \dots, 1 \quad (5)$$

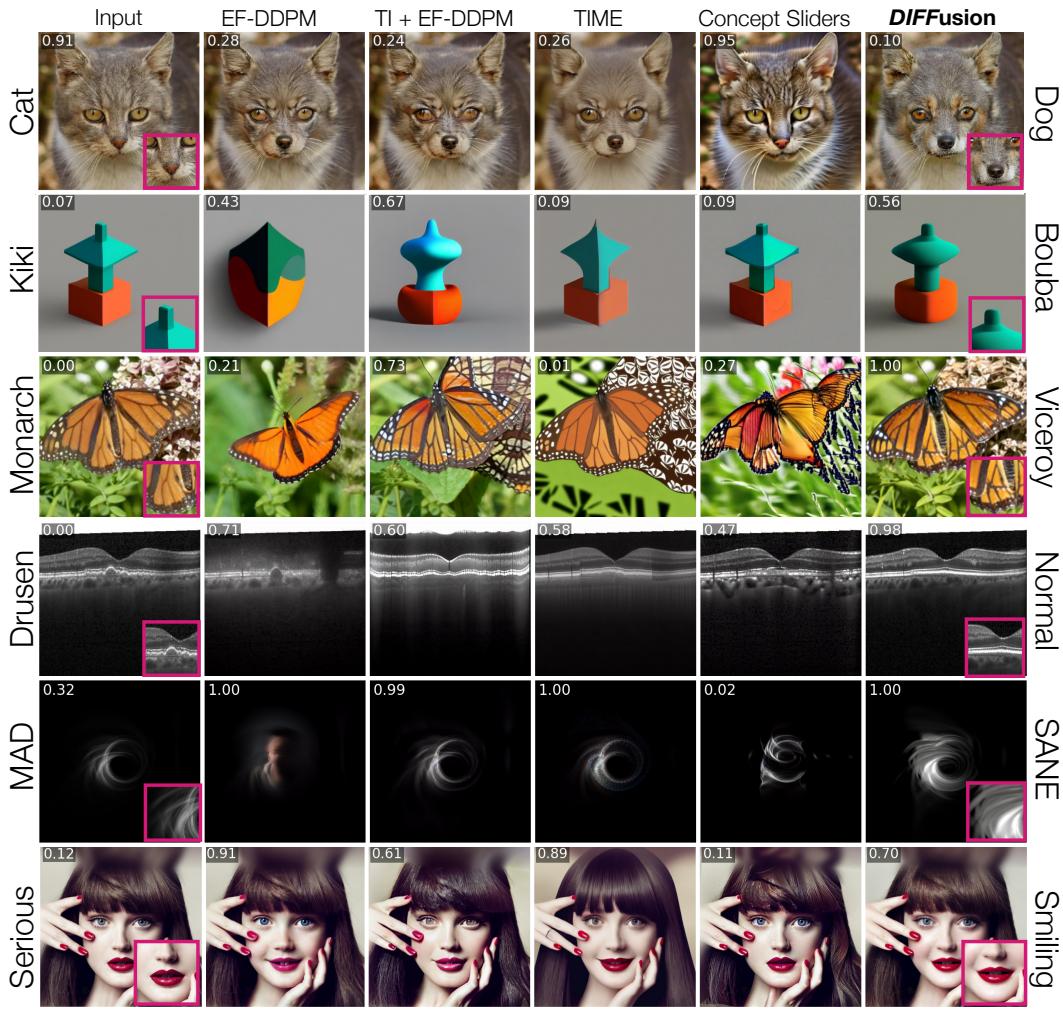


Figure 3: **Qualitative Results.** We present our qualitative results, where each row corresponds to one direction of our binary datasets. The first column contains the inputs, and each subsequent column contains the results from each baseline, with the last column containing the result from **DIFFusion**. In particular, the magnified boxes in the magenta frame show that our method is able to pick up on small discriminative cues. For example, when converting from MAD to SANE, the whisks become amplified and more uniform in brightness, and when converting from Monarch to Viceroy, a cross-sectional line is added on the wing. **Note:** The value in the top left corner of each image represents the probability predicted by the oracle classifier, as explained in Section 4.2.

We follow the choice suggested in (Huberman-Spiegelglas et al., 2024) and compute the noise maps through the standard forward diffusion process Equation 1, but using statistically independently-sampled noise for each timestep. This yields noise maps $\mathbf{z} = \{x_T, z_T, \dots, z_1\}$ that are consistent with x_0 .

Conditioning. We generate edits that flip the category through arithmetic operations on c , resulting in \hat{c} . We apply an additive translation to the conditioning vector $c = E(x)$:

$$\hat{c} = c + \omega \Delta c \quad (6)$$

where c is the CLIP image embedding of the original image, Δc is a direction that moves the class from the original class to the target class, and ω is a scaler that varies the direction’s strength. We calculate this translation through the difference of means for each class:

$$\Delta c = \mathbb{E}_{x_p} [E(x_p)] - \mathbb{E}_{x_n} [E(x_n)] \quad (7)$$

270 such that x_p is an image of class p and x_n is an image of class n (e.g, positive and negative classes).
 271 We normalize all the image embeddings with L2 norm prior to the arithmetic.
 272

273 **Sampling.** We use \hat{c} as the conditioning vector for DDPM sampling, paired with the inverted
 274 noise maps, z , to generate the counterfactual image. As suggested in (Huberman-Spiegelglas et al.,
 275 2024), we run the generation process starting from timestep $T - T_{skip}$, where T_{skip} is a parameter
 276 controlling the resemblance to the input image. Therefore, similar to Equation 2, denoting the
 277 denoised edited image at timestep t as \hat{x}_t we have,

$$\hat{x}_{t-1} = \mu_\theta(\hat{x}_t, \hat{c}) + \sigma_t z_t, \quad t = T - T_{skip}, \dots, 1 \quad (8)$$

280 This approach allows us to systematically steer the image generation toward the target class by
 281 adjusting the manipulation scale ω , while maintaining key structural features of the original image
 282 through T_{skip} . Intuitively, a larger T_{skip} results in fewer denoising steps under the manipulated
 283 condition \hat{c} , leading to greater adherence to the input image.

284 **Domain Tuning** We use a pre-trained diffusion model (Shakhmatov et al., 2023) that conditions
 285 on CLIP image embeddings. When adapting to a new domain, we fine-tune the model using LoRA
 286 (Hu et al., 2021), training only its cross-attention and corresponding projection layers. As discussed
 287 in B.2, we find that domain tuning is beneficial for the Butterfly (Van Horn et al., 2018) and Retina
 288 (Kermany et al., 2018) datasets, but has minimal impact on the other datasets.
 289

290 **Implementation Details.** For inversion, we adapt the edit-friendly DDPM inversion scheme
 291 (Huberman-Spiegelglas et al., 2024) to our diffusion decoder (Shakhmatov et al., 2023). Specifi-
 292 cally, we use CFG (Ho & Salimans, 2022) in both inversion and generation. We first aim to find
 293 guidance scale parameters that achieve perfect reconstruction, and then use these guidance scales
 294 for our method. This process is further discussed in B.3. To generate counterfactuals, we manipu-
 295 late the conditioning space using Equation 6, adjusting the manipulation guidance scale per dataset
 296 ($\omega = 1.0$ for AFHQ, $\omega = 2.0$ for the rest of the datasets). We then sample for $T - T_{skip}$ steps,
 297 where $T = 100$ and the choice of the T_{skip} parameter is further discussed in Section 4.2.
 298

299 4 EXPERIMENTS

300 4.1 DATASETS AND BASELINES

303 **Datasets.** We quantitatively benchmark on
 304 datasets from diverse domains. We also note
 305 the corresponding directions under examina-
 306 tion for each dataset in Table 1. We eval-
 307 uate on AFHQ (Choi et al., 2020), Cele-
 308 baHQ (Lee et al., 2020) and KikiBouba (Alper
 309 & Averbuch-Elor, 2024) as our non-scientific
 310 datasets. We also evaluate on three scientific
 311 datasets. The first is Retina (Kermany et al.,
 312 2018), a dataset of retina cross-sections, both
 313 diseased and healthy. The second is Black
 314 Holes, which is a dataset of images taken from
 315 fluid simulations of accretion flows around a
 316 black hole (Wong et al., 2022). The simulations assume general relativistic magnetohydrodynam-
 317 ics (GRMHD) under one of two regimes: magnetically arrested (MAD) or standard and normal
 318 evolution (SANE) (Jiang et al., 2023). Finally, we also evaluate on Monarch and Viceroy, a fine-
 319 grained species classification task. Monarch butterflies evolved to be mimics of Viceroy, and the
 two species are notoriously difficult to tell apart.

320 **Baselines.** We use TIME (Jeanneret et al., 2024) as our counterfactual baseline, and replace black-
 321 box classifier labels with ground truth labels. For editing baselines, we compare against Stable
 322 Diffusion (Rombach et al., 2022) with EF-DDPM inversion (Huberman-Spiegelglas et al., 2024) us-
 323 ing class-name prompts. To better accommodate visual concepts, we implemented another baseline
 that uses Textual Inversion (Gal et al., 2022) for each class of images and then applies source and

Table 1: Datasets and their classification tasks.

Dataset	Class 0 / Class 1
AFHQ	Dog / Cat
KikiBouba	Kiki / Bouba
Retina	Drusen / Normal
Black-Holes	MAD / SANE
Butterfly	Monarch / Viceroy
CelebA-HQ	Smile / No-Smile

324
 325 Table 2: Performance comparison across datasets. SR = Success Ratio, LPIPS = Perceptual Dis-
 326 tance. In **bold** are the best results, and in underline are the second-best results.
 327

328 329 330 331 Method	332 333 334 335 Science Datasets								336 337 338 339 340 341 342 343 Regular Datasets			
	344 345 Retina		346 347 Butterfly		348 349 KikiBouba		350 351 Black-Holes		352 353 AFHQ		354 355 CelebA-HQ	
	356 357 SR↑	358 359 LPIPS↓	360 361 SR↑	362 363 LPIPS↓	364 365 SR↑	366 367 LPIPS↓	368 369 SR↑	370 371 LPIPS↓	372 373 SR↑	374 375 LPIPS↓	376 377 SR↑	378 379 LPIPS↓
EF-DDPM	0.39	0.272	0.86	0.328	0.68	0.343	<u>0.73</u>	0.117	1.0	0.187	1.0	0.104
TI+EF-DDPM	<u>0.89</u>	0.330	1.0	0.289	<u>0.97</u>	0.332	0.5	0.045	1.0	0.211	1.0	0.181
TIME	0.50	0.358	0.13	0.320	0.17	0.170	0.52	0.086	0.95	0.217	0.79	0.166
Concept Sliders	0.48	<u>0.248</u>	0.27	0.362	0.13	0.206	0.53	0.155	0.49	0.375	0.21	0.238
DIFFusion	0.98	0.217	1.0	0.218	0.98	<u>0.176</u>	1.0	<u>0.076</u>	1.0	0.245	1.0	<u>0.116</u>

338
 339 target prompts based on the desired edit direction. We term this baseline TI + EF-DDPM. Lastly,
 340 we use the visual sliders objective of Concept Sliders (Gandikota et al., 2023) that provides a vi-
 341 sual counterpart to text-driven attribute edits. To ensure a robust evaluation, we experimented with
 342 varying the rank and number of images used for defining the concept direction, selecting the best
 343 configuration for each dataset. Since the original method assumes paired data, we adapted it for
 344 unpaired settings.

4.2 EDITING RESULTS

348 We quantitatively evaluate how well our method can make minimal edits to the image to flip the
 349 classifier’s prediction. For evaluation, we take a balanced sample of 50 images per class from the
 350 validation set of each dataset, totaling 100 images from each dataset. Since our method can generate
 351 different strengths of edits, to pick the minimal edit, we generate 10 edits with varying strengths
 352 using the T_{skip} parameter, as does the TIME baseline (Jeanneret et al., 2024), testing from highest
 353 to lowest T_{skip} , and select the first edit that flips the classifier prediction while maximizing LPIPS
 354 similarity to the original image.

355 **Metrics.** We evaluate our method using two key metrics. Success Ratio (SR): Also known
 356 as Flip-Rate, quantifies the ability of a method to flip an oracle classifier’s decision. The oracle
 357 classifier we use is an ensemble of ResNet-18 (He et al., 2015), MobileNet-V2 (Sandler et al.,
 358 2019), and EfficientNet-B0 (Tan & Le, 2020), trained on each dataset. LPIPS (Zhang et al.,
 359 2018): Measures the perceptual similarity between the input and generated image, by capturing
 360 feature-level difference in a learned embedding space.

362 **Quantitative Results.** As seen in Table 2, our method achieves the highest SR across all datasets
 363 compared to baseline approaches. In terms of LPIPS, it shows significant improvements over pre-
 364 vious methods on datasets where language struggles to capture visual details (e.g., Black-Holes,
 365 KikiBouba), unlike datasets with common objects like AFHQ. It also performs either best or com-
 366 petitively on the remaining natural-image datasets. Additionally, while TI + EF-DDPM improves
 367 the same text-based baseline, it still struggles with images that are hard to describe textually, such
 368 as Black-Holes.

369 **Qualitative Results.** In Figure 3, we present class transitions for all baselines and DIFFusion.
 370 On familiar datasets like CelebA-HQ and AFHQ, our method performs well, similar to baselines.
 371 However, its strengths stand out in datasets where language may not fully capture visual details. For
 372 KikiBouba, only our method and TI + EF-DDPM round Kiki’s edges, though the baseline changes
 373 the original colors, while ours keeps them intact. In the Butterfly dataset, the baselines miss the
 374 cross-sectional line, and in the Retina dataset, only our approach removes Drusen while preserving
 375 image identity. For the Black-Holes dataset, our method flips the classifier’s prediction with notable
 376 visual differences, as also highlighted in Figure 4b. These results suggest our method handles subtle
 377 visual nuances particularly well.

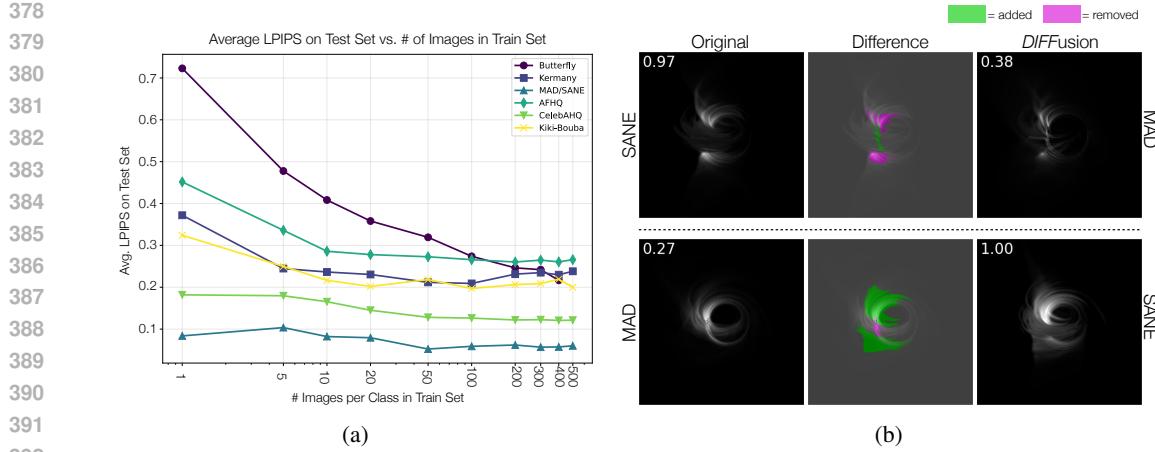


Figure 4: (a) **Varying number of images.** Average LPIPS vs. number of images used per class. LPIPS stabilizes around 50 images for most datasets, reflecting improved identity fidelity and subtle class-distinctive feature shifts with increased embedding samples. (b) **Difference Overlay.** We visualize the difference between the input image and the counterfactual from *DIFFusion*. From SANE to MAD we notice a highlighting of the photon ring (green). From MAD to SANE we notice that the ring becomes less pronounced (magenta), and wisps appear (green).

4.3 TEACHING RESULTS

We evaluate our method’s effectiveness in teaching people subtle visual differences between classes.

User Study Design. We divided participants into three groups of 10 people each. Group 1 studied only unpaired images. Group 2 studied videos transitioning from original images to counterfactual images generated by the best baseline. Group 3 studied videos transitioning from original images to counterfactual images generated by our method. Since Groups 2 and 3 viewed transitions from real to edited images, they were also exposed to the unpaired image distribution seen by Group 1. All participants studied their respective materials for 3 minutes to learn to distinguish between the two classes before taking a test. The test required labeling 50 images, evenly distributed with 25 images from each class.

User Study Results. We assess *DIFFusion* for teaching via a user study on the Black Holes and Butterfly datasets (Van Horn et al., 2018), shown in Table 3 and Figure 5. For Black Holes, unpaired material gave a 78% average score, but our counterfactuals boosted this to 90%, with 40% of users hitting near-perfect scores (96%+), surpassing baselines and counterfactuals. For Butterfly, unpaired data led to varied scores, but our counterfactuals raised 9 out of 10 users above 80%, standardizing understanding effectively. P-tests confirm significance: Black Holes ($p = 0.016$ vs. 0.811 for baseline) and Butterfly ($p = 0.004$ vs. 0.897 for baseline), both $p < 0.05$. Our counterfactuals consistently outperform alternatives, demonstrating the usefulness of our method for teaching humans subtle visual differences.

4.4 METHOD ANALYSIS

Varying Dataset Size. In Figure 4a, we examine the impact of varying the number of images per class on the average LPIPS metric across the test sets. We notice that for most datasets, the LPIPS stops improving at around 50 images. In Section B.4, we show qualitative results as the number of images changes. We notice that as the number of images incorporated into the average embeddings

Table 3: User Study Results - Mean Accuracy (%)

Method	Black Holes	Butterfly	Avg.
	Mean±SD	Mean±SD	Impr.
Unpaired	78.6±13.7	61.6±22.8	—
Baseline	77.2±11.5	62.8±16.8	-0.1%
Ours	90.8±4.8	87.8±10.4	+19.2%

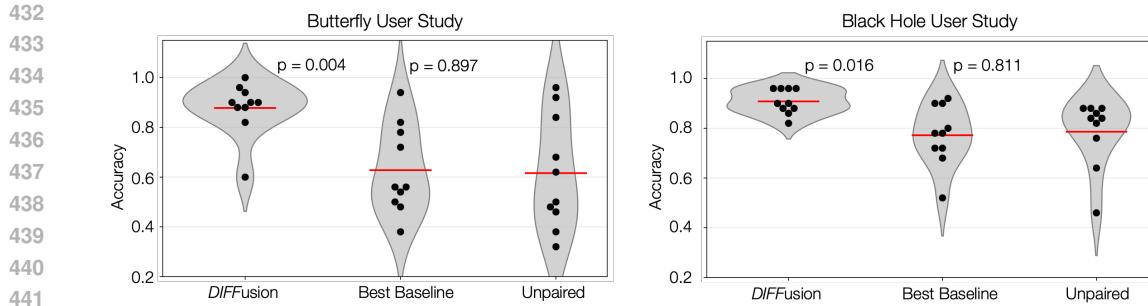


Figure 5: **User Study Results.** We plot the results from user studies across users who studied our counterfactuals, users who studied the best baseline counterfactuals, and users who studied unpaired images. For both Butterfly and Black Hole datasets, we observe that the users who studied our counterfactuals significantly outperformed the other groups. The violin plots illustrate the distribution of user percentages, where the width of each grey shape represents the density of data points.

increases, the fidelity to the original image’s identity improves, while subtly altering the features that are distinctive between classes.

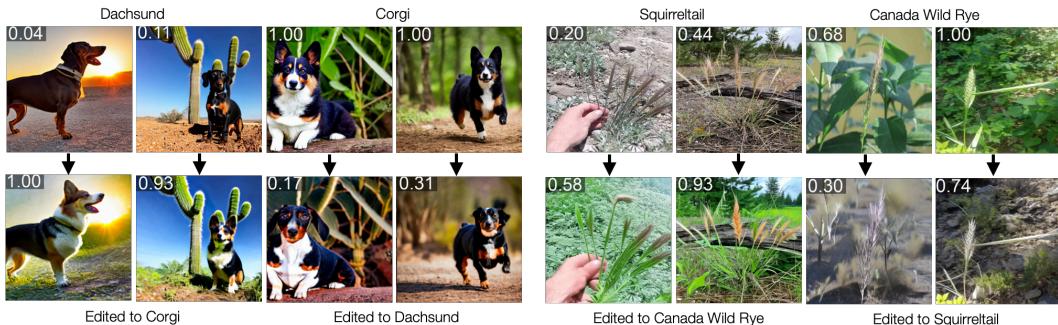


Figure 6: **Dataset Bias.** *DIFFusion* reveals dataset bias. Squirreltail-to-Canada Wild Rye edits emphasize environmental backgrounds over plant traits, reflecting iNaturalist’s contextual bias, and Dachshund-to-Corgi edits prioritize foreground dog features, yet still reflect environmental bias.

4.5 VISUALIZING DATASET BIAS

Our method edits images using differences between class mean embeddings, making it sensitive to dataset bias. If distinguishing features reflect unintended biases rather than targeted traits, edits deviate from our intent. This is both a limitation - preventing precise control, and a strength, as it visualizes dataset biases, revealing underlying structure. We show how dataset bias is captured by our method in Figure 6. In iNaturalist (Van Horn et al., 2018), counterfactuals from Squirreltail (dry climates) to Canada Wild Rye (humid) shift backgrounds more than plant structure, suggesting environmental bias dominates. Conversely, using the Spawrious (Lynch et al., 2023) dataset, Dachshund-to-Corgi counterfactuals prioritize dog features (e.g., shape, size) over jungle-to-desert backgrounds. We attribute this to stronger foreground differences in dogs and clearer object-background separation, unlike plants blending into settings in iNaturalist data. The effect of dataset bias on edits varies with class prominence and context.

5 DISCUSSION AND LIMITATIONS

DIFFusion generates counterfactuals to support visual expertise training across domains with limited data. It reveals dataset biases, often shifting unintended features due to embedding reliance, which limits precise control. Additionally, the arithmetic is very simple: a difference of averages, highlighting a trade-off between flexibility and specificity. Future work could explore disentanglement or guidance mechanisms to enhance edit precision in specialized applications.

486 REFERENCES
487

488 Morris Alper and Hadar Averbuch-Elor. Kiki or bouba? sound symbolism in vision-and-language
489 models, 2024. URL <https://arxiv.org/abs/2310.16781>.

490 Moab Arar, Rinon Gal, Yuval Atzmon, Gal Chechik, Daniel Cohen-Or, Ariel Shamir, and Amit H.
491 Bermano. Domain-agnostic tuning-encoder for fast personalization of text-to-image models,
492 2023. URL <https://arxiv.org/abs/2307.06925>.

493 Maximilian Augustin, Yannic Neuhaus, and Matthias Hein. Dig-in: Diffusion guidance for inves-
494 tigating networks – uncovering classifier differences neuron visualisations and visual counterfac-
495 tual explanations, 2024. URL <https://arxiv.org/abs/2311.17833>.

496

497 Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
498 Kersting, and Apolinário Passos. Ledit++: Limitless image editing using text-to-image models,
499 2024. URL <https://arxiv.org/abs/2311.16711>.

500

501 Mia Chiquier and Carl Vondrick. Muscles in action. In *Proceedings of the IEEE/CVF International
502 Conference on Computer Vision*, pp. 22091–22101, 2023.

503

504 Mia Chiquier, Utkarsh Mall, and Carl Vondrick. Evolving interpretable visual classifiers with large
505 language models. In *European Conference on Computer Vision*, pp. 183–201. Springer, 2024.

506

507 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
508 multiple domains. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)*, pp. 8185–8194, 2020. doi: 10.1109/CVPR42600.2020.00821.

509

510 Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
511 based semantic image editing with mask guidance, 2022. URL <https://arxiv.org/abs/2210.11427>.

512

513 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
<https://arxiv.org/abs/2105.05233>.

514

515 Lisa Dunlap, Krishna Mandal, Trevor Darrell, Jacob Steinhardt, and Joseph E Gonzalez. Vibechck:
516 Discover and quantify qualitative differences in large language models. *arXiv preprint
arXiv:2410.12851*, 2024.

517

518 Karim Farid, Simon Schrodi, Max Argus, and Thomas Brox. Latent diffusion counterfactual expla-
519 nations, 2023. URL <https://arxiv.org/abs/2310.06668>.

520

521 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
522 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
523 inversion, 2022. URL <https://arxiv.org/abs/2208.01618>.

524

525 Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
526 sliders: Lora adaptors for precise control in diffusion models, 2023. URL <https://arxiv.org/abs/2311.12092>.

527

528 Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, Peng Zhang, and Qian He. Pulid: Pure and light-
529 ning id customization via contrastive alignment, 2024. URL <https://arxiv.org/abs/2404.16022>.

530

531 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
532 nition, 2015. URL <https://arxiv.org/abs/1512.03385>.

533

534 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
535 Prompt-to-prompt image editing with cross attention control, 2022. URL <https://arxiv.org/abs/2208.01626>.

536

537 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

538

539 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
<https://arxiv.org/abs/2006.11239>.

540 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

543

544 Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
 545 space: Inversion and manipulations, 2024. URL <https://arxiv.org/abs/2304.06140>.

546

547 Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Diffusion models for counterfactual expla-
 548 nitions, 2022. URL <https://arxiv.org/abs/2203.15636>.

549

550 Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Adversarial counterfactual visual expla-
 551 nitions, 2023. URL <https://arxiv.org/abs/2303.09962>.

552

553 Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Text-to-image models for counterfactual
 554 explanations: A black-box approach. In *Proceedings of the IEEE/CVF Winter Conference on*
555 Applications of Computer Vision (WACV), pp. 4757–4767, January 2024.

556

557 Hong-Xuan Jiang, Yosuke Mizuno, Christian M Fromm, and Antonios Nathanail. Two-temperature
 558 grmhd simulations of black hole accretion flows with multiple magnetic loops. *Monthly Notices of the Royal Astronomical Society*, 522(2):2307–2324, 2023.

559

560 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 561 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 562 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

563

564 Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L
 565 Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical diag-
 566 noses and treatable diseases by image-based deep learning. *cell*, 172(5):1122–1131, 2018.

567

568 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

569

570 Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Hassidim,
 571 William T. Freeman, Phillip Isola, Amir Globerson, Michal Irani, and Inbar Mosseri. Ex-
 572 plaining in style: Training a gan to explain a classifier in stylespace, 2021. URL <https://arxiv.org/abs/2104.13369>.

573

574 Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interac-
 575 tive facial image manipulation. In *2020 IEEE/CVF Conference on Computer Vision and Pattern*
576 Recognition (CVPR), pp. 5548–5557, 2020. doi: 10.1109/CVPR42600.2020.00559.

577

578 Ce Liu, Antonio Torralba, William T Freeman, Frédo Durand, and Edward H Adelson. Motion
 579 magnification. *ACM transactions on graphics (TOG)*, 24(3):519–526, 2005.

580

581 Aengus Lynch, Gbètondji J-S Dovonon, Jean Kaddour, and Ricardo Silva. Spawrious: A bench-
 582 mark for fine control of spurious correlation biases, 2023. URL <https://arxiv.org/abs/2303.05470>.

583

584 Utkarsh Mall, Cheng Perng Phoo, Mia Chiquier, Bharath Hariharan, Kavita Bala, and Carl Von-
 585 drick. Disciple: Learning interpretable programs for scientific visual discovery. *arXiv preprint*
586 arXiv:2502.10060, 2025.

587

588 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 589 Sdedit: Guided image synthesis and editing with stochastic differential equations, 2022. URL
 590 <https://arxiv.org/abs/2108.01073>.

591

592 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 593 editing real images using guided diffusion models, 2022. URL <https://arxiv.org/abs/2211.09794>.

594

595 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 596 McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
 597 editing with text-guided diffusion models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 598 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International*

594 *Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 595 pp. 16784–16804. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/nichol22a.html>.

596

597 Tae-Hyun Oh, Ronnachai Jaroensri, Changil Kim, Mohamed Elgharib, Fr'edo Durand, William T
 598 Freeman, and Wojciech Matusik. Learning-based video motion magnification. In *Proceedings of
 599 the European conference on computer vision (ECCV)*, pp. 633–648, 2018.

600

601 Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan
 602 Zhu. Zero-shot image-to-image translation, 2023. URL <https://arxiv.org/abs/2302.03027>.

603

604 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 605 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

606

607 Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
 608 Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandinsky:
 609 an improved text-to-image synthesis with image prior and latent diffusion, 2023. URL
 610 <https://arxiv.org/abs/2310.03502>.

611

612 Pau Rodriguez, Massimo Caccia, Alexandre Lacoste, Lee Zamparo, Issam Laradji, Laurent Charlin,
 613 and David Vazquez. Beyond trivial counterfactual explanations with diverse valuable explana-
 614 tions, 2021. URL <https://arxiv.org/abs/2103.10226>.

615

616 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 617 resolution image synthesis with latent diffusion models. In *2022 IEEE/CVF Conference on
 618 Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, 2022. doi: 10.1109/
 619 CVPR52688.2022.01042.

620

621 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 622 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 623 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
 624 *Nature*, 625(7995):468–475, 2024.

625

626 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
 627 yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
 628 imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
 629 fusion models with deep language understanding, 2022. URL <https://arxiv.org/abs/2205.11487>.

630

631 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 632 bilenetv2: Inverted residuals and linear bottlenecks, 2019. URL <https://arxiv.org/abs/1801.04381>.

633

634 Arseniy Shakhmatov, Anton Razzhigaev, Aleksandr Nikolich, Vladimir Arkhipkin, Igor Pavlov,
 635 Andrey Kuznetsov, and Denis Dimitrov. kandinsky 2.2. <https://github.com/ai-forever/Kandinsky-2>, 2023.

636

637 Bartłomiej Sobieski and Przemysław Biecek. Global counterfactual directions, 2024. URL <https://arxiv.org/abs/2404.12488>.

638

639 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
 640 <https://arxiv.org/abs/2010.02502>.

641

642 Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
 643 networks, 2020. URL <https://arxiv.org/abs/1905.11946>.

644

645 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 646 text-driven image-to-image translation. In *Proceedings of the IEEE/CVF Conference on Com-
 647 puter Vision and Pattern Recognition*, pp. 1921–1930, 2023.

648 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
649 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
650 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8769–8778,
651 2018.

652 Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled trans-
653 formations, 2022. URL <https://arxiv.org/abs/2211.12446>.

654 George N Wong, Ben S Prather, Vedant Dhruv, Benjamin R Ryan, Monika Mościbrodzka, Chi-kwan
655 Chan, Abhishek V Joshi, Ricardo Yarza, Angelo Ricarte, Hotaka Shiokawa, et al. Patoka: Simu-
656 lating electromagnetic observables of black hole accretion. *The Astrophysical Journal Supplement
657 Series*, 259(2):64, 2022.

658 Chen Henry Wu and Fernando De la Torre. Unifying diffusion models’ latent space, with ap-
659 plications to cyclediffusion and guidance, 2022. URL <https://arxiv.org/abs/2210.05559>.

660 Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Gutttag, Frédo Durand, and William Freeman.
661 Eulerian video magnification for revealing subtle changes in the world. *ACM transactions on
662 graphics (TOG)*, 31(4):1–8, 2012.

663 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
664 adapter for text-to-image diffusion models, 2023. URL <https://arxiv.org/abs/2308.06721>.

665 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
666 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

667 Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach toward
668 optimal education. In *Proceedings of the AAAI conference on artificial intelligence*, volume 29,
669 2015.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701